A Cross-Task Flexible Transition Model for Arabic Tokenization, Affix
Detection, Affix Labeling, POS Tagging, and Dependency Parsing

Stephen Tratz
Army Research Laboratory
Adelphi Laboratory Center
2800 Powder Mill Road
Adelphi, MD 20783
stephen.c.tratz.civ@mail.mil

Abstract

This paper describes cross-task flexible tran-
sition models (CTF-TMs) and demonstrates
their effectiveness for Arabic natural language
processing (NLP). NLP pipelines often suffer
from error propagation, as errors committed
in lower-level tasks cascade through the re-
mainder of the processing pipeline. By al-
lowing a flexible order of operations across
and within multiple NLP tasks, a CTF-TM can
mitigate both cross-task and within-task error
propagation. Our Arabic CTF-TM models to-
kenization, affix detection, affix labeling, part-
of-speech tagging, and dependency parsing,
achieving state-of-the-art results. We present
the details of our general framework, our Ara-
bic CTF-TM, and the setup and results of our
experiments.

1 Introduction

Natural Language Processing (NLP) systems often
consist of a series of NLP components, each trained
to perform a specific task such as parsing. These
pipelines tend to suffer from error propagation—
errors introduced by early components cascade
through the remainder of the pipeline causing subse-
quent components to commit additional errors. Par-
tial solutions from higher-level tasks (e.g., parsing)
can aid in resolving the difficult decisions that must
be made in solving lower-level tasks, as with part-
of-speech tagging the classic “garden path” sentence
example “The horse raced past the barn fell.” To
this end, this paper presents cross-task flexible tran-
sition models (CTF-TMs), which model multiple
tasks and solve these tasks in a more flexible or-
der than pipeline approaches. We implement and

34

experiment with a CTF-TM for Arabic' language
processing and report experimental results for it on
Arabic tokenization (i.e., clitic separation), affix de-
tection, affix labeling, part-of-speech tagging, and
dependency parsing.

In addition to error propagation between mod-
ules within a parsing pipeline, errors may propa-
gate within the parsing process itself due to the
fixed order of operations of the parser. This is com-
mon for standard transition-based dependency pars-
ing models (McDonald and Nivre, 2007), such as
shift-reduce parsers, which incrementally construct
a parse by processing the input in a fixed left-to-right
or right-to-left fashion. However, using a transition
model that allows a more flexible order of opera-
tions, such as Goldberg and Elhadad’s (2010) parser,
allows difficult decisions to be postponed until later,
when more of the solution has been constructed.
CTF-TMs extend this approach by modeling mul-
tiple tasks and providing this flexibility across tasks
so that no one task needs to be complete before an-
other can be partially solved.

As a morphologically rich language, Arabic re-
quires a significant number of processing steps. Ara-
bic uses a variety of affixes to inflect for case, gen-
der, number (including dual), and mood, has clitics
that attach to other words, permits both VSO and
SVO constructions, and rarely includes short vow-
els in written form. The presence of clitics and the
absence of written short vowels are particularly sig-
nificant sources of ambiguity. As Tsarfaty (2006)
argues for Modern Hebrew, a Semitic language that
shares these characteristics, we contend that mor-

"This paper focuses on Modern Standard Arabic rather than
any of the dialects.

Proceedings of the Fourth Workshop on Statistical Parsing of Morphologically Rich Languages, pages 34—45,
Seattle, Washington, USA, 18 October 2013. (©)2013 Association for Computational Linguistics

phological analysis and parsing should be done in
a unified framework, such as a CTF-TM, rather than
by separate components.

In this paper, we describe CTF-TMs, which can
be used for a wide variety of NLP tasks, and present
our Arabic CTF-TM for Arabic tokenization, af-
fix detection, affix labeling, part-of-speech tagging,
and dependency parsing as well as the results ob-
tained in applying it to our dependency conversion
of the Penn Arabic Treebank (ATB) (Maamouri et
al., 2004; Maamouri and Bies, 2004). We find
that our Arabic CTF-TM for tokenization, affix de-
tection, affix labeling, POS tagging, and parsing
achieves slightly better results than a similar CTF-
TM that performs all the tasks except parsing. The
CTF-TM that supports parsing appears to be more
accurate at distinguishing between passive and ac-
tive verbs as well as between nouns and adjectives—
cases where the context is crucial for proper inter-
pretation due to Arabic’s ambiguities. Our system
achieves tokenization accuracy similar to Kulick’s
(2011) state-of-the-art system for a standard split of
the ATB part 3, and, in our experiments using ATB
parts 1-3, our system achieves the highest labeled
attachment, unlabeled attachment, and clitic separa-
tion figures (including pronomial clitics) for Arabic
yet reported (although no other work can be com-
pared directly).

2 Relevant Arabic Linguistics

Arabic has rich morphology, with a wide array of af-
fixes and clitics and inflecting for case, number, gen-
der, and, occasionally, mood. Coordinating conjunc-
tions, pronouns, and most true prepositions, along
with some other particles and the definite article,
usually occur as clitics in Arabic. Thus, a space-
delimited” sequence of Arabic characters may con-
sist of multiple words, and identifying the bound-
aries between these must be done in order to produce
syntactic parses. These boundaries can’t be detected
perfectly using simple deterministic rules. Signifi-
cantly, short vowels, which are expressed using dia-
critics, are not typically written in Arabic, resulting
in pervasive ambiguity. For example, active and pas-
sive forms of verbs vary only in their diacritics, and
nouns and adjectives are both derived from Arabic

Technically, space-and-punctuation-deliminated.

35

roots using the same templates and, thus, look sim-
ilar. A single Arabic token may permit a variety of
different analyses, as the example in Table 1 illus-
trates.

Jdls wWAIY ‘ruler’
st Hs w+AlY+y ‘and to me’
) uﬁU w+<ly ‘and I follow’
srdls w|l+y ‘and my clan’
) Sy wHly ‘and automatic’

Table 1: Possible interpretations for the text wAlY
(Habash and Rambow, 2005).

