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Abstract

In this work, we propose a graph-based
approach to computing similarities between
words in an unsupervised manner, and take ad-
vantage of heterogeneous feature types in the
process. The approach is based on the creation
of two separate graphs, one for words and
one for features of different types (alignment-
based, orthographic, etc.). The graphs are con-
nected through edges that link nodes in the
feature graph to nodes in the word graph, the
edge weights representing the importance of a
particular feature for a particular word. High
quality graphs are learned during training, and
the proposed method outperforms experimen-
tal baselines.

1 Introduction

Data-driven approaches in natural language process-
ing (NLP) have resulted in a marked improvement
in a variety of NLP tasks, from machine translation
to part-of-speech tagging. Such methods however,
are generally only as good as the quality of the data
itself. This issue becomes highlighted when there
is a mismatch in domain between training and test
data, in that the number of out-of-vocabulary (OOV)
words increases, resulting in problems for language
modeling, machine translation, and other tasks. An
approach that specifically replaces OOV words with
their synonyms from a restricted vocabulary (i.e., the
words already contained in the training data) could
alleviate this OOV word problem.
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Vast ontologies that capture semantic similarities
between words, also known as WordNets, have been
carefully created and compiled by linguists for dif-
ferent languages. A WordNet-based solution could
be implemented to fill the gaps when an OOV word
is encountered, but this approach is not scalable in
that it requires significant human effort for a num-
ber of languages in which the WordNet is limited
or does not exist. Thus, a practical solution to this
problem should ideally require as little human su-
pervision and involvement as possible.

Additionally, words can be similar to each other
due to a variety of reasons. For example, the similar-
ity between the words optimize and optimal can be
captured via the high orthographical similarity be-
tween the words. However, relying too much on a
single feature type may result in false positives, e.g.,
suggestions of antonyms instead of synonyms. Valu-
able information can be gleaned from a variety of
feature types, both monolingual and bilingual. Thus,
any potential solution to an unsupervised or mildly
supervised word similarity algorithm should be able
to take into account heterogeneous feature types and
combine them in a globally effective manner when
yielding the final solution.

In this work, we present a graph-based approach
to impute word similarities in an unsupervised man-
ner and takes into account heterogeneous features.
The key idea is to maintain two graphs, one for
words and one for the all the features of different
types, and attempt to promote concurrence between
the two graphs in an effort to find a final solution.
The similarity graphs learned during training are
generally of high quality, and the testing approach
proposed outperforms the chosen baselines.
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2 Approach

The eventual goal is to compute the most similar
word to a given OOV word from a restricted, pre-
existing vocabulary. We propose a graph-based so-
lution for this problem, relying on undirected graphs
to represent words and features as well as the simi-
larities between them. The solution can be broadly
divided into two distinct sub-problems, the training
and testing components.

2.1 Learning the Graph

The intuition of our approach is best expressed
through a small example problem. Figure 1 shows
an example graph of words (shaded) and features
(unshaded). For exposition, let v; = optimize, vo =
optimal, and v3 = ideal, while f; = orth_|opti, i.e.,
an orthographic feature corresponding to the sub-
string “opti” at the beginning of a word, and f5 =
align_idéal, i.e., a bilingual feature corresponding to
the alignment of the word “optimal” to the French
word “idéal” in the training data'.

Figure 1: An example graph for explanatory purposes. The
nodes in red constitute the word graph, and the nodes in white
the feature graph.

There are three types of edges in this scenario.

Edges between word nodes (e.g., Wy, .,) represent
word similarities, and edges between features (e.g.,
Wy, r;) represent feature similarities. Edges be-
tween words and features (e.g., Z,, f,, the dashed
lines) represent pertinent or active features for a
given word when computing its similarity with other
words, with the edge weight reflecting the degree of
importance.

We restrict the values of all similarities to be be-
tween 0 and 1, as negative-valued edges in undi-

'such word alignments can be extracted through standard
word alignment algorithms applied to a parallel corpus in two
different languages.
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rected graphs are significantly more complicated
and would make subsequent computations more in-
tricate. In an ideal situation, the similarity matrices
that represent the word and feature graphs should be
positive semi-definite, which provides a nice prob-
abilistic interpretation due to connections to covari-
ance matrices of multivariate distributions, but this
constraint is not enforced here. Future work will
focus on improved optimization techniques that re-
spect the positive semi-definiteness constraint.

