
SPMRL-2013

Fourth Workshop on Statistical Parsing of
Morphologically Rich Languages

Proceedings of the Workshop

18 October 2013
Grand Hyatt Seattle

Seattle, Washington, USA

c©2013 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 978-1-937284-97-8

The front-page picture is licensed by xkcd.com under the terms of the Creative Commons
Attribution-NonCommercial 2.5 License.

Original link: http://xkcd.com/724/ c©xkcd.com

ii

Introduction

The papers in these proceedings were presented at the fourth Workshop on Statistical Parsing of
Morphologically Rich Languages (SPMRL 2013), held in Seattle, USA, on October 18th, 2013, in
conjunction with the Conference on Empirical Methods in Natural Language Processing (EMNLP
2013). SPMRL is endorsed by the ACL SIGPARSE and SIGLEX interest groups and provides a forum
for research in parsing morphologically-rich languages, with the goal of identifying cross-cutting issues
in the annotation and parsing methodology for such languages, which typically have more flexible word
order and/or higher word-form variation than English.

SPMRL has also been host to discussions on realistic and appropriate evaluation methods that can
be applied in the face of morphological and/or segmentation ambiguities; these discussions have
culminated in the first shared task for parsing morphologically-rich languages, co-located with SPMRL
2013. The proceedings include nine contributions to the workshop as well as the system descriptions
from the shared task. The workshop included keynote talks by Julia Hockenmaier from the University
of Illinois at Urbana-Champaign and by Jinho Choi from IPSoft (New York). We would like to thank all
submitting authors for their contributions, the program committee for their fine work on reviewing the
submissions, the participants of the shared task for their contributions and of course our invited speaker.
For their precious help preparing the SPMRL 2013 Shared Task and for allowing their data to be part
of it, we warmly thank and the Linguistic Data Consortium, the Knowledge Center for Processing
Hebrew (MILA), the Ben Gurion University, Columbia University, Institute of Computer Science
(Polish Academy of Sciences), Korea Advanced Institute of Science and Technology, University of
the Basque Country, University of Lisbon, Uppsala University, University of Stuttgart, University of
Szeged and University Paris Diderot (Paris 7). Finally, we would also like to thank the ACL SIGPARSE
and SIGLEX interest groups for their endorsement, for the support of INRIA’s Alpage project, and
everybody who participated in the workshop and contributed to the discussions.

Yoav Goldberg, Yuval Marton, Ines Rehbein and Yannick Versley (Workshop organisers)

Sandra Kübler, Djamé Seddah and Reut Tsarfaty (Shared Task organisers)

iii

Workshop Organizers:

Yoav Goldberg (Bar Ilan University, Israel)
Yuval Marton (IBM Watson Research Center, US)
Ines Rehbein (Potsdam University, Germany)
Yannick Versley (Heidelberg University, Germany)

Shared Task Organizers:

Sandra Kübler (Indiana University, US)
Djamé Seddah (Université Paris Sorbonne & INRIAs Alpage Project, France)
Reut Tsarfaty (Weizmann Institute of Science, Israel)

Program Committee:

Mohammed Attia (Dublin City University, Ireland)
Bernd Bohnet (University of Birmingham, UK)
Marie Candito (University of Paris 7, France)
Aoife Cahill (Educational Testing Service Inc., US)
Özlem Cetinoglu (University of Stuttgart, Germany)
Jinho D. Choi (IPSoft Inc., US)
Grzegorz Chrupała (Tilburg University, Netherlands)
Benoit Crabbé (University of Paris 7, France)
Gülsen Cebiroglu Eryigit (Istanbul Technical University, Turkey)
Michael Elhadad (Ben Gurion University, Israel)
Richard Farkas (University of Szeged, Hungary)
Jennifer Foster (Dublin City University, Ireland)
Josef van Genabith (Dublin City University, Ireland)
Koldo Gojenola (University of the Basque Country, Spain)
Spence Green (Stanford University, US)
Samar Husain (Potsdam University, Germany)
Sandra Kübler (Indiana University, US)
Jonas Kuhn (University of Stuttgart, Germany)
Alberto Lavelli (FBK-irst, Italy)
Joseph Le Roux (Université Paris-Nord, France)
Wolfgang Maier (University of Düsseldorf, Germany)
Takuya Matsuzaki (University of Tokyo, Japan)
Joakim Nivre (Uppsala University, Sweden)
Kemal Oflazer (Carnegie Mellon University, Qatar)
Adam Przepiorkowski (ICS PAS, Poland)
Owen Rambow (Columbia University, US)
Kenji Sagae (University of Southern California, US)
Benoit Sagot (Inria Rocquencourt, France)
Djamé Seddah (Inria Rocquencourt, France)

v

Reut Tsarfaty (Weizmann Institute of Science, Israel)
Lamia Tounsi (Dublin City University, Ireland)
Daniel Zeman (Charles University, Czechia)

Invited Speakers:

Julia Hockenmaier, University of Illinois at Urbana-Champaign
Jinho D. Choi, IPsoft Inc., New York

vi

Table of Contents

Working with a small dataset - semi-supervised dependency parsing for Irish
Teresa Lynn, Jennifer Foster and Mark Dras . 1

Lithuanian Dependency Parsing with Rich Morphological Features
Jurgita Kapociute-Dzikiene, Joakim Nivre and Algis Krupavicius . 12

Parsing Croatian and Serbian by Using Croatian Dependency Treebanks
Željko Agić, Danijela Merkler and Daša Berović .22

A Cross-Task Flexible Transition Model for Arabic Tokenization, Affix Detection, Affix Labeling, POS
Tagging, and Dependency Parsing

Stephen Tratz . 34

The LIGM-Alpage architecture for the SPMRL 2013 Shared Task: Multiword Expression Analysis and
Dependency Parsing

Matthieu Constant, Marie Candito and Djamé Seddah . 46

Exploring beam-based shift-reduce dependency parsing with DyALog: Results from the SPMRL 2013
shared task

Eric De La Clergerie . 53

Effective Morphological Feature Selection with MaltOptimizer at the SPMRL 2013 Shared Task
Miguel Ballesteros . 63

Exploiting the Contribution of Morphological Information to Parsing: the BASQUE TEAM system in
the SPRML’2013 Shared Task

Iakes Goenaga, Koldo Gojenola and Nerea Ezeiza . 71

The AI-KU System at the SPMRL 2013 Shared Task : Unsupervised Features for Dependency Parsing
Volkan Cirik and Hüsnü Şensoy . 78

SPMRL’13 Shared Task System: The CADIM Arabic Dependency Parser
Yuval Marton, Nizar Habash, Owen Rambow and Sarah Alkhulani . 86

A Statistical Approach to Prediction of Empty Categories in Hindi Dependency Treebank
Puneeth Kukkadapu and Prashanth Mannem . 91

An Empirical Study on the Effect of Morphological and Lexical Features in Persian Dependency Parsing
Mojtaba Khallash, Ali Hadian and Behrouz Minaei-Bidgoli . 97

Constructing a Practical Constituent Parser from a Japanese Treebank with Function Labels
Takaaki Tanaka and Masaaki NAGATA . 108

Context Based Statistical Morphological Analyzer and its Effect on Hindi Dependency Parsing
Deepak Kumar Malladi and Prashanth Mannem . 119

vii

Representation of Morphosyntactic Units and Coordination Structures in the Turkish Dependency Tree-
bank

Umut Sulubacak and Gülşen Eryiğit . 129

(Re)ranking Meets Morphosyntax: State-of-the-art Results from the SPMRL 2013 Shared Task
Anders Björkelund, Ozlem Cetinoglu, Richárd Farkas, Thomas Mueller and Wolfgang Seeker135

Overview of the SPMRL 2013 Shared Task: A Cross-Framework Evaluation of Parsing Morphologically
Rich Languages

Djamé Seddah, Reut Tsarfaty, Sandra Kübler, Marie Candito, Jinho D. Choi, Richárd Farkas,
Jennifer Foster, Iakes Goenaga, Koldo Gojenola Galletebeitia, Yoav Goldberg, Spence Green, Nizar
Habash, Marco Kuhlmann, Wolfgang Maier, Yuval Marton, Joakim Nivre, Adam Przepiórkowski, Ryan
Roth, Wolfgang Seeker, Yannick Versley, Veronika Vincze, Marcin Woliński and Alina Wróblewska146

viii

Workshop Program

Friday, October 18, 2013

7:30-9:00 Breakfast and Registration

(9:00-10:30) SPMRL I

9:00-9:10 Welcome

9:10-10:05 Invited talk: An HDP Model for Inducing CCGs by Julia Hockenmaier

10:05–10:30 Working with a small dataset - semi-supervised dependency parsing for Irish
Teresa Lynn, Jennifer Foster and Mark Dras

(10:30-11:00) Coffee

(11:00-12:30) SPMRL II

11:00–11:25 Lithuanian Dependency Parsing with Rich Morphological Features
Jurgita Kapociute-Dzikiene, Joakim Nivre and Algis Krupavicius

11:25–11:50 Parsing Croatian and Serbian by Using Croatian Dependency Treebanks
Željko Agić, Danijela Merkler and Daša Berović

11:50–12:15 A Cross-Task Flexible Transition Model for Arabic Tokenization, Affix Detection,
Affix Labeling, POS Tagging, and Dependency Parsing
Stephen Tratz

12:15-12:30 Poster teasers

ix

Friday, October 18, 2013 (continued)

(12:30-14:00) Lunch break

(14:00-15:30) Shared task I

14:00-14:10 Shared task intro by Djamé Seddah

14:10–14:20 The LIGM-Alpage architecture for the SPMRL 2013 Shared Task: Multiword Expression
Analysis and Dependency Parsing
Matthieu Constant, Marie Candito and Djamé Seddah

14:20–14:30 Exploring beam-based shift-reduce dependency parsing with DyALog: Results from the
SPMRL 2013 shared task
Eric De La Clergerie

14:30–14:55 Effective Morphological Feature Selection with MaltOptimizer at the SPMRL 2013 Shared
Task
Miguel Ballesteros

14:55–15:10 Exploiting the Contribution of Morphological Information to Parsing: the BASQUE TEAM
system in the SPRML’2013 Shared Task
Iakes Goenaga, Koldo Gojenola and Nerea Ezeiza

15:10–15:20 The AI-KU System at the SPMRL 2013 Shared Task : Unsupervised Features for Depen-
dency Parsing
Volkan Cirik and Hüsnü Şensoy

15:20–15:30 SPMRL’13 Shared Task System: The CADIM Arabic Dependency Parser
Yuval Marton, Nizar Habash, Owen Rambow and Sarah Alkhulani

15:30-15:35 Q+A

x

Friday, October 18, 2013 (continued)

(15:35-16:00) Coffee

(16:00-16:20) Poster session (+ posters from shared task participants)

A Statistical Approach to Prediction of Empty Categories in Hindi Dependency Treebank
Puneeth Kukkadapu and Prashanth Mannem

An Empirical Study on the Effect of Morphological and Lexical Features in Persian De-
pendency Parsing
Mojtaba Khallash, Ali Hadian and Behrouz Minaei-Bidgoli

Constructing a Practical Constituent Parser from a Japanese Treebank with Function La-
bels
Takaaki Tanaka and Masaaki NAGATA

Context Based Statistical Morphological Analyzer and its Effect on Hindi Dependency
Parsing
Deepak Kumar Malladi and Prashanth Mannem

Representation of Morphosyntactic Units and Coordination Structures in the Turkish De-
pendency Treebank
Umut Sulubacak and Gülşen Eryiğit

(16:20-18:00) Shared task II + panel

16:20–16:45 (Re)ranking Meets Morphosyntax: State-of-the-art Results from the SPMRL 2013 Shared
Task
Anders Björkelund, Ozlem Cetinoglu, Richárd Farkas, Thomas Mueller and Wolfgang
Seeker

16:45-17:10 Invited talk: Dependency Parsing with Selectional Branching by Jinho D. Choi

17:10-18:00 Panel discussion

18:00-18:15 Closing Remarks

Overview of the SPMRL 2013 Shared Task: A Cross-Framework Evaluation of Parsing
Morphologically Rich Languages
Djamé Seddah, Reut Tsarfaty, Sandra Kübler, Marie Candito, Jinho D. Choi, Richárd
Farkas, Jennifer Foster, Iakes Goenaga, Koldo Gojenola Galletebeitia, Yoav Goldberg,
Spence Green, Nizar Habash, Marco Kuhlmann, Wolfgang Maier, Yuval Marton, Joakim
Nivre, Adam Przepiórkowski, Ryan Roth, Wolfgang Seeker, Yannick Versley, Veronika
Vincze, Marcin Woliński and Alina Wróblewska

xi

Proceedings of the Fourth Workshop on Statistical Parsing of Morphologically Rich Languages, pages 1–11,
Seattle, Washington, USA, 18 October 2013. c©2013 Association for Computational Linguistics

Working with a small dataset - semi-supervised dependency parsing for Irish

Teresa Lynn1,2, Jennifer Foster1, Mark Dras2 and Josef van Genabith1

1NCLT/CNGL, Dublin City University, Ireland
2Department of Computing, Macquarie University, Sydney, Australia

1{tlynn,jfoster,josef}@computing.dcu.ie
2{teresa.lynn,mark.dras}@mq.edu.au,

Abstract

We present a number of semi-supervised pars-
ing experiments on the Irish language carried
out using a small seed set of manually parsed
trees and a larger, yet still relatively small, set
of unlabelled sentences. We take two pop-
ular dependency parsers – one graph-based
and one transition-based – and compare re-
sults for both. Results show that using semi-
supervised learning in the form of self-training
and co-training yields only very modest im-
provements in parsing accuracy. We also try
to use morphological information in a targeted
way and fail to see any improvements.

1 Introduction

Developing a data-driven statistical parser relies on
the availability of a parsed corpus for the language
in question. In the case of Irish, the only parsed
corpus available to date is a dependency treebank,
which is currently under development and still rel-
atively small, with only 803 gold-annotated trees
(Lynn et al., 2012a). As treebank development is
a labour- and time-intensive process, in this study
we evaluate various approaches to bootstrapping a
statistical parser with a set of unlabelled sentences
to ascertain how accurate parsing output can be
at this time. We carry out a number of differ-
ent semi-supervised bootstrapping experiments us-
ing self-training, co-training and sample-selection-
based co-training. Our studies differ from previous
similar experiments as our data is taken from a work-
in-progress treebank. Thus, aside from the current
small treebank which is used for training the initial
seed model and for testing, there is no additional

gold-labelled data available to us to directly com-
pare supervised and semi-supervised approaches us-
ing training sets of comparable sizes.

In the last decade, data-driven dependency pars-
ing has come to fore, with two main approaches
dominating – transition-based and graph-based. In
classic transition-based dependency parsing, the
training phase consists of learning the correct parser
action to take given the input string and the parse
history, and the parsing phase consists of the greedy
application of parser actions as dictated by the
learned model. In contrast, graph-based depen-
dency parsing involves the non-deterministic con-
struction of a parse tree by predicting the maximum-
spanning-tree in the digraph for the input sentence.
In our study, we employ Malt (Nivre et al., 2006),
a transition-based dependency parsing system, and
Mate (Bohnet, 2010), a graph-based parser.

In line with similar experiments carried out on
English (Steedman et al., 2003), we find that co-
training is more effective than self-training. Co-
training Malt on the output of Mate proves to be the
most effective method for improving Malt’s perfor-
mance on the limited data available for Irish. Yet, the
improvement is relatively small (0.6% over the base-
line for LAS, 0.3% for UAS) for the best co-trained
model. The best Mate results are achieved through a
non-iterative agreement-based co-training approach,
in which Mate is trained on trees produced by Malt
which exhibit a minimum agreement of 85% with
Mate (LAS increase of 1.2% and UAS of 1.4%).

The semi-supervised parsing experiments do not
explicitly take into account the morphosyntactic
properties of the Irish language. In order to examine
the effect of this type of information during parsing,
we carry out some orthogonal experiments where we

1

reduce word forms to lemmas and introduce mor-
phological features in certain cases. These changes
do not bring about an increase in parsing accuracy.

The paper is organised as follows. Section 2 is
an overview of Irish morphology. In Section 3 our
previous work carried out on the development of an
Irish dependency treebank is discussed followed in
Section 4 by a description of some of our prior pars-
ing results. Section 5 describes the self-training, co-
training and sample-selection-based co-training ex-
periments, Section 6 presents the preliminary pars-
ing experiments involving morphological features,
and, finally, Section 7 discusses our future work.

2 Irish as a morphologically rich language

Irish is a Celtic language of the Indo-European lan-
guage family. It has a VSO word order and is rich in
morphology. The following provides an overview of
the type of morphology present in the Irish language.
It is not a comprehensive summary as the rules gov-
erning morphological changes are too extensive and
at times too complex to document here.

Inflection in Irish mainly occurs through suffixa-
tion, but initial mutation through lenition and eclip-
sis is also common (Christian-Brothers, 1988). A
prominent feature of Irish (also of Scottish and
Manx), which influences inflection, is the existence
of two sets of consonants, referred to as ‘broad’ and
‘slender’ consonants (Ó Siadhail, 1989). Conso-
nants can be slenderised by accompanying the con-
sonant with a slender vowel, either e or i. Broaden-
ing occurs through the use of broad vowels; a, o or
u. For example, buail ‘to hit’ becomes ag bualadh
‘hitting’ in the verbal noun form. In general, there
needs to be vowel harmony (slender or broad) be-
tween stem endings and the initial vowel in a suffix.

A process known as syncopation also occurs
when words with more than one syllable have a
vowel-initial suffix added. For example imir ‘to
play’ inflects as imrı́m ‘I play’.

Nouns While Old Irish employed several gram-
matical cases, Modern Irish uses only three: Nomi-
native, Genitive and Vocative. The nominative form
is sometimes regarded as the ‘common form’ as it is
now also used to account for accusative and dative
forms. Nouns in Irish are divided into five classes, or
declensions, depending on the manner in which the

genitive case is formed. In addition, there are two
grammatical genders in Irish - masculine and fem-
inine. Case, declension and gender are expressed
through noun inflection. For example, páipéar ‘pa-
per’ is a masculine noun in the first declension. Both
lenition and slenderisation are used to form the geni-
tive singular form: pháipéir. In addition, possessive
adjectives cause noun inflection through lenition,
eclipsis and prefixation. For example, teach ‘house’,
mo theach ‘my house’, ár dteach ‘our house’; ainm
‘name’, a hainm ‘her name’.

Verbs Verbs can incorporate their subject, inflect-
ing for person and number through suffixation. Such
forms are referred to as synthetic verb forms. In
addition, verb tense is often indicated through var-
ious combinations of initial mutation, syncopation
and suffixation. For example, scrı́obh ‘write’ can in-
flect as scrı́obhaim ‘I write’. The past tense of the
verb tug ‘give’ is thug ‘gave’. Lenition occurs af-
ter the negative particle nı́. For example, tugaim ‘I
give’; nı́ thugaim ‘I do not give’; nı́or thug mé ‘I
did not give’. Eclipsis occurs following clitics such
as interrogative particles (an, nach); complementis-
ers (go, nach); and relativisers (a, nach) (Stenson,
1981). For example, an dtugann sé? ‘does he give?’;
nach dtugann sé? ‘does he not give?’.

Adjectives In general, adjectives follow nouns and
agree in number, gender and case. Depending on
the noun they modify, adjectives can also inflect.
Christian-Brothers (1988) note eight declensions of
adjectives. They can decline for genitive singular
masculine, genitive singular feminine and nomina-
tive plural. For example, bacach ‘lame’ inflects as
bacaigh (Gen.Sg.Masc), bacaı́ (Gen.Fem.Sg) and
bacacha (Nom.PL). Comparative adjectives are also
formed through inflection. For example, láidir
‘strong’, nı́os láidre ‘stronger’; déanach ‘late’, is
déanaı́ ‘latest’.

Prepositions Irish has simple and compound
prepositions. Most of the simple prepositions can
inflect for person and number (known as preposi-
tional pronouns or pronominal prepositions), thus
including a nominal element. For example, com-
pare bhı́ sé ag labhairt le fear ‘he was speaking
with a man’ with bhı́ sé ag labhairt leis ‘he was
speaking with him’. These forms are used quite fre-

2

quently, not only with regular prepositional attach-
ment where pronominal prepositions operate as ar-
guments of verbs or modifiers of nouns and verbs,
but also in idiomatic use where they express emo-
tions and states, e.g. tá brón orm (lit. ‘be-worry-
on me’) ‘I am worried’ or tá súil agam (lit. ‘be-
expectation-with me’) ‘I hope’. Noted by Greene
(1966) as a noun-centered language, nouns are of-
ten used to convey the meaning that verbs often
would. Pronominal prepositions are often used in
these types of structures. For example, bhain mé
geit aisti (lit. extracted-I-shock-from her) ‘I fright-
ened her’; bhain mé mo chóta dı́om (lit. extracted-I-
coat-from me) ‘I took off my coat’; bhain mé úsáid
as (lit. extracted-I-use-from it) ‘I used it’; bhain
mé triail astu (lit. extracted-I-attempt-from them)‘I
tried them’.

Derivational morphology There are also some
instances of derivational morphology in Irish. Uı́
Dhonnchadha (2009) notes that all verb stems and
agentive nouns can inflect to become verbal nouns.
Verbal adjectives are also derived from verb stems
through suffixation. For example, the verb dún
‘close’ undergoes suffixation to become dúnadh
‘closing’ (verbal noun) and dúnta ‘closed’ (verbal
adjective). An emphatic suffix -sa/-se (both broad
and slender form) can attach to nouns or pronouns.
It can also be attached to any verb that has been in-
flected for person and number and also to pronom-
inal prepositions. For example mo thuairim ‘my
opinion’→mo thuairimse ‘my opinion; tú ‘you’(sg)
→ tusa ‘you’; cloisim ‘I hear’→ cloisimse ‘I hear’;
liom ‘with me’→ liomsa ‘with me’. In addition, the
diminutive suffix -ı́n can attach to all nouns to form
a derived diminutive form. The rules of slenderisa-
tion apply here also. For example, buachaill ‘boy’
becomes buachaillı́n ‘little boy’, and tamall ‘while’
becomes tamaillı́n ‘short while’.

3 The Irish Dependency Treebank

Irish is the official language of Ireland, yet English
is the primary language for everyday use. Irish is
therefore considered an EU minority language and
is lacking in linguistic resources that can be used to
develop NLP applications (Judge et al., 2012).

Recently, in efforts to address this issue, we have
begun work on the development of a dependency

treebank for Irish (Lynn et al., 2012a). The treebank
has been built upon a gold standard 3,000 sentence
POS-tagged corpus1 developed by Uı́ Dhonnchadha
(2009). Our labelling scheme is based on an ‘LFG-
inspired’ dependency scheme developed for English
by Çetinoğlu et al. (2010). This scheme was adopted
with the aim of identifying functional roles while
at the same time circumventing outstanding, unre-
solved issues in Irish theoretical syntax.2 The Irish
labelling scheme has 47 dependency labels in the la-
bel set. The treebank is in the CoNLL format with
the following fields: ID, FORM, LEMMA, CPOSTAG,
POSTAG, HEAD and DEPREL. The coarse-grained
part of speech of a word is marked by the la-
bel CPOSTAG, and POSTAG marks the fine-grained
part of speech for that word. For example, prepo-
sitions are tagged with the CPOSTAG Prep and
one of the following POSTAGs: Simple: ar ‘on’,
Compound: i ndiaidh ‘after’, Possessive: ina
‘in its’, Article: sa ‘in the’.

At an earlier stage of the treebank’s develop-
ment, we carried out on an inter-annotator agree-
ment (IAA) study. The study involved four stages.
(i) The first experiment (IAA-1) involved the as-
sessment of annotator agreement following the in-
troduction of a second annotator. The results re-
ported a Kappa score of 0.79, LAS of 74.4% and
UAS of 85.2% (Lynn et al., 2012a). (ii) We then
held three workshops that involved thorough anal-
ysis of the output of IAA-1, highlighting disagree-
ments between annotators, gaps in the annotation
guide, shortcomings of the labelling scheme and lin-
guistic issues not yet addressed. (iii) The annotation
guide, labelling scheme and treebank were updated
accordingly, addressing the highlighted issues. (iv)
Finally, a second inter-annotator agreement exper-
iment (IAA-2) was carried out presenting a Kappa
score of 0.85, LAS of 79.2% and UAS of 87.8%
(Lynn et al., 2012b).

We found that the IAA study was valuable in the
development of the treebank, as it resulted in im-

1A tagged, randomised subset of the NCII, (New Corpus for
Ireland - Irish http://corpas.focloir.ie/), comprised of text from
books, news data, websites, periodicals, official and government
documents.

2For example there are disagreements over the existence of
a VP in Irish and whether the language has a VSO or an under-
lying SVO structure.

3

provement of the quality of the labelling scheme,
the annotation guide and the linguistic analysis of
the Irish language. Our updated labelling scheme
is now hierarchical, allowing for a choice between
working with fine-grained or coarse-grained labels.
The scheme has now been finalised. A full list of
the labels can be found in Lynn et al. (2012b). The
treebank currently contains 803 gold-standard trees.

4 Preliminary Parsing Experiments

In our previous work (Lynn et al., 2012a), we car-
ried out some preliminary parsing experiments with
MaltParser and 10-fold cross-validation using 300
gold-standard trees. We started out with the fea-
ture template used by Çetinoğlu et al. (2010) and ex-
amined the effect of omitting LEMMA, WORDFORM,
POSTAG and CPOSTAG features and combinations
of these, concluding that it was best to include all
four types of information. Our final LAS and UAS
scores were 63.3% and 73.1% respectively. Follow-
ing the changes we made to the labelling scheme
as a result of the second IAA study (described
above), we re-ran the same parsing experiments on
the newly updated seed set of 300 sentences - the
LAS increased to 66.5% and the UAS to 76.3%
(Lynn et al., 2012b).

In order to speed up the treebank creation, we also
applied an active learning approach to bootstrapping
the annotation process. This work is also reported in
Lynn et al. (2012b). The process involved training a
MaltParser model on a small subset of the treebank
data, and iteratively, parsing a new set of sentences,
selecting a 50-sentence subset to hand-correct, and
adding these new gold sentences to the training set.
We compared a passive setup, in which the parses
that were selected for correction were chosen at ran-
dom, to an active setup, in which the parses that
were selected for correction were chosen based on
the level of disagreement between two parsers (Malt
and Mate). The active approach to annotation re-
sulted in superior parsing results to the passive ap-
proach (67.2% versus 68.1% LAS) but the differ-
ence was not statistically significant.

5 Semi-Supervised Parsing Experiments

In order to alleviate data sparsity issues brought
about by our lack of training material, we experi-

ment with automatically expanding our training set
using well known semi-supervised techniques.

5.1 Self-Training

5.1.1 Related Work
Self-training, the process of training a system on

its own output, has a long and chequered history in
parsing. Early experiments by Charniak (1997) con-
cluded that self-training is ineffective because mis-
takes made by the parser are magnified rather than
smoothed during the self-training process. The self-
training experiments of Steedman et al. (2003) also
yielded disappointing results. Reichart and Rap-
paport (2007) found, on the other hand, that self-
training could be effective if the seed training set
was very small. McClosky et al. (2006) also re-
port positive results from self-training, but the self-
training protocol that they use cannot be considered
to be pure self-training as the first-stage Charniak
parser (Charniak, 2000) is retrained on the output of
the two-stage parser (Charniak and Johnson, 2005)
They later show that the extra information brought
by the discriminative reranking phase is a factor
in the success of their procedure (McClosky et al.,
2008). Sagae (2010) reports positive self-training re-
sults even without the reranking phase in a domain
adaptation scenario, as do Huang and Harper (2009)
who employ self-training with a PCFG-LA parser.

5.1.2 Experimental Setup
The labelled data available to us for this experi-

ment comprises the 803 gold standard trees referred
to in Section 3. This small treebank includes the
150-tree development set and 150-tree test set used
in experiments by Lynn et al. (2012b). We use the
same development and test sets for this study. As
for the remaining 503 trees, we remove any trees
that have more than 200 tokens. The motivation for
this is two-fold: (i) we had difficulties training Mate
parser with long sentences due to memory resource
issues, and (ii) in keeping with the findings of Lynn
et al. (2012b), the large trees were sentences from
legislative text that were difficult to analyse for au-
tomatic parsers and human annotators. This leaves
us with 500 gold-standard trees as our seed training
data set.

For our unlabelled data, we take the next 1945
sentences from the gold standard 3,000-sentence

4

A is a parser.
M i

A is a model of A at step i.
P i

A is a set of trees produced using M i
A.

U is a set of sentences.
U i is a subset of U at step i.
L is the manually labelled seed training set.
Li

A is labelled training data for A at step i.
Initialise:
L0

A ← L.
M0

A ← Train(A,L0
A)

for i = 1→ N do
U i ← Add set of unlabelled sentences from U .
P i

A ← Parse(U i , M i
A)

Li+1
A ← Li

A + P i
A

M i+1
A ← Train(A,Li+1

A)
end for

Figure 1: Self-training algorithm

POS-tagged corpus referred to in Section 3. When
we remove sentences with more than 200 tokens, we
are left with 1938 sentences in our unlabelled set.

The main algorithm for self-training is given in
Figure 1. We carry out two separate experiments
using this algorithm. In the first experiment we use
Malt. In the second experiment, we substitute Mate
for Malt.3

The steps are as follows: Initialisation involves
training the parser on a labelled seed set of 500 gold
standard trees (L0

A), resulting in a baseline parsing
model: M i

A. We divide the set of gold POS-tagged
sentences (U) into 6 sets, each containing 323 sen-
tences U i. For each of the six iterations in this ex-
periment i = [1−6], we parse U i. Each time, the set
of newly parsed sentences (PA) is added to the train-
ing set Li

A to make a larger training set of Li+1
A . A

new parsing model (M i+1
A) is then induced by train-

ing with the new training set.

5.1.3 Results

The results of our self-training experiments are
presented in Figure 2. The best Malt model was
trained on 2115 trees, at the 5th iteration (70.2%
LAS). UAS scores did not increase over the baseline
(79.1%). The improvement in LAS over the baseline
is not statistically significant. The best Mate model
was trained on 1792 trees, at the 4th iteration (71.2%

3Versions used: Maltparser v1.7 (stacklazy parsing algo-
rithm); Mate tools v3.3 (graph-based parser)

Figure 2: Self-Training Results on the Development Set

LAS, 79.2% UAS). The improvement over the base-
line is not statistically significant.

5.2 Co-Training

5.2.1 Related Work

Co-training involves training a system on the out-
put of a different system. Co-training has found
more success in parsing than self-training, and it
is not difficult to see why this might be the case
as it can be viewed as a method for combining the
benefits of individual parsing systems. Steedman
et al. (2003) directly compare co-training and self-
training and find that co-training outperforms self-
training. Sagae and Tsujii (2007) successfully em-
ploy co-training in the domain adaption track of the
CoNLL 2007 shared task on dependency parsing.

5.2.2 Experimental Setup

In this and all subsequent experiments, we use
both the same training data and unlabelled data that
we refer to in Section 5.1.2.

Our co-training algorithm is given in Figure 3 and
it is the same as the algorithm provided by Steedman
et al. (2003). Again, our experiments are carried out
using Malt and Mate. This time, the experiments are
run concurrently as each parser is bootstrapped from
the other parser’s output.

5

A and B are two different parsers.
M i

A and M i
B are models of A and B at step i.

P i
A and P i

B are a sets of trees produced using M i
A and M i

B .
U is a set of sentences.
U i is a subset of U at step i.
L is the manually labelled seed training set.
Li

A and Li
B are labelled training data for A and B at step i.

Initialise:
L0

A ← L0
B ← L.

M0
A ← Train(A,L0

A)
M0

B ← Train(B,L0
B)

for i = 1→ N do
U i ← Add set of unlabelled sentences from U .
P i

A ← Parse(U i , M i
A)

P i
B ← Parse(U i , M i

B)
Li+1

A ← Li
A + P i

B

Li+1
B ← Li

B + P i
A

M i+1
A ← Train(A,Li+1

A)
M i+1

B ← Train(B,Li+1
B)

end for

Figure 3: Co-training algorithm

The steps are as follows: Initialisation involves
training both parsers on a labelled seed set of 500
gold standard trees (L0

A and L0
B), resulting in two

separate baseline parsing models: M i
A (Malt) and

M i
B (Mate). We divide the set of gold POS-tagged

sentences (U) into 6 sets, each containing 323 sen-
tences U i. For each of the six iterations in this ex-
periment i = [1− 6], we use Malt and Mate to parse
U i. This time, the set of newly parsed sentences P i

B

(Mate output) is added to the training set Li
A to make

a larger training set of Li+1
A (Malt training set). Con-

versely, the set of newly parsed sentences P i
A (Malt

output) is added to the training set Li
B to make a

larger training set of Li+1
B (Mate training set). Two

new parsing models (M i+1
A and M i+1

B) are then in-
duced by training Malt and Mate respectively with
their new training sets.

5.2.3 Results

The results of our co-training experiment are pre-
sented in Figure 4. The best Malt model was trained
on 2438 trees, at the final iteration (71.0% LAS
and 79.8% UAS). The improvement in UAS over
the baseline is statistically significant. Mate’s best
model was trained on 823 trees on the second iter-
ation (71.4% LAS and 79.9% UAS). The improve-
ment over the baseline is not statistically significant.

Figure 4: Co-Training Results on the Development Set

5.3 Sample-Selection-Based Co-Training

5.3.1 Related Work
Sample selection involves choosing training items

for use in a particular task based on some criteria
which approximates their accuracy in the absence of
a label or reference. In the context of parsing, Re-
hbein (2011) chooses additional sentences to add to
the parser’s training set based on their similarity to
the existing training set – the idea here is that sen-
tences that are similar to training data are likely to
have been parsed properly and so are “safe” to add
to the training set. In their parser co-training experi-
ments, Steedman et al. (2003) sample training items
based on the confidence of the individual parsers (as
approximated by parse probability).

In Active Learning research, the Query By Com-
mittee selection method (Seung et al., 1992) is used
to choose items for annotation – if a committee of
two or more systems disagrees on an item, this is ev-
idence that the item needs to be prioritised for man-
ual correction (see for example Lynn et al. (2012b)).
Steedman et al. (2003) discuss a sample selection
approach based on differences between parsers – if
parser A and parser B disagree on an analysis, parser
A can be improved by being retrained on parser B’s
analysis, and vice versa. In contrast, Ravi et al.
(2008) show that parser agreement is a strong in-

6

dicator of parse quality, and in parser domain adap-
tation, Sagae and Tsujii (2007) and Le Roux et al.
(2012) use agreement between parsers to choose
which automatically parsed target domain items to
add to the training set.