3 CTF-TM Framework

Error propagation is not simply a problem that oc-
curs between components in a pipeline but one that
often occurs within a single component’s process-
ing. Since transition systems can use the partially
built solution for feature generation, incorrect ac-
tions taken early on result not only in an invalid
final solution, but the invalid partial solution may
dissuade the system from making correct decisions
with respect to other parts of the solution. If a
transition system can postpone decisions it is not
confident of until later, the partial solution created
by performing other actions may provide more or
better information that enables the system to prop-
erly resolve more difficult decisions. This “easy-
first” strategy is adopted by Goldberg and Elhadad’s
(2010) parsing system, which starts with an ordered
list of unattached words and, in each iteration, cre-
ates a new arc between any of the adjacent pairs
of words in the list and removes the daughter node
(word) from the list.

This strategy is much more flexible than shift-
reduce style parsing because the system has more
options available to it at any one step for building
up the solution. However, simply having flexibil-
ity within a single component does not reduce er-
ror propagation to or from other components in a
pipeline and, to mitigate the potential for this, one
may use a cross-task flexible transition model (CTF-
TM) that does not have to wait for lower level tasks
to be 100% complete before starting work on higher
level tasks.

McDonald and Nivre (2007) define a transition
system as follows:

1. a set C of parse configurations, each of which
defines a (partially built) dependency graph G
2. aset T of transitions, each a function ¢ : C —

C

3. for every sentence x = wg, Wy, ..., Wy,

(a) aunique initial configuration c,,
(b) aset Cy, of terminal configurations

These systems start at the initial configuration and
use a scoring function s : C' X T" — R to repeatedly
select and follow the locally optimal transition, stop-
ping when a terminal configuration is reached.

We make a few changes to McDonald and Nivre’s
transition system definition in order to explain our
framework. First, to support modeling of multiple
tasks, instead of referring to parse configurations,
we simply use the term configuration, defining it to
represent a partially built solution rather than a de-
pendency graph. Second, we specify that there ex-
ists a routine for enumerating a set of anchors for
any given configuration. Anchors are an organiza-
tional concept for dealing with arbitrary data struc-
tures; each anchor acts as a hook into some por-
tion of the configuration that may be changed. Fi-
nally, there exist routines for enumerating legal ac-
tions that can be performed in relation to any anchor
and, for training, a routine for verifying that per-
forming a given action will lead to a configuration
consistent with the final solution. The performance
of an action constitutes a transition between config-
urations.? It is quite straightfoward to adapt Gold-
berg and Elhadad’s (2010) parsing approach to any
configuration that is indexable by anchors, and in so
doing we are able to create cross-task flexible tran-
sition models.

3For example, in a fixed order, one-word-at-a-time POS tag-
ging system, there would be only one anchor—the word cur-
rently being labeled—but, for a one-at-a-time POS tagger capa-
ble of tagging words in any order, the anchor set would contain
the entire list of still-unlabeled words. The POS labeling ac-
tions for the anchors in each of these cases constitute transitions
to new configurations.

36

4 Our Arabic CTF-TM

4.1 Tasks

Our Arabic CTF-TM system performs the follow-
ing tasks: split a series of space-delimited Arabic to-
kens into words (tokenization), identify the bounds
of affixes within the words (affix detection), label
the affixes (affix labeling), label the words with their
parts of speech (POS tagging), and construct a la-
beled dependency tree (dependency parsing). Tok-
enization, part-of-speech tagging, and dependency
parsing are frequent topics in NLP literature. Affix
identification and labeling are parts of morphologi-
cal analysis that are sometimes completely ignored
or are performed using an external morphological
analyzer. Identifying affixes and labeling them can
help the overall system contend with lexical sparsity
issues as well as utilize the information encoded by
the affixes (e.g., person).

4.2 Anchors and Actions

The configurations that the system deals with have
anchors of two types, token anchors and affix an-
chors. The initial configuration consists of an or-
dered list of neighboring token anchors (neighbor-
hood), each of which corresponds to one of the orig-
inal space-delimited tokens. As processing contin-
ues, new token anchors may be created by splitting
off clitics, new affix anchors may be created by iden-
tifying substrings of tokens as affixes, and token an-
chors will be removed from the ordered list to be-
come daughter nodes of their neighbors, attached via
labeled dependency arcs. The complete list of ac-
tions that can be performed on the anchors, which, as
described earlier, constitute the transitions between
configurations, are as follows:

Tokenization

1. Separate a proclitic of length / from a token anchor, cre-
ating a new token anchor for the clitic and reducing the
width of the original token

2. Separate an enclitic of length / from a token anchor, cre-
ating a new token anchor for the clitic and reducing the
width of the original token
Affix Detection

3. Create an affix (prefix) anchor from the first / characters
of a token anchor that are not labeled as part of an affix
(If the affix is the definite determiner Al, which we treat
as an affix for consistency with the ATB’s tokenization
scheme, it is automatically labeled as DET and removed
from further processing for the sake of efficiency.)

4. Create an affix (suffix) anchor from the last / characters
of a token anchor that are not labeled as part of an affix
POS and affix labeling

5. Assign a label [to the anchor (Affixes are automatically
removed from further processing after labeling)
Dependency parsing

6. Create a dependency arc with label d between a token an-
chor and the preceding unattached neighbor token anchor
and remove the attached anchor from the neighborhood

7. Create a dependency arc with label d between a token
anchor and the following unattached neighbor token an-
chor with label / and remove the attached anchor from the
neighborhood

8. Swap the position of two neighboring token anchors (this
adds Nivre-style (2009) non-projectivity support as de-
scribed by Tratz and Hovy (2011))

General

9. Mark an anchor as fully processed and remove it from

further processing

The dependency labels, POS labels, clitic lengths,
and affix lengths used to define the actions are all
collected automatically from the training data. *

The actions are subject to the following con-
straints/preconditions:

1. Labeling is only valid if the anchor has not been labeled

2. Tokens may only be labeled with token labels, prefixes
with prefix labels, and suffixes with suffix labels (as de-
termined by the training data)