2.1.1 Objective Function

To learn the graph, the following objective func-
tion is minimized:
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where Wy ¢ is the current similarity between fea-
ture f, and feature f, (with corresponding initial
value W}; fq), W, »; is the current similarity be-
tween word v; and word vj;, Z, r, is the current
importance weight of feature f, for word v; (with
corresponding initial value Z;:, fp)’ and o to oz are
parameters (that sum to 1) which represent the im-
portance of a given term in the objective function.
The intuition of the objective function is straight-
forward. The first two terms correspond to minimiz-
ing the ¢>-norm between the initial and current val-
ues of Wy, ¢ and Z,, ¢, (for further details on ini-
tialization, see Section 2.1.2). The intuition behind
the third term is to minimize the difference between
the word similarity of words v; and v; and the fea-
ture similarity of features f, and f, in proportion to
how important those features are for words v; and v;
respectively. If two features have high importance
weights for two words, and those features are very
similar to each other, then the corresponding words
should also be similar. The fourth term has a simi-
lar rationale, in that it minimizes the difference be-
tween importance weights in proportion to the sim-
ilarities. In other words, we attempt to promote pa-
rameter concurrence between the word and feature



graphs, which in turn ensures smoothness over the
two graphs.

The basic idea of minimizing two quantities of the
graph in proportion to their link strength has been
used before, for example (but not limited to) graph-
based semi-supervised learning and label propaga-
tion (Zhu et al., 2003) where the concept is applied
to node labels (as opposed to edge weights as pre-
sented in this work). In such methods, the idea is
to ensure that the function varies smoothly over the
graph (Zhou et al., 2004), i.e., to promote parame-
ter concurrence within a graph, whereas we promote
parameter concurrence across two graphs. In that
sense, the o parameters as control the trade-off be-
tween respecting initial values vs. achieving consis-
tency between the two graphs.

While not necessary, we decided to tie the param-
eters together, such that ag and a (representing fea-
ture similarity preference for initial values vs. pref-
erence for consistency) sum to 0.5, and o and ag
sum to 0.5 as well, implicitly giving equal weight to
feature similarities and importance weights. In the
future, a more appropriate method of learning these
« parameters will be explored.

2.1.2 Initialization

In many unsupervised algorithms, e.g., EM, the
initialization of parameters is of paramount impor-
tance, as these initial values guide the algorithm in
its attempt to minimize a proposed objective func-
tion. In our problem, initial estimates for word simi-
larities do not exist (otherwise the problem would be
considerably easier!). Instead, word similarities are
seeded from the initial feature similarities and initial
importance weights, and all three quantities are then
iteratively refined.

The initial importance weight values are com-
puted from the co-occurrence statistics between
words and features, by taking the geometric mean
of the conditional probabilities (feature given word
and word given feature) in both directions: Z7 =

/P (i fp)P(fplvi). For the initial feature similar-
ity values, the pointwise mutual information (PMI)
vector for each feature is first computed, by taking
the log ratio of the joint probability with each word
to the marginal probabilities of the feature and the
word (also done through the co-occurrence statis-
tics). Subsequently, the initial similarity is then

computed as the normalized dot product between
PMI;, -PMI,
[PMIz,, [[[[PMI, [

feature vectors:
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After computing the initial feature similarity
and weights matrices, we remove features that are
densely connected in the feature similarity graph by
trimming high entropy features (normalizing edge
weights and treating the resulting values as a prob-
ability distribution). This pruning was done in or-
der to speed up the optimization procedure, and we
found that results were not affected by pruning away
the top one percentile of features sorted by entropy.

2.1.3 Optimization

The objective function (Equations 1 to 4) is con-
vex and differentiable with respect to the individ-
ual variables in’v]., Wy, s,-and Zy, ¢ . Hence, one
way to minimize it is to evaluate the derivatives of
the objective function with respect to these variables,
set to 0 and solve. The final update equations are
provided in the Appendix.

The entire training pipeline is captured in Figure
2. We first compute the word similarities from the
initial feature similarities and importance weights,
and then update those values in turn, based on
the alternating minimization method (Csiszar and
Tusnddy, 1984). The process is repeated till con-
vergence.