Sample selection can be used with both self-
training and co-training. We restrict our attention
to co-training since our previous experiments have
demonstrated that it has more potential than self-
training. In the following set of experiments, we ex-
plore the role of both parser agreement and parser
disagreement in sample selection in co-training.

5.3.2 Agreement-Based Co-Training
Experimental Setup The main algorithm for
agreement-based co-training is given in Figure 5.
Again, Malt and Mate are used. However, this algo-
rithm differs from the co-training algorithm in Fig-
ure 3 in that rather than adding the full set of 323
newly parsed trees (P i

A and P i
B) to the training set

at each iteration, selected subsets of these trees (P i
A′

and P i
B′) are added instead. To define these subsets,

we identify the trees that have 85% or higher agree-
ment between the two parser output sets. As a re-
sult, the number of trees in the subsets differ at each
iteration. For iteration 1, 89 trees reach the agree-
ment threshold; iteration 2, 93 trees; iteration 3, 117
trees; iteration 4, 122 trees; iteration 5, 131 trees;
iteration 6, 114 trees. The number of trees in the
training sets is much smaller compared with those
in the experiments of Section 5.2.

Results The results for agreement-based co-
training are presented in Figure 6. Malt’s best
model was trained on 1166 trees at the final iteration
(71.0% LAS and 79.8% UAS). Mate’s best model
was trained on 1052 trees at the 5th iteration (71.5%
LAS and 79.7% UAS). Neither result represents a
statistically significant improvement over the base-
line.

5.3.3 Disagreement-based Co-Training
Experimental Setup This experiment uses the
same sample selection algorithm we used for
agreement-based co-training (Figure 5). For this ex-
periment, however, the way in which the subsets
of trees (P i

A′ and P i
B′) are selected differs. This

time we choose the trees that have 70% or higher
disagreement between the two parser output sets.

A and B are two different parsers.
M i

A and M i
B are models of A and B at step i.

P i
A and P i

B are a sets of trees produced using M i
A and M i

B .
U is a set of sentences.
U i is a subset of U at step i.
L is the manually labelled seed training set.
Li

A and Li
B are labelled training data for A and B at step i.

Initialise:
L0

A ← L0
B ← L.

M0
A ← Train(A,L0

A)
M0

B ← Train(B,L0
B)

for i = 1→ N do
U i ← Add set of unlabelled sentences from U .
P i

A ← Parse(U i , M i
A)

P i
B ← Parse(U i , M i

B)
P i

A′ ← a subset of X trees from P i
A

P i
B ′ ← a subset of X trees from P i

B

Li+1
A ← Li

A + P i
B ′

Li+1
B ← Li

B + P i
A′

M i+1
A ← Train(A,Li+1

A)
M i+1

B ← Train(B,Li+1
B)

end for

Figure 5: Sample selection Co-training algorithm

Again, the number of trees in the subsets differ at
each iteration. For iteration 1, 91 trees reach the dis-
agreement threshold; iteration 2, 93 trees; iteration
3, 73 trees; iteration 4, 74 trees; iteration 5, 68 trees;
iteration 6, 71 trees.

Results The results for our disagreement-based
co-training experiment are shown in Figure 7. The
best Malt model was trained with 831 trees at the
4th iteration (70.8% LAS and 79.8% UAS). Mate’s
best models were trained on (i) 684 trees on the 2nd
iteration (71.0% LAS) and (ii) 899 trees on the 5th
iteration (79.4% UAS). Neither improvement over
the baseline is statistically significant.

5.3.4 Non-Iterative Agreement-based
Co-Training

In this section, we explore what happens when
we add the additional training data at once rather
than over several iterations. Rather than testing this
idea with all our previous setups, we choose sample-
selection-based co-training where agreement be-
tween parsers is the criterion for selecting additional
training data.

Experimental Setup Again, we also follow the
algorithm for agreement-based co-training as pre-
sented in Figure 5. However, two different ap-

7

Figure 6: Agreement-based Co-Training Results on the
Development Set

proaches are taken this time, involving only one it-
eration in each. For the first experiment (ACT1a),
the subsets of trees (P i

A′ and P i
B′) that are added to

the training data are chosen based on an agreement
threshold of 85% between parsers, and are taken
from the full set of unlabelled data (where U i = U),
comprising 1938 trees. In this instance, the subset
consists of 603 trees, making a final training set of
1103 trees.

For the second experiment (ACT1b), only trees
meeting a parser agreement threshold of 100% are
added to the training data. 253 trees (P i

A′ and P i
B′)

out of 1938 trees (U i = U) meet this threshold. The
final training set consists of 753 trees.

Results ACT1a proved to be the most accurate
parsing model for Mate overall. The addition of
603 trees that met the agreement threshold of 85%
increased the LAS and UAS scores over the base-
line by 1.0% and 1.3% to 71.8 and 80.4 respec-
tively. This improvement is statistically significant.
Malt showed a LAS improvement of 0.93% and
a UAS improvement of 0.42% (71.0% LAS and
79.6% UAS). The LAS improvement over the base-
line is statistically significant.

The increases for ACT1b, where 100% agreement
trees are added, are less pronounced and are not sta-

Figure 7: Disagreement-based Co-Training Results on
the Development Set

tistically significant. Results showed a 0.5% LAS
and 0.2% UAS increase over the baseline with Malt,
based on the 100% agreement threshold (adding 235
trees). Mate performs at 0.5% above the LAS base-
line and 0.1% above the UAS baseline.

5.4 Analysis
We perform an error analysis for the Malt and Mate
baseline, self-trained and co-trained models on the
development set. We observe the following trends:

• All Malt and Mate parsing models confuse the
subj and obj labels. A few possible rea-
sons for this stand out: (i) It is difficult for
the parser to discriminate between analytic verb
forms and synthetic verb forms. For example,
in the phrase phósfainn thusa ‘I would marry
you’, phósfainn is a synthetic form of the verb
pós ‘marry’ that has been inflected with the in-
corporated pronoun ‘I’. Not recognising this,
the parser decided that it is an intransitive verb,
taking ‘thusa’, the emphatic form of the pro-
noun tú ‘you’, as its subject instead of object.
(ii) Possibly due to a VSO word order, when
the parser is dealing with relative phrases, it
can be difficult to ascertain whether the follow-
ing noun is the subject or object. For example,
an chailı́n a chonaic mé inné ‘the girl whom

8

I saw yesterday/ the girl who saw me yester-
day’.4 (iii) There is no passive verb form in
Irish. The autonomous form is most closely
linked with passive use and is used when the
agent is not known or mentioned. A ‘hidden’
or understood subject is incorporated into the
verbform. Casadh eochair i nglas ‘a key was
turned in a lock’ (lit. somebody turned a key
in a lock). In this sentence, eochair ‘key’ is the
object.

• For both parsers, there is some confusion be-
tween the labelling of obl and padjunct,
both of which mark the attachment between
verbs and prepositions. Overall, Malt’s con-
fusion decreases over the 6 iterations of self-
training, but Mate begins to incorrectly choose
padjunct over obl instead. Mixed results
are obtained using the various variants of co-
training.

• Mate handles coordination better than Malt.5 It
is not surprising then that co-training Malt us-
ing Mate parses improves Malt’s coordination
handling whereas the opposite is the case when
co-training Mate on Malt parses, demonstrat-
ing that co-training can both eliminate and in-
troduce errors.

• Other examples of how Mate helps Malt during
co-training is in the distinction between top
and comp relations, between vparticle
and relparticle, and in the analysis of
xcomps.

• Distinguishing between relative and cleft par-
ticles is a frequent error for Mate, and there-
fore Malt also begins to make this kind of error
when co-trained using Mate. Mate improves
using sample-selection-based co-training with
Malt.

• The sample-selection-based co-training vari-
ants show broadly similar trends to the basic
co-training.

4Naturally ambiguous Irish sentences like this require con-
text for disambiguation.

5Nivre and McDonald (2007) make a similar observation
when they compare the errors made by graph and transition
based dependency parsers.

Parsing Models LAS UAS
Development Set

Malt Baseline: 70.0 79.1
Malt Best (co-train) : 71.0 80.2
Mate Baseline: 70.8 79.1
Mate Best (85% threshold ACT1a): 71.8 80.4

Test Set
Malt Baseline: 70.2 79.5
Malt Best (co-train) : 70.8 79.8
Mate Baseline: 71.9 80.1
Mate Best (85% threshold ACT1a): 73.1 81.5

Table 1: Results for best performing models

5.5 Test Set Results
The best performing parsing model for Malt on
the development set is in the final iteration of the
basic co-training approach in Section 5.2. The
best performing parsing model for Mate on the de-
velopment set is the non-iterative 85% threshold
agreement-based co-training approach described in
Section 5.3.4. The test set results for these opti-
mal development set configurations are also shown
in Table 1. The baseline model for Malt obtains
a LAS of 70.2%, the final co-training iteration a
LAS of 70.8%. The baseline model for Mate ob-
tains a LAS of 71.9%, and the non-iterative 85%
agreement-based co-trained model obtains a LAS of
73.1%.

6 Parsing Experiments Using
Morphological Features

As well as the size of the dataset, data sparsity is
also confounded by the number of possible inflected
forms for a given root form. With this in mind,
and following on from the discussion in Section 5.4,
we carry out further parsing experiments in an at-
tempt to make better use of morphological informa-
tion during parsing. We attack this in two ways: by
reducing certain words to their lemmas and by in-
cluding morphological information in the optional
FEATS (features) field. The reasoning behind re-
ducing certain word forms to lemmas is to further
reduce the differences between inflected forms of
the same word, and the reasoning behind including
morphological information is to make more explicit
the similarity between two different word forms in-
flected in the same way. All experiments are car-

9

Parsing Models (Malt) LAS UAS
Baseline: 70.0 79.1
Lemma (Pron Prep): 69.7 78.9
Lemma + Pron Prep Morph Features: 69.6 78.9
Form + Pron Prep Morph Features: 69.8 79.1
Verb Morph Features: 70.0 79.1

Table 2: Results with morphological features on the de-
velopment set

ried out with MaltParser and our seed training set
of 500 gold trees. We focus on two phenomena:
prepositional pronouns or pronominal prepositions
(see Section 2) and verbs with incorporated subjects
(see Section 2 and Section 5.4).

In the first experiment, we include extra mor-
phological information for pronominal prepositions.
We ran three parsing experiments: (i) replacing the
value of the surface form (FORM) of pronominal
prepositions with their lemma form (LEMMA), for
example agam→ag, (ii) including morphological in-
formation for pronominal prepositions in the FEATS
column. For example, in the case of agam ‘at me’,
we include Per=1P|Num=Sg, (iii) we combine
both approaches of reverting to lemma form and also
including the morphological features. The results
are given in Table 2.

In the second experiment, we include morpholog-
ical features for verbs with incorporated subjects:
imperative verb forms, synthetic verb forms and au-
tonomous verb forms such as those outlined in Sec-
tion 5.4. For each instance of these verb types, we
included incorpSubj=true in the FEATS col-
umn. The results are also given in Table 2.

The experiments on the pronominal prepositions
show a drop in parsing accuracy while the experi-
ments carried out using verb morphological infor-
mation showed no change in parsing accuracy.6 In
the case of inflected prepositions, perhaps we have
not seen any improvement because we have not fo-
cused on a phenomenon which is critical for parsing.
More experimentation is necessary.

7 Concluding Remarks

We have presented two sets of experiments which
aim to improve dependency parsing performance for

6Although the total number of correct attachments are the
same, the parser output is different.

a minority language with a very small treebank. In
the first set of experiments, the main focus of the pa-
per, we tried to overcome the limited treebank size
by increasing the parsers’ training sets using auto-
matically parsed sentences. While we do manage
to achieve statistically significant improvements in
some settings, it is clear from the results that the
gains in parser accuracy through semi-supervised
bootstrapping methods are fairly modest. Yet, in the
absence of more gold labelled data, it is difficult to
know now whether we would achieve similar or im-
proved results by adding the same amount of gold
training data. This type of analysis will be interest-
ing at a later date when the unlabelled trees used in
these experiments are eventually annotated and cor-
rected manually.

The second set of experiments tries to mitigate
some of the data sparseness issues by exploiting
morphological characteristics of the language. Un-
fortunately, we do not see any improvements but we
may get different results if we repeat these experi-
ments using the larger semi-supervised training sets
from the first set of experiments.

There are many directions this parsing research
could take us in the future. Our unlabelled data con-
sisted of sentences annotated with gold POS tags.
In the future we would like to take advantage of
the fully unlabelled, untagged data in the New Cor-
pus for Ireland – Irish, which consists of 30 million
words. We would also like to experiment with a fully
unsupervised parser using this dataset. Our Malt fea-
ture models are manually optimised – it would be in-
teresting to experiment with optimising them using
MaltOptimizer (Ballesteros, 2012). An additional
avenue of research would be to exploit the hierar-
chical nature of the dependency scheme to arrive at
more flexible way of measuring agreement or dis-
agreement in sample selection.

Acknowledgements

We thank the three anonymous reviewers for their
helpful feedback. This work is supported by Sci-
ence Foundation Ireland (Grant No. 07/CE/I1142)
as part of the Centre for Next Generation Localisa-
tion (www.cngl.ie) at Dublin City University.

10

References

Miguel Ballesteros. 2012. Maltoptimizer: A sys-
tem for maltparser optimization. In Proceedings of
the Eighth International Conference on Linguistic Re-
sources and Evaluation (LREC), pages 2757–2763, Is-
tanbul, Turkey.

Bernd Bohnet. 2010. Top accuracy and fast dependency
parsing is not a contradiction. In Proceedings of COL-
ING.

Özlem Çetinoğlu, Jennifer Foster, Joakim Nivre, Deirdre
Hogan, Aoife Cahill, and Josef van Genabith. 2010.
LFG without c-structures. In Proceedings of the 9th
International Workshop on Treebanks and Linguistic
Theories.

Eugene Charniak and Mark Johnson. 2005. Course-to-
fine n-best-parsing and maxent discriminative rerank-
ing. In Proceedings of the 43rd ACL.

Eugene Charniak. 1997. Statistical parsing with a
context-free grammar and word statistics. In Proceed-
ings of AAAI.

Eugene Charniak. 2000. A maximum entropy inspired
parser. In Proceedings of the First Annual Meeting
of the North American Chapter of the Association for
Computational Linguistics (NAACL-00).

Christian-Brothers. 1988. New Irish Grammar. Dublin:
C J Fallon.

David Greene. 1966. The Irish Language. Dublin: The
Three Candles.

Zhongqiang Huang and Mary Harper. 2009. Self-
training PCFG grammars with latent annotations
across languages. In Proceedings of EMNLP.

John Judge, Ailbhe Nı́ Chasaide, Rose Nı́ Dhubhda,
Kevin P. Scannell, and Elaine Uı́ Dhonnchadha. 2012.
The Irish Language in the Digital Age. Springer Pub-
lishing Company, Incorporated.

Joseph Le Roux, Jennifer Foster, Joachim Wagner, Ra-
soul Samed Zadeh Kaljahi, and Anton Bryl. 2012.
DCU-Paris13 systems for the sancl 2012 shared task.
In Working Notes of SANCL.

Teresa Lynn, Özlem Çetinoğlu, Jennifer Foster, Elaine Uı́
Dhonnchadha, Mark Dras, and Josef van Genabith.
2012a. Irish treebanking and parsing. In Proceedings
of the Eight International Conference on Language
Resources and Evaluation, pages 1939–1946.

Teresa Lynn, Jennifer Foster, Mark Dras, and Elaine Uı́
Dhonnchadha. 2012b. Active learning and the Irish
treebank. In Proceeedings of the Australasian Lan-
guage Technology Workshop (ALTA), pages 23–32.

David McClosky, Eugene Charniak, and Mark Johnson.
2006. Effective self-training for parsing. In Proceed-
ings of the Human Language Technology Conference
of the NAACL, Main Conference, pages 152–159, New

York City, USA, June. Association for Computational
Linguistics.

David McClosky, Eugene Charniak, and Mark Johnson.
2008. When is self-training effective for parsing? In
Proceedings of COLING.

Joakim Nivre and Ryan McDonald. 2007. Characteriz-
ing the errors of data-driven dependency parsing mod-
els. In Proceedings of EMNLP-CoNLL, Prague, Czech
Republic.

Joakim Nivre, Johan Hall, and Jens Nilsson. 2006. Malt-
parser: A data-driven parser-generator for dependency
parsing. In Proceedings of the Fifth International
Conference on Language Resources and Evaluation
(LREC2006).

Mı́cheál Ó Siadhail. 1989. Modern Irish: Grammatical
structure and dialectal variation. Cambridge: Cam-
bridge University Press.

Sujith Ravi, Kevin Knight, and Radu Soricut. 2008. Au-
tomatic prediction of parser accuracy. In Proceedings
of EMNLP, Hawaii.

Ines Rehbein. 2011. Data point selection for self-
training. In Proceedings of the Second Workshop
on Statistical Parsing of Morphologically Rich Lan-
guages (SPMRL 2011), Dublin, Ireland.

Roi Reichart and Ari Rappaport. 2007. Self-training
for enhancement and domain adaptation of statistical
parsers trained on small datasets. In Proceedings of
ACL.

Kenji Sagae and Jun’ichi Tsujii. 2007. Dependency pars-
ing and domain adaptation with LR models and parser
ensembles. In Proceedings of the CoNLL shared task
session of EMNLP-CoNLL.

Kenji Sagae. 2010. Self-training without reranking for
parser domain adapation and its impact on semantic
role labelling. In Proceedings of the ACL Workshop
on Domain Adaptation for NLP.

Sebastian Seung, Manfred Opper, and Haim Sompolin-
sky. 1992. Query by committee. In Proceedings
of the Fifth Annual ACM Workshop on Computational
Learning Theory.

Mark Steedman, Miles Osborne, Anoop Sarkar, Stephen
Clark, Rebecca Hwa, Julia Hockenmaier, Paul Ruhlen,
Steven Baker, and Jeremiah Crim. 2003. Bootstrap-
ping statistical parsers from small datasets. In Pro-
ceedings of the tenth conference on European chapter
of the Association for Computational Linguistics - Vol-
ume 1, EACL ’03, pages 331–338, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Nancy Stenson. 1981. Studies in Irish Syntax. Tübingen:
Gunter Narr Verlag.

Elaine Uı́ Dhonnchadha. 2009. Part-of-Speech Tagging
and Partial Parsing for Irish using Finite-State Trans-
ducers and Constraint Grammar. Ph.D. thesis, Dublin
City University.

11

Proceedings of the Fourth Workshop on Statistical Parsing of Morphologically Rich Languages, pages 12–21,
Seattle, Washington, USA, 18 October 2013. c©2013 Association for Computational Linguistics

Lithuanian Dependency Parsing with Rich Morphological Features

Jurgita Kapočiūtė-Dzikienė
Kaunas University of Technology

K. Donelaičio 73
LT-44249 Kaunas, Lithuania

jurgita.k.dz@gmail.com

Joakim Nivre
Uppsala University

Box 635
SE-75126 Uppsala, Sweden
joakim.nivre@lingfil.uu.se

Algis Krupavičius
Kaunas University of Technology

K. Donelaičio 73
LT-44249 Kaunas, Lithuania

pvai@ktu.lt

Abstract

We present the first statistical dependency
parsing results for Lithuanian, a morpholog-
ically rich language in the Baltic branch of
the Indo-European family. Using a greedy
transition-based parser, we obtain a labeled at-
tachment score of 74.7 with gold morphology
and 68.1 with predicted morphology (77.8 and
72.8 unlabeled). We investigate the usefulness
of different features and find that rich morpho-
logical features improve parsing accuracy sig-
nificantly, by 7.5 percentage points with gold
features and 5.6 points with predicted features.
As expected, CASE is the single most impor-
tant morphological feature, but virtually all
available features bring some improvement,
especially under the gold condition.

1 Introduction

During the last decades, we have seen a tremendous
increase in the number of syntactic parsers avail-
able for different languages, often enabled by the
development of syntactically annotated corpora, or
treebanks. The added linguistic diversity has high-
lighted the fact that typological differences between
languages lead to new challenges, both in parsing
technology and treebank annotation. In particu-
lar, it has been observed repeatedly that richly in-
flected languages, which often also exhibit relatively
free word order, usually obtain lower parsing accu-
racy, especially compared to English (Buchholz and
Marsi, 2006; Nivre et al., 2007). This has led to
a special interest in parsing methods for such lan-
guages (Tsarfaty et al., 2010; Tsarfaty et al., 2013).

In this paper, we contribute to the growing pool of
empirical evidence by presenting the first statistical
dependency parsing results for Lithuanian, a mor-
phologically rich Baltic language characterized as
one of the most archaic living Indo-European lan-
guages (Gimbutas, 1963).

Using the newly developed Lithuanian Treebank,
we train and evaluate a greedy transition-based
parser and in particular investigate the impact of rich
morphological features on parsing accuracy. Our
experiments show that virtually all morphological
features can be beneficial when parsing Lithuanian,
which contrasts with many previous studies that
have mainly found a positive impact for isolated fea-
tures such as CASE (Eryigit et al., 2008). Using all
available features, we achieve a labeled attachment
score of 74.7 with gold morphology (including part-
of-speech tags and lemmas) and 68.1 with predicted
morphology. The corresponding unlabeled attach-
ment scores are 77.8 and 72.8, respectively.

2 The Lithuanian Treebank

The Lithuanian Treebank was developed by the Cen-
ter of Computational Linguistics, Vytautas Magnus
University.1 The annotated texts are taken from
the newspaper domain and thus represent normative
Lithuanian language. The treebank contains 1,566
sentences and 24,265 tokens: 19,625 words (9,848
distinct) plus 4,640 punctuation marks (12 distinct).
Word tokens in the Lithuanian Treebank are mor-

1The treebank creation was one of the tasks of the project
Internet Resources: Annotated Corpus of the Lithuanian Lan-
guage and Tools of Annotation, implemented in 2007-2008 and
funded by the Lithuanian Science and Studies Foundation.

12

SBJ OBJ MODIF PRED ATTR DEP ROOT TOTAL
Abbreviation 6 457 22 485
Acronym 31 2 33
Adjectival participle 1 28 84 12 125
Adjective 1 63 1,104 157 75 1,400
Adverbial participle 37 28 3 68
Adverb 1,134 193 29 1,356
Conjunction 5 1,171 93 1,269
Infinitive 6 372 9 139 21 547
Interjection 3 6 9
Noun 775 1,097 1,314 1,712 1,415 217 6,530
Numeral 1 22 158 72 6 259
Participle 1 150 430 285 197 1,063
Particle 27 78 1 216 36 358
Preposition 253 168 630 35 1,086
Pronoun 258 170 104 558 424 21 1,535
Proper noun 15 1 22 20 1,307 60 1,425
Roman number 25 3 28
Verb 205 1,844 2,049
TOTAL 1,057 1,533 2,856 663 3,992 6,842 2,682 19,625

Table 1: Cooccurrence statistics on dependencies (columns) and PoS tags (rows) in the Lithuanian Treebank.

phologically and syntactically annotated as follows:

• Syntactic dependencies: 7 different categories
listed in Table 1 (columns).

• Part-of-Speech (PoS) tags: 18 different cate-
gories listed in Table 1 (rows). These tags sim-
ply determine PoS but do not incorporate any
additional morphological information.

• Morphological features: 12 different categories
listed with possible values in Table 2. The
number of morphological features assigned to a
word varies from 0 (for particles, conjunctions,
etc.) to 9.2

• Lemmas: base form of word, lowercase except
for proper names.

The syntactic annotation scheme only distin-
guishes 5 basic grammatical relations (SBJ, OBJ,
PRED, ATTR, MODIF) plus an additional under-
specified relation (DEP) for other dependencies be-
tween words and a special relation (ROOT) for

2For example, the participle esanti (existent) is described
by 8 feature values: CASE: Nominative, GENDER: Feminine,
NUMBER: Singular, TENSE: Present, VOICE: Active, RE-
FLEX: Non-reflexive, PRONOM: Non-pronominal, ASPECT:
Positive.

words attached to an (implicit) artificial root node.
The dependency structure always forms a tree orig-
inating from the root node, but there may be more
than one token attached to the root node. This hap-
pens when a sentence contains several clauses which
do not share any constituents. Table 1 gives statis-
tics on the different dependency relations and their
distribution over different PoS tags.

Examples of syntactically annotated sentences are
presented in Figure 1 and Figure 2. All dependency
relations are represented by arrows pointing from
the head to the dependent, the labels above indicate
the dependency type.3 For example, as we can see
in Figure 1, nerizikuoja (does not risk) is the head of
Kas (Who) and this dependency relation has the SBJ
label. The sentence in Figure 1 contains two clauses
(separated by a comma) both containing SBJ depen-
dency relations. The sentence in Figure 2 contains
the main clause Bet štai pro medi̧ praslinko nedidelis
šešėlis and the subordinate clause kuriame sėdėjau
in which the subject is expressed implicitly (a pro-
noun aš (I) can be inferred from the singular 1st per-
son inflection of the verb sėdėjau (sat)). In Lithua-
nian sentences, the subject is very often omitted, and
even the verb can be expressed implicitly. For exam-

3ROOT dependencies are not shown explicitly.

13

Category Values Frequency Compatible PoS Tags
CASE Nominative 3,421 Adjective, Noun, Numeral, Participle, Pronoun, Proper noun

Genitive 4,204
Dative 445
Accusative 1,995
Instrumental 795
Locative 849
Vocative 10

GENDER Masculine 7,074 Adjective, Adverbial participle, Noun, Numeral, Participle,
Feminine 4,482 Pronoun, Proper noun
Neuter 283
Appellative 1

NUMBER Singular 8,822 Adjective, Adverbial participle, Noun, Numeral, Participle,
Plural 4,624 Pronoun, Proper noun, Verb
Dual 3

TENSE Present 1,307 Adjectival participle, Participle, Verb
Past occasion 1,352
Past 311
Past iterative 31
Future 123

MOOD Indicative 1,950 Verb
Subjunctive 87
Imperative 12

PERSON 1st 281 Verb
2nd 41
3rd 1,727

VOICE Active 456 Participle
Passive 594
Gerundive 13

REFLEX Reflexive 526 Adjectival participle, Adverbial participle, Infinitive, Noun,
Non-reflexive 3,486 Participle, Verb

DEGREE Positive 1,712 Adjective, Adverb, Numeral, Participle
Comparative 1,712
Superior 1
Superlative 94

TYPE Cardinal 145 Numeral
Ordinal 105
Multiple 9

PRONOM Pronominal 247 Adjective, Participle, Pronoun, Numeral
Non-pronominal 3,056

ASPECT Positive 6,206 Adjectival participle, Adjective, Adverbial participle, Adverb,
Negative 422 Infinitive, Noun, Participle, Particle, Preposition, Verb

Table 2: Morphological categories in the Lithuanian Treebank: possible values, frequencies and compatible PoS tags.

ple, in the sentence Jis geras žmogus (He is a good
man), the copula verb yra (is) is omitted.

The possible values of different morphological
categories are presented with descriptive statistics
in Table 2. Given that word order in Lithuanian
sentences is relatively free, morphological informa-
tion is important to determine dependency relations.

For example, an adjective modifying a noun has
to agree in GENDER, NUMBER and CASE, as in
gražus miestas (beautiful city), where both the ad-
jective and the noun are in masculine singular nom-
inative. Verbs agree with their subject in NUMBER
and PERSON, as in jūs važiuojate (you are going) in
second person plural. Finally, the CASE of a noun

14

Figure 1: Annotated sentence from the Lithuanian Treebank, consisting of two independent main clauses. Translation:
Who does not risk, that does not drink champagne but does not cry tearfully either.

Figure 2: Annotated sentence from the Lithuanian Treebank, consisting of a main clause and a subordinate clause.
Translation: But here through the tree in which I sat passed a small shadow.

or pronoun is an important indicator of the syntac-
tic relation to the verb, such that nominative CASE
almost always implies a SBJ relation. However, the
transparency of morphological information is lim-
ited by syncretism in CASE, NUMBER and GEN-
DER. Thus, the form mamos (mother(s)) can be ei-
ther plural nominative or singular genitive; the form
mokytojas (teacher(s)) can be either masculine sin-
gular nominative or feminine plural accusative.

3 Parsing Framework

We use the open-source system MaltParser (Nivre
et al., 2006a) for our parsing experiments with the
Lithuanian Treebank. MaltParser is a transition-
based dependency parser that performs parsing as
greedy search through a transition system, guided
by a history-based classifier for predicting the next
transition (Nivre, 2008). Although more accurate
dependency parsers exist these days, MaltParser ap-
peared suitable for our experiments for a number of
reasons. First of all, greedy transition-based parsers
have been shown to perform well with relatively
small amounts of training data (Nivre et al., 2006b).
Secondly, MaltParser implements a number of dif-
ferent transition systems and classifiers that can be
explored and also supports user-defined input for-

mats and feature specifications in a flexible way. Fi-
nally, MaltParser has already been applied to a wide
range of languages, to which the results can be com-
pared. In particular, MaltParser was used to obtain
the only published dependency parsing results for
Latvian, the language most closely related to Lithua-
nian (Pretkalnin. a and Rituma, 2013).

In our experiments, we use the latest release of
MaltParser (Version 1.7.2).4 After preliminary ex-
periments, we decided to use the arc-eager transition
system (Nivre, 2003) with pseudo-projective pars-
ing to recover non-projective dependencies (Nivre
and Nilsson, 2005) and the LIBLINEAR learning
package with multiclass SVMs (Fan et al., 2008).
Table 3 lists the options that were explored in the
preliminary experiments. We first tested all possible
combinations of learning method and parsing algo-
rithms and then performed a greedy sequential tun-
ing of the options related to covered roots, pseudo-
projective parsing, and all combinations of allow-
root and allow-reduce.

In order to use MaltParser on the Lithuanian Tree-
bank, we first converted the data to the CoNLL-X
format,5 treating all morphological feature bundles

4Available at http://maltparser.org.
5See http://ilk.uvt.nl/conll/#dataformat.

15

Option Value
Learning method (-l) liblinear
Parsing algorithm (-a) nivreeager
Covered roots (-pcr) head
Pseudo-projective parsing (-pp) head+path
Allow root (-nr) true
Allow reduce (-ne) true

Table 3: List of MaltParser options explored in prelimi-
nary experiments with best values used in all subsequent
experiments.

as a single string and putting it into the FEATS col-
umn, which means that there will be one boolean
feature for each unique set of features. However,
in order to study the influence of each individual
morphological feature, we also prepared an appro-
priate format where every morphological feature had
its own (atom-valued) column (called CASE, GEN-
DER, NUMBER, etc.), which means that there will
be one boolean feature for each unique feature value,
as specified in Table 2. In the following, we will re-
fer to these two versions as Set-FEATS and Atom-
FEATS, respectively. Another choice we had to
make was how to treat punctuation, which is not in-
tegrated into the dependency structure in the Lithua-
nian Treebank. To avoid creating spurious non-
projective dependencies by attaching them to the
root node, we simply attached all punctuation marks
to an adjacent word.6 Therefore, we also exclude
punctuation in all evaluation scores.

We use five-fold cross-validation on the entire
treebank in all our experiments. This means that
the final accuracy estimates obtained after tuning
features and other parameters may be overly opti-
mistic (in the absence of a held-out test set), but
given the very limited amount of data available this
seemed like the most reasonable approach. We
perform experiments under two conditions. In the
Gold condition, the input to the parser contains PoS
tags, lemmas and morphological features taken from
the manually annotated treebank. In the Predicted
condition, we instead use input annotations pro-
duced by the morphological analyser and lemma-
tizer Lemuoklis (Zinkevičius, 2000; Daudaravičius
et al., 2007), which also solves morphological dis-

6This is automatically handled by the covered roots option
in MaltParser; see Table 3.

Category Accuracy
POSTAG 88.1
LEMMA 91.1
Set-FEATS 78.6
Atom-FEATS
CASE 87.2
GENDER 88.3
NUMBER 86.2
TENSE 94.1
MOOD 95.9
PERSON 95.8
VOICE 90.2
REFLEX 93.3
DEGREE 90.3
TYPE 80.7
PRONOM 89.3
ASPECT 93.5

Table 4: Accuracy of the morphological analyzer and
lemmatizer used in the Predicted condition.

ambiguation problems at the sentence level. Table 4
shows the accuracy of this system for the output cat-
egories that are relevant both in the Set-FEATS and
Atom-FEATS format.

4 Parsing Experiments and Results

In our first set of experiments, we tuned two feature
models in the Gold condition:

• Baseline: Starting from the default feature
model in MaltParser, we used backward and
forward feature selection to tune a feature
model using only features over the FORM,
LEMMA, POSTAG and DEPREL fields in the
CoNLL-X format (that is, no morphological
features). Only one feature was explored at
a time, starting with FORM and going on to
LEMMA, POSTAG, DEPREL, and conjunc-
tions of POSTAG and DEPREL features. The
best templates for each feature type were re-
tained when moving on to the next feature.

• Baseline+FEATS: Starting from the Baseline
model, we used forward feature selection to
tune a feature model that additionally contains
features over the FEATS field in the Set-FEATS

16

Figure 3: The feature models Baseline and Baseline+FEATS. Rows represent address functions, columns represent
attribute functions. Gray cells represent single features, dotted lines connecting cell pairs or lines connecting cell
triplets represent conjoined features. The Baseline model contains only features that do not involve the FEATS column.

version, optionally conjoined with POSTAG
features.

The features included in these two models are
depicted schematically in Figure 3. The Base-
line+FEATS model includes all features, while the
Baseline model includes all features except those
that refer to the FEATS field. In the Gold condi-
tion, the Baseline model achieves a labeled attach-
ment score (LAS) of 67.19 and an unlabeled attach-
ment score (UAS) of 73.96, while Baseline+FEATS
gets 74.20 LAS and 77.40 UAS. In the Predicted
condition, the corresponding results are 62.47/70.30
for Baseline and 68.05/72.78 for Baseline+FEATS.
Thus, with the addition of morphological features
(all of them together) the Baseline+FEATS model
exceeds the Baseline by 7.01 percentage points for
LAS and 3.44 for UAS in the Gold condition and by
5.58 percentage points for LAS and 2.48 for UAS in
the Predicted condition. To determine whether the
differences are statistically significant we performed
McNemar’s test (McNemar, 1947) with one degree
of freedom. The test showed the differences in LAS
and UAS between Baseline and Baseline+FEATS
for both the Gold and Predicted conditions to be sta-
tistically significant with p << 0.05.