3. Affix strings observed in the training data may not be la-
beled with any label not used with them in the training
data

4. Token anchors may not be assigned labels that do not co-
occur with the labels of any already-labeled affixes and
vice versa

5. A prefix creation action may only be applied to a token
anchor that doesn’t yet have a prefix

6. Proclitics may not be created and detached if the token
already has a prefix, and enclitics are similarly restricted
by the presence of a suffix

7. Clitics may not be detached from a token that has already
been attached to another token via a dependency arc

8. A dependency arc with label x may not be created be-
tween token anchors 77 and 75 if 1) one or both are la-
beled and 2) no arc between similarly POS tagged an-
chors exists in the training data

9. Swap actions may not undo previous swaps

10. Marking a token anchor as fully processed may only oc-
cur if it has already been labeled, and it must either be 1)
the last unattached token or 2) already attached

*Training examples with clitics that are invalid (i.e., too
long) are discarded at the beginning of training.

37

4.3 Scoring Function

For our scoring function, like Goldberg and El-
hadad, we use the structured perceptron algorithm
(Collins, 2002) with parameter averaging. This
has previously been shown to produce strong re-
sults when modeling multiple NLP tasks (Zhang and
Clark, 2008).

4.4 Features

For a given anchor’, the system extracts features
from the partially built solution (e.g., the text, af-
fixes, POS tags, and syntactic dependencies of the
anchor and nearby anchors). The same feature tem-
plates are used for all action types except the affix la-
beling actions—affix labeling is applied to affix an-
chors instead of word-level anchors, and, since all
templates are defined relative to an anchor, the tem-
plates must be different. The system uses no external
resources (e.g., lexicons, morphological analyzers).
We leave out a more exhaustive listing and descrip-
tion of the features due to space limitations®, the fact
that the focus of this paper is not on the value of any
particular feature template but rather on our overall
approach and experimental results, and because we
plan to release our code, which will be more helpful
for reproducibility efforts.

4.5 Data Preparation

For our experiments, we use the original writ-
ten form of the data from the latest versions of
the first three parts of the Penn Arabic Treebank
(ATB) (Maamouri et al., 2004; Maamouri and Bies,
2004) as well as the new broadcast news collection
(Maamouri et al., 2012).” We convert the constituent
trees into dependency trees and adjust the part-of-
speech tags.

‘A given action’ may be more correct technically, but our
implementation is set up to share the same set of string-based
features across all actions associated with a given anchor.

8Simply listing the feature templates in a normal font size
with minimal (insufficient) explanation would require well over
a page. The set of feature templates is based upon the tem-
plates used by Tratz and Hovy’s (2011) English parser, which
are given in Tratz’s (2011) thesis.

"We use version 4.1 of ATB part 1, 3.1 of part 2, 3.2 of part
3, and 1.0 of the broadcast news transcriptions.

4.5.1 Dependency Conversion

The two main Modern Standard Arabic de-
pendency treebanks currently available are the
Columbia Arabic Treebank (CATiB) (Habash and
Roth, 2009) and the Prague Arabic Dependency
Treebank (PADT) (Haji¢ et al., 2004). CATiB has
over 228,000 manually annotated words as well as
an automatic ATB conversion. It uses only 8 de-
pendency relations (subject, object, predicate, topic,
idafa, tamyiz, modifier, and flat) and 6 part-of-
speech tags, and it has not yet been publicly released
by the LDC. The PADT, which was used in the
CoNLL 2006 and 2007 shared tasks (Buchholz and
Marsi, 2006; Nivre et al., 2007), is much smaller,
with only about 148,000 annotated tokens. Since we
want a large annotated corpus with fine-grained la-
bels, we create our own ATB conversion.

4.5.2 Transformations

In addition to converting the ATB’s constituent
parses to dependency trees, we make a handful
of other changes. Following Green and Manning
(2010) and others, sentences headed by X nodes
are deleted because the treebank annotators con-
sidered them unbracketable or somehow erroneous.
Following Rambow et al. (2005), Treebank sen-
tences headed by TOP elements containing multiple
S daughters are split into separate sentences.® Addi-
tionally, if the dependency converter concludes that
an S node without treebank functional tags is depen-
dent upon another S node and is separated from it
via sentence-final punctuation (e.g., an exclamation
point), these S nodes are separated into distinct sen-
tences as well. For the broadcast news data, we re-
move all subtrees headed by EDITED tags to make
it more closely resemble newswire text.”

Since we adhere to the tokenization scheme used
by the ATB, and we do not split off the determiner Al
as its own tree token. Instead, we treat it as a prefix.

The words referred to as inna and her sisters are
annotated using two different part-of-speech cate-
gories and syntactic structures in the ATB. In our
conversion, both ATB structures are converted to

8The ATB often has multiple sentences, or even entire para-
graphs, annotated under a single TOP element.

"The EDITED tag “is used to show the repetition and restart-
ing of constituents that are repaired by subsequent speech”
(Maamouri et al., 2012).

38

the same dependency structure headed by the INNA

word, similar to CATiB (Habash and Roth, 2009).
We treat the focus particle AmmA like a preposi-

tion in our dependency structure, following CATiB.

4.5.3 Dependency Label Scheme

Our dependency scheme consists of a total of
35 labels. Many of these are similar to those of
Stanford’s basic dependency scheme for English (de
Marneffe and Manning, 2008), although they are
somewhat closer to a similar scheme used by (Tratz
and Hovy, 2011). The list of relations is presented
in Table 2.