Corpus

l

Preprocessing
Feature Extraction

y

Initialization
Update Word Sim
Repeat for N Update Feature Sim
iterations

Update Weights

Figure 2: Flowchart for the training pipeline described in Sec-
tion 2.1.3. The number of iterations [V is determined before-
hand.



2.2 Link Prediction

Given a learned word similarity graph (along with
a learned feature similarity graph and the edges be-
tween the two graphs) and an OOV word with as-
sociated features, the proposed solution should also
generate a list of synonyms. In a graph-based set-
ting, this is analogous to the link prediction prob-
lem: given a graph and a new node that needs to be
embedded in the graph, which links, or edges, do we
add between the new node and all the existing ones?

We experimented with two different approaches
for link prediction. The first computes word sim-
ilarities in the same manner as in training, as per
Equation 5. However, since the learned importance
weights Z,, ¢, (or Z,, r,) are specific to a given
word, importance weights for the OOV word are ini-
tialized in the same manner as in Section 2.1.2 for
the words in the training data. Thus, for a given
OOV word, we obtain word similarities with all
words in the vocabulary through Equation 5, and
output the most similar words by this metric.

The second method is based on a random walk
approach, similar to (Kok and Brockett, 2010),
wherein a probabilistic interpretation is imposed on
the graphs by row-normalizing all of the matrices
involved (word similarity, feature similarity, and im-
portance weights), implying that the transition prob-
ability, say from node v; to vj;, is proportional to
the similarity between the two nodes. For this ap-
proach, only the active features for a given OOV
word, i.e., the features that have at least one non-
zero Z edge between the feature and a word, are
used (see Section 2.3 for more details on active and
inactive features). First, M random walks are ini-
tialized from each active feature node, each walk of
maximum length 7T'. For every walk, the number of
steps needed to hit a word node in the word simi-
larity graph for the first time is recorded. After av-
eraging across the M runs, we need to average the
hitting times across all of the active features, which
is done by weighting the hitting times of each ac-
tive feature f* by Zvi Zy, £+ 1.€., the sum across all
rows of a given feature (represented by a column) in
the importance weights matrix.

The random walk-based approach introduces
three new parameters: M, the number of random
walks per active feature, 7', the maximum length
of each random walk, and /3, a parameter that con-
trols how often a random walk should take a Z
edge (thereby transitioning from one graph to the
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other) or a W edge (thereby staying within the same
graph). If a node has both Z and W edges, then 3
is the parameter for a simple Bernoulli distribution
that samples whether to take one type of edge or the
other; if the node has only one type of edge, then the
walk traverses only that type.

2.3 Sparsification

There is a crucial point regarding Equations 1 to
4, namely that restricting the inputted values to be-
tween 0 and 1 does not guarantee that the resulting
similarity or weight value will also be between 0 and
1, due to the difference in terms in the numerator
of the equations. In order to bypass this problem,
a projection step is employed subsequent to an up-
date, wherein the value obtained is projected into the
correct part of the n-dimensional Euclidean space,
namely the positive orthant. Although slightly more
involved in the multidimensional case, i.e., where
n > 1, since the partial derivatives as computed
in Equations 5 to 7 are with respect to a single ele-
ment, orthant projection in the unidimensional case
amounts to nothing more than setting the value to 0
if it is less than 0. This effectively sparsifies the re-
sulting matrix, and is similar to the soft-thresholding
effect that comes about due to ¢;-norm regulariza-
tion. Further exploration of this link is left to future
work.

However, the sparsification of the graphs/matrices
is problematic for the random walk-based approach,
in that an OOV word may consist of features that are
all inactive, i.e., none of the features have a non-zero
Z edge to the word similarity graph. In this case,
we cannot compute which words in our vocabulary
are similar to the OOV word. One method to allevi-
ate this drawback is to add back Z edges that were
removed during training with their initial weights.
Yet, we found that adding back all of the features
for a test word was worse than filtering out the fea-
tures with the highest entropy (i.e., with the most
edges to other features) out of the features to add
back. The latter approach was thus adopted and is
the setup used in Section 3.5.