In our second set of experiments, we started from
the Baseline model and incrementally added mor-
phological features in the Atom-FEATS format, one

morphological category at a time, using the same
five feature templates (three single and two con-
joined) as for FEATS in the Baseline+FEATS model
(see Figure 3). The order of explored morpho-
logical features was random, but only features that
increased parsing accuracy when added were re-
tained when adding the next morphological feature.
The LAS results of these experiments are summa-
rized in Figure 4 (reporting results in the Gold con-
dition) and Figure 5 (in the Predicted condition).
We do not present UAS results because they show
the same trend as the LAS metric although shifted
upwards. In the Gold condition, the best feature
model is Baseline + CASE + GENDER + NUM-
BER + TENSE + DEGREE + VOICE + PERSON
+ TYPE, which achieves 74.66 LAS and 77.84
UAS and exceeds the Baseline by 7.47 percentage
points for LAS and 3.88 for UAS (MOOD, RE-
FLEX, PRONOM and ASPECT made no improve-
ments or even degraded the performance). In the
Predicted condition, the best feature model remains
Baseline+FEATS, but using the Atom-FEATS ver-
sion the best results are achieved with Baseline +
CASE + GENDER + TENSE + VOICE + PERSON
+ REFLEX, which exceeds the Baseline by 5.36 per-
centage points for LAS and 2.55 for UAS (NUM-
BER, MOOD, DEGREE, REFLEX, PRONOM and
ASPECT made no improvements or even degraded

17

the performance). All these differences are statis-
tically significant. By contrast, the differences be-
tween the best models with Atom-FEATS and Set-
FEATS are not statistically significant for any metric
or condition (with p values in the range 0.35–0.87).

5 Discussion

First of all, we may conclude that the Baseline
feature model (without morphological information)
does not perform very well for a morphologically
rich language like Lithuanian (see Figure 4 and Fig-
ure 5), despite giving high accuracy for morpholog-
ically impoverished languages like English. How-
ever, it is likely that the accuracy of the Baseline
model would be a bit higher for the Lithuanian Tree-
bank if PoS tags incorporated some morphological
information as they do, for example, in the English
Penn Treebank (Marcus et al., 1993).

It thus seems that basic PoS tags as well as lem-
mas are too general to be beneficial enough for
Lithuanian. The simple morphemic word form
could be more useful (even despite the fact that
Lithuanian is syncretic language), but the treebank
is currently too small, making the data too sparse to
create a robust model.7 Thus, the effective way of
dealing with unseen words is by incorporating mor-
phological information.

In the Predicted condition, we always see a drop
in accuracy compared to the Gold condition, al-
though our case is not exceptional. For example, the
Baseline model has a drop in LAS of 4.72 percent-
age points from Gold to Predicted, but this gap could
possibly be narrowed by retuning the feature model
for the Predicted condition instead of simply reusing
the model tuned for the Gold condition. We also
tried training the model on gold annotations for pars-
ing predicted annotations, but these produced even
worse results, confirming that it is better to make
the training condition resemble the parsing condi-
tion. Despite noisy information, morphological fea-
tures are still very beneficial compared to not using
them at all (see Figure 5). Our findings thus agree
with what has been found for Arabic by Marton et
al. (2013) but seem to contradict the results obtained

7We tried to reduce data sparseness a little bit by changing
all words into lowercase, but the drop in accuracy revealed that
orthographic information is also important for parsing.

for Hebrew by Goldberg and Elhadad (2010).

As we can see from both curves in Figure 4 and
Figure 5, the top contributors are CASE, VOICE,
and TENSE, but the CASE feature gives the biggest
contribution to accuracy. It boosts LAS by 6.51
points in the Gold condition and almost 5 points in
the Predicted condition, whereas the contribution of
all the other morphological features is less than 1
point (and not statistically significant). In a con-
trol experiment we reversed the order in which mor-
phological features are added (presented in Figure 4
and Figure 5), adding CASE at the very end. In
this case, the addition of all features except case re-
sulted in a statistically significant improvement in
the Gold condition (p = 0.001) but not in the Pre-
dicted condition (p = 0.24). However, the contribu-
tion of CASE was by far the most important again
– increasing LAS by 5.55 points in the Gold condi-
tion and by 4.68 points in the Predicted condition.
To further investigate the selection of morphologi-
cal features, we also performed a greedy selection
experiment. During this experiment CASE was se-
lected first, again proving it to be the most influential
feature. It was followed by VOICE, MOOD, NUM-
BER and DEGREE in the Gold condition and by
GENDER, TENSE, PERSON and TYPE in the Pre-
dicted condition. Overall, however, greedy selection
gave worse results than random selection, achieving
74.42 LAS and 77.60 UAS in the Gold condition and
67.83 LAS and 72.80 UAS in the Predicted condi-
tion.

To find that CASE is the most important feature
is not surprising, as CASE has been shown to be
the most helpful feature for many languages (at least
in the Gold condition). But whereas few other fea-
tures have been shown to help for other languages,
in our case the majority of features (8 out of 12 in
the Gold condition) are beneficial for Lithuanian.
The so-called agreement features (GENDER, NUM-
BER and PERSON) are beneficial for Lithuanian
(at least in the Gold condition) as well as for Ara-
bic (Marton et al., 2013), but not such languages as
Hindi (Ambati et al., 2010) and Hebrew (Goldberg
and Elhadad, 2010). In the Predicted condition, their
positive impact is marginal at best, possibly because
NUMBER is very poorly predicted by the morpho-

18

Figure 4: The contribution of individual morphological features in the Gold condition. The x axis represents feature
models incorporating different attributes; the y axis represents LAS. The horizontal line at 74.20 represents the LAS
of Baseline+FEATS.

Figure 5: The contribution of individual morphological features in the Predicted condition. The x axis represents
feature models incorporating different attributes; the y axis represents LAS. The horizontal line at 68.05 represents the
LAS of Baseline+FEATS.

19

logical analyzer.8

It is also worth noting that morphological fea-
tures have less influence on UAS than LAS, as the
gain in UAS over the Baseline is 3-4 percentage
points lower compared to LAS. This means that
morphology is more important for selecting the type
of dependency than for choosing the syntactic head.
More precisely, adding morphology improves both
recall and precision for the labels SBJ and OBJ,
which is probably due primarily to the CASE fea-
ture.

Despite the positive effect of morphological infor-
mation, the best LAS achieved is only 74.66 in the
Gold condition and 68.05 in the Predicted condition.
An error analysis shows that 38.0% of all LAS er-
rors have an incorrect syntactic head, 12.5% have an
incorrect dependency label, and 49.5% have both in-
correct. The most commonly occurring problem is
the ambiguity between DEP and ROOT dependen-
cies.

For example, in the sentence atsidūrė Vokietijoje,
lankė paskaitas (he got to Germany, attended lec-
tures) lankė (attended) is the dependent of atsidūrė
(got), because it is the consecutive action performed
by the same subject (the subject is expressed implic-
itly and can be identified according the appropriate
verb form). But in the sentence buvo puiku ir mums,
ir jam patiko (it was great for us and he enjoyed it)
patiko (enjoyed) is not a dependent of buvo (was)
but of the root node, because the sentence contains
two separate clauses with their subjects and verbs.9

Other common ambiguities are among different
types of labels that are expressed by the same mor-
phological categories and depends on the context
(and the meaning) of the sentence, for example, in
the phrase užželti augalais (to green with plants),
augalais (plants) is a dependent of užželti (to green)
with the OBJ label; in užsiimti projektais (to en-
gage in projects) projektais (projects) is a dependent
of užsiimti (to engage) with the MODIF label; and
in pavadinti vardais (to name with names) vardais
(names) is a dependent on pavadinti (to name) with

8The accuracy is only 86.2%, the lowest of all features.
9This type of ambiguity is somewhat artificial, since it arises

from the choice to not annotate relations between complete
clauses in the Lithuanian Treebank. We expect that parsing
accuracy would be improved if all interclausal relations were
annotated explicitly.

DEP label. The choice of dependency label in these
cases depends on the semantic role of the modifier,
corresponding to the question what in the first case,
the question how in the second case, and yet a dif-
ferent relation in the third case. In all these cases
morphology does not help to determine the particu-
lar label of the dependency relation.

Finally, we note that the results obtained for
Lithuanian are in the same range as those reported
for Latvian, another Baltic language. Using Malt-
Parser in 10-fold cross-validation on a data set of
2,500 sentences, Pretkalnin. a and Rituma (2013)
achieve an unlabeled attachment score of 74.6 in
the Gold condition and 72.2 in the Predicted condi-
tions, to be compared with 77.8 and 72.8 in our ex-
periments. It should be remembered, however, that
the results are not directly comparable due to differ-
ences in annotation schemes.

6 Conclusion

In this paper we have presented the first statisti-
cal dependency parsing results for Lithuanian. Us-
ing the transition-based system MaltParser, we have
demonstrated experimentally that the role of mor-
phology is very important for the Lithuanian lan-
guage. The addition of morphological information
resulted in a gain in attachment scores of 7.5 points
(labeled) and 3.9 points (unlabeled) with manually
validated morphology (the Gold condition) and of
5.6 points (labeled) and 2.5 points (unlabeled) with
automatically predicted morphology (the Predicted
condition). In the Gold condition, we achieved the
best results by adding each morphological feature
separately (using the Atom-FEATS representation),
but in the Predicted condition adding all features to-
gether (using the Set-FEATS representation turned
out to be better). The most important morphological
feature is CASE, followed by VOICE and TENSE.

Future work includes a more detailed error anal-
ysis for the different models, which could throw
further light on the impact of different features. It
could also be worthwhile to experiment with dif-
ferent feature templates for different morphologi-
cal categories. For example, for agreement fea-
tures it seems important to conjoin the values of two
words that are candidates for a dependency, while
this might not be necessary for features like CASE.

20

However, in order to get a major improvement in
parsing accuracy, we probably need larger amounts
of syntactically annotated data as well as more con-
sistent annotations of interclausal relations.

Acknowledgments

This research is funded by European Union Struc-
tural Funds Project “Postdoctoral Fellowship Im-
plementation in Lithuania” (No. VP1-3.1-ŠMM-01)
and was initiated when the first author was visiting
the Department of Linguistics and Philology at Up-
psala University, Sweden.

References

Bharat Ram Ambati, Samar Husain, Joakim Nivre, and
Rajeev Sangal. 2010. On the role of morphosyntactic
features in hindi dependency parsing. In Proceedings
of the NAACL HLT 2010 First Workshop on Statistical
Parsing of Morphologically-Rich Languages, SPMRL
’10, pages 94–102, Stroudsburg, PA, USA. Associa-
tion for Computational Linguistics.

Sabine Buchholz and Erwin Marsi. 2006. CoNLL-X
shared task on multilingual dependency parsing. In
Proceedings of the 10th Conference on Computational
Natural Language Learning (CoNLL), pages 149–164.

Vidas Daudaravičius, Erika Rimkutė, and Andrius Utka.
2007. Morphological annotation of the Lithuanian
corpus. In Proceedings of the Workshop on Balto-
Slavonic Natural Language Processing: Informa-
tion Extraction and Enabling Technologies (ACL’07),
pages 94–99.

Gülsen Eryigit, Joakim Nivre, and Kemal Oflazer. 2008.
Dependency parsing of Turkish. Computational Lin-
guistics, 34.

R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and
C.-J. Lin. 2008. LIBLINEAR: A library for large lin-
ear classification. Journal of Machine Learning Re-
search, 9:1871–1874.

Marija Gimbutas. 1963. The Balts. Thames and Hudson.
Yoav Goldberg and Michael Elhadad. 2010. Easy first

dependency parsing of modern hebrew. In Proceed-
ings of the NAACL HLT 2010 First Workshop on Sta-
tistical Parsing of Morphologically-Rich Languages,
SPMRL ’10, pages 103–107, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated cor-
pus of english: The penn treebank. Computational
Linguistics, 19(2):313–330.

Yuval Marton, Nizar Habash, and Owen Rambow. 2013.
Dependency parsing of modern standard arabic with
lexical and inflectional features. Computational Lin-
guistics, 39(1):161–194, March.

Quinn Michael McNemar. 1947. Note on the sampling
error of the difference between correlated proportions
or percentages. Psychometrika, 12(2):153–157.

Joakim Nivre and Jens Nilsson. 2005. Pseudo-projective
dependency parsing. In Proceedings of the 43rd An-
nual Meeting of the Association for Computational
Linguistics (ACL), pages 99–106.

Joakim Nivre, Johan Hall, and Jens Nilsson. 2006a.
Maltparser: A data-driven parser-generator for depen-
dency parsing. In Proceedings of the 5th International
Conference on Language Resources and Evaluation
(LREC), pages 2216–2219.

Joakim Nivre, Johan Hall, Jens Nilsson, Gülsen Eryiğit,
and Svetoslav Marinov. 2006b. Labeled pseudo-
projective dependency parsing with support vector ma-
chines. In Proceedings of the 10th Conference on
Computational Natural Language Learning (CoNLL),
pages 221–225.

Joakim Nivre, Johan Hall, Sandra Kübler, Ryan McDon-
ald, Jens Nilsson, Sebastian Riedel, and Deniz Yuret.
2007. The CoNLL 2007 shared task on dependency
parsing. In Proceedings of the CoNLL Shared Task of
EMNLP-CoNLL 2007, pages 915–932.

Joakim Nivre. 2003. An efficient algorithm for pro-
jective dependency parsing. In Proceedings of the
8th International Workshop on Parsing Technologies
(IWPT), pages 149–160.

Joakim Nivre. 2008. Algorithms for deterministic incre-
mental dependency parsing. Computational Linguis-
tics, 34:513–553.

Lauma Pretkalnin. a and Laura Rituma. 2013. Statistical
syntactic parsing for Latvian. In Proceedings of the
19th Nordic Conference of Computational Linguistics
(NODALIDA 2013), pages 279–289.

Reut Tsarfaty, Djamé Seddah, Yoav Goldberg, San-
dra Kuebler, Yannick Versley, Marie Candito, Jen-
nifer Foster, Ines Rehbein, and Lamia Tounsi. 2010.
Statistical parsing of morphologically rich languages
(spmrl) what, how and whither. In Proceedings of the
NAACL HLT 2010 First Workshop on Statistical Pars-
ing of Morphologically-Rich Languages, pages 1–12.

Reut Tsarfaty, Djamé Seddah, Sandra Kübler, and Joakim
Nivre. 2013. Parsing morphologicall rich languages:
Introduction to the special issue. Computational Lin-
guistics, 39:15–22.

Vytautas Zinkevičius. 2000. Lemuoklis – morfologinei
analizei [Morphological analysis with Lemuoklis].
Gudaitis, L. (ed.) Darbai ir dienos, 24:246–273. (in
Lithuanian).

21

Proceedings of the Fourth Workshop on Statistical Parsing of Morphologically Rich Languages, pages 22–33,
Seattle, Washington, USA, 18 October 2013. c©2013 Association for Computational Linguistics

Parsing Croatian and Serbian by Using Croatian Dependency Treebanks

Željko Agić∗ Danijela Merkler† Daša Berović†
∗Department of Information and Communication Sciences

†Department of Linguistics
Faculty of Humanities and Social Sciences, University of Zagreb

Ivana Lučića 3, 10000 Zagreb, Croatia
zagic@ffzg.hr dmerkler@ffzg.hr dberovic@ffzg.hr

Abstract

We investigate statistical dependency parsing
of two closely related languages, Croatian and
Serbian. As these two morphologically com-
plex languages of relaxed word order are gen-
erally under-resourced – with the topic of de-
pendency parsing still largely unaddressed, es-
pecially for Serbian – we make use of the
two available dependency treebanks of Croa-
tian to produce state-of-the-art parsing models
for both languages. We observe parsing accu-
racy on four test sets from two domains. We
give insight into overall parser performance
for Croatian and Serbian, impact of prepro-
cessing for lemmas and morphosyntactic tags
and influence of selected morphosyntactic fea-
tures on parsing accuracy.

1 Introduction

Croatian and Serbian are very closely related South
Slavic languages with complex morphology and rel-
atively free word order. They are mutually intel-
ligible with one another, as well as with Bosnian
and Montenegrin, amounting for more than 20 mil-
lion native speakers.1 Regarding language technol-
ogy support, they are considered to be generally
under-resourced. More specifically, while a cor-
pus of research on processing Croatian and Ser-
bian on the morphosyntactic and shallow syntactic

1Bekavac et al. (2008) provide a corpus-based comparison
of Bosnian, Croatian and Serbian, observing similarities and
differences in morphology, syntax and semantics. For further
insight regarding Croatian and Serbian morphosyntax, see the
respective contemporary grammars (Silić and Pranjković, 2005;
Stanojčić and Popović, 2008).

layer does exist (Tadić et al., 2012; Vitas et al.,
2012), approaches to full syntactic analysis of the
two languages were up to this point very sparse
and very recent (Agić and Merkler, 2013). As lin-
guistic tradition supports dependency-based syntac-
tic formalisms for the two languages (Böhmová et
al., 2003; Tadić, 2007), it should be noted that
they have not participated in the previous collabo-
rative research efforts in dependency parsing, such
as the CoNLL shared tasks (Buchholz and Marsi,
2006; Nivre et al., 2007). Furthermore, regardless of
the specific research topic, the communities dealing
with natural language processing of Croatian, Ser-
bian and other closely related languages from their
group are still to reach the common level of aware-
ness with respect to public availability of their re-
search. Contributions to availability of Croatian and
Serbian resources have once again been very few
and recent (Tadić and Varadi, 2012), especially for
free culture licensing.

Through the line of research we propose here,2 we
seek to provide state-of-the-art in dependency pars-
ing for both Croatian and Serbian. In this first group
of experiments, we build on the fact of their close
relatedness by using the two Croatian treebanks –
Croatian Dependency Treebank (Tadić, 2007) and
SETIMES.HR Treebank (Agić and Merkler, 2013) –
to build unified parsing models and evaluate them
across the languages and domains. As we deal with
highly inflectional languages, we also investigate
the influence of morphological preprocessing and
morphosyntactic feature selection on parsing perfor-

2This work was partly financed by the EU FP7 STREP
project XLike (FP7-288342).

22

mance. We aim to use this first inquiry as a decision
point regarding further advancements in resource in-
terchangeability in terms of, e.g., annotation projec-
tion (Yarowsky et al., 2001) and domain adaptation
(Søgaard, 2013). Availability is highly emphasized,
as we provide our resources and models to the public
under the CC-BY-SA-3.0 license.3 We stress the es-
sential role of free culture licensing in enabling and
maturing NLP for under-resourced languages.

In the following section, we give an overview of
related work in computational processing of Croat-
ian and Serbian morphology and syntax. Further, we
define the experiment objectives and describe the re-
sources and experiment workflow. We elaborate on
the obtained results and conclude by sketching pos-
sible future research plans.

2 Related work

Two overviews of current state of language technol-
ogy development have appeared just recently for the
two languages we investigate in this paper.

The Croatian overview (Tadić et al., 2012) states
that a few underperforming shallow parsing proto-
types for Croatian do exist (Vučković et al., 2008),
while deep parsing is left completely unaddressed.
In contrast, it indicates that the more basic re-
sources – manually annotated corpora, inflectional
lexicons, lemmatizers, morphosyntactic and named
entity taggers – are of higher quality and availability.
Most of these are available through META-SHARE
(Tadić and Varadi, 2012). However, in terms of
mandatory preprocessing for dependency parsing, to
the best of our knowledge, the only freely avail-
able and standard-compliant lemmatization, part-of-
speech (POS) or morphosyntactic (MSD) tagging
resources are those by (Agić et al., 2013).4 Their
elaboration contains a more substantial overview of
preprocessing. Relevant to our research, these mod-
els provide the state of the art in preprocessing for
both Croatian and Serbian.

Croatian Dependency Treebank (HOBS) project
was initiated by (Tadić, 2007). However, its suffi-
ciency in size increase, followed by the first experi-
ments with dependency parsing of Croatian, did not
appear soon enough to be included in the CoNLL

3http://creativecommons.org/licenses/by-sa/3.0/
4http://nlp.ffzg.hr/resources/models/tagging/

shared tasks and the overview of (Tadić et al.,
2012). Preliminary experiments in transition-based
(Berović et al., 2012) and graph-based parsing have
been augmented by a hybrid approach which in-
cluded integrating a graph-based parser (Hall, 2007)
and a valency lexicon (Agić, 2012). Due to uncov-
ered partial inadequacies of the HOBS formalism
at describing certain syntactic properties of Croa-
tian, a new line of research was initiated, aiming
at creating a more simplistic dependency-based for-
malism for data-driven parsing of Croatian (Agić
and Merkler, 2013). It provided a new freely avail-
able dependency treebank, the SETIMES.HR Tree-
bank, and derived state-of-the-art dependency pars-
ing models.5 On the downside, SETIMES.HR is a
prototype with currently less than 2 500 sentences
and a documented need for addressing certain an-
notation challenges, such as consistent annotation
of complex predicates, an issue that was previously
observed and partially resolved in HOBS as well
(Berović et al., 2012).

The overview of Serbian language technologies
(Vitas et al., 2012) explicitly denotes a satisfac-
tory development level for Serbian preprocessing
based on large electronic dictionaries, manually an-
notated corpora and hand-crafted transducer gram-
mars. These are available through META-SHARE,
even if mostly coupled with restrictive licensing.
Further, the overview lists some preliminary re-
search in shallow syntactic analysis, while it clearly
states that the absence of a formalised syntax of Ser-
bian restricts the development of syntactically anno-
tated corpora and thus hinders the research in full
parsing of Serbian, making the creation of a syntac-
tic formalism for Serbian a very urgent task.

Similar to Croatian, research in Serbian shallow
parsing deals exclusively with the manual design of
rule-based modules (Nenadić, 2000; Nenadić et al.,
2003; Vitas et al., 2003) in linguistic development
enviroments such as Intex and NooJ (Silberztein,
2004). We also inquired into a case study on the pos-
sibilities of resource transfer from English to Ser-
bian (Martinović, 2008), only to conclude that it
does not provide any empirical results. Hence, to
the best of our knowledge, no experiments in de-
pendency treebank construction and data-driven de-

5http://nlp.ffzg.hr/resources/corpora/setimes-hr/

23

pendency parsing – or, for that matter, any other ap-
proaches to deep syntactic modeling and processing
– currently exist for Serbian.

3 Experiment setup

In this section, we present the experimental setup by
which we aim at subsequently addressing the pre-
viously outlined issues with dependency parsing of
Croatian and Serbian. We define our goals, describe
the utilized resources and lay out the workflow.

3.1 Objectives

We identify the main issues unaddressed by previous
research in Croatian and Serbian syntactic process-
ing and use these to define our research objectives.
They are listed here as follows.

1. No empirical research was conducted in de-
pendency parsing of Serbian. Even if this fact
was justified by the lack of applied research in
creating formalisms targeted exclusively at de-
scribing syntactic properties of Serbian, we fol-
low the underspecification approach that was
successfully implemented in HOBS for Croa-
tian. Namely, as the Prague Dependency Tree-
bank (PDT) formalism for Czech (Böhmová
et al., 2003) was altogether ported to Croatian
by simply using the PDT annotation manual
for annotating Croatian sentences due to mi-
nor differences in syntactic structure between
Croatian and Czech, we reflect this to the
even greater similarity between Croatian and
Serbian on all levels of linguistic description.
Hence, we use Croatian data to parse Serbian
and to serve as a baseline in Serbian parsing.

2. Using Croatian syntactic models for parsing
Serbian text serves to establish the need for ad-
vanced approaches to porting resources among
languages, such as annotation projection.

3. The best dependency parsing models for Croa-
tian are created and tested using a small pro-
totype treebank. SETIMES.HR currently pro-
vides state of the art in Croatian dependency
parsing. To serve our experiment, we enlarge
it by 50% by following the annotation guide-
lines (Merkler et al., 2013) and provide its new
version to the public.

4. Previous experiments were conducted by ten-
fold cross-validation on treebank data. This is
a standard approach to dependency parser eval-
uation, especially in under-resourced environ-
ments. In this setting, observations are posi-
tively biased by text domain and phrase trans-
fer due to randomization. We seek to partially
account for these effects by designing a set of
language- and domain-aware test samples. By
these we also target at establishing the need for
domain adaptation for parsing.

5. No research was done in investigating the ef-
fects of preprocessing and linguistic feature se-
lection to dependency parsing for these lan-
guages. As these are highly inflectional, hav-
ing very large morphosyntactic tagsets, we seek
to inspect the impact of preprocessing choices
on their dependency parsing. There is am-
ple research on the effect preprocessing has
on dependency parsing (Goldberg and Elhadad,
2009; Mohamed, 2011) and on joint morpho-
logical and syntactic processing (Bohnet and
Nivre, 2012), but none of it included any of the
South Slavic languages.

3.2 Workflow
We define three batches of experiments to meet the
research objectives:

1. to select the best Croatian dependency formal-
ism with respect to its overall parsing accuracy
on Croatian and Serbian – with an emphasis
on the most important syntactic categories that
match across formalisms – and incidentally to
establish the need for annotation projection,

2. to inspect the impact of state-of-the-art auto-
matic preprocessing on dependency parsing of
both languages and

3. to establish the importance of specific Croat-
ian and Serbian morphosyntactic features of the
most frequent parts of speech in modeling syn-
tactic fenomena for dependency parsing.

In the first batch, we use HOBS in two instances
and SETIMES.HR to create parsing models and test
them on Croatian and Serbian test samples. Draw-
ing from previous research, we use a standard non-
projective graph-based MSTParser generator with
second-order features (McDonald et al., 2006), as
this setting favors Croatian (Agić, 2012) and re-

24

lated languages such as Czech and Slovene (Buch-
holz and Marsi, 2006). We are aware of the exis-
tence of novel dependency parsers that implement
approaches to handling non-local dependencies and
outperform MSTParser on a set of languages, such
as (Bohnet and Nivre, 2012). They are not included
here due to temporal constraints and the fact that
we were provided with prebuilt MSTParser models
for the HOBS instances and needed to ensure their
comparability with SETIMES.HR. As we mainly
deal with the concept of resource sharing between
closely related languages, we assign a more elabo-
rated parser selection for future research.

For the second batch, we redo the experiments
from the first batch in a realistic scenario regard-
ing preprocessing. We use the publicly available
state-of-the-art tagging and lemmatization models
for Croatian and Serbian (Agić et al., 2013) instead
of manual annotation to observe the incurred ef-
fects. We do both batches for all three formalisms
(two HOBS instances and SETIMES.HR) and pro-
vide learning curves.

The third batch of experiments deals with ob-
serving the impact of certain morphosyntactic fea-
tures by removing them from training and test data.
We inspect all features involved in subspecification
of adjectives, nouns and verbs in compliance with
the Multext East specification (Erjavec, 2012), i.e.,
MTE v5 as its fifth release.6

In all batches, we observe labeled (LAS) and un-
labeled (UAS) attachment scores. We use approxi-
mate randomization for statistical significance test-
ing where applicable and meaningful.

3.3 Treebanks

Two Croatian dependency treebanks are used in this
experiment: HOBS (Tadić, 2007) and SETIMES.HR

(Agić and Merkler, 2013).
HOBS is available in two instances or implemen-

tations. The first one closely follows the PDT anno-
tation guidelines (Böhmová et al., 2003) with several
adaptations of predicate annotation (Berović et al.,
2012). The second one introduces a set of additional
syntactic tags used for the introduction and subclas-
sification of subordinate clauses. It also alters the
head attachment rules for subordinating conjunc-

6http://nl.ijs.si/ME/V5/msd/html/

Features HOBS HOBS + Sub SETIMES.HR

Sentences 4 626 4 626 3 853
Tokens 117 369 117 369 86 991
Types 25 038 25 038 17 723
Lemmas 12 388 12 388 8 773
MSD tags 914 911 662
Syn. tags 27 (70) 28 (81) 15

Table 1: Basic treebank statistics. Syntactic tag counts
are given for the basic and the full tagset (the latter inside
brackets) for the two HOBS treebanks.

set.test wiki.test

Features hr sr hr sr

Sentences 100 100 100 100
Tokens 2 285 2 308 1 878 1 947
Types 1 265 1 246 1 027 1 055

Lemmas 989 979 803 797

MSD tags

MTE v4 tags 236 237 189 193
MTE v5 tags 233 234 192 195

Syntactic tags

HOBS 22(37) 23(37) 22(41) 22(44)
HOBS + Sub 22(46) 24(49) 23(49) 22(50)
SETIMES.HR 15 15 15 15

Table 2: Basic statistics for the four test sets. Morphosyn-
tactic and syntactic tag counts are given with respect to
the formalism used.

tions. This addition enabled consistency in predicate
annotation in clauses and an increase in dependency
parsing accuracy (Agić and Merkler, 2013), while
taking a turn away from the PDT guidelines and to-
wards specifics of Croatian syntax. In the paper,
we refer to this instance of HOBS as HOBS + Sub.
Both of them are based on Croatian newspaper text
and manually preprocessed. They implement a mor-
phosyntactic tagset based on, but slightly deviated
from MTE v4 (Erjavec, 2012). HOBS is available
from META-SHARE for research purposes, but its
syntactic tags are stripped from this version. HOBS
+ Sub is not publicly available. Both have been
made available to us in whole for conducting this
experiment, along with prebuilt MSTParser models
compatible with our experimental settings.

SETIMES.HR is based on Croatian newspaper text

25

from the SETimes parallel corpus.7 It implements a
simplistic new formalism (Merkler et al., 2013) tar-
geting and reaching increased dependency parsing
performance while maintaining the information on
the main syntactic categories and compliance with
the general guidelines for HOBS for these categories
(Agić and Merkler, 2013). It is also manually pre-
processed, but using the newer MTE v5 morphosyn-
tactic tagset. SETIMES.HR is fully compliant with
this tagset. As mentioned, it is freely available for all
purposes. With this in mind, following the annota-
tion guidelines, we have expanded its 2 500 sentence
prototype by introducing 1 365 new sentences.

Treebank statistics are given in Table 1. HOBS
treebanks are larger than SETIMES.HR by approxi-
mately 800 sentences, i.e., 30 thousand tokens (30
kw). The morphosyntactic tagsets also differ, favor-
ing SETIMES.HR and MTE v5 by 250 tags if we are
to consider the smaller tagset as better in terms of
the expressivity vs. preprocessing accuracy balanc-
ing. Syntactic tagset of SETIMES.HR has only 15
tags. Tag counts for HOBS treebanks are given by
two figures: the first one represents the basic tagset,
while the second one includes the subclassification
tags. For example, a coordinated predicate is anno-
tated as Pred using the basic tagset and as Pred Co
in the full tagset. Here, we use only the basic tagset.

As we anticipated given the properties of Croat-
ian syntax, non-projectivity is amply present in both
treebanks. Approximately 2% of all dependency re-
lations and more than 20% of all sentences are non-
projective, supporting our parser selection.

As the three treebanks – HOBS, HOBS + Sub and
SETIMES.HR– formally do implement different ap-
proaches to syntactic modeling, issues may be raised
regarding the comparability of dependency parsing
scores. However, since HOBS and HOBS + Sub are
both based on the PDT formalism and SETIMES.HR

implements a simplistic formalism that is still based
on the PDT and HOBS annotation guidelines and
syntactic tagset reduction (Merkler et al., 2013), we
consider the comparison to be valid. Moreover, all
three formalisms encode the main Croatian syntactic
categories by closely following the general guide-
lines for describing the Croatian syntax (Silić and
Pranjković, 2005), thus indicating that comparisons

7http://opus.lingfil.uu.se/SETIMES2.php

for the main syntactic categories – such as predi-
cates, subjects, objects, prepositional and adverbial
phrases – should hold true for the task of depen-
dency parsing irregardless of the formal differences
between the models.

3.4 Test sets

The publicly available test sets are obtained from an
experiment in lemmatization and tagging of Croat-
ian and Serbian (Agić et al., 2013). They were avail-
able in MTE v4 and v5. As HOBS uses the former
and SETIMES.HR the latter tagset, they were well-
suited for our experiment. We syntactically anno-
tated the test sets threefold, i.e., by using the HOBS,
HOBS + Sub and SETIMES.HR formalisms. There
are four test samples: Croatian and Serbian paral-
lel sentences from newspaper sources (set.test) and
Wikipedia (wiki.test). Their suitability for testing
models on closely related languages was thoroughly
elaborated by (Agić et al., 2013), where their dif-
ferences were measured by using inflectional lexi-
cons of Croatian and Serbian and were found to be
significant in supporting the difference between the
languages. Namely, lexical coverage differed by ap-
proximately 10 percentage points in favor of Croat-
ian across the two domains.

Statistics for the test set are given in Table 2. Each
sample has 100 sentences or approximately 2 000
tokens. Slight variations in token, type and lemma
counts are present and reflect the domain differ-
ences. MSD tag and syntactic tag counts reflect the
respective formalisms, as not all HOBS and HOBS
+ Sub syntactic tags are utilized, while all 15 SE-
TIMES.HR tags are present in all the samples. HOBS
tag counts are once again given separately for the
basic and the full tagset, while only the basic subset
was used in the experiment.

Inter-annotator agreement for HOBS, HOBS +
Sub and SETIMES.HR is investigated in (Agić and
Merkler, 2013). It favors SETIMES.HR over HOBS
+ Sub and HOBS + Sub over HOBS with a statis-
tically significant difference. The CoNLL shared
tasks in dependency parsing (Buchholz and Marsi,
2006; Nivre et al., 2007) used test sets of approx-
imately 5 000 tokens. This may raise an issue re-
garding the relatively small size of our domain test
samples. However, in the experiment, we combine
the test sets by domain and by language and also

26

set.test wiki.test

LAS hr sr hr sr overall

HOBS 59.9 58.7 55.5 55.4 57.6
HOBS + Sub 68.3 66.9 62.4 62.7 65.3
SETIMES.HR 76.7 75.4 71.9 72.4 74.3

UAS

HOBS 73.7 75.9 72.3 72.6 73.8
HOBS + Sub 78.1 79.0 76.5 76.5 77.6
SETIMES.HR 81.6 80.6 80.0 80.6 80.8

Table 3: Parsing accuracy (LAS, UAS) with manual pre-
processing. Results are given for each test set and overall,
i.e., with all four test sets merged into one.

merge them into a single test set, thus accounting
for the size of the individual samples.