Most of the relations are self-explanatory or cor-
respond to similar labels in either Tratz and Hovy’s
(2011) scheme for English or CATiB’s (Habash and
Roth, 2009) scheme for Arabic. A few are new
or significantly different from their similarly named
counterparts in other schemes and are described in
greater detail below.

e adjnom — connects the head of an NP to that of a sister
NP (occurs with apposition and preposition-like nouns)

e advcl— connects verbal nouns to their syntactic governor
in what resemble English’s adverbial participle clauses

e advnp — connects NPs with treebank adverbial function
tags (e.g., -LOC, -TMP, -DIR), which are often headed by
preposition-like nouns, to what they modify

o fidafa — for false idafa (idafa-like structures that are
headed by adjectives instead of nouns)

® kccmp — connects a clausal complement that is part of a
past progressive or habitual construction to the head verb
kana

e lakinna — similar to cc but used with the sister of inna
lakinna instead of coordinating conjunctions

e part — particle modifier; connects particles (other than
FOCUS_PART) to their governors

e rcmod — connects a bare relative clause to its head

e reladv — connects an adverbial WH- clause to its gover-
nor

e relmod — connects the head of a WH- node to the rela-
tivized word

e ripcmp — connects a clause to the relative or interrogative

pronoun that heads it

4.54 Part-of-Speech Tag Scheme

The Penn Arabic Treebank uses complex part
of speech tags for the entire tree token such as
DET+NOUN+NSUFF_FEM_SG+CASE_DEF_GEN.
Across the treebank data used in our experiments,
there are a total of 579 such tags, which are
composed of 179 different parts separated by plus
signs. Each part corresponds to a substring of the

adjnom | adjunct nominal intj interjection prep preposition modifier

advcl | adverbial clause iobj indirect object punct | punctuation modifier

advmod | adverbial modifier idafa idafa remod | (bare) relative clause modifier
advnp | adverbial noun phrase fidafa | false idafa reladv | relative pronoun adverbial

cc coordinating conjunction flat flat structure relmod | relative pronoun modifier

ccinit | initial coordinating conjunction keemp | kana clausal complement ripemp | relative/interrogative pronoun complement
ccomp | clausal complement lakinna | see rext sc subordinating conjunction modifier
combo | combination term neg negation subj subject

conj conjunction obj object tmz tamyiz

cop copula complement objcomp | object complement tpc topicalized element

dep unspecified dependency part particle modifier voc vocative

det determiner pcomp | preposition complement

Table 2: Syntactic dependency scheme used in this work. Labels that aren’t self-explanatory or similar to the labels
used by Tratz and Hovy (2011) for English or CATiB for Arabic (Habash and Roth, 2009) are in bold (for completely
new relations) or italics (for similarly named but semantically different relations)

vowelized version of the word.'? Due at least in part
to the enormity of this label set, simpler schemes
are often preferred, such as the “Bies” labels (Bikel,
2004; Kulick et al., 2006), Diab’s (2007) labels,
Kulick’s (2011) labels, and CATiB’s labels (Habash
and Roth, 2009). Marton et al. (2010) find that
using simpler schemes allow them to get better
parsing results when using predicted POS tags due
to the relatively poor performance of taggers trained
using the full ATB scheme.

The part-of-speech tag scheme we use is quite
similar to that of the original ATB but has several
simplifications. These changes are listed below.

1. Possessive and direct object pronoun clitics are all given
the same label (PRON_OPP) (50 fewer tags; mapping back
to the originals is trival in almost all cases)

2. .VN forms of NOUN and ADJ are merged with their re-
spective more generic categories

3. Interrogative and relative adverbial and pronoun labels
are merged together into RI_ADV and RI_PRON

4. Noun suffix labels (e.g., NSUFF_MASC_PL_GEN,
NSUFF_-MASC_PL_ACC) with genitive or accusative case
distinctions are merged because there is no distinction in
unvowelized form

5. Labels for dual masculine noun suffixes are merged with
their plural counterparts (no distinction in the unvow-
elized forms)

6. Demonstrative pronoun labels are collapsed to
DEM_PRON (person and number information is easily
recovered)

7. The words called inna and her sisters are labeled INNA
instead of PSEUDO_VERB or SUB_CONJ

19Since we use the original written form of the data and the
internal segmentation of the words are only provided for the
vowelized versions, we project the segmentation into the orig-
inal written forms, discarding any parts that weren’t actually
written (e.g., case labels associated with unwritten diacritics).

39

Since our system splits off clitics and identifies
the affixes, the tagging is performed at the individual
morpheme level instead of producing a single all-
encompassing tag for the entire token.

Some of the part-of-speech tags (mostly in-
stances of DIALECT, TYPO, TRANSERR, and
NOT_IN_LEXICON tags) are automatically cor-
rected/improved during the dependency conversion
based upon the original constituent parse.

4.6 Filtering

Sentences containing invalid clitics are not used in
training both because they are erroneous and be-
cause including them would require allowing the
system to perform actions that should not occur (i.e.,
splitting off a clitic of length 8); similarly, train-
ing examples with more than 20% of their tokens
tagged as DIALECT, TRANSERR, LATIN, PARTIAL,
GRAMMAR PROBLEM, and/or TYPO are ignored on
the assumption that including them would harm the
model. This filtering process is not applied in test-
ing.

4.7 Data Split

We train and test models using three different splits
of the data. The first split is based upon the split used
by Zitouni et al. (2006) in their diacritization work
and is the same as that used by Marton et al. (2013)
in their parsing work and by Kulick (2011) in his to-
kenization and part-of-speech tagging work, in order
to facilitate better comparison. However, Marton et
al. use the CATiB conversion of a slightly earlier
version of the data (3.1, not 3.2), and, thus, the re-
sults are not directly comparable. This split places

Part Use Files Sent Toks Tree Toks Affixes
1 train 514 4090 101629 116892 49057
dev 110 909 22932 26261 11074
test 110 823 20825 24127 10032
2 train 351 3011 102795 120605 56273
dev 75 559 20869 24619 11245
test 75 630 20518 24078 11078
3 train 509 11350 287945 341033 145621
dev 45 1029 26347 31200 13828
test 45 992 25299 29938 12220
BN train 68 5504 82388 98040 48190
dev 26 1801 29873 35676 17890
test 26 2082 34361 41192 20366

Table 3: Counts of the number of files, sentences (Sent),
original space-delimited tokens (Tok), ATB tree tokens
(Tree Toks), and affixes in the experimental data.

the first (in name and chronological order) 85% of
the documents in ATB part 3 in training, the next
7.5% in development, and the final 7.5% in test.