3 Experiments & Results

In our experiments, we looked at both the quality of
the similarity graphs learned from the data, as well
as the performance of the link prediction techniques.



Corpus Sentences Words
EuroParl+ NewsComm (Train) 1.64 million+ 40.6 million+
WMT2010 (Test) 2034 44,671

Table 1: Corpus statistics for the datasets used in evaluation.

3.1 Dataset

Table 1 summarizes the statistics of the training and
test sets used. We used the standard WMT 2010
evaluation dataset, and the training data consists of a
combination of European Parliament and news com-
mentary bitext, while the test set is from the news
domain. Note that a parallel corpus is not needed as
only the English side is used. While the current ex-
periment is restricted to English, any language can
be used in principle.

3.2 Features

During the feature extraction phase, we first filtered
the 30 most common words from the corpus and do
not extract features for those words. However, these
common words are still used when extracting distri-
butional features. The following features are used:

e Orthographic: all substrings of length 3, 4, and
5 for a given word are extracted. For exam-
ple, the feature “orth_|opt”, corresponding to
the substring “opt” at the beginning of a word,
would be extracted from the word “optimal”.

e Distributional (a.k.a., contextual): for a given
word, we extract the word immediately preced-
ing and succeeding it as well as words within
a window of 5. These features are extracted
from a corpus without the 30 most common
words filtered. An example of such a feature
is “LR_the+cost”, representing an instance of a
preceding and succeeding word for “optimal”,
extracted from the phrase “the optimal cost”.
Lastly, all distributional features that occur less
than 5 times are removed.

e Part-of-Speech (POS): for example, “pos_JJ” is
a POS feature extracted for the word “optimal”.

e Alignment (a.k.a., bilingual): alignment fea-
tures are extracted from alignment matrices
across languages. For every word, we filter
all words in the target language (treating En-
glish, our working language, as the source)
that have a lexical probability less than half the

33

maximum lexical probability, and use the re-
sulting aligned words as features. For exam-
ple, “align_idéal” would be a feature for the
word “optimal”, since the French word “idéal”
is aligned (with high probability) to the word
“optimal”. Note that the assumption during test
time is that alignment features are not available
for OOV words; if they were, then the word
would not be OOV. Nonetheless, alignment in-
formation can be utilized indirectly in the link
prediction stage from random walk traversals
of in-vocabulary nodes.

Statistics on the number of features broken down by
type are presented in Table 2, for 3 different vocab-
ulary sizes. In the experiments, we concentrated on
the 10,000 and 50,000 size vocabularies.

3.3 Baselines

When selecting the baselines, we had two goals in
mind. Firstly, we wanted to compare the proposed
approach against simpler alternatives for generating
word similarities. The baselines were also chosen
so as to correspond in some way to the various fea-
ture types, since a main advantage of our approach
is that it effectively combines various feature types
to yield global word similarity scores. This choice
of baselines also provides insight into the impact of
the various feature types chosen; the idea is that a
baseline corresponding to a particular feature type
would be indicative of word similarity performance
using just that type. Three baselines were initially
selected:

e Distributional: a PMI vector is computed for
each word over the various distributional fea-
tures. The inner product of two PMI vectors
is computed to evaluate the similarity of two
words. We found that this baseline performed
poorly relative to the other ones, and thus de-
cided not to include it in the final evaluation.

e Orthographic: based on a simple edit distance-
based approach, where all words within an edit
distance of 25% of the length of the test word
are retrieved.

e Alignment: we compose the alignment matri-
ces in both directions to generate an English
to English matrix (using German as the pivot
language), from which the three most similar



Vocabulary Words Features Alignment Distributional Orthographic POS
Full 93,011 780,357 325,940 206,253 248,114 50
50k-vocab 50,000 569,890 222,701 204,266 142,873 50
10k-vocab 10,000 301,555 61,792 199,256 40,457 50

Table 2: Statistics on the number of features extracted based on the number of words, broken down by feature type. Note that the

distributional features are only those with count 5 and above.

words (as per the lexical probabilities in the
matrices) are extracted.