3.5 Parser setup

Here we use MSTParser with the non-projective
maximum spanning tree parsing algorithm and sec-
ond order features (decode-type:non-proj
order:2 training-k:5 iters:10), as it
was previously established as the optimal set-
ting for parsing Croatian using MSTParser (Agić,
2012) with a statistically significant margin over
the transition-based approach. In training and test-
ing, we separate the MTE v5 MSD tags into POS
(CPOSTAG) and full MSD (POSTAG). We do not
separate the MSD tags into atomic features, i.e., we
do not utilize the FEATS column of the CoNLL-X
format. Thus the MSD tags themselves are consid-
ered as atomic features in the experiment, both for
the full MTE v5 tagset and its reductions.

4 Results and discussion

Here we report and discuss the obtained results. We
discuss the results in batches, as in the experiment
workflow description. In addition, we give a brief
linguistic analysis of the parsing errors considering
the difference between the two languages and the
fact that Croatian models were used for parsing both
Croatian and Serbian text.

4.1 Formalism selection

In the first experiment batch, we trained the parsing
models using three treebanks, HOBS, HOBS + Sub

and SETIMES.HR, and tested them on our Croatian
and Serbian test sets from Wikipedia and newspa-
per text. We present the overall scores in Table 3,
the learning curves are plotted in the first diagram
of Figure 1 and the accuracy for selected syntactic
categories are given in Table 4.

Regarding the formalism selection process, in-
specting the overall observed LAS and UAS, it is
evident that models based on SETIMES.HR outper-
form HOBS-based models by a large margin. They
outperform HOBS + Sub by approximately 9 LAS
and 3 UAS points, while their overall advantage is
even more substantial in comparison with the scores
of basic HOBS models – approximately 17 LAS
and 7 UAS points. Benefits of explicit annotation
of predicates by introducing tags for subordinating
syntactic conjunctions are also evident as HOBS
+ Sub parsers outperform HOBS by 8 LAS and 4
UAS points. These observations maintain the con-
clusions about the three formalisms given in previ-
ous research (Agić and Merkler, 2013).8 Moreover,
the introduction of a held-out test set further steep-
ens these differences, as the previous tests were per-
formed by tenfold cross-validation using treebank
data only. The observed differences in overall LAS
and UAS scores are shown to be significant by the
approximate randomization test (p < 0.01).9

As stated in the presentation of treebanks in the
previous section, since the three formalisms are
closely related to one another and to the general
guidelines for describing the properties of Croatian
dependency syntax, we find this comparison to hold
true regardless of the formal differences between
the models. Moreover, since the accuracy for the
PDT-based formalisms in this and previous experi-
ments with Croatian dependency parsing (Agić and
Merkler, 2013) is below the margins set by similar
languages such as Czech and Slovene (Buchholz and

8Importance of standard compliance should be noted regard-
ing the morphosyntactic tagset impact on the observed results.
Namely, HOBS ”slightly deviates” from MTE v4 by design,
while still claiming de facto compliance. As the test sets fully
comply with MTE v4 and v5, this has an effect on parsing.

9We test by randomly (prob = 0.5) inserting alternate syn-
tactic annotations for entire test set sentences and evaluating
with respect to annotation style, i.e., selecting to match the sen-
tence annotations against HOBS, HOBS + Sub or SETIMES.HR

layer in the gold standard annotation.

27

Figure 1: Labeled attachment learning curves for the three treebanks using gold standard and automatic lemmatization
and morphosyntactic tagging

Marsi, 2006)10, we argue that HOBS requires thor-
ough further revision if it is to be the Croatian coun-
terpart of PDT in terms of expressivity and usability
in research and practical applications. This is further
supported by the data in Table 4, where the assign-
ment of specific syntactic tags is explored. However,
extrinsic evaluation would also be beneficial.

The differences in LAS and UAS scores between
the two languages are virtually non-existent across
formalisms and domains. The parsing models fa-
vor Croatian newspaper text by less than 2 LAS
points for all three formalisms, while UAS is ap-
proximately 1 UAS point higher in Serbian newspa-
per text for HOBS and HOBS + Sub, in contrast with
SETIMES.HR, which scores 1 UAS point higher for
the Croatian sample. In the Wikipedia samples, LAS
and UAS may be approximated as identical. In total,
as a top-performer, the SETIMES.HR model scored
74.5 LAS and 80.9 UAS on Croatian samples and
74.1 LAS and 80.6 UAS on Serbian samples. We be-
lieve this indicates that the parsing models trained on
Croatian treebank data can be used reliably for both
Croatian and Serbian text. We also use these figures
to imply no need for syntactic annotation projection
between Croatian and Serbian in this test scenario.

The cross-domain differences in LAS and UAS
are, in contrast with the cross-language differences,

10This holds even with the Slovene treebank of the CoNLL
2006 shared task having more than 2 000 sentences less than
HOBS, with both using the PDT formalism

much more substantial. As all treebanks were built
on top of Croatian newspaper text, scores are ex-
pectedly higher for these test samples in comparison
with the Wikipedia samples’ scores. This difference
amounts to approximately 5 LAS points and 2 UAS
points in favor of the newspaper text samples across
the two languages and three formalisms.

We plotted the LAS learning curves by merging
the test samples into a single mixed-language test
set, incrementally creating 8 parsing models per for-
malism (12.5% to 100% of full size) and testing
them on this merged test set. The left plot of Figure 1
represents the learning curves for the three treebanks
peaking at previously discussed scores from Table 3.
The curves clearly reflect the overall differences in
scores. Their rate of increase is consistently com-
parable, with the overall difference in favor of SE-
TIMES.HR due to its smaller yet still informative
syntactic tagset and its formalism better suited for
Croatian syntax. With this fact now once again
empirically supported, we select the top-performing
SETIMES.HR parsing model for further inspection.
Thus, our further discussion deals exclusively with
parsing using SETIMES.HR.

First we observe parsing accuracy regarding syn-
tactic categories, where we still do compare SE-
TIMES.HR with HOBS + Sub as a final reference
point. We merged our test sets by language to pro-
vide Croatian and Serbian cross-domain test sam-
ples and calculate the LAS per syntactic category for

28

HOBS + Sub SETIMES.HR

Syntactic tag hr sr hr sr

Adverb 50.4 46.6 50.4 47.2
Attribute 81.4 82.3 87.9 88.4

Object 56.4 51.3 68.9 70.2
Predicate 75.1 71.9 80.7 81.2

Preposition 65.5 66.4 66.4 64.0
Subject 70.3 71.3 74.8 77.6

Table 4: LAS for main syntactic tags separated for Croat-
ian and Serbian test set. Manual preprocessing was used.
Best scores are boldfaced and split by language.

set.test wiki.test

MTE v4 hr sr hr sr overall

Lemma 96.1 94.6 93.9 95.8 95.1
POS 95.2 92.3 91.5 90.8 92.5
MSD 86.2 83.4 80.2 81.8 83.1

MTE v5

Lemma 95.6 94.2 94.3 96.1 95.1
POS 96.4 93.0 92.2 91.8 93.5
MSD 86.7 84.4 80.5 82.4 83.7

Table 5: Lemmatization, POS and MSD tagging accuracy
on the test sets and overall. Scores are given separately
for the two morphosyntactic tagsets used.

the two languages. This data is presented in Table 4.
Once again, the language variety is seen to be of no
significance to the parsing models. The scores ac-
tually alternate in favoring the two languages. SE-
TIMES.HR substantially outperforms HOBS + Sub
on the most frequent and arguably the most infor-
mative categories, such as predicate and subject (at
least 5 LAS points), object (almost 20 LAS points)
and attribute (6 points LAS).

4.2 Preprocessing and features

Here we discuss the impact of automatic preprocess-
ing, i.e., lemmatization and MSD tagging on depen-
dency parsing in our test framework. As announced,
this discussion deals exclusively with SETIMES.HR.
We lemmatize and tag the test samples by using
freely available state-of-the-art models for Croatian
and Serbian (Agić et al., 2013), parse them using
our best SETIMES.HR model and observe LAS and
UAS. Preprocessing performance is given in Table 5

set.test wiki.test

LAS hr sr hr sr overall

HOBS 57.2 55.9 49.9 51.0 53.8
HOBS + Sub 65.2 62.5 56.7 58.0 60.9
SETIMES.HR 73.4 70.4 65.3 67.4 69.4

UAS

HOBS 71.6 71.8 67.4 69.0 70.1
HOBS + Sub 76.2 74.4 71.8 72.5 73.9
SETIMES.HR 79.4 76.9 75.2 77.8 77.4

Table 6: Parsing accuracy (LAS, UAS) with automatic
preprocessing

as a reference point while, more importantly, the de-
pendency parsing scores are given in Table 6. The
second plot of Figure 1 provides the learning curves
for the automatically preprocessed test sets.

Table 6 scores are easily elaborated using the pre-
viously discussed scores with manual, i.e., gold or
perfect preprocessing. Namely, the impact of differ-
ences between manual and automatic preprocessing
on parsing quality basically amounts to a very sim-
ple formula: LAS is reduced by 3-4 points and UAS
by 2 points when introducing preprocessing noise
by automatic lemmatization and tagging. This ob-
servation is valid across the languages and domains
of our test set and thus applies generally. Keeping
in mind the more complex prospective NLP systems
for Croatian and Serbian, we consider this fact to
be very favorable as the observed 16% error rate in
full MSD tagging, 5-6% for POS and lemmatization,
amounts for a significantly smaller decrease in pars-
ing quality as quantified by LAS and UAS.

To further support this observation, we conducted
an experiment with purposely corrupting lemmatiza-
tion and tagging. In this, as previously for learning
curves, we use the single merged test sample. For
lemmatization, we randomly drop lemmas from the
manually annotated test sample, replacing them with
empty features.11 For MSD tagging, we implement
two procedures. The first is identical with the one for
lemmatization, while in the second we replace the
valid tag with a randomly selected Croatian tag from
the full MTE v5 morphosyntactic tagset. For each

11In terms of the CoNLL-X format, we simply replace the
valid entry from the LEMMA field by an underscore.

29

Croatian Serbian

Features LAS UAS LAS UAS

Adjective

Type 74.3 80.7 74.6 81.2
Degree 74.3 80.7 73.7 80.2
Gender 74.1 80.7 74.5 81.0

Number 74.5 81.0 74.3 80.8
Case 75.0 81.5 74.4 81.1

Noun

Type 74.3 80.8 72.9 80.0
Gender 74.4 80.8 74.1 80.7

Number 74.1 80.7 74.0 80.7
Case 73.3 81.0 72.3 80.0

Verb

Type 74.6 81.3 74.3 80.8
Form 74.3 80.9 74.3 81.0

Person 74.3 81.0 73.5 80.0
Number 74.4 80.8 74.1 80.6
Gender 74.4 80.8 74.4 81.0

Full feature set 74.5 80.9 74.1 80.6

Table 7: Impact of morphosyntactic feature exclusion on
parsing. Improvements boldfaced and split by language.

of these scenarios, we provide 11 test sets: step-
ping by 10% of removals or random insertions, from
0% to 100% preprocessing accuracy. The results
are plotted in Figure 2. Evidently, lemmatization
is of no influence to dependency parsing using our
model. This is an important observation to consider
in, e.g., the future tasks of parsing large web cor-
pora of Croatian and Serbian. The large impact of
morphosyntactic tagging, i.e., morphosyntactic fea-
tures on parsing is also evident from the figure. It
is also supported by previous research in parsing us-
ing SETIMES.HR (Agić and Merkler, 2013), where
a significant bias towards MSD-based parsing mod-
els was found over the POS-only-based models. Tag
removal and tag randomization appear to induce a
very similar effect of near-linear functional depen-
dency between tagging and parsing. We note that
this is not entirely supported by our realistic prepro-
cessing test scenario. It is purely due to the fact that
our noise introduction procedure does not relate to
the modus in which the stochastic tagger errs in pro-
cessing unseen text. Namely, MSD tagging errors

Figure 2: Overall SETIMES.HR parsing accuracy in rela-
tion with lemmatization and morphosyntactic tagging

tend to occur on certain morphosyntactic features,
corrupting these much more often than entire tags.
Thus, even when it yields a feature error, the tagger
still provides the parser with other valid features to
work with. This consideration of MSD features, in
pair with the following set of results, sketches our
plans for further research.

Following the previous note on MSD tagset and
features, we also implemented a simple experiment
in feature weight assessment. In it, we used the SE-
TIMES.HR treebank with full MTE v5 tagset and
created from it several instances, each with its own
reduced MTE v5 tagset. Each reduction was de-
fined by dropping one MSD feature from one part
of speech. More precisely, we dropped all MSD
features of adjectives (5 features), nouns (4) and
verbs (5). This amounted at 14 different MTE v5
reductions. We trained 14 parsing models using SE-
TIMES.HR with the reduced tagsets and tested them
on the test samples merged by language and imple-
menting the respective tagset reductions.

The results are given in Table 7. Most notably,
we observed an increase in parsing accuracy when
dropping adjective case and verb type. The most
substantial decrease occurred with the removal of
noun case, indicating the importance of this feature
in parsing the two languages. We consider the ad-
jective case removal gain an important observation
for future work, as adjectives are the most difficultly

30

Adv Ap Atr Atv Aux Co Elp Obj Oth Pnom Pred Prep Punc Sb Sub
Adv 0 15 1 0 2 2 5 13 2 1 3 0 2 2
Ap 1 10 0 0 0 2 3 0 1 0 0 0 5 0
Atr 23 9 6 1 0 14 23 3 3 3 0 0 25 2
Atv 0 1 6 0 0 0 0 0 1 26 0 0 1 0
Aux 0 0 0 0 1 0 0 0 0 28 0 0 0 1
Co 0 0 1 0 0 0 0 5 0 0 2 11 0 0
Elp 1 2 12 0 0 0 0 4 3 2 0 0 4 0
Obj 6 3 16 3 0 0 1 0 1 1 0 0 2 0
Oth 14 4 3 0 0 12 1 1 0 0 1 0 1 24

Pnom 3 0 8 0 0 0 3 0 0 24 1 0 3 0
Pred 1 0 2 5 26 0 0 1 1 23 0 0 0 0
Prep 1 0 0 0 1 1 0 0 2 0 0 0 0 0
Punc 0 0 0 0 0 17 0 0 0 0 0 0 1 1
Sb 2 11 26 1 0 0 5 1 4 4 1 0 0 1

Sub 1 0 0 0 0 0 0 0 2 0 0 0 0 0

Table 8: Confusion matrices for LAS (Croatian: bottom left, Serbian: top right)

tagged category for Croatian and Serbian.

4.3 Error analysis

Here we provide a brief insight to the error instances.
We discuss LAS errors for both languages, i.e., in-
stances of invalid head attachments paired with tag
misassignments. These are given in Table 8 in the
form of two confusion matrices for LAS.

We isolate several clusters of errors with shared
linguistic properties. Firstly, the subject-attribute-
apposition group (Sb-Atr-Ap), in which we find
the error instances to be closely related to the or-
der of attachment and assignment in multi-word
units representing foreign personal names, titles or
functions and occupations of persons. Next, the
attribute-adverb-object group (Atr-Adv-Obj) expect-
edly appears as these are inherently ambiguous cat-
egories.12 The predicate-nominal-auxiliary group of
errors (Pred-Pnom-Aux) reflects the interaction of
MSD annotation choices and syntactic annotation
principles, as participes are MSD-tagged as adjec-
tives, thus confusing the parser in predicate annota-
tion. Moreover, SETIMES.HR has documented is-
sues with consistency in complex predicate anno-
tation that seek resolution and negatively influence
the parsing scores. Lastly, the only error group sub-
stantially reflecting the language difference is the
one involving predicates and predicate complements
(Pred-Atv), as it appears only in the Serbian confu-
sions. Namely, the infinitive predicate complement
is frequent in Croatian and non-existent in Serbian.
Infinitives in Serbian only appear for the future tense
paired with auxiliary verbs, confusing the parser to

12PDT, e.g., has an AtrAdv, AdvAtr, AtrObj and ObjAtr am-
biguity classes to address this. However, the sum of their fre-
quencies in HOBS is negligibly small (< 0.03%).

annotate these infinitives as predicate complements
as observed in the Croatian training data.

5 Conclusions and future work

We have described an experiment with dependency
parsing of two closely related and under-resourced
languages, Croatian and Serbian, by using parsing
models trained on Croatian treebanks. We investi-
gated three different parsing formalisms, the effects
of lemmatization, morphosyntactic tagging and fea-
ture selection on parsing quality for both languages.
We observed state-of-the-art parsing scores. All re-
sources used in the experiment are made publicly
available under a permissive license.13

The results of this experiment sketch the path for
our future research. Experiments with syntactic pro-
jection between Croatian and Serbian are not feasi-
ble given the negligible differences in the observed
scores. In contrast, domain adaptation for pars-
ing the two languages should be investigated given
the observed accuracy decrease when moving from
newspaper text to Wikipedia. We have already initi-
ated further enlargements of the SETIMES.HR tree-
bank and the test sets with Croatian data from other
domains. Experiments with newer and more ad-
vanced dependency parsers (Koo and Collins, 2010;
Bohnet and Nivre, 2012; Zhang and McDonald,
2012; Martins et al., 2013) should be conducted to
provide up-to-date scores.

We are currently experimenting with morphosyn-
tactic tagset design for improved dependency pars-
ing of Croatian and Serbian. We aim at finding the
optimal tagset by closely investigating morphosyn-
tactic feature influences and dependencies.

13http://nlp.ffzg.hr/

31

References
Ž. Agić. 2012. K-Best Spanning Tree Dependency Pars-

ing With Verb Valency Lexicon Reranking. In: Pro-
ceedings of COLING 2012: Posters, pp. 1–12. COL-
ING 2012 Organizing Committee.

Ž. Agić, D. Merkler. 2013. Three Syntactic Formalisms
for Data-Driven Dependency Parsing of Croatian. In:
Text, Speech and Dialogue. Lecture Notes in Computer
Science, 8082:560–567. Springer.

Ž. Agić, N. Ljubešić, D. Merkler. 2013. Lemmatization
and Morphosyntactic Tagging of Croatian and Serbian.
In: Proceedings of BSNLP 2013. ACL.

B. Bekavac, S. Seljan, I. Simeon. 2008. Corpus-Based
Comparison of Contemporary Croatian, Serbian and
Bosnian. In: Proceedings of FASSBL 2008, pp. 33–39.
Croatian Language Technologies Society.

D. Berović, Ž. Agić, M. Tadić. 2012. Croatian Depen-
dency Treebank: Recent Development and Initial Ex-
periments. In: Proceedings of LREC 2012, pp. 1902–
1906. ELRA.

A. Böhmová, J. Hajič, E. Hajičova, B. Hladká. 2003.
The Prague Dependency Treebank: A Three-Level
Annotation Scenario. In: Treebanks: Building and Us-
ing Parsed Corpora. Springer.

B. Bohnet, J. Nivre. 2012. A Transition-Based System
for Joint Part-of-Speech Tagging and Labeled Non-
Projective Dependency Parsing. In: Proceedings of
EMNLP-CoNLL 2012, pp. 1455–1465. ACL.

S. Buchholz, E. Marsi. 2006. CoNLL-X Shared Task on
Multilingual Dependency Parsing. In: Proceedings of
CoNLL-X, pp. 149–164. ACL.

T. Erjavec. 2012. MULTEXT-East: Morphosyntac-
tic Resources for Central and Eastern European Lan-
guages. Language Resources and Evaluation, 46 (1),
131–142. Springer.

Y. Goldberg, M. Elhadad. 2009. Hebrew Dependency
Parsing: Initial Results. In: Proceedings of IWPT
2009, pp. 129–133. ACL.

K. Hall. 2007. K-Best Spanning Tree Parsing. In: Pro-
ceedings of ACL 2007, pp. 392–399. ACL.

T. Koo, M. Collins. 2010. Efficient Third-Order De-
pendency Parsers. In: Proceedings of ACL 2010, pp.
1–11. ACL.

M. Martinović. 2008. Transfer Of Natural Lan-
guage Processing Technology: Experiments, Possibil-
ities and Limitations – Case Study: English to Serbian.
Infotheca – Journal of Informatics and Librarianship,
9 (1-2):11–20.

A. Martins, M. Almeida, N. Smith. 2013. Turning
on the Turbo: Fast Third-Order Non-Projective Turbo
Parsers. In: Proceedings of ACL 2013. ACL.

R. McDonald, K. Lerman, F. Pereira. 2006. Multilingual
Dependency Parsing With a Two-Stage Discriminative

Parser. In: Proceedings of CoNLL-X, pp. 216–220.
ACL.

D. Merkler, Ž. Agić, A. Agić. 2013. Babel Treebank of
Public Messages in Croatian. In: Proceedings of CILC
2013. Proceedia – Social and Behavioral Sciences, in
press. Elsevier.

E. Mohamed. 2011. The Effect of Automatic Tok-
enization, Vocalization, Stemming, and POS Tagging
on Arabic Dependency Parsing. In: Proceedings of
CoNLL 2011, pp. 10–18. ACL.

G. Nenadić. 2000. Local Grammars and Parsing Coor-
dination of Nouns in Serbo-Croatian. In: Text, Speech
and Dialogue. Lecture Notes in Computer Science,
1902:57–62. Springer.

G. Nenadić, I. Spasić, S. Ananiadou. 2003. Morphosyn-
tactic Clues for Terminological Processing in Serbian.
In: Proceedings of the EACL Workshop on Morpho-
logical Processing of Slavic Languages, pp. 79–86.
ACL.

J. Nivre, J. Hall, S. Kübler, R. McDonald, J. Nils-
son, S. Riedel, D. Yuret. The CoNLL 2007 Shared
Task on Dependency Parsing. In: Proceedings of the
CoNLL Shared Task Session of EMNLP-CoNLL 2007,
pp. 915–932. ACL.

M. Silberztein. 2004. NooJ : An Object-Oriented Ap-
proach. In: INTEX pour la Linguistique et le Traite-
ment Automatique des Langue, pp. 359–369. Presses
Universitaires de Franche-Comté.

J. Silić, I. Pranjković. 2005. Gramatika hrvatskoga
jezika za gimnazije i visoka učilišta. Školska knjiga,
Zagreb.

A. Søgaard. 2013. Semi-Supervised Learning and Do-
main Adaptation for NLP. Morgan & Claypool Pub-
lishers.

Ž. Stanojčić, Lj. Popović. 2008. Gramatika srp-
skog jezika: za gimnazije i srednje škole. Zavod za
udžbenike i nastavna sredstva, Beograd.

M. Tadić. 2007. Building the Croatian Dependency
Treebank: The Initial Stages. Suvremena lingvistika,
63 (1), 85–92. Hrvatsko filološko društvo.

M. Tadić, D. Brozović-Rončević, A. Kapetanović. 2012.
The Croatian Language in the Digital Age. META-
NET White Paper Series. Springer.

M. Tadić, T. Váradi. 2012. Central and South-East Euro-
pean Resources in META-SHARE. In: Proceedings of
COLING 2012: Demonstration Papers, pp. 431–438.
COLING 2012 Organizing Committee.

D. Vitas, C. Krstev, I. Obradović, Lj. Popović, G.
Pavlović-Lažetić. 2003. An Overview of Resources
and Basic Tools for Processing of Serbian Written
Texts. In: Proceedings of the Workshop on Balkan
Language Resources, First Balkan Conference in In-
formatics.

32

D. Vitas, Lj. Popović, C. Krstev, I. Obradović, G.
Pavlović-Lažetić, M. Stanojević. 2012. The Serbian
Language in the Digital Age. META-NET White Pa-
per Series. Springer.

K. Vučković, M. Tadić, Z. Dovedan. 2008. Rule-Based
Chunker for Croatian. In: Proceedings of LREC 2008,
pp. 2544–2549. ELRA.

D. Yarowsky, G. Ngai, Richard Wicentowski. 2001. In-
ducing Multilingual Text Analysis Tools via Robust
Projection Across Aligned Corpora. In: Proceedings
of HLT 2001, pp. 1–8. ACL.

H. Zhang, R. McDonald. 2012. Generalized Higher-
Order Dependency Parsing With Cube Pruning. In:
Proceedings of EMNLP 2012. ACL.

33

Proceedings of the Fourth Workshop on Statistical Parsing of Morphologically Rich Languages, pages 34–45,
Seattle, Washington, USA, 18 October 2013. c©2013 Association for Computational Linguistics

A Cross-Task Flexible Transition Model for Arabic Tokenization, Affix
Detection, Affix Labeling, POS Tagging, and Dependency Parsing

Stephen Tratz
Army Research Laboratory
Adelphi Laboratory Center

2800 Powder Mill Road
Adelphi, MD 20783

stephen.c.tratz.civ@mail.mil

Abstract

This paper describes cross-task flexible tran-
sition models (CTF-TMs) and demonstrates
their effectiveness for Arabic natural language
processing (NLP). NLP pipelines often suffer
from error propagation, as errors committed
in lower-level tasks cascade through the re-
mainder of the processing pipeline. By al-
lowing a flexible order of operations across
and within multiple NLP tasks, a CTF-TM can
mitigate both cross-task and within-task error
propagation. Our Arabic CTF-TM models to-
kenization, affix detection, affix labeling, part-
of-speech tagging, and dependency parsing,
achieving state-of-the-art results. We present
the details of our general framework, our Ara-
bic CTF-TM, and the setup and results of our
experiments.

1 Introduction

Natural Language Processing (NLP) systems often
consist of a series of NLP components, each trained
to perform a specific task such as parsing. These
pipelines tend to suffer from error propagation—
errors introduced by early components cascade
through the remainder of the pipeline causing subse-
quent components to commit additional errors. Par-
tial solutions from higher-level tasks (e.g., parsing)
can aid in resolving the difficult decisions that must
be made in solving lower-level tasks, as with part-
of-speech tagging the classic “garden path” sentence
example “The horse raced past the barn fell.” To
this end, this paper presents cross-task flexible tran-
sition models (CTF-TMs), which model multiple
tasks and solve these tasks in a more flexible or-
der than pipeline approaches. We implement and

experiment with a CTF-TM for Arabic1 language
processing and report experimental results for it on
Arabic tokenization (i.e., clitic separation), affix de-
tection, affix labeling, part-of-speech tagging, and
dependency parsing.

In addition to error propagation between mod-
ules within a parsing pipeline, errors may propa-
gate within the parsing process itself due to the
fixed order of operations of the parser. This is com-
mon for standard transition-based dependency pars-
ing models (McDonald and Nivre, 2007), such as
shift-reduce parsers, which incrementally construct
a parse by processing the input in a fixed left-to-right
or right-to-left fashion. However, using a transition
model that allows a more flexible order of opera-
tions, such as Goldberg and Elhadad’s (2010) parser,
allows difficult decisions to be postponed until later,
when more of the solution has been constructed.
CTF-TMs extend this approach by modeling mul-
tiple tasks and providing this flexibility across tasks
so that no one task needs to be complete before an-
other can be partially solved.

As a morphologically rich language, Arabic re-
quires a significant number of processing steps. Ara-
bic uses a variety of affixes to inflect for case, gen-
der, number (including dual), and mood, has clitics
that attach to other words, permits both VSO and
SVO constructions, and rarely includes short vow-
els in written form. The presence of clitics and the
absence of written short vowels are particularly sig-
nificant sources of ambiguity. As Tsarfaty (2006)
argues for Modern Hebrew, a Semitic language that
shares these characteristics, we contend that mor-

1This paper focuses on Modern Standard Arabic rather than
any of the dialects.

34

phological analysis and parsing should be done in
a unified framework, such as a CTF-TM, rather than
by separate components.

In this paper, we describe CTF-TMs, which can
be used for a wide variety of NLP tasks, and present
our Arabic CTF-TM for Arabic tokenization, af-
fix detection, affix labeling, part-of-speech tagging,
and dependency parsing as well as the results ob-
tained in applying it to our dependency conversion
of the Penn Arabic Treebank (ATB) (Maamouri et
al., 2004; Maamouri and Bies, 2004). We find
that our Arabic CTF-TM for tokenization, affix de-
tection, affix labeling, POS tagging, and parsing
achieves slightly better results than a similar CTF-
TM that performs all the tasks except parsing. The
CTF-TM that supports parsing appears to be more
accurate at distinguishing between passive and ac-
tive verbs as well as between nouns and adjectives—
cases where the context is crucial for proper inter-
pretation due to Arabic’s ambiguities. Our system
achieves tokenization accuracy similar to Kulick’s
(2011) state-of-the-art system for a standard split of
the ATB part 3, and, in our experiments using ATB
parts 1–3, our system achieves the highest labeled
attachment, unlabeled attachment, and clitic separa-
tion figures (including pronomial clitics) for Arabic
yet reported (although no other work can be com-
pared directly).

2 Relevant Arabic Linguistics

Arabic has rich morphology, with a wide array of af-
fixes and clitics and inflecting for case, number, gen-
der, and, occasionally, mood. Coordinating conjunc-
tions, pronouns, and most true prepositions, along
with some other particles and the definite article,
usually occur as clitics in Arabic. Thus, a space-
delimited2 sequence of Arabic characters may con-
sist of multiple words, and identifying the bound-
aries between these must be done in order to produce
syntactic parses. These boundaries can’t be detected
perfectly using simple deterministic rules. Signifi-
cantly, short vowels, which are expressed using dia-
critics, are not typically written in Arabic, resulting
in pervasive ambiguity. For example, active and pas-
sive forms of verbs vary only in their diacritics, and
nouns and adjectives are both derived from Arabic

2Technically, space-and-punctuation-deliminated.

roots using the same templates and, thus, look sim-
ilar. A single Arabic token may permit a variety of
different analyses, as the example in Table 1 illus-
trates.

úÍ@ð wAlY ‘ruler’
ø

+úÍ@+ð w+AlY+y ‘and to me’
ú

Í

@+ð w+<ly ‘and I follow’

ø

+È
�
@+ð w+|l+y ‘and my clan’

ú

Í
�
@+ð w+|ly ‘and automatic’

Table 1: Possible interpretations for the text wAlY
(Habash and Rambow, 2005).

3 CTF-TM Framework

Error propagation is not simply a problem that oc-
curs between components in a pipeline but one that
often occurs within a single component’s process-
ing. Since transition systems can use the partially
built solution for feature generation, incorrect ac-
tions taken early on result not only in an invalid
final solution, but the invalid partial solution may
dissuade the system from making correct decisions
with respect to other parts of the solution. If a
transition system can postpone decisions it is not
confident of until later, the partial solution created
by performing other actions may provide more or
better information that enables the system to prop-
erly resolve more difficult decisions. This “easy-
first” strategy is adopted by Goldberg and Elhadad’s
(2010) parsing system, which starts with an ordered
list of unattached words and, in each iteration, cre-
ates a new arc between any of the adjacent pairs
of words in the list and removes the daughter node
(word) from the list.

This strategy is much more flexible than shift-
reduce style parsing because the system has more
options available to it at any one step for building
up the solution. However, simply having flexibil-
ity within a single component does not reduce er-
ror propagation to or from other components in a
pipeline and, to mitigate the potential for this, one
may use a cross-task flexible transition model (CTF-
TM) that does not have to wait for lower level tasks
to be 100% complete before starting work on higher
level tasks.

35

McDonald and Nivre (2007) define a transition
system as follows:

1. a set C of parse configurations, each of which
defines a (partially built) dependency graph G

2. a set T of transitions, each a function t : C →
C

3. for every sentence x = w0, w1, ..., wn

(a) a unique initial configuration cx

(b) a set Cx of terminal configurations

These systems start at the initial configuration and
use a scoring function s : C × T → R to repeatedly
select and follow the locally optimal transition, stop-
ping when a terminal configuration is reached.

We make a few changes to McDonald and Nivre’s
transition system definition in order to explain our
framework. First, to support modeling of multiple
tasks, instead of referring to parse configurations,
we simply use the term configuration, defining it to
represent a partially built solution rather than a de-
pendency graph. Second, we specify that there ex-
ists a routine for enumerating a set of anchors for
any given configuration. Anchors are an organiza-
tional concept for dealing with arbitrary data struc-
tures; each anchor acts as a hook into some por-
tion of the configuration that may be changed. Fi-
nally, there exist routines for enumerating legal ac-
tions that can be performed in relation to any anchor
and, for training, a routine for verifying that per-
forming a given action will lead to a configuration
consistent with the final solution. The performance
of an action constitutes a transition between config-
urations.3 It is quite straightfoward to adapt Gold-
berg and Elhadad’s (2010) parsing approach to any
configuration that is indexable by anchors, and in so
doing we are able to create cross-task flexible tran-
sition models.

3For example, in a fixed order, one-word-at-a-time POS tag-
ging system, there would be only one anchor—the word cur-
rently being labeled—but, for a one-at-a-time POS tagger capa-
ble of tagging words in any order, the anchor set would contain
the entire list of still-unlabeled words. The POS labeling ac-
tions for the anchors in each of these cases constitute transitions
to new configurations.

4 Our Arabic CTF-TM

4.1 Tasks

Our Arabic CTF-TM system performs the follow-
ing tasks: split a series of space-delimited Arabic to-
kens into words (tokenization), identify the bounds
of affixes within the words (affix detection), label
the affixes (affix labeling), label the words with their
parts of speech (POS tagging), and construct a la-
beled dependency tree (dependency parsing). Tok-
enization, part-of-speech tagging, and dependency
parsing are frequent topics in NLP literature. Affix
identification and labeling are parts of morphologi-
cal analysis that are sometimes completely ignored
or are performed using an external morphological
analyzer. Identifying affixes and labeling them can
help the overall system contend with lexical sparsity
issues as well as utilize the information encoded by
the affixes (e.g., person).