In the second split, we use data from the first
three parts of the ATB, each of which consists
of documents coming from a different newswire
source. Parts 1 and 2 are split 70%/15%/15% train-
ing/dev/test, and we reuse the split of part 3 just
mentioned. Under this setup, we train two different
CTF-TMs, one that performs all of the tasks and one
that performs all of the tasks except parsing. This
enables us to test whether modeling parsing task im-
proves performance on the lower level tasks.

In the final split, we use the splits for parts 1-3
plus the data in LDC’s annotated broadcast news
transcripts (Maamouri et al., 2012). Unlike parts
1-3, the broadcast news data are drawn from a va-
riety of sources. Files from sources with three or
more files are split across training, development, and
test, with the latest documents being placed in test.
I This experiment illustrates how the system per-
forms when additional, out-of-domain data are in-
cluded.

Statistics for the data are given in Table 3.

4.8 Evaluation Measures

Dependency parsing quality is measured in terms of
labeled and unlabeled attachment scores (LAS and
UAS), which indicate the percentage of words at-
tached to their correct parent and, in the case of
LAS, whose attachment is labeled with the correct

"We will make the exact list of files used in the training,
development, and test sets available.

40

dependency. Since a given space-delimited token
may not be tokenized into words correctly, the de-
pendency arcs are only counted as correct if they
occur between the correct words (spans of charac-
ter indices). We measure part-of-speech tagging in
terms of F-score (F1) and require that the tree token
have the correct bounds (was tokenized correctly)
and have the correct label.

Normally, we would choose LAS on the develop-
ment set as the measure for determining the version
of the model to keep for testing because it measures
performance on the highest-level task (labeled de-
pendency parsing). However, since one of the CTF-
TMs does not perform parsing, we instead use POS
tagging F1. In general, we observe that the scores
are highly correlated, making the point moot. For
the ATB part 3 experiment, POS tagging F1 peaks
on iteration 437.!% For the second experiment, POS
tagging F1 peaks at iteration 301 for the CTF-TM
with parsing and iteration 278 for the one without.
For the third experiment, the highest score occurs
on iteration 431.

4.9 Results and Discussion

The results for the various experimental setups are
presented in Table 4.

ATB 3 Experiment When using the same split
of ATB part 3 as Kulick (2011) and Marton et al.
(2013), the system correctly tokenizes 99.3% of the
space-delimited tokens, similar to Kulick’s (2011)
accuracy (99.3%) and slightly higher than the 99.0%
figure Kulick calculates for MADA. Though these
results are obtained using our dependency conver-
sion of the ATB rather than the original, we use the
same tokenization scheme. The POS labeling F1
score of 95.8 can’t be compared well with any other
work due to differences in tag schemes, which vary
greatly, as well as use of gold tokenization and other
differences. Our system obtains 84.9 UAS and 82.0
LAS, which are higher than Marton et al.’s best re-
sults of 84.0 UAS and 81.0 LAS, but they were using
a different conversion (CATiB) of a different version
of the data (3.1, not 3.2) as well as gold tokenization,
so the results are not directly comparable.

Framework Internal Experiment The CTF-TM

2We run 500 iterations for each experiment, which can take
as long as a week using a quad-core machine. However, little
improvement is seen after the first 100 iterations.

Train Eval Data Tok Acc POS F1 Affix Bounds F1 Affix Label F1 UAS LAS
3 3 Dev 99.5 96.6 98.7 98.4 86.3 83.8
3 3 Test 99.3 95.8 98.4 97.9 849 820
1,2,3 1,2,3 Dev 99.6 97.1 99.1 98.9 88.3 86.0
1,2,3 1,2,3 Test 99.6 96.8 99.0 98.7 874 848
1,2,3,BN 1,2,3 Dev 99.6 97.1 99.1 98.9 88.5 86.2
1,2,3,BN 1,2,3 Test 99.6 96.8 99.0 98.8 87.5 85.0
1,2,3,BN 1,2,3,BN Dev 99.5 96.0 98.8 98.5 874 84.6
1,2,3,BN 1,2,3,BN Test 99.3 95.7 98.7 98.4 86.6 83.8
Without Parsing

1,2,3 1,2,3 Dev 99.6 96.9 99.1 98.9 NA NA
1,2,3 1,2,3 Test 99.5 96.5 98.9 98.6 NA NA

Table 4: Results for the various experiments (Exp) for both the development and test portions of the data, including per-
token clitic separation (tokenization) accuracy, part-of-speech tagging F1, affix boundary detection F1, affix labeling

F1, and both unlabeled and labeled attachment scores.

that does parsing and the CTF-TM that doesn’t
achieve similar overall results for the different tasks
(other than parsing, of course). However, when
looking deeper at the individual POS tagging mis-
takes that one system made more often by one sys-
tem than the other, (see Tables 5 and 6), we ob-
serve that the parsing CTF-TM does a better job
with labeling some parts-of-speech. For instance,
the non-parsing system mismarks passive verbs as
active more than 29% more often than the other. In
Arabic, passive and active forms of verbs are only
distinguished by their short vowels, which are typi-
cally unwritten, and, thus, the context is of particular
importance in distinguishing between the two. The
non-parsing system also has more trouble with the
distinction between nouns and adjectives, which is
likely because adjectives are derived using the same
templatic structures as nouns (Attia et al., 2010) and,
thus, context is, once again, of great importance.

Broadcast News Experiment The scores ob-
tained in the experiment with the broadcast news
data are slightly lower than in the second exper-
iment. However, this appears to be because the
broadcast news portions of the development and test
sections are more difficult to parse than the remain-
der. If we apply the model to the development and
test sections of parts 1, 2, and 3, we observe that
the results, which are given in Table 4, are higher
than those of the model trained without the broad-
cast news data.