3.4 Evaluation

Automatic evaluation of an algorithm that computes
similarities between words is tricky. The judgment
on whether two words are synonyms is still done
best by a human, requiring significant manual effort.
Therefore, during the experimentation and parame-
ter selection process we developed an intermediate
form of evaluation wherein a human annotator as-
sisted in creating a pseudo “ground truth”. Prior to
creating the ground truth, all OOV words in the test
set were identified (i.e., no match in our vocabulary),
resulting in 978 OOV words. Named entities were
then manually filtered, resulting in a final test set of
312 words for evaluation purposes.

To create the ground truth, we generated for each
test OOV word a set of possible synonyms using the
alignment and orthographic baselines, as per Section
3.3. Naturally, many of the words generated were
not legitimate synonyms; human evaluators thus re-
moved all words that were not synonyms or near
synonyms, ignoring mild grammatical inconsisten-
cies, like singular vs. plural. Generally, a synonym
was considered valid if substituting the word with
the synonym preserved meaning in a sentence.

The final evaluation was performed by a human
evaluator. The two baselines and the proposed ap-
proach generated the top three synonym candidates
for a given OOV test word and both 1-best and 3-
best results were evaluated (as in Table 3). Final
performance was evaluated using precision and re-
call. Recall is defined as the percentage of words
for which at least one synonym was generated, and
precision evaluates the number of correct synonyms
from the ones generated.

3.5 Results

Figure 3 looks at the neighborhood of words around
the word “guardian”. Note that while only two dif-
ferent o parameter configurations are compared in
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Test Word Synonym1  Synonym 2 Synonym 3
pubescent puberty adolescence nanotubes
sportswoman  sportswomen athlete draftswoman
briny salty saline salinity

Table 3: Example of the annotation task. The suggested syn-
onyms are real output from our algorithm.

the figure, we investigated a variety of settings and
found that ap = 0.3, 01 = 0.4, 00 = 0.2,03 = 0.1
worked best from a final evaluation perspective.
The first point to note is that the graph in Fig-
ure 3b is generally more dense than that of Figure

Mbd)ag=04,a01 =04,a0 =0.1,a3 = 0.1

Figure 3: A snapshot of a portion of the learned graph for two
different parameter settings. The graph in 3b is more dense.
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Figure 4: Word similarity and weights matrices sparsities for
10,000-word vocabulary.

3a. For example, Figure 3b contains an edge be-
tween “custodian” and “custodians”, whereas Figure
3adoes not. In the latter graph, there is a higher pref-
erence for smoothness over the graph and thus the
idea is that “custodian” and “custodians” are linked
via the smooth transition “custodian” — “guardian”
— “guardians” — “custodians”, whereas in the for-
mer, there is a higher preference to respect the ini-
tial values, which generates this additional edge. We
also observed weak edges between words like “cus-
todian” and “tutor” in Figure 3b but not in Figure
3a. The effect of the parameters on the sparsity of
the graph is definitely apparent, but generally the
learned graphs are of high quality. A further anal-
ysis reveals that for many of the words in the cor-
pus, the highest weighted features are usually align-
ment features; their heavy use allows the algorithm
to produce interesting synonym candidates, and em-
phasizes the importance of bilingual features.

To underscore the point regarding impact of pa-
rameters on graph sparsity, Figures 4 and 5 present
the number of elements in the resulting word sim-
ilarity and weights matrices (graphs) vs. iteration
for vocabulary sizes of 10,000 and 50,000 respec-
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Configuration oy a1 a2 a3

HHLL 04 04 0.1 0.1
NHNL 03 04 02 0.1
HLLH 04 01 01 04
LHHL 0.1 04 04 0.1

Table 4: Legend for the charts in Figures 4 and 5. H corre-
sponds to “high”, L to “low”, and N to “neutral”.
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Figure 5: Word similarity and weights matrices sparsities for
50,000-word vocabulary.

tively, with Table 4 providing a legend to the curves
in those figures. Higher o weights for terms 1 and
2 in the objective function result in less sparse solu-
tions. The density of the matrices also drops drasti-
cally after a few iterations and stabilizes thereafter.

Lastly, Tables 5 and 6 present the final results of
the evaluation, as assessed by a human evaluator, on
the 312 OOV words in the test set. While the re-
sults on the 1-best front are marginally better than
the edit distance-based baseline, 3-best the perfor-
mance of our approach is comfortably better than the
baselines. Testing was done with the word similarity
update method.