4.2 Anchors and Actions

The configurations that the system deals with have
anchors of two types, token anchors and affix an-
chors. The initial configuration consists of an or-
dered list of neighboring token anchors (neighbor-
hood), each of which corresponds to one of the orig-
inal space-delimited tokens. As processing contin-
ues, new token anchors may be created by splitting
off clitics, new affix anchors may be created by iden-
tifying substrings of tokens as affixes, and token an-
chors will be removed from the ordered list to be-
come daughter nodes of their neighbors, attached via
labeled dependency arcs. The complete list of ac-
tions that can be performed on the anchors, which, as
described earlier, constitute the transitions between
configurations, are as follows:

Tokenization
1. Separate a proclitic of length l from a token anchor, cre-

ating a new token anchor for the clitic and reducing the
width of the original token

2. Separate an enclitic of length l from a token anchor, cre-
ating a new token anchor for the clitic and reducing the
width of the original token
Affix Detection

3. Create an affix (prefix) anchor from the first l characters
of a token anchor that are not labeled as part of an affix
(If the affix is the definite determiner Al, which we treat
as an affix for consistency with the ATB’s tokenization
scheme, it is automatically labeled as DET and removed
from further processing for the sake of efficiency.)

36

4. Create an affix (suffix) anchor from the last l characters
of a token anchor that are not labeled as part of an affix
POS and affix labeling

5. Assign a label l to the anchor (Affixes are automatically
removed from further processing after labeling)
Dependency parsing

6. Create a dependency arc with label d between a token an-
chor and the preceding unattached neighbor token anchor
and remove the attached anchor from the neighborhood

7. Create a dependency arc with label d between a token
anchor and the following unattached neighbor token an-
chor with label l and remove the attached anchor from the
neighborhood

8. Swap the position of two neighboring token anchors (this
adds Nivre-style (2009) non-projectivity support as de-
scribed by Tratz and Hovy (2011))
General

9. Mark an anchor as fully processed and remove it from

further processing

The dependency labels, POS labels, clitic lengths,
and affix lengths used to define the actions are all
collected automatically from the training data. 4

The actions are subject to the following con-
straints/preconditions:

1. Labeling is only valid if the anchor has not been labeled
2. Tokens may only be labeled with token labels, prefixes

with prefix labels, and suffixes with suffix labels (as de-
termined by the training data)

3. Affix strings observed in the training data may not be la-
beled with any label not used with them in the training
data

4. Token anchors may not be assigned labels that do not co-
occur with the labels of any already-labeled affixes and
vice versa

5. A prefix creation action may only be applied to a token
anchor that doesn’t yet have a prefix

6. Proclitics may not be created and detached if the token
already has a prefix, and enclitics are similarly restricted
by the presence of a suffix

7. Clitics may not be detached from a token that has already
been attached to another token via a dependency arc

8. A dependency arc with label x may not be created be-
tween token anchors T1 and T2 if 1) one or both are la-
beled and 2) no arc between similarly POS tagged an-
chors exists in the training data

9. Swap actions may not undo previous swaps

10. Marking a token anchor as fully processed may only oc-

cur if it has already been labeled, and it must either be 1)

the last unattached token or 2) already attached

4Training examples with clitics that are invalid (i.e., too
long) are discarded at the beginning of training.

4.3 Scoring Function

For our scoring function, like Goldberg and El-
hadad, we use the structured perceptron algorithm
(Collins, 2002) with parameter averaging. This
has previously been shown to produce strong re-
sults when modeling multiple NLP tasks (Zhang and
Clark, 2008).

4.4 Features

For a given anchor5, the system extracts features
from the partially built solution (e.g., the text, af-
fixes, POS tags, and syntactic dependencies of the
anchor and nearby anchors). The same feature tem-
plates are used for all action types except the affix la-
beling actions—affix labeling is applied to affix an-
chors instead of word-level anchors, and, since all
templates are defined relative to an anchor, the tem-
plates must be different. The system uses no external
resources (e.g., lexicons, morphological analyzers).
We leave out a more exhaustive listing and descrip-
tion of the features due to space limitations6, the fact
that the focus of this paper is not on the value of any
particular feature template but rather on our overall
approach and experimental results, and because we
plan to release our code, which will be more helpful
for reproducibility efforts.

4.5 Data Preparation

For our experiments, we use the original writ-
ten form of the data from the latest versions of
the first three parts of the Penn Arabic Treebank
(ATB) (Maamouri et al., 2004; Maamouri and Bies,
2004) as well as the new broadcast news collection
(Maamouri et al., 2012).7 We convert the constituent
trees into dependency trees and adjust the part-of-
speech tags.

5‘A given action’ may be more correct technically, but our
implementation is set up to share the same set of string-based
features across all actions associated with a given anchor.

6Simply listing the feature templates in a normal font size
with minimal (insufficient) explanation would require well over
a page. The set of feature templates is based upon the tem-
plates used by Tratz and Hovy’s (2011) English parser, which
are given in Tratz’s (2011) thesis.

7We use version 4.1 of ATB part 1, 3.1 of part 2, 3.2 of part
3, and 1.0 of the broadcast news transcriptions.

37

4.5.1 Dependency Conversion
The two main Modern Standard Arabic de-

pendency treebanks currently available are the
Columbia Arabic Treebank (CATiB) (Habash and
Roth, 2009) and the Prague Arabic Dependency
Treebank (PADT) (Hajič et al., 2004). CATiB has
over 228,000 manually annotated words as well as
an automatic ATB conversion. It uses only 8 de-
pendency relations (subject, object, predicate, topic,
idafa, tamyiz, modifier, and flat) and 6 part-of-
speech tags, and it has not yet been publicly released
by the LDC. The PADT, which was used in the
CoNLL 2006 and 2007 shared tasks (Buchholz and
Marsi, 2006; Nivre et al., 2007), is much smaller,
with only about 148,000 annotated tokens. Since we
want a large annotated corpus with fine-grained la-
bels, we create our own ATB conversion.

4.5.2 Transformations
In addition to converting the ATB’s constituent

parses to dependency trees, we make a handful
of other changes. Following Green and Manning
(2010) and others, sentences headed by X nodes
are deleted because the treebank annotators con-
sidered them unbracketable or somehow erroneous.
Following Rambow et al. (2005), Treebank sen-
tences headed by TOP elements containing multiple
S daughters are split into separate sentences.8 Addi-
tionally, if the dependency converter concludes that
an S node without treebank functional tags is depen-
dent upon another S node and is separated from it
via sentence-final punctuation (e.g., an exclamation
point), these S nodes are separated into distinct sen-
tences as well. For the broadcast news data, we re-
move all subtrees headed by EDITED tags to make
it more closely resemble newswire text.9

Since we adhere to the tokenization scheme used
by the ATB, and we do not split off the determiner Al
as its own tree token. Instead, we treat it as a prefix.

The words referred to as inna and her sisters are
annotated using two different part-of-speech cate-
gories and syntactic structures in the ATB. In our
conversion, both ATB structures are converted to

8The ATB often has multiple sentences, or even entire para-
graphs, annotated under a single TOP element.

9The EDITED tag “is used to show the repetition and restart-
ing of constituents that are repaired by subsequent speech”
(Maamouri et al., 2012).

the same dependency structure headed by the INNA

word, similar to CATiB (Habash and Roth, 2009).
We treat the focus particle AmmA like a preposi-

tion in our dependency structure, following CATiB.

4.5.3 Dependency Label Scheme
Our dependency scheme consists of a total of

35 labels. Many of these are similar to those of
Stanford’s basic dependency scheme for English (de
Marneffe and Manning, 2008), although they are
somewhat closer to a similar scheme used by (Tratz
and Hovy, 2011). The list of relations is presented
in Table 2.

Most of the relations are self-explanatory or cor-
respond to similar labels in either Tratz and Hovy’s
(2011) scheme for English or CATiB’s (Habash and
Roth, 2009) scheme for Arabic. A few are new
or significantly different from their similarly named
counterparts in other schemes and are described in
greater detail below.

• adjnom — connects the head of an NP to that of a sister
NP (occurs with apposition and preposition-like nouns)

• advcl — connects verbal nouns to their syntactic governor
in what resemble English’s adverbial participle clauses

• advnp — connects NPs with treebank adverbial function
tags (e.g., -LOC, -TMP, -DIR), which are often headed by
preposition-like nouns, to what they modify

• fidafa — for false idafa (idafa-like structures that are
headed by adjectives instead of nouns)

• kccmp — connects a clausal complement that is part of a
past progressive or habitual construction to the head verb
kana

• lakinna — similar to cc but used with the sister of inna
lakinna instead of coordinating conjunctions

• part — particle modifier; connects particles (other than
FOCUS PART) to their governors

• rcmod — connects a bare relative clause to its head
• reladv — connects an adverbial WH- clause to its gover-

nor
• relmod — connects the head of a WH- node to the rela-

tivized word

• ripcmp — connects a clause to the relative or interrogative

pronoun that heads it

4.5.4 Part-of-Speech Tag Scheme
The Penn Arabic Treebank uses complex part

of speech tags for the entire tree token such as
DET+NOUN+NSUFF FEM SG+CASE DEF GEN.
Across the treebank data used in our experiments,
there are a total of 579 such tags, which are
composed of 179 different parts separated by plus
signs. Each part corresponds to a substring of the

38

adjnom adjunct nominal intj interjection prep preposition modifier
advcl adverbial clause iobj indirect object punct punctuation modifier
advmod adverbial modifier idafa idafa rcmod (bare) relative clause modifier
advnp adverbial noun phrase fidafa false idafa reladv relative pronoun adverbial
cc coordinating conjunction flat flat structure relmod relative pronoun modifier
ccinit initial coordinating conjunction kccmp kana clausal complement ripcmp relative/interrogative pronoun complement
ccomp clausal complement lakinna see text sc subordinating conjunction modifier
combo combination term neg negation subj subject
conj conjunction obj object tmz tamyiz
cop copula complement objcomp object complement tpc topicalized element
dep unspecified dependency part particle modifier voc vocative
det determiner pcomp preposition complement

Table 2: Syntactic dependency scheme used in this work. Labels that aren’t self-explanatory or similar to the labels
used by Tratz and Hovy (2011) for English or CATiB for Arabic (Habash and Roth, 2009) are in bold (for completely
new relations) or italics (for similarly named but semantically different relations)

vowelized version of the word.10 Due at least in part
to the enormity of this label set, simpler schemes
are often preferred, such as the “Bies” labels (Bikel,
2004; Kulick et al., 2006), Diab’s (2007) labels,
Kulick’s (2011) labels, and CATiB’s labels (Habash
and Roth, 2009). Marton et al. (2010) find that
using simpler schemes allow them to get better
parsing results when using predicted POS tags due
to the relatively poor performance of taggers trained
using the full ATB scheme.

The part-of-speech tag scheme we use is quite
similar to that of the original ATB but has several
simplifications. These changes are listed below.

1. Possessive and direct object pronoun clitics are all given
the same label (PRON OPP) (50 fewer tags; mapping back
to the originals is trival in almost all cases)

2. .VN forms of NOUN and ADJ are merged with their re-
spective more generic categories

3. Interrogative and relative adverbial and pronoun labels
are merged together into RI ADV and RI PRON

4. Noun suffix labels (e.g., NSUFF MASC PL GEN,
NSUFF MASC PL ACC) with genitive or accusative case
distinctions are merged because there is no distinction in
unvowelized form

5. Labels for dual masculine noun suffixes are merged with
their plural counterparts (no distinction in the unvow-
elized forms)

6. Demonstrative pronoun labels are collapsed to
DEM PRON (person and number information is easily
recovered)

7. The words called inna and her sisters are labeled INNA

instead of PSEUDO VERB or SUB CONJ

10Since we use the original written form of the data and the
internal segmentation of the words are only provided for the
vowelized versions, we project the segmentation into the orig-
inal written forms, discarding any parts that weren’t actually
written (e.g., case labels associated with unwritten diacritics).

Since our system splits off clitics and identifies
the affixes, the tagging is performed at the individual
morpheme level instead of producing a single all-
encompassing tag for the entire token.

Some of the part-of-speech tags (mostly in-
stances of DIALECT, TYPO, TRANSERR, and
NOT IN LEXICON tags) are automatically cor-
rected/improved during the dependency conversion
based upon the original constituent parse.

4.6 Filtering

Sentences containing invalid clitics are not used in
training both because they are erroneous and be-
cause including them would require allowing the
system to perform actions that should not occur (i.e.,
splitting off a clitic of length 8); similarly, train-
ing examples with more than 20% of their tokens
tagged as DIALECT, TRANSERR, LATIN, PARTIAL,
GRAMMAR PROBLEM, and/or TYPO are ignored on
the assumption that including them would harm the
model. This filtering process is not applied in test-
ing.

4.7 Data Split

We train and test models using three different splits
of the data. The first split is based upon the split used
by Zitouni et al. (2006) in their diacritization work
and is the same as that used by Marton et al. (2013)
in their parsing work and by Kulick (2011) in his to-
kenization and part-of-speech tagging work, in order
to facilitate better comparison. However, Marton et
al. use the CATiB conversion of a slightly earlier
version of the data (3.1, not 3.2), and, thus, the re-
sults are not directly comparable. This split places

39

Part Use Files Sent Toks Tree Toks Affixes
1 train 514 4090 101629 116892 49057

dev 110 909 22932 26261 11074
test 110 823 20825 24127 10032

2 train 351 3011 102795 120605 56273
dev 75 559 20869 24619 11245
test 75 630 20518 24078 11078

3 train 509 11350 287945 341033 145621
dev 45 1029 26347 31200 13828
test 45 992 25299 29938 12220

BN train 68 5504 82388 98040 48190
dev 26 1801 29873 35676 17890
test 26 2082 34361 41192 20366

Table 3: Counts of the number of files, sentences (Sent),
original space-delimited tokens (Tok), ATB tree tokens
(Tree Toks), and affixes in the experimental data.

the first (in name and chronological order) 85% of
the documents in ATB part 3 in training, the next
7.5% in development, and the final 7.5% in test.

In the second split, we use data from the first
three parts of the ATB, each of which consists
of documents coming from a different newswire
source. Parts 1 and 2 are split 70%/15%/15% train-
ing/dev/test, and we reuse the split of part 3 just
mentioned. Under this setup, we train two different
CTF-TMs, one that performs all of the tasks and one
that performs all of the tasks except parsing. This
enables us to test whether modeling parsing task im-
proves performance on the lower level tasks.

In the final split, we use the splits for parts 1–3
plus the data in LDC’s annotated broadcast news
transcripts (Maamouri et al., 2012). Unlike parts
1–3, the broadcast news data are drawn from a va-
riety of sources. Files from sources with three or
more files are split across training, development, and
test, with the latest documents being placed in test.
11 This experiment illustrates how the system per-
forms when additional, out-of-domain data are in-
cluded.

Statistics for the data are given in Table 3.

4.8 Evaluation Measures

Dependency parsing quality is measured in terms of
labeled and unlabeled attachment scores (LAS and
UAS), which indicate the percentage of words at-
tached to their correct parent and, in the case of
LAS, whose attachment is labeled with the correct

11We will make the exact list of files used in the training,
development, and test sets available.

dependency. Since a given space-delimited token
may not be tokenized into words correctly, the de-
pendency arcs are only counted as correct if they
occur between the correct words (spans of charac-
ter indices). We measure part-of-speech tagging in
terms of F-score (F1) and require that the tree token
have the correct bounds (was tokenized correctly)
and have the correct label.

Normally, we would choose LAS on the develop-
ment set as the measure for determining the version
of the model to keep for testing because it measures
performance on the highest-level task (labeled de-
pendency parsing). However, since one of the CTF-
TMs does not perform parsing, we instead use POS
tagging F1. In general, we observe that the scores
are highly correlated, making the point moot. For
the ATB part 3 experiment, POS tagging F1 peaks
on iteration 437.12 For the second experiment, POS
tagging F1 peaks at iteration 301 for the CTF-TM
with parsing and iteration 278 for the one without.
For the third experiment, the highest score occurs
on iteration 431.

4.9 Results and Discussion
The results for the various experimental setups are
presented in Table 4.

ATB 3 Experiment When using the same split
of ATB part 3 as Kulick (2011) and Marton et al.
(2013), the system correctly tokenizes 99.3% of the
space-delimited tokens, similar to Kulick’s (2011)
accuracy (99.3%) and slightly higher than the 99.0%
figure Kulick calculates for MADA. Though these
results are obtained using our dependency conver-
sion of the ATB rather than the original, we use the
same tokenization scheme. The POS labeling F1
score of 95.8 can’t be compared well with any other
work due to differences in tag schemes, which vary
greatly, as well as use of gold tokenization and other
differences. Our system obtains 84.9 UAS and 82.0
LAS, which are higher than Marton et al.’s best re-
sults of 84.0 UAS and 81.0 LAS, but they were using
a different conversion (CATiB) of a different version
of the data (3.1, not 3.2) as well as gold tokenization,
so the results are not directly comparable.

Framework Internal Experiment The CTF-TM
12We run 500 iterations for each experiment, which can take

as long as a week using a quad-core machine. However, little
improvement is seen after the first 100 iterations.

40

Train Eval Data Tok Acc POS F1 Affix Bounds F1 Affix Label F1 UAS LAS
3 3 Dev 99.5 96.6 98.7 98.4 86.3 83.8
3 3 Test 99.3 95.8 98.4 97.9 84.9 82.0

1,2,3 1,2,3 Dev 99.6 97.1 99.1 98.9 88.3 86.0
1,2,3 1,2,3 Test 99.6 96.8 99.0 98.7 87.4 84.8

1,2,3,BN 1,2,3 Dev 99.6 97.1 99.1 98.9 88.5 86.2
1,2,3,BN 1,2,3 Test 99.6 96.8 99.0 98.8 87.5 85.0

1,2,3,BN 1,2,3,BN Dev 99.5 96.0 98.8 98.5 87.4 84.6
1,2,3,BN 1,2,3,BN Test 99.3 95.7 98.7 98.4 86.6 83.8

Without Parsing
1,2,3 1,2,3 Dev 99.6 96.9 99.1 98.9 NA NA
1,2,3 1,2,3 Test 99.5 96.5 98.9 98.6 NA NA

Table 4: Results for the various experiments (Exp) for both the development and test portions of the data, including per-
token clitic separation (tokenization) accuracy, part-of-speech tagging F1, affix boundary detection F1, affix labeling
F1, and both unlabeled and labeled attachment scores.

that does parsing and the CTF-TM that doesn’t
achieve similar overall results for the different tasks
(other than parsing, of course). However, when
looking deeper at the individual POS tagging mis-
takes that one system made more often by one sys-
tem than the other, (see Tables 5 and 6), we ob-
serve that the parsing CTF-TM does a better job
with labeling some parts-of-speech. For instance,
the non-parsing system mismarks passive verbs as
active more than 29% more often than the other. In
Arabic, passive and active forms of verbs are only
distinguished by their short vowels, which are typi-
cally unwritten, and, thus, the context is of particular
importance in distinguishing between the two. The
non-parsing system also has more trouble with the
distinction between nouns and adjectives, which is
likely because adjectives are derived using the same
templatic structures as nouns (Attia et al., 2010) and,
thus, context is, once again, of great importance.

Broadcast News Experiment The scores ob-
tained in the experiment with the broadcast news
data are slightly lower than in the second exper-
iment. However, this appears to be because the
broadcast news portions of the development and test
sections are more difficult to parse than the remain-
der. If we apply the model to the development and
test sections of parts 1, 2, and 3, we observe that
the results, which are given in Table 4, are higher
than those of the model trained without the broad-
cast news data.

Gold Prediction Errors Diff
-parse +parse

NOUN ADJ 297 238 -59
ADJ NOUN 328 298 -30
VB IV PASS VB IV 109 80 -29
VB PV PASS VB PV 86 68 -18
VB PV NOUN 104 88 -16
VB IV VB PV 12 22 +10
INNA SUB CONJ 9 2 -7
VB PV VB IV 19 13 -6
NOUN NOUN PROP 140 134 -6
ADJ NOUN PROP 32 27 -5

Table 5: Top 10 POS mistakes made more often by either
the CTF-TM with parsing or the CTF-TM without on the
ATB part 1, 2, and 3 development set.

Tag #Gold Tag #Gold
NOUN 26195 INNA 1456
ADJ 7491 SUB CONJ 641
NOUN PROP 5913 VB PV PASS 231
VB PV 3478 VB IV PASS 207
VB IV 2682

Table 6: Counts for the POS tags mentioned in Table 5.

5 Related Work

5.1 Semitic Language Parsing

Much of the Arabic parsing research to date uses the
pipeline approach, either running a tokenizer prior to
parsing or simply assuming the existence of gold to-
kenization (Bikel, 2004; Buchholz and Marsi, 2006;
Kulick et al., 2006; Nivre et al., 2007; Marton et al.,
2010; Marton et al., 2011; Marton et al., 2013). Of
course, using gold tokenization results in optimistic

41

evaluation figures.13

Other methods exist however. For example, to
parse Modern Hebrew, Cohen and Smith (2007)
combine a morphological model with a syntactic
model using a product of experts. Another alterna-
tive is lattice parsing, which can be used to jointly
model both tokenization and parsing (Chappelier et
al., 1999). Curiously, while researchers of Mod-
ern Hebrew parsing find lattice parsers outperform-
ing their pipeline systems (Goldberg and Tsarfaty,
2008; Goldberg and Elhadad, 2011; Goldberg and
Elhadad, 2013), Green and Manning (2010) obtain
the opposite result in their Arabic parsing experi-
ments, with the lattice parser underperforming the
pipeline system by over 3 points (76.01 F1 vs 79.17
F1). Why lattice parsing may help in some cases but
not others is not clear.

Some Arabic parsing work focuses on the useful-
ness of various features and part-of-speech tagsets.
Marton et al. (2013) examine various morphologi-
cal features and part-of-speech tagsets, employing
MADA (Habash and Rambow, 2005; Habash et al.,
2009) to predict form-based morphological features
and an in-house system (Alkuhlani and Habash,
2012) to predict functional morphological features.
Dehdari et al. (2011) investigate the best set of fea-
tures for Arabic constituent parsing and try several
approaches for selecting an optimal feature set, find-
ing that the best-first with backtracking algorithm is
the most effective in their experiments.

5.2 Other Languages

There has been a flurry of recent research involv-
ing the joint modeling of dependency parsing and
lower-level tasks14 for a variety of languages, with
most of the attention focused on Chinese. While
lacking Arabic’s morphological richness, Chinese
has its own challenges, such as word segmentation
and part-of-speech ambiguities, which have led re-
searchers to develop new unified approaches for pro-
cessing it. Qian and Liu (2012) train independent
models for word segmentation, POS tagging, and

13Green and Manning (2010) find that using automatic tok-
enization provided by MADA (Habash et al., 2009) instead of
gold tokenization results in a 1.92% F score drop in their con-
stituent parsing work.

14Systems that jointly model POS tagging and constituent
parsing have existed for some time.

parsing but then incorporate them together during
decoding. Li et al. (2011), Li and Zhou (2012), Ha-
tori et al. (2011), and Ma et al. (2012) present sys-
tems that jointly model Chinese POS tagging and
dependency parsing. Li et al. (2011) use a dy-
namic programming approach similar to Koo and
Collins (2010), Li and Zhou (2012) present a shift-
reduce style system that uses structured perceptron
and beam search, Hatori et al. (2011) implement
a shift-reduce style algorithm that utilizes dynamic
programming and beam search in the manner of
Huang and Sagae (2010), and Ma et al. (2012) ex-
tend Goldberg and Elhadad’s (2010) easy-first ap-
proach to support both dependency parsing and POS
tagging and is thus similar to our work. Hatori et al.
(2012) extend their previous system to tackle word
segmentation, and Ma et al. (2013) build upon ear-
lier work by implementing beam search to get bet-
ter results. Li and Zhou (2012) side step some of
the issues of Chinese word segmentation by pars-
ing structures of words, phrases, and sentences in a
unified framework using a structured perceptron and
beam search.

Some researchers focus their work on other lan-
guages. Lee et al. (2011) present a graphical model
for morphological disambiguation and dependency
parsing that they apply to Latin, Ancient Greek,
Hungarian, and Czech. Bohnet and Nivre (2012)
present a shift-reduce style system similar to Li
and Zhou’s (2012) system that jointly models POS
tagging and labeled dependency parsing, achieving
state-of-the-art accuracy on Czech, German, Chi-
nese, and English.

6 Conclusion

In this paper, we described cross-task flexible transi-
tion models (CTF-TMs) and demonstrated their via-
bility for Arabic tokenization, affix detection, affix
labeling, part-of-speech labeling, and dependency
parsing, obtaining very strong results in each tasks.
We plan to release our software in the near future,
including the software for converting the ATB to de-
pendency parses, and would like to release our de-
pendency conversion of the Penn Arabic Treebank
via the LDC.

42

7 Future Work

In the future, we plan to integrate beam search into
the training and decoding. We want to add support
for the recovery of diacritics, roots, and derivation
templates, and we would like to apply modified ver-
sions of our system to other languages.

Our choice of anchors, operations, and constraints
represent one possible design for an Arabic CTF-
TM. Other options, such as creating unlabeled de-
pendencies and adding labels in subsequent opera-
tions, restricting clitic separation to a hand-crafted
list of clitics, utilizing information from a dictionary
or morphological analyzer, or following some sort
of coarse-to-fine labeling scheme, are also possible,
and we hope to investigate more of these options.

References

Sarah Alkuhlani and Nizar Habash. 2012. Identifying
broken plurals, irregular gender, and rationality in ara-
bic text. In Proceedings of EACL 2012, pages 675–
685.

Mohammed Attia, Jennifer Foster, Deirdre Hogan,
Joseph Le Roux, Lamia Tounsi, and Josef Van Gen-
abith. 2010. Handling Unknown Words in Statis-
tical Latent-Variable Parsing Models for Arabic, En-
glish and French. In Proceedings of the NAACL
HLT 2010 First Workshop on Statistical Parsing of
Morphologically-Rich Languages, pages 67–75.

Dan M Bikel. 2004. On the parameter space of gen-
erative lexicalized statistical parsing models. Ph.D.
thesis, University of Pennsylvania.

Bernd Bohnet and Joakim Nivre. 2012. A transition-
based system for joint part-of-speech tagging and la-
beled non-projective dependency parsing. In Proceed-
ings of the 2012 Joint Conference on Empirical Meth-
ods in Natural Language Processing and Computa-
tional Natural Language Learning, pages 1455–1465.

Sabine Buchholz and Erwin Marsi. 2006. CoNLL-X
shared task on Multilingual Dependency Parsing. In
Proceedings of the 10th Conference on Computational
Natural Language Learning, pages 149–164.

Jean-Cédric Chappelier, Martin Rajman, Ramón
Aragüés, and Antoine Rozenknop. 1999. Lattice
Parsing for Speech Recognition. In Proc. of 6ème
conférence sur le Traitement Automatique du Langage
Naturel (TALN 99), pages 95–104.

Shay B Cohen and Noah A Smith. 2007. Joint Morpho-
logical and Syntactic Disambiguation. In Proceedings
of the EMNLP-CoNLL 2007.

Michael J. Collins. 2002. Discriminative Training Meth-
ods for Hidden Markov Models: Theory and experi-
ments with Perceptron Algorithms. In Proceedings of
the 2002 Conference on Empirical Methods in Natural
Language Processing.

Marie-Catherine de Marneffe and Christopher D. Man-
ning. 2008. The Stanford typed dependencies repre-
sentation. In COLING 2008: Proceedings of the work-
shop on Cross-Framework and Cross-Domain Parser
Evaluation.

Jon Dehdari, Lamia Tounsi, and Josef van Gen-
abith. 2011. Morphological Features for Parsing
Morphologically-Rich Languages: A Case of Arabic.
In Proceedings of the Second Workshop on Statistical
Parsing of Morphologically Rich Languages.

Mona Diab. 2007. Toward an Optimal POS Tag Set for
Modern Standard Arabic Processing. In Proceedings
of Recent Advances in Natural Language Processing.

Yoav Goldberg and Michael Elhadad. 2010. An Ef-
ficient Algorithm for Easy-First Non-Directional De-
pendency Parsing. In Human Language Technologies:
The 2010 Annual Conference of the North American
Chapter of the Association for Computational Linguis-
tics, pages 742–750.

Yoav Goldberg and Michael Elhadad. 2011. Joint He-
brew Segmentation and Parsing Using a PCFG-LA
Lattice Parser. In Proceedings of ACL 2011.

Yoav Goldberg and Michael Elhadad. 2013. Word Seg-
mentation, Unknown-word Resolution, and Morpho-
logical Agreement in a Hebrew Parsing System. Com-
putational Linguistics, 39(1):121–160.

Yoav Goldberg and Reut Tsarfaty. 2008. A Single Gen-
erative Model for Joint Morphological Segmentation
and Syntactic Parsing. Proceedings of ACL-08: HLT.

Spence Green and Christopher Manning. 2010. Better
Arabic Parsing: Baselines, Evaluations, and Analysis.
In Proceedings of the 23rd International Conference
on Computational Linguistics, pages 394–402.

Nizar Habash and Owen Rambow. 2005. Arabic Tok-
enization, Part-of-Speech Tagging and Morphological
Disambiguation in One Fell Swoop. In Proceedings of
the 43rd Annual Meeting of Association for Computa-
tional Linguistics, pages 573–580.

Nizar Habash and Ryan Roth. 2009. CATiB: The
Columbia Arabic Treebank. In Proceedings of the
ACL-IJCNLP 2009 Conference Short Papers.

Nizar Habash, Owen Rambow, and Ryan Roth. 2009.
MADA+TOKAN: A Toolkit for Arabic Tokenization,
Diacritization, Morphological Disambiguation, POS
Tagging, Stemming and Lemmatization. In Proceed-
ings of the 2nd International Conference on Arabic
Language Resources and Tools (MEDAR).

Jan Hajič, Otakar Smrz, Petr Zemánek, Jan Šnaidauf, and
Emanuel Beška. 2004. Prague Arabic Dependency

43

Treebank: Development in Data and Tools. In Pro-
ceedings of the NEMLAR International Conference on
Arabic Language Resources and Tools.

Jun Hatori, Takuya Matsuzaki, Yusuke Miyao, and
Jun’ichi Tsujii. 2011. Incremental joint pos tagging
and dependency parsing in chinese. In IJCNLP, pages
1216–1224.

Jun Hatori, Takuya Matsuzaki, Yusuke Miyao, and
Jun’ichi Tsujii. 2012. Incremental joint approach to
word segmentation, pos tagging, and dependency pars-
ing in chinese. In Proceedings of the 50th Annual
Meeting of the Association for Computational Linguis-
tics: Long Papers-Volume 1, pages 1045–1053.

Liang Huang and Kenji Sagae. 2010. Dynamic Program-
ming for Linear-Time Shift-Reduce Parsing. In Pro-
ceedings of the 48th Annual Meeting of the Association
for Computational Linguistics, pages 1077–1086.

Terry Koo and Michael Collins. 2010. Efficient Third-
order Dependency Parsers. In Proceedings of ACL
2010, pages 1–11.

Seth Kulick, Ryan Gabbard, and Mitchell Marcus. 2006.
Parsing the Arabic Treebank: Analysis and Improve-
ments. In Proceedings of the Treebanks and Linguistic
Theories Conference, pages 31–42.

Seth Kulick. 2011. Exploiting Separation of Closed-
Class Categories for Arabic Tokenization and Part-of-
Speech Tagging. ACM Transactions on Asian Lan-
guage Information Processing (TALIP), 10(1):4.

John Lee, Jason Naradowsky, and David A Smith. 2011.
A discriminative model for joint morphological dis-
ambiguation and dependency parsing. In Proceed-
ings of the 49th Annual Meeting of the Associa-
tion for Computational Linguistics: Human Language
Technologies-Volume 1, pages 885–894.

Zhongguo Li and Guodong Zhou. 2012. Unified depen-
dency parsing of chinese morphological and syntactic
structures. In Proceedings of the 2012 Joint Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and Computational Natural Language Learn-
ing, EMNLP-CoNLL ’12, pages 1445–1454.

Zhenghua Li, Min Zhang, Wanxiang Che, Ting Liu, Wen-
liang Chen, and Haizhou Li. 2011. Joint models for
chinese pos tagging and dependency parsing. In Pro-
ceedings of the Conference on Empirical Methods in
Natural Language Processing, pages 1180–1191.

Ji Ma, Tong Xiao, Jingbo Zhu, and Feiliang Ren. 2012.
Easy-First Chinese POS Tagging and Dependency
Parsing. In Proceedings of COLING 2012, pages
1731–1746, Mumbai, India.

Ji Ma, Jingbo Zhu, Tong Xiao, and Nan Yang. 2013.
Easy-first pos tagging and dependency parsing with
beam search. In Proceedings of the 51st Annual Meet-
ing of the Association for Computational Linguistics

(Volume 2: Short Papers), pages 110–114, Sofia, Bul-
garia. Association for Computational Linguistics.

Mohamed Maamouri and Ann Bies. 2004. Develop-
ing an Arabic Treebank: Methods, Guidelines, Pro-
cedures, and Tools. In Proceedings of the Workshop
on Computational Approaches to Arabic Script-based
languages, pages 2–9.

Mohamed Maamouri, Ann Bies, Tim Buckwalter, and
Wigdan Mekki. 2004. The Penn Arabic Treebank:
Building a Large-Scale Annotated Arabic Corpus. In
NEMLAR Conference on Arabic Language Resources
and Tools, pages 102–109.

Mohamed Maamouri, Ann Bies, and Seth Kulick. 2012.
Expanding Arabic Treebank to Speech: Results from
Broadcast News. In Proceedings of LREC 2012.

Yuval Marton, Nizar Habash, and Owen Rambow. 2010.
Improving Arabic Dependency Parsing with Lexical
and Inflectional Morphological Features. In Proceed-
ings of the NAACL HLT 2010 First Workshop on Sta-
tistical Parsing of Morphologically-Rich Languages.

Yuval Marton, Nizar Habash, and Owen Rambow. 2011.
Improving Arabic Dependency Parsing with Form-
based and Functional Morphological Features. In Pro-
ceedings of the 49th Annual Meeting of the Associa-
tion for Computational Linguistics: Human Language
Technologies, pages 1586–1596.

Yuval Marton, Nizar Habash, and Owen Rambow. 2013.
Dependency Parsing of Modern Standard Arabic with
Lexical and Inflectional Features. Computational Lin-
guistics, 39(1):161–194.

Ryan McDonald and Joakim Nivre. 2007. Character-
izing the Errors of Data-Driven Dependency Parsing
Models. In Proceedings of the EMNLP-CoNLL 2007,
pages 122–131.

Joakim Nivre, Johan Hall, Sandra Kübler, Ryan McDon-
ald, Jens Nilsson, Sebastian Riedel, and Deniz Yuret.
2007. The CoNLL 2007 Shared Task on Dependency
Parsing. In Proceedings of the CoNLL Shared Task
Session of EMNLP-CoNLL 2007.