41

Gold Prediction Errors Diff
-parse +parse
NOUN ADJ 297 238 -59
ADJ NOUN 328 298 -30
VB_IV_PASS VBV 109 80 -29
VB_PV_PASS VB_PV 86 68 -18
VB_PV NOUN 104 88 -16
VB_IV VB_PV 12 22 +10
INNA SUB_CONJ 9 2 -7
VB_PV VB_IV 19 13 -6
NOUN NOUN_PROP 140 134 -6
ADJ NOUN_PROP 32 27 -5

Table 5: Top 10 POS mistakes made more often by either
the CTF-TM with parsing or the CTF-TM without on the
ATB part 1, 2, and 3 development set.

Tag #Gold || Tag #Gold
NOUN 26195 || INNA 1456
ADJ 7491 || SUB_CONJ 641
NOUN_PROP 5913 || VB_PV_PASS 231
VB_PV 3478 || VBV_PASS 207
VB_IV 2682

Table 6: Counts for the POS tags mentioned in Table 5.

5 Related Work

5.1 Semitic Language Parsing

Much of the Arabic parsing research to date uses the
pipeline approach, either running a tokenizer prior to
parsing or simply assuming the existence of gold to-
kenization (Bikel, 2004; Buchholz and Marsi, 2006;
Kulick et al., 2006; Nivre et al., 2007; Marton et al.,
2010; Marton et al., 2011; Marton et al., 2013). Of
course, using gold tokenization results in optimistic

evaluation figures.'?

Other methods exist however. For example, to
parse Modern Hebrew, Cohen and Smith (2007)
combine a morphological model with a syntactic
model using a product of experts. Another alterna-
tive is lattice parsing, which can be used to jointly
model both tokenization and parsing (Chappelier et
al., 1999). Curiously, while researchers of Mod-
ern Hebrew parsing find lattice parsers outperform-
ing their pipeline systems (Goldberg and Tsarfaty,
2008; Goldberg and Elhadad, 2011; Goldberg and
Elhadad, 2013), Green and Manning (2010) obtain
the opposite result in their Arabic parsing experi-
ments, with the lattice parser underperforming the
pipeline system by over 3 points (76.01 F1 vs 79.17
F1). Why lattice parsing may help in some cases but
not others is not clear.

Some Arabic parsing work focuses on the useful-
ness of various features and part-of-speech tagsets.
Marton et al. (2013) examine various morphologi-
cal features and part-of-speech tagsets, employing
MADA (Habash and Rambow, 2005; Habash et al.,
2009) to predict form-based morphological features
and an in-house system (Alkuhlani and Habash,
2012) to predict functional morphological features.
Dehdari et al. (2011) investigate the best set of fea-
tures for Arabic constituent parsing and try several
approaches for selecting an optimal feature set, find-
ing that the best-first with backtracking algorithm is
the most effective in their experiments.

5.2 Other Languages

There has been a flurry of recent research involv-
ing the joint modeling of dependency parsing and
lower-level tasks'# for a variety of languages, with
most of the attention focused on Chinese. While
lacking Arabic’s morphological richness, Chinese
has its own challenges, such as word segmentation
and part-of-speech ambiguities, which have led re-
searchers to develop new unified approaches for pro-
cessing it. Qian and Liu (2012) train independent
models for word segmentation, POS tagging, and

BGreen and Manning (2010) find that using automatic tok-
enization provided by MADA (Habash et al., 2009) instead of
gold tokenization results in a 1.92% F score drop in their con-
stituent parsing work.

14Systems that jointly model POS tagging and constituent
parsing have existed for some time.

42

parsing but then incorporate them together during
decoding. Li et al. (2011), Li and Zhou (2012), Ha-
tori et al. (2011), and Ma et al. (2012) present sys-
tems that jointly model Chinese POS tagging and
dependency parsing. Li et al. (2011) use a dy-
namic programming approach similar to Koo and
Collins (2010), Li and Zhou (2012) present a shift-
reduce style system that uses structured perceptron
and beam search, Hatori et al. (2011) implement
a shift-reduce style algorithm that utilizes dynamic
programming and beam search in the manner of
Huang and Sagae (2010), and Ma et al. (2012) ex-
tend Goldberg and Elhadad’s (2010) easy-first ap-
proach to support both dependency parsing and POS
tagging and is thus similar to our work. Hatori et al.
(2012) extend their previous system to tackle word
segmentation, and Ma et al. (2013) build upon ear-
lier work by implementing beam search to get bet-
ter results. Li and Zhou (2012) side step some of
the issues of Chinese word segmentation by pars-
ing structures of words, phrases, and sentences in a
unified framework using a structured perceptron and
beam search.

Some researchers focus their work on other lan-
guages. Lee et al. (2011) present a graphical model
for morphological disambiguation and dependency
parsing that they apply to Latin, Ancient Greek,
Hungarian, and Czech. Bohnet and Nivre (2012)
present a shift-reduce style system similar to Li
and Zhou’s (2012) system that jointly models POS
tagging and labeled dependency parsing, achieving
state-of-the-art accuracy on Czech, German, Chi-
nese, and English.

6 Conclusion

In this paper, we described cross-task flexible transi-
tion models (CTF-TMs) and demonstrated their via-
bility for Arabic tokenization, affix detection, affix
labeling, part-of-speech labeling, and dependency
parsing, obtaining very strong results in each tasks.
We plan to release our software in the near future,
including the software for converting the ATB to de-
pendency parses, and would like to release our de-
pendency conversion of the Penn Arabic Treebank
via the LDC.

7 Future Work

In the future, we plan to integrate beam search into
the training and decoding. We want to add support
for the recovery of diacritics, roots, and derivation
templates, and we would like to apply modified ver-
sions of our system to other languages.

Our choice of anchors, operations, and constraints
represent one possible design for an Arabic CTF-
TM. Other options, such as creating unlabeled de-
pendencies and adding labels in subsequent opera-
tions, restricting clitic separation to a hand-crafted
list of clitics, utilizing information from a dictionary
or morphological analyzer, or following some sort
of coarse-to-fine labeling scheme, are also possible,
and we hope to investigate more of these options.