The performance of the random walk-based link



Method Precision Recall F-1

T matrix 31.1% 67.0% 42.5%
orthographic  37.5% 923% 53.3%
50k-nhnl 37.2% 100% 54.2%

Table 5: 1-best evaluation results on WMT 2010 OOV words
trained on a 50,000-word vocabulary. Our best approach (“50k-
nhnl”) is bolded

Method Precision Recall F-1

T matrix 96.7% 67.0% 79.1%
orthographic 89.9% 923% 91.1%
50k-nhnl 92.6% 100%  96.2%

Table 6: 3-best evaluation results on WMT 2010 OOV words
trained on a 50,000-word vocabulary. Our best approach (“50k-
nhnl”) is bolded

prediction approach was sub-optimal for several rea-
sons. Firstly, it was difficult to use the learned im-
portance weights as is, since the resulting weights
matrix was so sparse that many test words simply
did not have active features. This issue resulted
in the vanilla variant of the random walk approach
to have very low recall. Therefore, we adopted a
“mixed weights” strategy, where we selectively in-
troduced a number of features previously inactive
for a test word, not including the features that had
high entropy. Yet in this case, the random walks get
stuck traversing certain edges, and a good sampling
of similar words was not properly achievable.

A general issue that arose during link prediction
is that the orthographic features tend to dominate
the candidate synonyms list since alignment features
are not utilized. If instead we assume that align-
ment features are accessible during testing, then the
random walk-based approaches do marginally better
than the word similarity update method, but further
investigation is warranted before drawing any defini-
tive conclusions.

4 Related Work

We used the objective function and basic formula-
tion of (Muthukrishnan et al., 2011), but corrected
their derivation of the optimization and introduced
methods to handle the resulting complications. In
addition, (Muthukrishnan et al., 2011) implemented
their approach on just one feature type and with far
fewer nodes, since their word similarity graph was
actually over documents and their feature similar-
ity graph was over words. Recently, an alterna-
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tive graph-based approach for the same problem was
presented in (Minkov and Cohen, 2012). However,
in addition to requiring a dependency parse of the
corpus, the emphasis of that work is more on the
testing side. Indeed, we can incorporate some of the
ideas presented in that work to improve our link pre-
diction during query time. The label propagation-
based approaches of (Tamura et al., 2012; Razmara
et al., 2013), wherein “seed distributions” are ex-
tracted from bilingual corpora and are propagated
around a similarity graph, can also be easily inte-
grated into our approach as a downstream method
specific to machine translation.

Another approach to handle OOVs, particularly
in the translation domain, is (Zhang et al., 2005),
wherein the authors leveraged the web as an ex-
panded corpus for OOV mining. If web access is un-
available however, then this method would not work.

The general problem of combining multiple views
of similarity (i.e., across different feature types)
can also be tackled through multiple kernel learn-
ing (MKL) (Bach et al., 2004). However, most of
the work in this field has been on supervised MKL,
whereas we required an unsupervised approach.

An area that has seen a recent resurgence in popu-
larity is deep learning, especially in its applications
to continuous embeddings. Embeddings of word
distributions have been explored in (Mnih and Hin-
ton, 2007; Turian et al., 2010; Weston et al., 2008).

Lastly, while not directly relevant to our work, the
idea of using a graph-based framework to combine
both monolingual and bilingual features was also
presented in (Das and Petrov, 2011).

5 Conclusion & Future Work

In this work, we presented a graph-based approach
to computing word similarities, based on dual word
and feature similarity graphs, and the edges that
go between the graphs, representing importance
weights. We introduced an objective function that
promotes parameter concurrence between the two
graphs, and minimized this function with a simple
alternating minimization-based approach. The re-
sulting optimization recovers high quality word sim-
ilarity graphs, primarily due to the bilingual features,
and improves over the baselines during the link pre-
diction stage.

In the future, on the training side we would like
to optimize the proposed objective function in a
better manner, while enforcing the positive semi-



definiteness constraints. Other link prediction tech-
niques should be explored, as the current techniques
have pitfalls. Richer features that model more re-
fined aspects can be introduced. In particular, fea-
tures from a dependency parse of the data would be
very useful in this situation.
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A Final Equations for Parameter Updates
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