Joakim Nivre. 2009. Non-Projective Dependency Pars-
ing in Expected Linear Time. In Proceedings of the
Joint Conference of the 47th Annual Meeting of the
ACL and the 4th International Joint Conference on
Natural Language Processing of the AFNLP.

Xian Qian and Yang Liu. 2012. Joint Chinese Word Seg-
mentation, POS tagging and Parsing. In Proceedings
of the 2012 Joint Conference on Empirical Methods
in Natural Language Processing and Computational
Natural Language Learning, pages 501–511.

Owen Rambow, David Chiang, Mona Diab, Nizar
Habash, Rebecca Hwa, Khalil Simaan, Vincent Lacey,
Roger Levy, Carol Nichols, and Safiullah Shareef.
2005. Parsing arabic dialects. In Final Report, JHU
Summer Workshop.

44

Stephen Tratz and Eduard Hovy. 2011. A Fast, Ac-
curate, Non-Projective, Semantically-Enriched Parser.
In Proceedings of EMNLP 2011.

Stephen Tratz. 2011. Semantically-Enriched Parsing for
Natural Language Understanding. Ph.D. thesis, Uni-
versity of Southern California.

Reut Tsarfaty. 2006. Integrated Morphological and Syn-
tactic Disambiguation for Modern Hebrew. In Pro-
ceedings of the 21st International Conference on Com-
putational Linguistics and 44th Annual Meeting of the
Association for Computational Linguistics: Student
Research Workshop, pages 49–54.

Yue Zhang and Stephen Clark. 2008. Joint Word Seg-
mentation and POS Tagging Using a Single Percep-
tron. In Proceedings of ACL 2008, pages 888–896.

Imed Zitouni, Jeffrey S Sorensen, and Ruhi Sarikaya.
2006. Maximum entropy based restoration of Ara-
bic diacritics. In Proceedings of the 21st International
Conference on Computational Linguistics and the 44th
annual meeting of the Association for Computational
Linguistics, pages 577–584.

45

Proceedings of the Fourth Workshop on Statistical Parsing of Morphologically Rich Languages, pages 46–52,
Seattle, Washington, USA, 18 October 2013. c©2013 Association for Computational Linguistics

The LIGM-Alpage Architecture for the SPMRL 2013 Shared Task:
Multiword Expression Analysis and Dependency Parsing

Matthieu Constant
Universit́e Paris-Est

LIGM
CNRS

Marie Candito
Alpage

Paris Diderot Univ
INRIA

Djamé Seddah
Alpage

Paris Sorbonne Univ
INRIA

Abstract

This paper describes the LIGM-Alpage sys-
tem for the SPMRL 2013 Shared Task. We
only participated to the French part of the de-
pendency parsing track, focusing on the real-
istic setting where the system is informed nei-
ther with gold tagging and morphology nor
(more importantly) with gold grouping of to-
kens into multi-word expressions (MWEs).
While the realistic scenario of predicting both
MWEs and syntax has already been investi-
gated for constituency parsing, the SPMRL
2013 shared task datasets offer the possibil-
ity to investigate it in the dependency frame-
work. We obtain the best results for French,
both for overall parsing and for MWE recog-
nition, using a reparsing architecture that com-
bines several parsers, with both pipeline archi-
tecture (MWE recognition followed by pars-
ing), and joint architecture (MWE recognition
performed by the parser).

1 Introduction

As shown by the remarkable permanence over the
years of specialized workshops, multiword expres-
sions (MWEs) identification is still receiving consid-
erable attention. For some languages, such as Ara-
bic, French, English, or German, a large quantity of
MWE resources have been generated (Baldwin and
Nam, 2010). Yet, while special treatment of com-
plex lexical units, such as MWEs, has been shown to
boost performance in tasks such as machine transla-
tion (Pal et al., 2011), there has been relatively little
work exploiting MWE recognition to improve pars-
ing performance.

Indeed, a classical parsing scenario is to pre-
group MWEs using gold MWE annotation (Arun

and Keller, 2005). This non-realistic scenario has
been shown to help parsing (Nivre and Nilsson,
2004; Eryigit et al., 2011), but the situation is quite
different when switching to automatic MWE predic-
tion. In that case, errors in MWE recognition al-
leviate their positive effect on parsing performance
(Constant et al., 2012). While the realistic scenario
of syntactic parsing with automatic MWE recogni-
tion (either done jointly or in a pipeline) has already
been investigated in constituency parsing (Caffer-
key et al., 2007; Green et al., 2011; Constant et al.,
2012; Green et al., 2013), the French dataset of the
SPMRL 2013 Shared Task (Seddah et al., 2013) of-
fers one of the first opportunities to evaluate this sce-
nario within the framework of dependency syntax.

In this paper, we discuss the systems we submit-
ted to the SPMRL 2013 shared task. We focused
our participation on the French dependency parsing
track using the predicted morphology scenario, be-
cause it is the only data set that massively contains
MWEs. Our best system ranked first on that track
(for all training set sizes). It is a reparsing system
that makes use of predicted parses obtained both
with pipeline and joint architectures. We applied it
to the French data set only, as we focused on MWE
analysis for dependency parsing. Section 2 gives its
general description, section 3 describes the handling
of MWEs. We detail the underlying parsers in sec-
tion 4 and their combination in section 5. Experi-
ments are described and discussed in sections 6 and
7.

2 System Overview

Our whole system is made of several single statisti-
cal dependency parsing systems whose outputs are
combined into areparser. We use two types of sin-

46

gle parsing architecture: (a) pipeline systems; (b)
”joint” systems.

The pipeline systems first perform MWE analy-
sis before parsing. The MWE analyzer (section 3)
merges recognized MWEs into single tokens and
the parser is then applied on the sentences with this
new tokenization. The parsing model is learned on
a gold training set where all marked MWEs have
been merged into single tokens. For evaluation, the
merged MWEs appearing in the resulting parses are
expanded, so that the tokens are exactly the same in
gold and predicted parses.

The ”joint” systems directly output dependency
trees whose structure comply with the French
dataset annotation scheme. As shown in Figure 1,
such trees contain not only syntactic dependencies,
but also the grouping of tokens into MWEs, since the
first component of an MWE bears dependencies to
the subsequent components of the MWE with a spe-
cific labeldep_cpd. At that stage, the only missing
information is the POS of the MWEs, which we pre-
dict by applying a MWE tagger in a post-processing
step.

la caisse d’ épargne avait fermé la veille

suj

de
t

dep
cpd

dep cpd

au
x

tp
s

mod

dep
cpd

Figure 1: French dependency tree forLa caisse
d’épargne avait ferḿe la veille (The savings bank had
closed the day before), containing two MWEs (in red).

3 MWE Analyzer and MWE Tagger

The MWE analyzer we used in the pipeline sys-
tems is based on Conditional Random Fields (CRF)
(Lafferty et al., 2001) and on external lexicons fol-
lowing (Constant and Tellier, 2012). Given a tok-
enized text, it jointly performs MWE segmentation
and POS tagging (of simple tokens and of MWEs),
both tasks mutually helping each other1. CRF is a
prominent statistical model for sequence segmenta-

1Note though that we keep only the MWE segmentation, and
use rather the Morfette tagger-lemmatizer, cf. section 4.

tion and labelling. External lexicons used as sources
of features greatly improve POS tagging (Denis
and Sagot, 2009) and MWE segmentation (Constant
and Tellier, 2012). Our lexical resources are com-
posed of two large-coverage general-language lexi-
cons: the Lefff2 lexicon (Sagot, 2010), which con-
tains approx. half a million inflected word forms,
among which approx.25, 000 are MWEs; and the
DELA3 (Courtois, 2009; Courtois et al., 1997) lex-
icon, which contains approx. one million inflected
forms, among which about110, 000 are MWEs.
These resources are completed with specific lexi-
cons freely available in the platform Unitex4: the
toponym dictionary Prolex (Piton et al., 1999) and a
dictionary of first names.

The MWE tagger we used in the joint systems
takes as input a MWE within a dependency tree, and
outputs its POS. It is a pointwise classifier, based
on a MaxEnt model that integrates different features
capturing the MWE local syntactic context, and in
particular the POS at the token level (and not at
the MWE level). The features comprise: the MWE
form, its lemma, the sequence of POS of its compo-
nents, the POS of its first component, its governor’s
POS in the syntactic parse, the POS following the
MWE, the POS preceding the MWE, the bigram of
the POS following and preceding the MWE.

4 Dependency Parsers

For our development, we trained 3 types of parsers,
both for the pipeline and the joint architecture:

• MALT , a pure linear-complexity transition-
based parser (Nivre et al., 2006)

• Mate-tools 1, the graph-based parser available
in Mate-tools5 (Bohnet, 2010)

• Mate-tools 2, the joint POS tagger and
transition-based parser with graph-based com-
pletion available inMate-tools (Bohnet and
Nivre, 2012).

2We use the version available in the POS tagger MElt (Denis
and Sagot, 2009).

3We use the version in the platform Unitex (http://igm.univ-
mlv.fr/˜unitex). We had to convert the DELA POS tagset to the
FTB one.

4http://igm.univ-mlv.fr/˜unitex
5Available at http://code.google.com/p/mate-tools/. We

used theAnna3.3version.

47

Such parsers require some preprocessing of the
input text: lemmatization, POS tagging, morphol-
ogy analyzer (except the joint POS tagger and
transition-based parser that does not require prepro-
cessed POS tagging). We competed for the scenario
in which this information is not gold but predicted.
Instead of using the predicted POS, lemma and mor-
phological features provided by the shared task orga-
nizers, we decided to retrain the tagger-lemmatizer
Morfette (Chrupała et al., 2008; Seddah et al., 2010),
in order to apply a jackknifing on the training set, so
that parsers are made less sensitive to tagging errors.
Note that no feature pertaining to MWEs are used at
this stage.

5 Reparser

The reparser is an adaptation to labeled dependency
parsing of the simplest6 system proposed in (Sagae
and Lavie, 2006). The principle is to build an arc-
factored merge of the parses produced byn input
parsers, and then to find the maximum spanning
tree among the resulting merged graph7. We im-
plemented the maximum spanning tree algorithm8

of (Eisner, 1996) devoted to projective dependency
parsing. During the parse merging, each arc is unla-
beled, and is given a weight, which is the frequency
it appears in then input parses. Once the maxi-
mum spanning tree is found, each arc is labeled by
its most voted label among them input parses con-
taining such an arc (with arbitrary choice in case of
ties).

6 Experiments

6.1 Settings

MWE Analysis and Tagging
For the MWE analyzer, we used the toollgtag-

ger9 (version 1.1) with its default set of feature tem-

6The other more complex systems were producing equiva-
lent scores.

7In order to account for labeled MWE recognition, we in-
tegrated in the ”depcpd” arcs the POS of the corresponding
MWE. For instance, if the label ”depcpd” corresponds to an arc
in a multiword preposition (P), the arc is relabeled ”depcpd P”.
At evaluation time, the output parse labels are remapped to the
official annotation scheme.

8More precisely, we based our implementation on the
pseudo-code given in (McDonald, 2006).

9http://igm.univ-mlv.fr/˜mconstan

plates. The MWE tagger model was trained using
the Wapiti software(Lavergne et al., 2010). We used
the default parameters and we forced the MaxEnt
mode.

Parsers
For MALT (version 1.7.2), we used thearceager

algorithm, and theliblinear library for training. As
far as the features are concerned, we started with
the feature templates given in Bonsai10 (Candito et
al., 2010), and we added some templates (essentially
lemma bigrams) during the development tests, that
slightly improved performance. For the twoMate-
tools parsers, we used the default feature sets and
parameters proposed in the documentation.

Morphological prediction
Predicted lemmas, POS and morphology features

are computed with Morfette version 0.3.5 (Chrupała
et al., 2008; Seddah et al., 2010)11, using10 iter-
ations for the tagging perceptron,3 iterations for
the lemmatization perceptron, default beam size for
the decoding of the joint prediction, and the Lefff
(Sagot, 2010) as external lexicon used for out-of-
vocabulary words. We performed a jackknifing on
the training corpus, with 10 folds for the full corpus,
and 20 folds for the 5k track12.

6.2 Results

We first provide the results on the development cor-
pus. Table 1 shows the general parsing accuracy of
our different systems. Results are displayed in three
different groups corresponding to each kind of sys-
tems: the two single parser architectures ones (joint
and pipeline) and the reparsing one. Each system
was tested both when learned on the full training
data set and on the 5k one. The joint and pipeline
systems were evaluated with the three parsers de-
scribed in section 4. For the reparser, we tested dif-
ferent combinations of parsers in the full training
data set mode. We found that the best combination
includes all parsers but MALT in joint mode. We did
not tune our reparsing system in the 5k training data
set mode. We assumed that the best combination in
this mode was the same as with full training.

10http://alpage.inria.fr/statgram/frdep/frstatdepparsing.html
11Available at https://sites.google.com/site/morfetteweb/
12Note that for the 5k track, we retrained Morfette using the

5k training corpus only, whereas the official 5k training set con-
tains predicted morphology trained on the full training set.

48

full 5k
type parser LAS UAS LaS LAS UAS LaS

Joint
MALT 80.91 84.74 89.18 78.61 83.16 87.51

Mate-tools 1 84.60 88.21 91.43 82.02 86.23 90.02
Mate-tools 2 84.40 88.08 91.02 81.66 85.97 89.38

Pipeline
MALT 82.56 86.22 90.22 80.79 84.71 89.19

Mate-tools 1 85.28 88.73 91.85 83.23 86.97 90.67
Mate-tools 2 84.82 88.31 91.45 82.79 86.56 90.26

Reparser

joint only 85.28 88.77 91.70 - - -
pipeline only 85.79 89.17 91.94 - - -

all 86.12 89.36 92.22 - - -
best ensemble 86.23 89.55 92.21 84.25 87.88 91.17

Table 1: Parsing results on development corpus (38820 tokens)

COMP MWE MWE+POS
R P F R P F R P F

joint Mate-tools 1 76.3 82.4 79.2 74.3 80.6 77.3 70.7 76.7 73.6
pipeline Mate-tools 1 80.8 82.7 81.7 79.0 83.6 81.2 75.6 80.1 77.8
best reparser 81.1 82.5 81.8 79.2 83.0 81.0 76.1 79.8 77.9

Table 2: MWE Results on the development corpus (2119 MWEs) with full training.

Table 2 contains the MWE results on the devel-
opment data set with full training, for three systems:
the best single-parser joint and pipeline systems (i.e.
with Mate-tools 1) and the best reparser. We do not
provide results for the 5k training because they show
similar trends. We provide the 9 MWE-related mea-
sures defined in the shared task. The symbolsR, P
and F respectively correspond torecall, precision
and F-measure. COMP corresponds to evaluation
of the non-head MWE components (i.e. the non-first
MWE components, cf. Figure 1).MWEcorresponds
to the recognition of a complete MWE.MWE+POS
stands for the recognition of a complete MWE asso-
ciated with its correct POS.

We submitted to the shared task our best
(reparser) system according to the tuning described
above. We also sent the two best pipeline systems
(Mate-tools 1 and Mate-tools 2) and the best joint
system (Mate-tools 1), in order to compare our sin-
gle systems to the other competitors. The official re-
sults of our systems are provided in table 3 for gen-
eral parsing and in table 4 for MWE recognition. We
also show the ranking of each of these systems in the
competition.

7 Discussion

In table 3, we can note that for the5k training set
scenario, there is a general drop of parsing perfor-
mance (approximately 2 points), but the trends are
exactly the same as for the full training set sce-
nario. Concerning the performance on MWE analy-
sis (table 4), the pipeline Mate-tools-1 system very
slightly outperforms the best reparser system in the
5k scenario, contrary to the full training set scenario,
but the difference is not significant. In the following,
we focus on the full training set scenario.

Let us first discuss the overall parsing perfor-
mance, by looking at the results on the develop-
ment corpus (table 1). As far as the single-parser
systems are concerned, we can note that for both
the joint and pipeline systems, MALT achieves
lower performance than the graph-based (Mate-
tools-1) and the joint tagger-parser (Mate-tools-2),
which have comparable performance. Moreover,
the pipeline systems achieve overall better than their
joint counterpart, though the increase between joint
and pipeline architecture is much bigger for MALT
than for the Mate parsers (for MALT, compare

49

training type parser LAS UAS LaS Rank

Full

Reparser best 85.86 89.19 92.20 1
Pipeline Mate-tools 1 84.91 88.35 91.73 3
Pipeline Mate-tools 2 84.87 88.40 91.51 4

Joint Mate-tools 1 84.14 87.67 91.24 7

5k

Reparser best 83.60 87.40 90.76 1
Pipeline Mate-tools 1 82.53 86.51 90.14 4
Pipeline Mate-tools 2 82.15 86.18 89.79 6

Joint Mate-tools 1 81.63 85.76 89.56 7

Table 3: Official parsing results on the evaluation corpus (75216 tokens)

training type parser COMP MWE MWE+POS Rank

Full

Reparser best ensemble 81.3 80.7 77.5 1
Pipeline Mate-tools 1 81.2 80.8 77.4 2
Pipeline Mate-tools 2 81.2 80.8 76.6 3

Joint Mate-tools 1 79.6 77.4 74.1 6

5k

Pipeline Mate-tools 1 78.7 77.7 74.0 1
Reparser best ensemble 78.9 77.2 73.8 2
Pipeline Mate-tools 2 78.7 77.7 73.3 5

Joint Mate-tools 1 75.9 72.2 75.9 10

Table 4: Official MWE results on the evaluation corpus (4043 MWEs). The scores correspond to the F-measure.

LAS=80.91 for the joint system, and LAS=82.56
for the pipeline architecture, while for Mate-tools-
1, compare LAS=84.60 with LAS=85.28). The best
reparser system provides a performance increase of
approximately one point over the best single-parser
system (Mate-tools-1), both for LAS and UAS,
which suggests that the parsers have complementary
strengths.

When looking at performance on MWE recog-
nition and tagging (2), we can note greater varia-
tion between the F-measures obtained by the single-
parser systems, but this is due to the much lower
number of MWEs with respect to the number of
tokens (there are 38820 tokens and 2119 MWEs
in the dev set). The MWE analyzer used in the
pipeline systems leads to better MWE recognition
(F − measure = 81.2 on dev set) than when the
analysis is left to the bare “joint” parsers (joint Mate-
tools 1 achieves F-measure=77.3).

Contrary to the situation for overall parsing per-
formance, the reparser system does not lead to better
MWE recognition with respect to the MWE analyzer
of the pipeline systems. Indeed the performance on

MWEs are quite similar between the reparser sys-
tem and the MWE analyzer (for the MWE metric,
on the dev set we get F=81.0 versus81.2 for best
reparser and pipeline systems respectively, whereas
we get80.7 and80.8 on the test set. These differ-
ences are not significant). This is because the MWEs
predicted by the MWE analyzer are present in three
of the single-parser systems taken into account in the
reparsing process, and are thus much favored in the
voting.

In order to understand better our parsing systems’
performance on MWE recognition, we provide in ta-
ble 5 the MWE+POS results broken down by MWE
part-of-speech, for the dev set. Not surprisingly,
we can note that performance varies greatly de-
pending on the POS, with better performance on
closed classes (conjunctions, determiners, preposi-
tions, pronouns) than on open classes. The lowest
performance is on adjectives and verbs, but given the
raw numbers of gold MWEs, the major impact on
overall performance is given by the results on nom-
inal MWEs (either common or proper nouns). A lit-
tle less than one third of the nominal gold MWEs

50

R P F Nb gold Nb predicted Nb correct
adjectives 46.9 75.0 57.7 32 20 15
adverbs 74.7 83.0 78.7 360 324 269
conjunctions 90.1 83.7 86.8 91 98 82
clitics - 0.00 - 0 1 0
determiners 96.0 96.8 96.4 252 250 242
nouns 72.7 76.2 74.4 973 928 707
prepositions 84.6 84.9 84.8 345 344 292
pronouns 75.0 87.5 80.8 28 24 21
verbs 66.7 66.7 66.67 33 33 22
unknown 0 0 0 5 0 0

ALL 77.9 81.6 79.7 2119 2022 1650

Table 5: MWE+POS results on the development corpus, broken down by POS (recall, precision, F-measure, number
of gold MWEs, predicted MWEs, correct MWEs with such POS.

is not recognized (R =72.7), and about one quar-
ter of the predicted nominal MWEs are wrong (P =
76.2). Though these results can be partly explained
by some inconsistencies in MWE annotation in the
French Treebank (Constant et al., 2012), there re-
mains room for improvement for open class MWE
recognition.

8 Conclusion

We have described the LIGM-Alpage system for the
SPMRL 2013 shared task, restricted to the French
track. We provide the best results for the realistic
scenario of predicting both MWEs and dependency
syntax, using a reparsing architecture that combines
several parsers, both pipeline (MWE recognition
followed by parsing) and joint (MWE recognition
performed by the parser). In the future, we plan to
integrate features specific to MWEs into the joint
system, so that the reparser outperforms both the
joint and pipeline systems, not only on parsing (as
it is currently the case) but also on MWE recogni-
tion.

References

A. Arun and F. Keller. 2005. Lexicalization in crosslin-
guistic probabilistic parsing: The case of french. In
Proceedings of the Annual Meeting of the Association
For Computational Linguistics (ACL’05), pages 306–
313.

T. Baldwin and K.S. Nam. 2010. Multiword expressions.

In Handbook of Natural Language Processing, Second
Edition. CRC Press, Taylor and Francis Group.

Bernd Bohnet and Joakim Nivre. 2012. A transition-
based system for joint part-of-speech tagging and la-
beled non-projective dependency parsing. InProceed-
ings of the 2012 Joint Conference on Empirical Meth-
ods in Natural Language Processing and Computa-
tional Natural Language Learning, pages 1455–1465,
Jeju Island, Korea, July. Association for Computa-
tional Linguistics.

Bernd Bohnet. 2010. Top accuracy and fast dependency
parsing is not a contradiction. InProceedings of the
23rd International Conference on Computational Lin-
guistics (COLING’10), Beijing, China.

C. Cafferkey, D. Hogan, and J. van Genabith. 2007.
Multi-word units in treebank-based probabilistic pars-
ing and generation. InProceedings of the 10th Inter-
national Conference on Recent Advances in Natural
Language Processing (RANLP’07).

M.-H. Candito, J. Nivre, P. Denis, and E. Henestroza An-
guiano. 2010. Benchmarking of statistical depen-
dency parsers for french. InProceedings of the 23rd
International Conference on Computational Linguis-
tics (COLING’10), Beijing, China.

Grzegorz Chrupała, Georgiana Dinu, and Josef van Gen-
abith. 2008. Learning morphology with morfette.
In In Proc. of LREC 2008, Marrakech, Morocco.
ELDA/ELRA.

Matthieu Constant and Isabelle Tellier. 2012. Evaluat-
ing the impact of external lexical resources into a crf-
based multiword segmenter and part-of-speech tagger.
In Proceedings of the 8th conference on Language Re-
sources and Evaluation (LREC’12).

Matthieu Constant, Anthony Sigogne, and Patrick Wa-
trin. 2012. Discriminative strategies to integrate mul-

51

tiword expression recognition and parsing. InPro-
ceedings of the 50th Annual Meeting of the Association
for Computational Linguistics: Long Papers - Volume
1, ACL ’12, pages 204–212, Stroudsburg, PA, USA.
Association for Computational Linguistics.

B. Courtois, M. Garrigues, G. Gross, M. Gross,
R. Jung, M. Mathieu-Colas, A. Monceaux, A. Poncet-
Montange, M. Silberztein, and R. Vivés. 1997. Dic-
tionnaire électronique DELAC : les mots composés
binaires. Technical Report 56, University Paris 7,
LADL.

B. Courtois. 2009. Un système de dictionnaires
électroniques pour les mots simples du français.
Langue Française, 87:11–22.

P. Denis and B. Sagot. 2009. Coupling an annotated cor-
pus and a morphosyntactic lexicon for state-of-the-art
POS tagging with less human effort. InProceedings
of the 23rd Pacific Asia Conference on Language, In-
formation and Computation (PACLIC’09), pages 110–
119.

Jason M. Eisner. 1996. Three new probabilistic mod-
els for dependency parsing: an exploration. InPro-
ceedings of the 16th conference on Computational lin-
guistics - Volume 1, COLING ’96, pages 340–345,
Stroudsburg, PA, USA. Association for Computational
Linguistics.

G. Eryigit, T. Ilbay, and O. Arkan Can. 2011. Multiword
expressions in statistical dependency parsing. InPro-
ceedings of the IWPT Workshop on Statistical Pars-
ing of Morphologically-Rich Languages (SPRML’11),
pages 45–55.

S. Green, M.-C. de Marneffe, J. Bauer, and C. D. Man-
ning. 2011. Multiword expression identification with
tree substitution grammars: A parsing tour de force
with french. In Proceedings of the conference on
Empirical Method for Natural Language Processing
(EMNLP’11), pages 725–735.

Spence Green, Marie-Catherine de Marneffe, and
Christopher D Manning. 2013. Parsing models for
identifying multiword expressions. Computational
Linguistics, 39(1):195–227.

J. Lafferty, A. McCallum, and F. Pereira. 2001. Con-
ditional random fields: Probabilistic models for seg-
menting and labeling sequence data. InProceedings of
the Eighteenth International Conference on Machine
Learning (ICML’01), pages 282–289.

Thomas Lavergne, Olivier Cappé, and François Yvon.
2010. Practical very large scale CRFs. InProceed-
ings the 48th Annual Meeting of the Association for
Computational Linguistics (ACL’10), pages 504–513.

Ryan McDonald. 2006. Discriminative Training and
Spanning Tree Algorithms for Dependency Parsing.
Ph.D. thesis, University of Pennsylvania.

J. Nivre and J. Nilsson. 2004. Multiword units in syn-
tactic parsing. InProceedings of Methodologies and
Evaluation of Multiword Units in Real-World Applica-
tions (MEMURA).

J. Nivre, J. Hall, and J. Nilsson. 2006. Maltparser: A
data-driven parser-generator for dependency parsing.
In Proceedings of the fifth international conference
on Language Resources and Evaluation (LREC’06),
pages 2216–2219, Genoa, Italy.

Santanu Pal, Tanmoy Chkraborty, and Sivaji Bandy-
opadhyay. 2011. Handling multiword expressions
in phrase-based statistical machine translation. In
Proceedings of the Machine Translation Summit XIII,
pages 215–224.

O. Piton, D. Maurel, and C. Belleil. 1999. The prolex
data base : Toponyms and gentiles for nlp. InProceed-
ings of the Third International Workshop on Applica-
tions of Natural Language to Data Bases (NLDB’99),
pages 233–237.

Kenji Sagae and Alon Lavie. 2006. Parser combination
by reparsing. InProceedings of the Human Language
Technology Conference of the NAACL, Companion
Volume: Short Papers, NAACL-Short ’06, pages 129–
132, Stroudsburg, PA, USA. Association for Compu-
tational Linguistics.

B. Sagot. 2010. The lefff, a freely available, accurate
and large-coverage lexicon for french. InProceedings
of the 7th International Conference on Language Re-
sources and Evaluation (LREC’10).

Djamé Seddah, Grzegorz Chrupała, Ozlem Cetinoglu,
Josef van Genabith, and Marie Candito. 2010.
Lemmatization and statistical lexicalized parsing of
morphologically-rich languages. InProc. of the
NAACL/HLT Workshop on Statistical Parsing of Mor-
phologically Rich Languages (SPMRL 2010), Los An-
geles, CA.

Djamé Seddah, Reut Tsarfaty, Sandra K’́ubler, Marie
Candito, Jinho Choi, Rich́ard Farkas, Jennifer Fos-
ter, Iakes Goenaga, Koldo Gojenola, Yoav Gold-
berg, Spence Green, Nizar Habash, Marco Kuhlmann,
Wolfgang Maier, Joakim Nivre, Adam Przepi-
orkowski, Ryan Roth, Wolfgang Seeker, Yannick
Versley, Veronika Vincze, Marcin Woliński, Alina
Wróblewska, and Eric Villemonte de la Clérgerie.
2013. Overview of the spmrl 2013 shared task: A
cross-framework evaluation of parsing morphologi-
cally rich languages. InProceedings of the 4th Work-
shop on Statistical Parsing of Morphologically Rich
Languages: Shared Task, Seattle, WA.

52

Proceedings of the Fourth Workshop on Statistical Parsing of Morphologically Rich Languages, pages 53–62,
Seattle, Washington, USA, 18 October 2013. c©2013 Association for Computational Linguistics

Exploring beam-based shift-reduce dependency parsing with DyALog:
Results from the SPMRL 2013 shared task

Éric Villemonte de la Clergerie
INRIA - Rocquencourt - B.P. 105

78153 Le Chesnay Cedex, FRANCE
Eric.De_La_Clergerie@inria.fr

Abstract

The SPMRL 2013 shared task was the op-
portunity to develop and test, with promising
results, a simple beam-based shift-reduce de-
pendency parser on top of the tabular logic
programming system DYALOG. The parser
was also extended to handle ambiguous word
lattices, with almost no loss w.r.t. disam-
biguated input, thanks to specific training, use
of oracle segmentation, and large beams. We
believe that this result is an interesting new
one for shift-reduce parsing.

1 Introduction

DYALOG is a tabular-based logic programming en-
vironment, including a language (variant of Prolog),
a bootstrapped compiler, and C-based abstract ma-
chine. It is mostly used for chart-like parsing (de La
Clergerie, 2005b), in particular for a wide coverage
French Tree Adjoining Grammar (de La Clergerie,
2005a). However, DYALOG offers all the power
of a programming language a la Prolog, with some
specific advantages, and it was tempting to try it
on statistical parsing paradigms. The SPMRL 2013
shared task (Seddah et al., 2013) was an interesting
opportunity to develop a simple (non-deterministic)
beam-based shift-reduce dependency parser, called
DYALOG-SR, inspired by (Huang and Sagae, 2010).

The main advantage of logic programming is the
(almost) transparent handling of non-determinism,
useful for instance to handle ambiguous word lat-
tices. DYALOG allows an easy tabulation of items,
and their fast retrieval (thanks to full term indexing),
needed for the dynamic programming part of the al-
gorithm. Thanks to structure sharing and term hash-
ing, it also reduces the costs related to the tabulation

of multiple items (sharing subparts) and to term uni-
fication. Logic programs tend to be very concise,
with, in our case, around 1500 lines of DYALOG

code. However, one of the disadvantages of (pure)
logic programming, and of DYALOG in particular,
is the handling of mutable structures, which moti-
vated the development of a companion C module
(around 850 lines) to handle statistical models (load-
ing, querying, updating, and saving).

We briefly present the implemented algorithm
(Section 2) and list the preliminary adaptations done
for the 9 languages of the shared task (Section 3).
We analyze in Section 4 the official results for
DYALOG-SR. Recent developments corrected some
weaknesses of DYALOG-SR. In particular, we ex-
plain in Section 5 how we seriously improved the
parsing of ambiguous lattices, an important new re-
sult for shift-reduce parsing. Finally, Section 6 pro-
vides some empirical data about the efficiency and
complexity of the algorithm.

2 A Dynamic Programming Shift-Reduce
parser

We used (Huang and Sagae, 2010) as the starting
point for this work, in particular using the same
simple arc-standard strategy for building projective
dependency trees, defined by the deductive system
of Figure 1. In a configuration m:〈j, S〉:c, m de-
notes the number of transitions applied since the ax-
iom configuration, j the current position in the in-
put string, S the stack of partial dependency trees
built so far, and c the cost. A shift transition pushes
the next input symbol on top of the stack while the
two reduce transitions combine the 2 topmost stack
trees, add a new (labeled) leftmost or rightmost de-

53

pendency edge between their roots, and remove the
newly governed subtree from the stack. The delta
cost ξ, λ, and ρ denote the cost of each operation
w.r.t. the input configuration.

input: w0 . . . wn−1

axiom 0:〈0, ε〉:0

shift
m:〈j, S〉:c

m+ 1:〈j + 1, S|wj〉:c+ ξ

re
l
x

m:〈j, S|s1|s0〉:c
m+ 1:〈j, S|s1 lxs0〉:c+ λ

reyl

m:〈j, S|s1|s0〉:c
m+ 1:〈j, S|s1 yl s0〉:c+ ρ

goal 2n− 1:〈n, s0〉:c

Figure 1: Arc-standard deductive system

From the configurations, the deductive system,
and the configuration elements used to determine
the transition costs, it is relatively straightforward to
design items denoting partial configurations stand-
ing for equivalence classes of configurations and al-
lowing computation sharing, following the principle
of Dynamic Programming. The deduction rules are
adapted to work on items and beam search (with size
b) is then achieved by keeping only the b best items
for each step m1. By following backpointers from
items to parents, it is possible to retrieve the best
transition sequence and the best dependency tree.

i t em { s t e p => M,
r i g h t => J ,
s t a c k => S0 , % t o p m o s t t r e e s
s t a c k 1 => S1 , %
p r e f i x => Cost , % max c o s t
i n s i d e => I C o s t % i n s i d e c o s t

} .
back (Item , Act ion , P a r e n t 1 , P a r e n t 2 , C) .
t a i l (I tem , A n c e s t o r) .

Listing 1: Item structure

Instead of the items proposed in (Huang and
Sagae, 2010), we switched to items closer to those
proposed in (Goldberg et al., 2013), corresponding

1Because we use Dynamic Programming techniques, keep-
ing the b-best items at step m actually corresponds to keep more
than the b-best configurations at step m.

to Tree Structured Stacks (TSS), where stack tails
are shared among items, as defined by Listing 1. The
prefix cost corresponds to the maximal cost attached
to the item, starting from the initial item. The inside
cost is the maximal cost for a derivation from some
ancestor item where s0 was shifted on the stack, and
is used to adjust the total cost for different ancestor
items. The items are completed by backpointers (us-
ing asserted facts back/5) and links to the potential
stack tails (using asserted facts tail/2) needed to
retrieve the lower part of a stack when applying a re-
duce action. Figure 2 shows the adaptation for items
of some of the deductive rules.

shift
I = m:〈j, s0, s1〉:(c, ι)

J = m+ 1:〈j + 1, wj , s0〉:(c+ ξ, ξ)
tail(J) += I

back(J) +=(shift, I,nil, c+ ξ)

re
l
x

I = m:〈j, s0, s1〉:(c, ι)
J = _:〈_, s1, s2〉:(c′, ι′) ∈ tail(I)

K = m+ 1:〈j, s1 lxs0, s2〉:(c′ + δ, ι′ + δ)
δ = ι+ λ

tail(K)∪= tail(J)
back(K) +=(lx, I, J, c′ + δ)

Figure 2: Deductive system on items (fragment)

The stack elements for configuration are depen-
dency trees, but approximations can be used for the
item fields stack and stack1, under the con-
dition that sufficient information remains to apply
the transitions and to compute the costs. In prac-
tice, we keep information about the root node, and,
when present, the leftmost and rightmost depen-
dency edges, the numbers of left and right depen-
dencies (valency), and the label sets (domain) for the
left and right dependencies.