References

Sarah Alkuhlani and Nizar Habash. 2012. Identifying
broken plurals, irregular gender, and rationality in ara-
bic text. In Proceedings of EACL 2012, pages 675—
685.

Mohammed Attia, Jennifer Foster, Deirdre Hogan,
Joseph Le Roux, Lamia Tounsi, and Josef Van Gen-
abith. 2010. Handling Unknown Words in Statis-
tical Latent-Variable Parsing Models for Arabic, En-
glish and French. 1In Proceedings of the NAACL
HLT 2010 First Workshop on Statistical Parsing of
Morphologically-Rich Languages, pages 67-75.

Dan M Bikel. 2004. On the parameter space of gen-
erative lexicalized statistical parsing models. Ph.D.
thesis, University of Pennsylvania.

Bernd Bohnet and Joakim Nivre. 2012. A transition-
based system for joint part-of-speech tagging and la-
beled non-projective dependency parsing. In Proceed-
ings of the 2012 Joint Conference on Empirical Meth-
ods in Natural Language Processing and Computa-
tional Natural Language Learning, pages 1455-1465.

Sabine Buchholz and Erwin Marsi. 2006. CoNLL-X
shared task on Multilingual Dependency Parsing. In
Proceedings of the 10th Conference on Computational
Natural Language Learning, pages 149-164.

Jean-Cédric Chappelier, Martin Rajman, Ramoén
Aragiiés, and Antoine Rozenknop. 1999. Lattice
Parsing for Speech Recognition. In Proc. of 6éme
conférence sur le Traitement Automatique du Langage
Naturel (TALN 99), pages 95-104.

Shay B Cohen and Noah A Smith. 2007. Joint Morpho-
logical and Syntactic Disambiguation. In Proceedings
of the EMNLP-CoNLL 2007.

43

Michael J. Collins. 2002. Discriminative Training Meth-
ods for Hidden Markov Models: Theory and experi-
ments with Perceptron Algorithms. In Proceedings of
the 2002 Conference on Empirical Methods in Natural
Language Processing.

Marie-Catherine de Marneffe and Christopher D. Man-
ning. 2008. The Stanford typed dependencies repre-
sentation. In COLING 2008: Proceedings of the work-
shop on Cross-Framework and Cross-Domain Parser
Evaluation.

Jon Dehdari, Lamia Tounsi, and Josef van Gen-
abith. 2011. Morphological Features for Parsing
Morphologically-Rich Languages: A Case of Arabic.
In Proceedings of the Second Workshop on Statistical
Parsing of Morphologically Rich Languages.

Mona Diab. 2007. Toward an Optimal POS Tag Set for
Modern Standard Arabic Processing. In Proceedings
of Recent Advances in Natural Language Processing.

Yoav Goldberg and Michael Elhadad. 2010. An Ef-
ficient Algorithm for Easy-First Non-Directional De-
pendency Parsing. In Human Language Technologies:
The 2010 Annual Conference of the North American
Chapter of the Association for Computational Linguis-
tics, pages 742-750.

Yoav Goldberg and Michael Elhadad. 2011. Joint He-
brew Segmentation and Parsing Using a PCFG-LA
Lattice Parser. In Proceedings of ACL 2011.

Yoav Goldberg and Michael Elhadad. 2013. Word Seg-
mentation, Unknown-word Resolution, and Morpho-
logical Agreement in a Hebrew Parsing System. Com-
putational Linguistics, 39(1):121-160.

Yoav Goldberg and Reut Tsarfaty. 2008. A Single Gen-
erative Model for Joint Morphological Segmentation
and Syntactic Parsing. Proceedings of ACL-08: HLT.

Spence Green and Christopher Manning. 2010. Better
Arabic Parsing: Baselines, Evaluations, and Analysis.
In Proceedings of the 23rd International Conference
on Computational Linguistics, pages 394—402.

Nizar Habash and Owen Rambow. 2005. Arabic Tok-
enization, Part-of-Speech Tagging and Morphological
Disambiguation in One Fell Swoop. In Proceedings of
the 43rd Annual Meeting of Association for Computa-
tional Linguistics, pages 573-580.

Nizar Habash and Ryan Roth. 2009. CATiB: The
Columbia Arabic Treebank. In Proceedings of the
ACL-IJCNLP 2009 Conference Short Papers.

Nizar Habash, Owen Rambow, and Ryan Roth. 2009.
MADA+TOKAN: A Toolkit for Arabic Tokenization,
Diacritization, Morphological Disambiguation, POS
Tagging, Stemming and Lemmatization. In Proceed-
ings of the 2nd International Conference on Arabic
Language Resources and Tools (MEDAR).

Jan Haji¢, Otakar Smrz, Petr Zemanek, Jan gnaidauf, and
Emanuel Beska. 2004. Prague Arabic Dependency

Treebank: Development in Data and Tools. In Pro-
ceedings of the NEMLAR International Conference on
Arabic Language Resources and Tools.

Jun Hatori, Takuya Matsuzaki, Yusuke Miyao, and
Jun’ichi Tsujii. 2011. Incremental joint pos tagging
and dependency parsing in chinese. In I/JCNLP, pages
1216-1224.

Jun Hatori, Takuya Matsuzaki, Yusuke Miyao, and
Jun’ichi Tsujii. 2012. Incremental joint approach to
word segmentation, pos tagging, and dependency pars-
ing in chinese. In Proceedings of the 50th Annual
Meeting of the Association for Computational Linguis-
tics: Long Papers-Volume 1, pages 1045-1053.

Liang Huang and Kenji Sagae. 2010. Dynamic Program-
ming for Linear-Time Shift-Reduce Parsing. In Pro-
ceedings of the 48th Annual Meeting of the Association
for Computational Linguistics, pages 1077-1086.

Terry Koo and Michael Collins. 2010. Efficient Third-
order Dependency Parsers. In Proceedings of ACL
2010, pages 1-11.