The training phase relies on sequences of ac-
tions provided by an oracle and uses a simple av-
eraged structured perceptron algorithm (Daume,
2006). The underlying statistical model is updated
positively for the actions of the oracle and negatively
for the actions of the parser, whenever a point of di-
vergence is found. Several updating strategies may
be considered (Huang et al., 2012), and, in our case,
we update as early (early update) and as often as
possible: after completion of Step m+ 1, we update
the model locally (i.e. for the last action) whenever

54

• the best item BO
m+1 derived from the oracle

item Om at Step m differs from the expected
oracle item Om+1;

• the oracle item Om+1 is not in the beam, for
intermediary steps m < 2n− 2;

• the oracle item Om+1 is not the best item, for
the last step m = 2n− 2.

We use a relatively standard set of word features
related to the CONLL fields such as lex (FORM),
lemma, cat (CPOSTAG), fullcat (POSTAG),
mstag (morphosyntactic features FEATS). They
apply to the next unread word (*I, say lemmaI),
the two next lookahead words (*I2 and *I3),
and (when present) to the 2 stack root nodes (*0
and *1), their leftmost and rightmost child (before
b*[01] and after a*[01]). We have dependency
features such as the labels of the leftmost and right-
most edges ([ab]label[01]), the left and right
valency and domains ([ab][vd][01]). Finally,
we have 3 (discretized) distance features between
the next word and the stack roots (delta[01])
and between the two stack roots (delta01). Most
feature values are atomic (either numerical or sym-
bolic), but they can also be (recursively) a list of
values, for instance for the mstag and domain fea-
tures.

A tagset (for a given language and/or treebank)
contains a set of feature templates, each tem-
plate being a sequence of features (for instance
fullcat0:fullcat1:blabel0).

Model management is a key factor for the effi-
ciency of the algorithm, both for querying or updat-
ing the costs attached to a configuration. Therefore,
we developed a specialized C companion module. A
model is represented by a hash trie to factor the pre-
fixes of the templates. Costs are stored in the leaves
(for selecting the labels) and their immediate par-
ent (for selecting between the shift and reduce
base actions), ensuring join learning with smoothing
of an action and a label. Querying is done by pro-
viding a tree-structured argument representing the
feature values for all templates2, with the possibil-

2The tree structure of the argument mirrors the tree structure
of the templates and getting the argument tree for a configura-
tion is actually a fast and very low memory operation, thanks to
unification and structure sharing.

ity to leave underspecified the action and the label.
By traversing in a synchronous way the model trie
and the argument tree, and accumulating costs for
all possible actions and labels, a single query returns
in order the cost for the b best actions. Furthermore,
when a feature value is a list, the traversal is run
for all its components (with summation of all found
costs).

3 Preparing the shared task

We trained the parser on the training and dev de-
pendency treebanks kindly provided by the organiz-
ers for the 9 languages of the task, namely Ara-
bic3, Basque (Aduriz et al., 2003), French (Abeillé
et al., 2003), German (Brants et al., 2002; Seeker
and Kuhn, 2012), Hebrew (Sima’an et al., 2001;
Tsarfaty, 2013; Goldberg, 2011), Hungarian (Vincze
et al., 2010; Csendes et al., 2005), Korean (Choi
et al., 1994; Choi, 2013) , Polish (Świdziński and
Woliński, 2010), Swedish (Nivre et al., 2006).

Being very short in time, we essentially used the
same set of around 110 templates for all languages.
Nevertheless, minimal tuning was performed for
some languages and for the pred data mode (when
using predicted data), as summarized below.

For French, the main problem was to retrieve
MWEs (Multi Word Expression) in pred data
mode. Predicted features mwehead and pred were
added, thanks to a list of MWEs collected in the gold
treebank and in the French lexicon LEFFF (Sagot
et al., 2006). We also added the predicted feature
is_number to help detecting numerical MWEs
such as 120 000, and also a is_capitalized
feature. For all data modes, we added a sub-
categorization feature for verbs (with a list value),
again extracted from LEFFF.

For Arabic, Hebrew, and Swedish, the lemma
feature is removed because of the absence of lemma
in the treebanks. Similarly, for Polish and German,
with identical CPOS and POS tagsets, we remove
the cat feature.

For Hungarian, the SubPOS morphosyntactic
feature is appended to the fullcat feature, to get a

3We used the shared task Arabic data set, originally provided
by the LDC (Maamouri et al., 2004), specifically its SPMRL
2013 dependency instance, derived from the Columbia Catib
Treebank (Habash and Roth, 2009; Habash et al., 2009)

55

richer set of POS. The set of dependency labels be-
ing large (450 labels), we split the labels into lists of
more elementary ones for the label features.

Similarly, the Korean POS tags are also split into
lists, because of their large number (2743 tags) and
of their compound structure.

For French, Hebrew, and Korean, in order to com-
pensate initially large differences in performance
between the gold and pred modes, we added, for
the pred mode, dict features filled by predicted
information about the possible tags for a given
form, thanks to the dict lexicons provided by the
IMS_SZEGED team.

Finally, we discovered very late that the depen-
dency trees were not necessarily projective for a few
languages. A last-second solution was to use the
MALT projectivization / deprojectivization wrap-
pers (Nivre and Nilsson, 2005) to be able to train
on projectivized versions of the treebanks for Ger-
man, Hungarian, and Swedish, while returning non
projective trees.

4 First results

Under the team label ALPAGE-DYALOG, we have
returned parsed data for the 9 languages of the
shared task, for the full and 5k training size modes,
and for the gold and pred data modes. For each
configuration, we provided 3 runs, for beam sizes
8, 6, and 4. The results are synthesized in Tables 2,
with LAS4 on the test and dev files, contrasted
with the LAS for the best system, the baseline, and
the mean LAS of all systems. The tables show that
DYALOG-SR cannot compete with the best system
(like most other participants !), but performs reason-
ably well w.r.t. the baseline and the mean LAS of
the participants, at least in the gold/full case.

The system is proportionally less accurate on
smaller training treebanks (5k case), lacking good
smoothing mechanisms to deal with data sparseness.
The pred case is also more difficult, possibly again
because of data sparseness (less reliable information
not compensated by bigger treebanks) but also be-
cause we exploited no extra information for some
languages (such as Basque or Swedish).

The big drop for German in pred/5k case

4Labeled Attachment Score, with punctuation being taking
into account.

comes from the fact we were unable to de-
projectivize the parsed test file with Malt5 and re-
turned data built using an old model not relying on
Malt proj/deproj wrappers.

For Hungarian, a possible reason is the high level
of multiple roots in sentences, not compatible with
our initial assumption of a single root per sentence.
New experiments, after modifying slightly the al-
gorithm to accept multiple roots6, confirm this hy-
pothesis for Hungarian, and for other languages with
multiple roots, as shown in Table 1.

language #roots/sent single multiple

Hungarian 2.00 79.22 82.90
Arabic 1.21 87.17 87.71
Basque 1.21 81.09 82.28
German 1.09 90.95 91.29

Table 1: Taking into account multiple roots (on gold/full)

Finally, the Korean case, where we are below the
baseline, remains to be explained. For the pred case,
it could come from the use of the KAIST tagset in-
stead of the alternative Seijong tagset. For the gold
case, the results for all participants are actually rela-
tively close.

5 Handling ambiguous lattices

One of the important and innovative sub-tasks of the
SPMRL campaign was to parse ambiguous lattices
using statistical methods. A word lattice is just a Di-
rected Acyclic Graph (DAG) whose edges are deco-
rated by words with their features and whose nodes
denote positions in the sentence, as represented in
Figure 3 for an Hebrew sentence. A valid analysis
for a sentence should follow a path in the DAG from
its root node at position 0 till its final node at posi-
tion n. Each edge may be associated with an unique
identifier to be able to refer it.

Lattice parsing is rather standard in chart-parsing7

and since the beginning, thanks to DYALOG’s sup-
port, DYALOG-SR was designed to parse ambigu-
ous word lattices as input, but originally using

5because of non-termination on at least one sentence.
6Essentially, the initial configuration becomes 0:〈0,0〉:0

and the final one 2n:〈n,0 y ?〉:c using 0 as a virtual root
node.

7being formalized as computing the intersection of a gram-
mar with a regular language.

56

DYALOG-SR other systems
language test dev b best baseline mean

Arabic 85.87 86.99 4 89.83 82.28 86.11
Basque 80.39 81.09 6 86.68 69.19 79.58
French 87.69 87.94 8 90.29 79.86 85.99
German 88.25 90.89 6 91.83 79.98 86.80
Hebrew 80.70 81.31 8 83.87 76.61 80.13
Hungarian 79.60 79.09 4 88.06 72.34 81.36
Korean 88.23 89.24 6 89.59 88.43 88.91
Polish 86.00 86.94 8 89.58 77.70 83.79
Swedish 79.80 75.94 6 83.97 75.73 79.21

(a) gold/full

DYALOG-SR other systems
language test dev b best baseline mean

Arabic 83.25 84.24 8 87.35 80.36 83.79
Basque 79.11 79.03 8 85.69 67.13 78.33
French 85.66 0.00 8 88.73 78.16 84.49
German 83.88 87.21 6 87.70 76.64 83.06
Hebrew 80.70 81.31 8 83.87 76.61 80.13
Hungarian 78.42 79.09 4 87.21 71.27 80.42
Korean 81.91 84.50 6 83.74 81.93 82.74
Polish 85.67 0.00 8 89.16 76.64 83.13
Swedish 79.80 0.00 6 83.97 75.73 79.21

(b) gold/5k

DYALOG-SR other systems
language test dev b best baseline mean

Arabic 81.20 82.18 8 86.21 80.36 82.57
Basque 77.55 78.47 4 85.14 70.11 79.13
French 82.06 82.88 8 85.86 77.98 81.03
German 84.80 88.38 8 89.65 77.81 84.33
Hebrew 73.63 74.74 6 80.89 69.97 73.30
Hungarian 75.58 75.74 6 86.13 70.15 79.23
Korean 81.02 82.45 6 86.62 82.06 83.09
Polish 82.56 83.87 8 87.07 75.63 81.40
Swedish 77.54 73.37 8 82.13 73.21 77.65

(c) pred/full

DYALOG-SR other systems
language test dev b best baseline mean

Arabic 78.65 79.25 8 83.66 78.48 80.19
Basque 76.06 76.11 6 83.84 68.12 77.76
French 80.11 0.00 4 83.60 76.54 79.31
German 73.07 84.69 8 85.08 74.81 79.34
Hebrew 73.63 74.74 6 80.89 69.97 73.30
Hungarian 74.48 75.55 6 85.24 69.08 78.31
Korean 73.79 76.66 6 80.80 74.87 76.34
Polish 82.04 0.00 8 86.69 75.29 80.96
Swedish 77.54 72.44 8 82.13 73.21 77.65

(d) pred/5k

Table 2: Official results

0 1 2 3 4 5 6

1:AIF/NN

2:AIF/VB

3:AIF/NNT

4:LA/RB

5:NISH/VB

6:NISH/NN

7:L/PREP

8:LHSTIR/VB

9:HSTIR/VB

10:ZAT/PRP

Figure 3: An ambiguous Hebrew word lattice (with gold segmentation path AIF LA NISH LHSTIR ZAT)

models trained on standard CONLL non ambigu-
ous sentences. However, the initial experiments
with Hebrew lattices (Table 3, using TED metric)
have shown an important drop of 11 points between
non ambiguous lattices (similar to standard CONLL
files) and ambiguous ones.

Hebrew Arabic
disamb nodisamb disamb

no training 87.34 76.35 87.32
spec. training 86.75

Table 3: Results on dev lattices (TED accuracy ∗ 100)

The main reason for that situation is that multi-
ple paths of various lengths are now possible when
traversing a lattice. Final items are no longer associ-
ated with the same number of steps (2n−1) and final
items with a large number of steps (corresponding to

longest paths in the lattice) tend to be favored over
those with a small number of steps (corresponding
to shortest paths), because the transition costs tend
to be positive in our models.

A first attempt to compensate this bias was to
“normalize” path lengths by adding (incrementally)
some extra cost to the shortest paths, proportional
to the number of missing steps. Again using models
trained on non-ambiguous segmentations, we gained
around 3 points (TED accuracy around 79) using
this approach, still largely below the non-ambiguous
case.

Finally, we opted for specific training on lattice,
with the idea of introducing the new length word
feature, whose value is defined, for a word, as
the difference between its right and left position
in the lattice. To exploit this feature, we added
the following 9 templates: length[I,I2,0],

57

fullcat[I,I2,0]:length[I,I2,0],
lengthI:lengthI2, length0:lengthI,
and length0:lengthI:lengthI2.

Then, to ensure that we follow valid lattice paths,
the configurations and items were completed with
three extra lookahead fields la[123] to remem-
ber the edge identifiers of the lookahead words that
were consulted. Obviously, adding this extra infor-
mation increases the number of items, only differing
on their lookahead sequences, but it is an important
element for the coherence of the algorithm.

The reduce actions are kept unchanged, modulo
the propagation without change of the lookahead
identifiers, as shown below:

re
l
x

m :< j, S|s1|s0, la1, la2, la3 >: c

m+ 1 :< j, S|s1 lxs0, la1, la2, la3 >: c+ λ

reyl

m :< j, S|s1|s0, la1, la2, la3 >: c

m+ 1 :< j, S|s1 yl s0, la1, la2, la3 >: c+ ρ

On the other hand, the shift action consumes its
first lookahead identifier la1 (for a word between po-
sition j and k) and selects a new lookahead identifier
la4 (which must be a valid choice for continuing the
path la1, la2, la3):

shift
m :< j, S, la1, la2, la3 >: c

m+ 1 :< k, S|la1, la2, la3, la4 >: c+ ξ

It should be noted that for a given position j in
the lattice, we may have several items only differ-
ing by their lookahead sequences la1, la2, la3, and
each of them will produce at least one new item by
shifting la1, and possibly more than one because of
multiple la4. However, several of these new shifted
items are discarded because of the beam. Learning
good estimations for the shift actions becomes a key
point, more important than for usual shift-reduce al-
gorithms.

In order to do that, we modified the oracle to pro-
vide information about the oracle segmentation path
in the lattice, essentially by mentioning which edge
identifier should be used for each oracle shift action.
It should be noted that this information is also suffi-
cient to determine the lookahead sequence for each
oracle item, and in particular, the new edge identifier
la4 to be retrieved for the shift actions.

An issue was however to align the predicted lat-
tices with the gold sentences (implementing a stan-
dard dynamic programming algorithm) in order to
find the oracle segmentation paths. Unfortunately,
we found that the segmentation path was missing
for 1,055 sentences in the provided Hebrew lattices
(around 20% of all sentences). Rather than discard-
ing these sentences from an already small training
set, we decided to keep them with incomplete prefix
segmentation paths and oracles.

Figure 4 shows the strong impact of a specific
training and of using large beams, with a TED accu-
racy climbing up to 86.75 (for beam size 16), close
to the 87.34 reached on non-ambiguous lattices (for
beam 6). Increasing beam size (around 3 times)
seems necessary, probably for compensating the lat-
tice ambiguities (2.76 transitions per token on aver-
age). However, even at beam=6, we get much better
results (TED=83.47) than without specific training
for the same beam size (TED=76.35).

6 8 10 12 14 16

84

85

86

beam size

10
0
∗

T
E

D
ac

cu
ra

cy

Figure 4: Score on Hebrew lattices w.r.t. beam size

To test the pertinence of the length features,
we did some training experiments without these fea-
tures. Against our expectations, we observed only a
very low drop in performance (TED 86.50, loss =
0.25). It is possible that the lex features are suffi-
cient, because only a relatively restricted set of (fre-
quent) words have segmentations with length > 1.
In practice, for the Hebrew 5k training lattices, we
have 4,141 words with length > 1 for 44,722 oc-
currences (22.21% of all forms, and 12.65% of all
occurrences), with around 80% of these occurrences
covered by only 1,000 words. It is also possible that
we under-employ the length features in too few
templates, and that larger gains could be obtained.

58

6 Empirical analysis

The diversity and amount of data provided for the
shared task was the opportunity to investigate more
closely the properties of DYALOG-SR, to identify its
weaknesses, and to try to improve it.

The usefulness of beams has been already proved
in the case of Hebrew ambiguous lattices, and Fig-
ure 5 confirms that, in general, we get serious im-
provements using a beam, but in practice, beam sizes
above 8 are not worth it. However, we observe al-
most no gain for Korean, a situation to be investi-
gated.

2 4 6 8

84

85

86

87

88

89

beam size

L
A

S

Arabic
French
Korean

Figure 5: Accuracy evolution w.r.t. beam size

Efficiency was not the main motivation for this
work and for the shared task. However, it is worth-
while to examine the empirical complexity of the al-
gorithm w.r.t. beam size and w.r.t. sentence length.
As shown in Figure 6, the average speed at beam=1
is around 740 tokens by second. At best, we ex-
pect a linear decreasing of the speed w.r.t. to beam
size, motivating the use of a normalized speed by
multiplying by the size. Surprisingly, we observe
a faster normalized speed than expected for small
beam sizes, maybe arising from computation shar-
ing. However, for larger beam sizes, we observe
a strong decrease, maybe related to beam manage-
ment through (longer) sorted DYALOG lists, but also
to some limits of term indexing8. The same experi-
ence carried for large beam sizes on the Hebrew lat-
tices does not exhibit the same degradation, a point
to be investigated but which suggests some kind of

8Even with efficient term indexing, checking the presence of
an item in DYALOG table is not a constant time operation.

equivalence between beam=4 on non ambiguous in-
put string and beam=12 on ambiguous lattices (also
reflected in accuracy evolution).

2 4 6 8

600

800

1,000

1,200

beam size

(t
ok

en
s

pe
rs

ec
on

d)
∗

be
am

He Hu
Po avg

Figure 6: Normalized speed w.r.t. beam size (dev)

6 8 10 12 14 16

260

280

300

320

340

beam size

(t
ok

en
s

pe
rs

ec
on

d)
∗

be
am

Figure 7: Normalized speed w.r.t. beam size (lattices)

Collecting parsing times for the sentences under
length 80 from all training files and for all training
iterations, Figure 8 confirms that parsing time (di-
vided by beam size) is linear w.r.t. sentence length
both for beam=1 and beam=8. On the other hand,
we observe, Figure 9, that the number of updates
increases with beam size (confirming that larger
beams offer more possibilities of updates), but also
non linearly with sentence length.

7 Conclusion

We have presented DYALOG-SR, a new implemen-
tation on top of DYALOG system of a beam-based

59

20 40 60 80

50

100

150

200

250

sentence length

tim
e

/b
ea

m
(m

s)

b=1
b=8

Figure 8: Parsing time w.r.t. sentence length (train)

20 40 60 80
0

20

40

60

80

100

sentence length

#u
pd

at
es

b=1
b=8

Figure 9: Number of updates w.r.t. sentence length (train)

shift-reduce parser with some preliminary support
for training on ambiguous lattices. Although devel-
oped and tuned in less than a month, the participa-
tion of this very young system to the SPMRL 2013
shared task has shown its potential, even if far from
the results of the best participants. As far as we
know, DYALOG-SR is also the first system to show
that shift-parsing techniques can be applied on am-
biguous lattices, with almost no accuracy loss and
with only minimal modifications (but large beams).

Several options are currently under considera-
tion for improving the performances of DYALOG-SR.
The first one is the (relatively straightforward) evo-
lution of the parsing strategy for handling directly
non-projective dependency trees, through the addi-
tion of some kind of SWAP transition (Nivre, 2009).
Our preliminary experiments have shown the impor-
tance of larger beam sizes to cover the increased
level of ambiguity due to lattices. However, it seems

possible to adjust locally the beam size in function
of the topology of the lattice, for improved accu-
racy and faster parsing. It also seems necessary to
explore feature filtering, possibly using a tool like
MALTOPTIMIZER (Ballesteros and Nivre, 2012), to
determine the most discriminating ones.

The current implementation scales correctly w.r.t.
sentence length and, to a lesser extent, beam size.
Nevertheless, for efficiency reasons, we plan to im-
plement a simple C module for beam management to
avoid the manipulation in DYALOG of sorted lists.
Interestingly, such a module, plus the already im-
plemented model manager, should also be usable to
speed up the disambiguation process of DYALOG-
based TAG parser FRMG (de La Clergerie, 2005a).
Actually, these components could be integrated in a
slow but on-going effort to add first-class probabili-
ties (or weights) in DYALOG, following the ideas of
(Eisner and Filardo, 2011) or (Sato, 2008).

Clearly, DYALOG-SR is still at beta stage. How-
ever, for interested people, the sources are freely
available9, to be packaged in a near future.

Acknowledgements

We would like to thank the organizers of the SPMRL
2013 shared task and the providers of the datasets for
the 9 languages of the task.

References
Anne Abeillé, Lionel Clément, and François Toussenel.

2003. Building a treebank for French. In Anne
Abeillé, editor, Treebanks. Kluwer, Dordrecht.

Itziar Aduriz, M. J. Aranzabe, J. M. Arriola, A. Atutxa,
A. Díaz de Ilarraza, A. Garmendia, and M. Oronoz.
2003. Construction of a Basque dependency treebank.
In TLT-03, pages 201–204.

Miguel Ballesteros and Joakim Nivre. 2012. MaltOp-
timizer: an optimization tool for MaltParser. In Pro-
ceedings of the Demonstrations at the 13th Conference
of the European Chapter of the Association for Com-
putational Linguistics, pages 58–62.

Sabine Brants, Stefanie Dipper, Silvia Hansen, Wolf-
gang Lezius, and George Smith. 2002. The TIGER
treebank. In Erhard Hinrichs and Kiril Simov, edi-
tors, Proceedings of the First Workshop on Treebanks

9via Subversion on INRIA GForge at https://gforge.
inria.fr/scm/viewvc.php/dyalog-sr/trunk/
?root=dyalog

60

and Linguistic Theories (TLT 2002), pages 24–41, So-
zopol, Bulgaria.

Key-Sun Choi, Young S Han, Young G Han, and Oh W
Kwon. 1994. KAIST tree bank project for Korean:
Present and future development. In Proceedings of
the International Workshop on Sharable Natural Lan-
guage Resources, pages 7–14. Citeseer.

Jinho D. Choi. 2013. Preparing Korean Data for the
Shared Task on Parsing Morphologically Rich Lan-
guages. ArXiv e-prints, September.

Dóra Csendes, Janós Csirik, Tibor Gyimóthy, and An-
drás Kocsor. 2005. The Szeged treebank. In Václav
Matoušek, Pavel Mautner, and Tomáš Pavelka, editors,
Text, Speech and Dialogue: Proceedings of TSD 2005.
Springer.

Harold Charles Daume. 2006. Practical structured
learning techniques for natural language processing.
Ph.D. thesis, University of Southern California.

Éric de La Clergerie. 2005a. From metagrammars to fac-
torized TAG/TIG parsers. In Proceedings of IWPT’05
(poster), pages 190–191, Vancouver, Canada.

Éric de La Clergerie. 2005b. DyALog: a tabular
logic programming based environment for NLP. In
Proceedings of 2nd International Workshop on Con-
straint Solving and Language Processing (CSLP’05),
Barcelone, Espagne, October.

Jason Eisner and Nathaniel W. Filardo. 2011. Dyna: Ex-
tending Datalog for modern AI. In Tim Furche, Georg
Gottlob, Giovanni Grasso, Oege de Moor, and Andrew
Sellers, editors, Datalog 2.0, Lecture Notes in Com-
puter Science. Springer. 40 pages.

Yoav Goldberg, Kai Zhao, and Liang Huang. 2013.
Efficient implementation of beam-search incremen-
tal parsers. In Proc. of the 51st Annual Meeting of
the Association for Computational Linguistics (ACL),
Sophia, Bulgaria, August.

Yoav Goldberg. 2011. Automatic syntactic processing of
Modern Hebrew. Ph.D. thesis, Ben Gurion University
of the Negev.

Nizar Habash and Ryan Roth. 2009. Catib: The
Columbia Arabic Treebank. In Proceedings of the
ACL-IJCNLP 2009 Conference Short Papers, pages
221–224, Suntec, Singapore, August. Association for
Computational Linguistics.

Nizar Habash, Reem Faraj, and Ryan Roth. 2009. Syn-
tactic Annotation in the Columbia Arabic Treebank. In
Proceedings of MEDAR International Conference on
Arabic Language Resources and Tools, Cairo, Egypt.

Liang Huang and Kenji Sagae. 2010. Dynamic program-
ming for linear-time incremental parsing. In Proceed-
ings of the 48th Annual Meeting of the Association for
Computational Linguistics, pages 1077–1086. Associ-
ation for Computational Linguistics.

Liang Huang, Suphan Fayong, and Yang Guo. 2012.
Structured perceptron with inexact search. In Proceed-
ings of HLT-NAACL 2012, pages 142–151.

Mohamed Maamouri, Ann Bies, Tim Buckwalter, and
Wigdan Mekki. 2004. The Penn Arabic Treebank:
Building a Large-Scale Annotated Arabic Corpus. In
NEMLAR Conference on Arabic Language Resources
and Tools.

Joakim Nivre and Jens Nilsson. 2005. Pseudo-projective
dependency parsing. In Proceedings of the 43rd An-
nual Meeting on Association for Computational Lin-
guistics, pages 99–106.

Joakim Nivre, Jens Nilsson, and Johan Hall. 2006. Tal-
banken05: A Swedish treebank with phrase structure
and dependency annotation. In Proceedings of LREC,
pages 1392–1395, Genoa, Italy.

Joakim Nivre. 2009. Non-projective dependency parsing
in expected linear time. In Proceedings of the Joint
Conference of the 47th Annual Meeting of the ACL and
the 4th International Joint Conference on Natural Lan-
guage Processing of the AFNLP: Volume 1-Volume 1,
pages 351–359.

Benoît Sagot, Lionel Clément, Éric de La Clergerie, and
Pierre Boullier. 2006. The Lefff 2 syntactic lexicon
for French: architecture, acquisition, use. In Proceed-
ings of the 5th Language Resources and Evaluation
Conference (LREC’06), Genova, Italie.

Taisuke Sato. 2008. A glimpse of symbolic-statistical
modeling by PRISM. J. Intell. Inf. Syst., 31(2):161–
176.

Djamé Seddah, Reut Tsarfaty, Sandra Kübler, Marie Can-
dito, Jinho Choi, Richárd Farkas, Jennifer Foster, Iakes
Goenaga, Koldo Gojenola, Yoav Goldberg, Spence
Green, Nizar Habash, Marco Kuhlmann, Wolfgang
Maier, Joakim Nivre, Adam Przepiorkowski, Ryan
Roth, Wolfgang Seeker, Yannick Versley, Veronika
Vincze, Marcin Woliński, Alina Wróblewska, and Éric
Villemonte de la Clergerie. 2013. Overview of the
SPMRL 2013 shared task: A cross-framework evalu-
ation of parsing morphologically rich languages. In
Proceedings of the 4th Workshop on Statistical Pars-
ing of Morphologically Rich Languages: Shared Task,
Seattle, WA.

Wolfgang Seeker and Jonas Kuhn. 2012. Making El-
lipses Explicit in Dependency Conversion for a Ger-
man Treebank. In Proceedings of the 8th Interna-
tional Conference on Language Resources and Eval-
uation, pages 3132–3139, Istanbul, Turkey. European
Language Resources Association (ELRA).

Khalil Sima’an, Alon Itai, Yoad Winter, Alon Altman,
and Noa Nativ. 2001. Building a Tree-Bank for
Modern Hebrew Text. In Traitement Automatique des
Langues.

61

Marek Świdziński and Marcin Woliński. 2010. Towards
a bank of constituent parse trees for Polish. In Text,
Speech and Dialogue: 13th International Conference
(TSD), Lecture Notes in Artificial Intelligence, pages
197—204, Brno, Czech Republic. Springer.

Reut Tsarfaty. 2013. A Unified Morpho-Syntactic
Scheme of Stanford Dependencies. Proceedings of
ACL.

Veronika Vincze, Dóra Szauter, Attila Almási, György
Móra, Zoltán Alexin, and János Csirik. 2010. Hun-
garian dependency treebank. In LREC.

62

Proceedings of the Fourth Workshop on Statistical Parsing of Morphologically Rich Languages, pages 63–70,
Seattle, Washington, USA, 18 October 2013. c©2013 Association for Computational Linguistics

Effective Morphological Feature Selection
with MaltOptimizer at the SPMRL 2013 Shared Task

Miguel Ballesteros
Natural Language Processing Group

Pompeu Fabra University.
Barcelona, Spain

miguel.ballesteros@upf.edu

Abstract

The inclusion of morphological features pro-
vides very useful information that helps to en-
hance the results when parsing morphologi-
cally rich languages. MaltOptimizer is a tool,
that given a data set, searches for the opti-
mal parameters, parsing algorithm and opti-
mal feature set achieving the best results that
it can find for parsers trained with MaltParser.
In this paper, we present an extension of Mal-
tOptimizer that explores, one by one and in
combination, the features that are geared to-
wards morphology. From our experiments
in the context of the Shared Task on Parsing
Morphologically Rich Languages, we extract
an in-depth study that shows which features
are actually useful for transition-based pars-
ing and we provide competitive results, in a
fast and simple way.

1 Introduction

Since the CoNLL Shared Tasks on Syntactic Depen-
dency parsing (Buchholz and Marsi, 2006; Nivre et
al., 2007), the number of treebanks and new pars-
ing methods have considerably increased. Thanks to
that, it has been observed that parsing morphologi-
cally rich languages (henceforth, MRLs) is a chal-
lenge because these languages include multiple lev-
els of information that are difficult to classify and,
therefore, to parse. This is why there has been recent
research in this direction, with for instance a Special
Issue in Computational Linguistics (Tsarfaty et al.,
2012b).

MaltOptimizer (Ballesteros and Nivre, 2012b;
Ballesteros and Nivre, 2012a) is a system that is ca-

pable of providing optimal settings for training mod-
els with MaltParser (Nivre et al., 2006a), a freely
available transition-based parser generator. MaltOp-
timizer, among other things, performs an in-depth
feature selection, selecting the attributes that help
to achieve better parsing results. In this paper –
and in this participation in the Shared Task on Pars-
ing Morphologically Rich Languages (Seddah et al.,
2013) – we present an extension of MaltOptimizer
that performs a deeper search over the morpholog-
ical features that are somewhat one of the keys to
parsing MRLs. Instead of lumping all morphosyn-
tactic features together, we define a different field for
each individual feature (case, number, gender, etc.).
Hence, we are able to extract a study that shows
which features are actually useful for parsing MRLs
with MaltParser.

The new SPMRL-MaltOptimizer imple-
mentation is available for download at
http://nil.fdi.ucm.es/maltoptimizer/spmrl.html.
It is worth noting that it can be applied to any
treebank in CoNLL data format.1

The rest of the paper is organized as follows. Sec-
tion 2 describes MaltOptimizer. Section 3 shows
how we modified MaltOptimizer to make it able to
perform a more complete morphological feature se-
lection. Section 4 describes the experiments that we
carried out with the data sets of the Shared Task on
Parsing Morphologically Rich Languages. Section
5 reports the results of the experiments and the con-
clusions that we can extract. Section 6 discusses re-
lated work on MaltOptimizer and parsing morpho-
logically rich languages. And finally, Section 7 con-

1http://ilk.uvt.nl/conll/#dataformat

63

cludes.

2 MaltOptimizer

MaltOptimizer is a system written in Java that im-
plements a full optimization procedure for Malt-
Parser based on the experience acquired from pre-
vious experiments (Hall et al., 2007; Nivre and
Hall, 2010). MaltOptimizer attempts to find the best
model that it can find, but it does not guarantee that
the outcome is the best model possible because of
the difficulty of exploring all the possibilities that are
provided by the parameters, parsing algorithms and
different feature windows. The optimization proce-
dure is divided in 3 different phases, as follows:

1. Data analysis and initial optimization.

2. Parsing algorithm selection.

3. Feature selection and LIBLINEAR optimiza-
tion.

MaltOptimizer divides the treebank into a train-
ing set and a held-out test set for evaluation. In the
first phase, MaltOptimizer makes an analysis of the
treebank in order to set up the rest of the optimiza-
tion, and it attempts the optimization with some gen-
eral parameters, such as the way of handling covered
roots.2 After that, it tests the parsing algorithms that
are available in MaltParser by selecting the one that
provides best results in default settings. In the third
phase, it explores a wide range of features that are
based on previous parsing steps and/or the informa-
tion annotated in the treebanks. Finally, it also ex-
plores the single hyper-parameter (c) of the LIBLIN-
EAR classifier.

In the next Section, we present how we updated
MaltOptimizer for our participation in the Shared
Task of parsing MRLs.

3 Morphological Feature Exploration

The CoNLL data format contains several columns
of information that help to perform the dependency
parsing of a sentence. One of the columns is the
FEATS column that normally contains a set of mor-
phological features, which is normally of the format
a=x|b=y|c=z. At the time of writing, the available

2A covered root is a root node covered by a dependency arc.

version of MaltOptimizer explores the features in-
cluded in this column as a single feature, by lumping
all morphosyntactic features in the MaltParser clas-
sifier, and by splitting the information but including
all of them at the same time without making any dis-
tinctions. This is what MaltParser allows by using
the standard CoNLL format, which contains the fol-
lowing information per column.