Seth Kulick, Ryan Gabbard, and Mitchell Marcus. 2006.
Parsing the Arabic Treebank: Analysis and Improve-
ments. In Proceedings of the Treebanks and Linguistic
Theories Conference, pages 31-42.

Seth Kulick. 2011. Exploiting Separation of Closed-
Class Categories for Arabic Tokenization and Part-of-
Speech Tagging. ACM Transactions on Asian Lan-
guage Information Processing (TALIP), 10(1):4.

John Lee, Jason Naradowsky, and David A Smith. 2011.
A discriminative model for joint morphological dis-
ambiguation and dependency parsing. In Proceed-
ings of the 49th Annual Meeting of the Associa-
tion for Computational Linguistics: Human Language
Technologies-Volume 1, pages 885-894.

Zhongguo Li and Guodong Zhou. 2012. Unified depen-
dency parsing of chinese morphological and syntactic
structures. In Proceedings of the 2012 Joint Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and Computational Natural Language Learn-
ing, EMNLP-CoNLL ’12, pages 1445-1454.

Zhenghua Li, Min Zhang, Wanxiang Che, Ting Liu, Wen-
liang Chen, and Haizhou Li. 2011. Joint models for
chinese pos tagging and dependency parsing. In Pro-
ceedings of the Conference on Empirical Methods in
Natural Language Processing, pages 1180-1191.

Ji Ma, Tong Xiao, Jingbo Zhu, and Feiliang Ren. 2012.
Easy-First Chinese POS Tagging and Dependency
Parsing. In Proceedings of COLING 2012, pages
1731-1746, Mumbai, India.

Ji Ma, Jingbo Zhu, Tong Xiao, and Nan Yang. 2013.
Easy-first pos tagging and dependency parsing with
beam search. In Proceedings of the 51st Annual Meet-
ing of the Association for Computational Linguistics

44

(Volume 2: Short Papers), pages 110114, Sofia, Bul-
garia. Association for Computational Linguistics.

Mohamed Maamouri and Ann Bies. 2004. Develop-
ing an Arabic Treebank: Methods, Guidelines, Pro-
cedures, and Tools. In Proceedings of the Workshop
on Computational Approaches to Arabic Script-based
languages, pages 2-9.

Mohamed Maamouri, Ann Bies, Tim Buckwalter, and
Wigdan Mekki. 2004. The Penn Arabic Treebank:
Building a Large-Scale Annotated Arabic Corpus. In
NEMLAR Conference on Arabic Language Resources
and Tools, pages 102-109.

Mohamed Maamouri, Ann Bies, and Seth Kulick. 2012.
Expanding Arabic Treebank to Speech: Results from
Broadcast News. In Proceedings of LREC 2012.

Yuval Marton, Nizar Habash, and Owen Rambow. 2010.
Improving Arabic Dependency Parsing with Lexical
and Inflectional Morphological Features. In Proceed-
ings of the NAACL HLT 2010 First Workshop on Sta-
tistical Parsing of Morphologically-Rich Languages.

Yuval Marton, Nizar Habash, and Owen Rambow. 2011.
Improving Arabic Dependency Parsing with Form-
based and Functional Morphological Features. In Pro-
ceedings of the 49th Annual Meeting of the Associa-
tion for Computational Linguistics: Human Language
Technologies, pages 1586—1596.

Yuval Marton, Nizar Habash, and Owen Rambow. 2013.
Dependency Parsing of Modern Standard Arabic with
Lexical and Inflectional Features. Computational Lin-
guistics, 39(1):161-194.

Ryan McDonald and Joakim Nivre. 2007. Character-
izing the Errors of Data-Driven Dependency Parsing
Models. In Proceedings of the EMNLP-CoNLL 2007,
pages 122—131.

Joakim Nivre, Johan Hall, Sandra Kiibler, Ryan McDon-
ald, Jens Nilsson, Sebastian Riedel, and Deniz Yuret.
2007. The CoNLL 2007 Shared Task on Dependency
Parsing. In Proceedings of the CoNLL Shared Task
Session of EMNLP-CoNLL 2007.

Joakim Nivre. 2009. Non-Projective Dependency Pars-
ing in Expected Linear Time. In Proceedings of the
Joint Conference of the 47th Annual Meeting of the
ACL and the 4th International Joint Conference on
Natural Language Processing of the AFNLP.

Xian Qian and Yang Liu. 2012. Joint Chinese Word Seg-
mentation, POS tagging and Parsing. In Proceedings
of the 2012 Joint Conference on Empirical Methods
in Natural Language Processing and Computational
Natural Language Learning, pages 501-511.

Owen Rambow, David Chiang, Mona Diab, Nizar
Habash, Rebecca Hwa, Khalil Simaan, Vincent Lacey,
Roger Levy, Carol Nichols, and Safiullah Shareef.
2005. Parsing arabic dialects. In Final Report, JHU
Summer Workshop.

Stephen Tratz and Eduard Hovy. 2011. A Fast, Ac-
curate, Non-Projective, Semantically-Enriched Parser.
In Proceedings of EMNLP 2011.

Stephen Tratz. 2011. Semantically-Enriched Parsing for
Natural Language Understanding. Ph.D. thesis, Uni-
versity of Southern California.

Reut Tsarfaty. 2006. Integrated Morphological and Syn-
tactic Disambiguation for Modern Hebrew. In Pro-
ceedings of the 21st International Conference on Com-
putational Linguistics and 44th Annual Meeting of the
Association for Computational Linguistics: Student
Research Workshop, pages 49-54.

Yue Zhang and Stephen Clark. 2008. Joint Word Seg-
mentation and POS Tagging Using a Single Percep-
tron. In Proceedings of ACL 2008, pages 888—896.

Imed Zitouni, Jeffrey S Sorensen, and Ruhi Sarikaya.
2006. Maximum entropy based restoration of Ara-
bic diacritics. In Proceedings of the 21st International
Conference on Computational Linguistics and the 44th
annual meeting of the Association for Computational
Linguistics, pages 577-584.

45