1. ID: Identifier.

2. FORM: Word form.

3. LEMMA: Lemma or stemmed version of the
word.

4. CPOSTAG: Coarse-grained part-of-speech
tag.

5. POSTAG: Fine-grained part-of-speech tag.

6. FEATS: Morphosyntactic features (e.g., case,
number, tense, etc.). It is normally of the for-
mat a=x|b=y|c=z.

7. HEAD: Head node.

8. DEPREL: Dependency relation to head.

9. PHEAD: Projective head node.

10. PDEPREL: Projective dependency relation to
head.

However, MaltParser also provides the option of
parsing new data formats that are derived from the
original CoNLL format. Therefore, there is the pos-
sibility to add new columns that may contain use-
ful information for parsing. The new MaltOptimizer
implementation automatically generates a new data
format and a new data set. It creates new columns
that only contain the information of a single feature
which is included in the FEATS column.

Figure 1 shows two versions of a sentence anno-
tated in the French treebank from the Shared Task.
The one shown above is in the standard CoNLL for-
mat, and the one shown below is the extended format
generated by MaltOptimizer in which the FEATS
column has been divided in 10 different columns.

64

1 En en P P mwehead=ADV+|pred=y 4 mod
2 tout tout D DET g=m|n=s|s=ind|pred=y 1 dep_cpd
3 cas cas N NC g=m|s=c|pred=y 1 dep_cpd
4 est łtre V V m=ind|n=s|p=3|t=pst 0 root
5 -il il CL CLS g=m|n=s|p=3|s=suj 4 suj
6 plus plus ADV ADV _ 7 mod
7 nuanc nuanc A ADJ g=m|n=s|s=qual 4 ats
8 . . PONCT PONCT s=s 4 ponct

1 En en P P _ _ _ _ _ _ ADV+ y _ _ 4 mod
2 tout tout D DET ind m s _ _ _ _ y _ _ 1 dep_cpd
3 cas cas N NC c m _ _ _ _ _ y _ _ 1 dep_cpd
4 est łtre V V _ _ s 3 ind pst _ _ _ _ 0 root
5 -il il CL CLS suj m s 3 _ _ _ _ _ _ 4 suj
6 plus plus ADV ADV _ _ _ _ _ _ _ _ _ _ 7 mod
7 nuanc nuanc A ADJ qual m s _ _ _ _ _ _ _ 4 ats
8 . . PONCT PONCT s _ _ _ _ _ _ _ _ _ 4 ponct

Figure 1: A sentence from the French treebank in the standard (above) and complex (below) formats. The projective
columns have been removed for simplicity.

4 Experiments

With the intention of both assessing the usefulness
of the new MaltOptimizer implementation and test-
ing which features are useful for each targeted lan-
guage, we carried out a series of experiments over
the data sets from the Shared Task on Parsing MRLs
(Seddah et al., 2013). We run the new MaltOpti-
mizer implementation for all the data sets provided
by the Shared Task organizers and we run Malt-
Parser with the model suggested. Therefore, we had
36 different runs, 4 for each language (gold and pre-
dicted scenarios with 5k treebanks, and gold and
predicted scenarios with full treebanks).

In order to have a comparable set of results, we
performed all the optimization processes with the
smaller versions of the treebanks (5k) and both op-
timization and training steps with both the small
and larger version for all languages. Each MaltOp-
timizer run took approximately 3-4 hours for opti-
mization (the running time also depends on the size
of the set of morphological features, or other param-
eters, such as the number of dependency relations)
and it takes around 20 extra minutes to get the final
model with MaltParser. These estimates are given
with an Intel Xeon server with 8 cores, 2.8GHz and
a heap space of, at least, 8GB.

5 Results and Discussion

Table 1 shows the results for gold-standard input
while Table 2 shows the results for the provided pre-
dicted inputs for the best model that the new Mal-
tOptimizer implementation can find (Dev-5k, Dev,
Test-5k and Test) and a baseline, which is Malt-

Parser in default settings (Malt-5k and Malt) on the
test sets. The first conclusion to draw is that the dif-
ference between gold and predicted inputs is nor-
mally of 2 points, however for some languages such
as French the drop reaches 6 points. It is also ev-
idenced that, as shown by Ballesteros and Nivre
(2012a), some languages benefit more from the fea-
ture selection phase, while others achieve higher im-
provements by selecting a different parsing algo-
rithm.

In general terms, almost all languages bene-
fit from having an accurate stemmed version of
the word in the LEMMA column, providing very
substantial improvements when accurately selecting
this feature. Another key feature, for almost all lan-
guages, is the grammatical CASE that definitely en-
hances the performance; we can therefore conclude
that it is essential for MRLs. Both aspects evidence
the lexical challenge of parsing MRLs without using
this information.

There is a positive average difference comparing
with the MaltParser baseline of 4.0 points training
over the full treebanks and predicted scenario and
5.6 points training over the full treebanks and gold
scenario. It is therefore evident how useful MaltOp-
timizer is when it can perform an in-depth morpho-
logical feature exploration. In the following subsec-
tions we explain the results for each targeted lan-
guage, giving special emphasis to the ones that turn
out to be more meaningful.

5.1 Arabic

For Arabic, we used the shared task Arabic data
set, originally provided by the LDC (Maamouri et

65

Language Default Phase 1 Phase 2 Phase 3 Diff Dev-5k Dev Malt-5k Malt Test-5k Test
Arabic 83.48 83.49 83.49 87.95 4.47 85.98 87.60 80.36 82.28 85.30 87.03
Basque 67.05 67.33 67.45 79.89 13.30 80.35 81.65 67.13 69.19 81.40 82.07
French 77.96 77.96 78.27 85.24 7.28 85.19 86.30 78.16 79.86 84.93 85.71
German 79.90 81.09 84.85 87.70 7.80 87.32 90.40 76.64 79.98 83.59 86.96
Hebrew 76.78 76.80 79.37 80.17 3.39 79.83 79.83 76.61 76.61 80.03 80.03

Hungarian 70.37 71.11 71.98 81.91 11.54 80.69 80.74 71.27 72.34 82.37 83.14
Korean 87.22 87.22 87.22 88.94 1.72 86.52 90.20 81.69 88.43 83.74 89.39
Polish 75.52 75.58 79.28 80.27 4.75 81.58 81.91 76.64 77.70 79.79 80.49

Swedish 76.75 76.75 78.91 79.76 3.01 74.85 74.85 75.73 75.73 77.67 77.67

Table 1: Labeled attachment score per phase compared to default settings for all training sets from the Shared Task
on PMRLs in the gold scenario on the held-out test set for optimization. The first columns shows results per phase
(the procedure of each phase is briefly described in Section 2) on the held-out sets for evaluation. The Dev-5k and
Dev columns report labeled attachment score on the development sets. The columns Malt and Malt-5k report results
of MaltParser in default settings on the test sets. And the columns, Test-5k and Test report results for the best model
found by SPMRL-MaltOptimizer on the test sets.

Language Default Phase 1 Phase 2 Phase 3 Diff Dev-5k Dev Malt-5k Malt Test-5k Test
Arabic 83.20 83.21 83.21 85.68 2.48 80.35 82.28 78.30 80.36 79.64 81.90
Basque 68.80 69.33 69.89 77.24 8.44 78.12 79.46 68.12 70.11 77.59 78.58
French 77.43 77.43 77.63 79.42 1.99 77.65 79.33 76.54 77.98 77.56 79.00
German 78.69 79.87 82.58 83.97 5.28 83.39 86.63 74.81 77.81 79.22 82.75
Hebrew 76.29 76.31 79.01 79.67 3.38 73.40 73.40 69.97 69.97 73.01 73.01

Hungarian 68.26 69.12 69.96 78.71 10.45 76.82 77.62 69.08 70.15 79.00 79.63
Korean 80.08 80.08 80.08 81.63 1.55 77.96 83.02 74.87 82.06 75.90 82.65
Polish 74.43 74.49 76.93 78.41 3.98 80.61 80.83 75.29 75.63 79.50 80.49

Swedish 74.53 74.53 76.51 77.66 3.13 72.90 72.90 73.21 73.21 75.82 75.82

Table 2: Labeled attachment score per phase compared to default settings for all training sets from the Shared Task on
PMRLs in the predicted scenario on the held-out test set for optimization. The columns of this table report the results
in the same way as Table 1 but using predicted inputs.

al., 2004), specifically its SPMRL 2013 dependency
instance, derived from the Columbia Catib Tree-
bank (Habash and Roth, 2009; Habash et al., 2009),
extended according to the SPMRL 2013 extension
scheme (Seddah et al., 2013).

For the gold input, the most useful feature is, by
far, DASHTAG3 with an improvement of 2 points.
CASE is also very useful, as it is for most of the
languages, with 0.67 points. Moreover, SUBCAT
(0.159) and CAT (0.129) provide improvements as
well.

In the pred scenario, there is no DASHTAG, and
this allows other features to rise, for instance, CASE
(0.66), CPOSTAG (0.12), GENDER (0.08), SUB-
CAT (0.07) and CAT (0.06) provide improvements.
Finally it is worth noting that the TED accuracy

3DASHTAG comes from the original constituent data, when
a DASHTAG was present in a head node label, this feature was
kept in the Catib corpus.

(Tsarfaty et al., 2011) for the lattices is 0.8674 with
the full treebanks and 0.8563 with 5k treebanks,
which overcomes the baseline in more than 0.06
points, this shows that MaltOptimizer is also useful
under TED evaluation constraints.

5.2 Basque

The improvement provided by the feature selection
for Basque (Aduriz et al., 2003) is really high. It
achieves almost 13 points improvement with the
gold input and around 8 points with the predicted
input. The results in the gold scenario are actually
a record if we also consider the experiments per-
formed over the treebanks of the CoNLL Shared
Tasks (Ballesteros and Nivre, 2012a). One of the
reasons is the treatment of covered roots that is opti-
mized during the first phase of optimization. This
corpus has multiple root labels, ROOT being the
most common one and the one selected by MaltOp-

66

timizer as default.
For the gold input, the CPOSTAG and LEMMA

columns turn out to be very useful, providing an
improvement of 2.5 points and slightly less than 1
point respectively, MaltOptimizer selects them all
over the more central tokens over the stack and the
buffer. The Basque treebank contains a very big
set of possible features in the FEATS column, how-
ever only some of them provide significant improve-
ments, which evidences the usefulness of selecting
them one by one. The most useful feature with a
huge difference is KASE (or CASE) that provides
5.9 points by itself. MaltOptimizer fills out all the
available positions of the stack and the buffer with
this feature. Another useful feature is ERL [type of
subordinated sentence], providing almost 0.8 points.
Moreover, NUMBER (0.3), NORK2 (0.15), ASP
[aspect] (0.09), NOR1 (0.08), and NMG (0.06) pro-
vide slighter, but significant, improvements as well.4

Surprisingly, the predicted input provides bet-
ter results in the first 2 phases, which means that
for some reason MaltParser is able to parse better
by using just the predicted POS column, however,
the improvement achieved by MaltOptimizer dur-
ing Phase 3 are (just) a bit more than 7 points. In
this case, the CPOSTAG column is less useful, pro-
viding only 0.13 points, while the LEMMA (1.2) is
still very useful. CASE provides 4.5 points, while
NUM (0.17), ASP (0.13) and ADM (0.11) provide
improvements as well.

5.3 French

For French (Abeillé et al., 2003) there is a huge dif-
ference between the results with gold input and the
results with predicted input. With gold input, the
feature selection provides a bit less than 8 points
while there is just an improvement of around 2
points with predicted input. In this case, the lack
of quality in the predicted features is evident. It is
also interesting that the lexical column, FORM, pro-
vides a quite substantial improvement when Mal-
tOptimizer attempts to modify it, which is some-
thing that does not happen with the rest of lan-
guages.

For the gold input, apart from LEMMA that pro-
vides around 0.7 points, the most useful feature is

4NORK2, NOR1 and NMG are auxiliaries case markers.

MWEHEAD [head of a multi word expression, if
exists] that does not exist in the predicted scenario.
MWEHEAD provides more than 4 points; this fact
invites us to think that a predicted version of this
feature would be very useful for French, if possi-
ble. PRED [automatically predicted] (0.8), G [gen-
der] (0.6), N [number] (0.2) and S [subcat] (0.14)
are also useful.

In the predicted scenario, the CPOSTAG column
provides some improvements (around 0.1) while the
LEMMA is less useful than the one in the gold sce-
nario (0.2). The morphological features that are use-
ful are S [subcat] (0.3) and G [gender] (0.3).

5.4 German

For German (Brants et al., 2002) the results are more
or less in the average. For the gold input, LEMMA
is the best feature providing around 0.8 points; from
the morphological features the most useful one is, as
expected, CASE with 0.58 points. GENDER (0.16)
and NUMBER (0.16) are also useful.

In the predicted scenario, CASE is again very use-
ful (0.67). Other features, such as, NUMBER (0.10)
and PERSON (0.10) provide improvements, but as
we can observe a little bit less than the improve-
ments provided in the gold scenario.

5.5 Hebrew

For the Hebrew (Sima’an et al., 2001; Tsarfaty,
2013) treebank, unfortunately we did not see a lot
of improvements by adding the morphological fea-
tures. For the gold input, only CPOSTAG (0.08)
shows some improvements, while the predicted sce-
nario shows improvements for NUM (0.08) and PER
(0.08). It is worth noting that the TED accuracy
(Tsarfaty et al., 2011) for the lattices is 0.8305 which
is ranked second.

This outcome is different from the one obtained
by Goldberg and Elhadad (2010), but it is also true
that perhaps by selecting a different parsing algo-
rithm it may turn out different, because two parsers
may need different features, as shown by Zhang and
Nivre (2012). This is why, it would be very interest-
ing to perform new experiments with MaltOptimizer
by testing different parsing algorithms included in
MaltParser with the Hebrew treebank.

67

5.6 Hungarian

The Hungarian (Vincze et al., 2010) results are
also very consistent. During the feature selection
phase, MaltOptimizer achieves an improvement of
10 points by the inclusion of morphological features.
This also happens in the initial experiments per-
formed with MaltOptimizer (Ballesteros and Nivre,
2012a), by using the Hungarian treebank of the
CoNLL 2007 Shared Task. The current Hungarian
treebank presents covered roots and multiple root la-
bels and this is why we also get substantial improve-
ments during Phase 1.

For the gold input, as expected the LEMMA col-
umn is very useful, providing more than 1.4 points,
while MaltOptimizer selects it all over the available
feature windows. The best morphological feature
is again CASE providing an improvement of 5.7
points just by itself, in a similar way as in the ex-
periments with Basque. In this case, the SUBPOS
[grammatical subcategory] feature that is included
in the FEATS column is also very useful, provid-
ing around 1.2 points. Other features that are useful
are NUMP [number of the head] (0.2), NUM [num-
ber of the current token] (0.16), DEF [definiteness]
(0.11) and DEG [degree] (0.09).

In the predicted scenario, we can observe a sim-
ilar behavior for all features. MOOD provides 0.4
points while it does not provide improvements in the
gold scenario. The results of the SUBPOS feature
are a bit lower in this case (0.5 points), which evi-
dences the quality lost by using predicted inputs.

5.7 Korean

As Korean (Choi, 2013) is the language in which
our submission provided the best results comparing
to other submissions, it is interesting to dedicate a
section by showing its results. For the 5k input, our
model provides the best results of the Shared Task,
while the results of the model trained over the full
treebank qualified the second.

For the gold input, the most useful feature is
CPOSTAG providing around 0.6 points. Looking
into the morphological features, CASE, as usual, is
the best feature with 0.24 points, AUX-Type (0.11),
FNOUN-Type (0.08) are also useful.

In the predicted scenario, MaltOptimizer per-
forms similarly, having CPOSTAG (0.35) and CASE

(0.32) as most useful features. ADJ-Type (0.11) and
PUNCT-Type (0.06) are also useful. The results of
the features are a bit lower with the predicted input,
with the exception of CASE which is better.

5.8 Polish

Polish (Świdziński and Woliński, 2010) is one of the
two languages (with Swedish) in which our model
performs with the worst results.

In the gold scenario only the LEMMA (0.76)
shows some substantial improvements during the
optimization process; unfortunately, the morpholog-
ical features that are extracted when MaltOptimizer
generates the new complex data format did not fire.

For the predicted input, LEMMA (0.66) is again
the most useful feature, but as happened in the gold
scenario, the rest of the features did not fire during
the feature selection.

5.9 Swedish

As happened with Polish, the results for Swedish
(Nivre et al., 2006b) are not as good as we could ex-
pect; however we believe that the information shown
in this paper is useful because MaltOptimizer detects
which features are able to outperform the best model
found so far and the model trained with MaltParser
in default settings by a bit less than 2 points in the
predicted scenario and more than 2 points in the gold
scenario.

For the gold scenario only two features are ac-
tually useful according to MaltOptimizer, MaltOp-
timizer shows improvements by adding GENDER
(0.22) and PERFECTFORM (0.05).

For the predicted input, MaltOptimizer shows im-
provements by adding DEGREE (0.09), GENDER
(0.08) and ABBRV (0.06). However, as we can see
the improvements for Swedish are actually lower
compared to the rest of languages.

6 Related Work

There has been some recent research making use of
MaltOptimizer. For instance, Seraji et al. (2012)
used MaltOptimizer to get optimal models for pars-
ing Persian. Tsarfaty et al. (2012a) worked with
MaltOptimizer and Hebrew by including the opti-
mization for presenting new ways of evaluating sta-
tistical parsers. Mambrini and Passarotti (2012),

68

Agirre et al. (2012), Padró et al. (2013) and Balles-
teros et al. (2013) applied MaltOptimizer to test dif-
ferent features of Ancient Greek, Basque and Span-
ish (the last 2) respectively; however at that time
MaltOptimizer did not allow the FEATS column to
be divided. Finally, Ballesteros et al. (2012) applied
MaltOptimizer for different parsing algorithms that
are not included in the downloadable version show-
ing that it is also possible to optimize different pars-
ing algorithms.

7 Conclusions

This new MaltOptimizer implementation helps the
developers to adapt MaltParser models to new lan-
guages in which there is a rich set of features. It
shows which features are able to make a change in
the parsing results and which ones are not, in this
way, it is possible to focus annotation effort for the
purpose of parsing. We clearly observe that MaltOp-
timizer outperforms very substantially the results
shown in the baseline, which is MaltParser in default
settings, and it is also nice to see that the improve-
ments provided by MaltOptimizer for the morpho-
logical features are actually very high, if we com-
pare to the ones obtained by MaltOptimizer for the
corpora of the CoNLL shared tasks (Ballesteros and
Nivre, 2012a).

It is worth noting that the experiments with Mal-
tOptimizer do not take so long. The time needed to
perform the optimization is actually very short if we
compare to the efforts needed to achieve results in
the same range of accuracy by careful manual op-
timization. The MaltOptimizer process was sped
up following heuristics derived from deep proven
experience (Nivre and Hall, 2010), which means
that there are several combinations that are untested;
however, it is worth noting that these heuristics re-
sulted in similar performance to more exhaustive
search for a big set of languages (Ballesteros, 2013).

From the feature study shown in Section 5, we ex-
pect that it could be useful for people doing parsing
research and interested in parsing MRLs. Finally,
comparing our submission with the results of other
teams, we believe that we provide a fast and effec-
tive parser optimization for parsing MRLs, having
competitive results for most of the languages.

Acknowledgments

I would like to thank Koldo Gojenola who initially
gave me the idea presented in this paper. I am also
very thankful to Joakim Nivre for his constant help
and support. Finally, special thanks to the organizers
Djamé Seddah, Reut Tsarfaty and Sandra Kübler.

References
Anne Abeillé, Lionel Clément, and François Toussenel.

2003. Building a treebank for french. In Anne
Abeillé, editor, Treebanks. Kluwer, Dordrecht.

I. Aduriz, M. J. Aranzabe, J. M. Arriola, A. Atutxa,
A. Dı́az de Ilarraza, A. Garmendia, and M. Oronoz.
2003. Construction of a Basque dependency treebank.
In Proceedings of the 2nd Workshop on Treebanks and
Linguistic Theories (TLT), pages 201–204.

Eneko Agirre, Aitziber Atutxa, and Kepa Sarasola. 2012.
Contribution of complex lexical information to solve
syntactic ambiguity in Basque. In Proceedings of the
24th International Conference on Computational Lin-
guistics (COLING 2012), Mumbai, India, 12/2012.

Miguel Ballesteros and Joakim Nivre. 2012a. MaltOp-
timizer: A System for MaltParser Optimization. In
Proceedings of the Eighth International Conference on
Language Resources and Evaluation (LREC 2012).

Miguel Ballesteros and Joakim Nivre. 2012b. Mal-
tOptimizer: An Optimization Tool for MaltParser. In
Proceedings of the System Demonstration Session of
the Thirteenth Conference of the European Chapter of
the Association for Computational Linguistics (EACL
2012).

Miguel Ballesteros, Carlos Gómez-Rodrı́guez, and
Joakim Nivre. 2012. Optimizing Planar and 2-
Planar Parsers with MaltOptimizer. Procesamiento del
Lenguaje Natural, 49, 09/2012.

Miguel Ballesteros, Simon Mille, and Alicia Burga.
2013. Exploring Morphosyntactic Annotation Over a
Spanish Corpus for Dependency Parsing . In Proceed-
ings of the Second International Conference on De-
pendency Linguistics (DEPLING 2013).

Miguel Ballesteros. 2013. Exploring Automatic Feature
Selection for Transition-Based Dependency Parsing.
Procesamiento del Lenguaje Natural, 51.

Sabine Brants, Stefanie Dipper, Silvia Hansen, Wolf-
gang Lezius, and George Smith. 2002. The TIGER
treebank. In Erhard Hinrichs and Kiril Simov, edi-
tors, Proceedings of the First Workshop on Treebanks
and Linguistic Theories (TLT 2002), pages 24–41, So-
zopol, Bulgaria.

Sabine Buchholz and Erwin Marsi. 2006. CoNLL-X
shared task on multilingual dependency parsing. In

69

Proceedings of the 10th Conference on Computational
Natural Language Learning (CoNLL), pages 149–164.

Jinho D. Choi. 2013. Preparing Korean Data for the
Shared Task on Parsing Morphologically Rich Lan-
guages. ArXiv e-prints, September.

Yoav Goldberg and Michael Elhadad. 2010. Easy first
dependency parsing of modern hebrew. In Proceed-
ings of the NAACL HLT 2010 First Workshop on Sta-
tistical Parsing of Morphologically-Rich Languages,
SPMRL ’10, pages 103–107, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Nizar Habash and Ryan Roth. 2009. Catib: The
columbia arabic treebank. In Proceedings of the ACL-
IJCNLP 2009 Conference Short Papers, pages 221–
224, Suntec, Singapore, August. Association for Com-
putational Linguistics.

Nizar Habash, Reem Faraj, and Ryan Roth. 2009. Syn-
tactic Annotation in the Columbia Arabic Treebank. In
Proceedings of MEDAR International Conference on
Arabic Language Resources and Tools, Cairo, Egypt.

Johan Hall, Jens Nilsson, Joakim Nivre, Gülsen Eryiğit,
Beáta Megyesi, Mattias Nilsson, and Markus Saers.
2007. Single malt or blended? A study in multilingual
parser optimization. In Proceedings of the CoNLL
Shared Task of EMNLP-CoNLL 2007, pages 933–939.

Mohamed Maamouri, Ann Bies, Tim Buckwalter, and
Wigdan Mekki. 2004. The Penn Arabic Treebank:
Building a Large-Scale Annotated Arabic Corpus. In
NEMLAR Conference on Arabic Language Resources
and Tools.

Francesco Mambrini and Marco Carlo Passarotti. 2012.
Will a Parser Overtake Achilles? First experiments on
parsing the Ancient Greek Dependency Treebank. In
Proceedings of the Eleventh International Workshop
on Treebanks and Linguistic Theories (TLT11).

Joakim Nivre and Johan Hall. 2010. A quick guide
to MaltParser optimization. Technical report, malt-
parser.org.

Joakim Nivre, Johan Hall, and Jens Nilsson. 2006a.
Maltparser: A data-driven parser-generator for depen-
dency parsing. In Proceedings of the 5th International
Conference on Language Resources and Evaluation
(LREC), pages 2216–2219.

Joakim Nivre, Jens Nilsson, and Johan Hall. 2006b. Tal-
banken05: A Swedish treebank with phrase structure
and dependency annotation. In Proceedings of LREC,
pages 1392–1395, Genoa, Italy.

Joakim Nivre, Johan Hall, Sandra Kübler, Ryan McDon-
ald, Jens Nilsson, Sebastian Riedel, and Deniz Yuret.
2007. The CoNLL 2007 shared task on dependency
parsing. In Proceedings of the CoNLL Shared Task of
EMNLP-CoNLL 2007, pages 915–932.

Muntsa Padró, Miguel Ballesteros, Hector Martı́nez, and
Bernd Bohnet. 2013. Finding dependency pars-
ing limits over a large spanish corpus. In IJCNLP,
Nagoya, Japan. Association for Computational Lin-
guistics.

Djamé Seddah, Reut Tsarfaty, Sandra Kübler, Marie Can-
dito, Jinho Choi, Richárd Farkas, Jennifer Foster, Iakes
Goenaga, Koldo Gojenola, Yoav Goldberg, Spence
Green, Nizar Habash, Marco Kuhlmann, Wolfgang
Maier, Joakim Nivre, Adam Przepiorkowski, Ryan
Roth, Wolfgang Seeker, Yannick Versley, Veronika
Vincze, Marcin Woliński, and Alina Wróblewska.
2013. Overview of the spmrl 2013 shared task: A
cross-framework evaluation of parsing morphologi-
cally rich languages. In Proceedings of the 4th Work-
shop on Statistical Parsing of Morphologically Rich
Languages: Shared Task, Seattle, WA.

Mojgan Seraji, Beáta Megyesi, and Joakim Nivre. 2012.
Dependency parsers for persian. In Proceedings of
10th Workshop on Asian Language Resources, at 24th
International Conference on Computational Linguis-
tics (COLING 2012). ACL Anthology.

Khalil Sima’an, Alon Itai, Yoad Winter, Alon Altman,
and Noa Nativ. 2001. Building a Tree-Bank for
Modern Hebrew Text. In Traitement Automatique des
Langues.

Marek Świdziński and Marcin Woliński. 2010. Towards
a bank of constituent parse trees for Polish. In Text,
Speech and Dialogue: 13th International Conference
(TSD), Lecture Notes in Artificial Intelligence, pages
197—204, Brno, Czech Republic. Springer.

Reut Tsarfaty, Joakim Nivre, and Evelina Anders-
son. 2011. Evaluating dependency parsing: Robust
and heuristics-free cross-annotation evaluation. In
EMNLP, pages 385–396, Edinburgh, Scotland, UK.,
July. Association for Computational Linguistics.

Reut Tsarfaty, Joakim Nivre, and Evelina Andersson.
2012a. Cross-framework evaluation for statistical
parsing. In EACL, pages 44–54.

Reut Tsarfaty, Djamé Seddah, Sandra Kuebler, and
Joakim Nivre. 2012b. Parsing Morphologically Rich
Languages: Introduction to the Special Issue. Compu-
tational Linguistics, November.

Reut Tsarfaty. 2013. A Unified Morpho-Syntactic
Scheme of Stanford Dependencies. Proceedings of
ACL.

Veronika Vincze, Dóra Szauter, Attila Almási, György
Móra, Zoltán Alexin, and János Csirik. 2010. Hun-
garian dependency treebank. In LREC.

Yue Zhang and Joakim Nivre. 2012. Analyzing the effect
of global learning and beam-search on transition-based
dependency parsing. In COLING, pages 1391–1400.

70

Proceedings of the Fourth Workshop on Statistical Parsing of Morphologically Rich Languages, pages 71–77,
Seattle, Washington, USA, 18 October 2013. c©2013 Association for Computational Linguistics

Exploiting the Contribution of Morphological Information to Parsing: the
BASQUE TEAM system in the SPRML’2013 Shared Task

Iakes Goenaga, Nerea Ezeiza
IXA NLP Group

Faculty of Computer Science
Univ. of the Basque Country UPV/EHU

iakesg@gmail.com, n.ezeiza@ehu.es

Koldo Gojenola
IXA NLP Group

Technical School of Engineering, Bilbao
Univ. of the Basque Country UPV/EHU

koldo.gojenola@ehu.es

Abstract

This paper presents a dependency parsing
system, presented as BASQUE TEAM at
the SPMRL’2013 Shared Task, based on
the analysis of each morphological feature
of the languages. Once the specific rel-
evance of each morphological feature is
calculated, this system uses the most sig-
nificant of them to create a series of ana-
lyzers using two freely available and state
of the art dependency parsers, MaltParser
and Mate. Finally, the system will com-
bine previously achieved parses using a
voting approach.

1 Introduction

Morphologically rich languages present new chal-
lenges, as the use of state of the art parsers for
more configurational and non-inflected languages
like English does not reach similar performance
levels in languages like Basque, Greek or Turk-
ish (Nivre et al., 2007). Using morphological in-
formation as features in parsing has been a com-
monly used method for parsing MRLs (Tsarfaty et
al., 2010). In some cases the effect of this infor-
mation is positive but in others it does not help or
causes a negative effect.

In most of the work on dependency parsing, the
specific relevance of each morphological feature
in the final result is unknown. The authors include
all the morphological features1 in their systems
with the aim of taking advantage of the diversity
of the used information. This approach commonly
produces very good results but they are not always
the best ones (see table 2).
On the other hand, some authors have made ex-
periments to specify which is the real impact of

1That is, they treat all the morphological features in the
same way in the feature specification, and let the learning
algorithms decide the weight assigned to each one.

the morphological features. Ambati et al. (2010)
explore ways of integrating local morphosyntactic
features into Hindi dependency parsing. They ex-
periment with different sets of features on a graph-
based and a transition-based dependency parser.
They show that using some morphological fea-
tures (root, case, and suffix) outperforms a base-
line using POS as the only feature, with both gold
and predicted settings .

Bengoetxea and Gojenola (2010) make use of
MaltParser’s feature configuration file to take ad-
vantage of morphological features in parsing with
gold data. Their experiments show that case and
subordination type considerably increase parsing
accuracy.

Marton et al. (2013) also explore which mor-
phological features could be useful in dependency
parsing of Arabic. They observe the effect of fea-
tures by adding them one at a time separately and
comparing the outcomes. Experiments showed
that when gold morphology is provided, case
markers help the most, whereas when the mor-
phology is automatically predicted the outcome
is the opposite: using case harms the results the
most. When features are combined in a greedy
heuristic, using definiteness, person, number, and
gender information improves accuracy.

Similarly, Seeker and Kuhn (2013) also deter-
mine that the use of case is specially relevant for
parsing, demonstrating that morpho-syntactic con-
straints can delimit the search space of a statistical
dependency parser to outperform state-of-the-art
baselines for Czech, German and Hungarian.

Following this line of research, our first step
will be to determine which is the concrete value of
each feature on dependency parsing, adding one of
the morphological features at a time starting with
an empty FEATS column.

Çetinoğlu and Kuhn (2013) have shown that
some parsers tend to improve the results when
swapping or replacing POS by some of the mor-

71

phological features. They have made use of the
METU-Sabanc Turkish Treebank (Oflazer et al.,
2003) for training and the ITU validation set
(Eryigit, 2007) for testing. In their work, it is ob-
served that moving CASE to the POS field helps
with a 0.3% LAS absolute increase in the gold
pipeline settings and using CASE instead of nom-
inal POS improves the labelled accuracy by 0.3%
absolute for the training set.

These experiments suggest that in some way
the parser is not making an optimal use of all the
available morpho-syntactic information, and that
the parser algorithm (or the feature specification
for the learning phase) is geared towards POS and
CPOS, giving a lower status to other types of in-
formation. Although this strategy is good in gen-
eral, it seems that, at least for some languages, spe-
cific features (e.g. CASE) are crucial in obtaining
a high parsing performance. Taking these ideas
into consideration, we will work on three different
approaches:

• We will experiment the effect of using only
the best three morphological features in the
FEATS column (see table 1), compared to
working with the full set of morpho-syntactic
features. This can have the effect of speed-
ing the learning and parsing processes, as the
number of features can be smaller. On the
other hand, the elimination of non-relevant
features can also help to improve the parser’s
results, because some features can even be
detrimental for parsing.

• Following Çetinoğlu and Kuhn (2013), once
our system resolves which feature is the most
significant, it will be used to replace the POS
and CPOS fields one by one and we will test
the effect of these variants on the parsers. Fi-
nally, we will also try right-to-left versions
of those 3 variants (baseline, and replacing
POS and CPOS) completing a set of 6 differ-
ent parsers.

• Finally, we will experiment the combination
of the different or parsers with a voting ap-
proach (Hall et al., 2010) using the Malt-
Blender tool2.

All of the experiments will be performed on
automatically predicted POS and morphosyntactic
data, taking the tags given in the Shared Task data,

2http://w3.msi.vxu.se/users/jni/blend/

that is, we will not made use of any specifically
trained morphological tagger.

In the rest of this paper we will first present
the resources we have used to carry out our ex-
periments in section 2, followed by a study of the
contribution of the morphological information to
parsing in section 3 and the effect of this infor-
mation on the individual parsers in subsection 4.1.
The final results of the best parser combinations
are showed in subsection 4.2 and the main conclu-
sions of the work in section 5.

2 Resources

This section will describe the main resources that
have been used in the experiments. Subsection
2.1 will describe the languages we have used in
our experiments, subsection 2.2 will explain the
parsers we use, while subsection 2.3 will present
briefly the MaltBlender tool.

2.1 Selected Languages

Although the SPMRL’2013 Shared Task (Seddah
et al., 2013) offers the opportunity to parse nine
morphologically rich languages, to carry out our
experiments we have selected five of them, due in
part to time constraints, but also taking into ac-
count the relevance of the morpho-syntactic infor-
mation (FEATS column, see table 1) . The selected
five languages are: Basque (Aduriz et al., 2003),
French (Abeillé et al., 2003), German (Seeker and
Kuhn, 2012), Hungarian (Vincze et al., 2010) and
Swedish (Nivre et al., 2006).

2.2 Parsers

We have made use of MaltParser (Nivre et al.,
2007b) and Mate (Bohnet and Nivre, 2012), two
state of the art dependency parsers3 representing
the dominant approaches in data-driven depen-
dency parsing, and that have been successfully
applied to typologically different languages and
treebanks.
MaltParser is a representative of local, greedy,
transition-based dependency parsing models,
where the parser obtains deterministically a
dependency tree in a single pass over the input
using two data structures: a stack of partially
analyzed items and the remaining input sequence.
To determine the best action at each step, the

3Due to time constraints, we did not have enough time to
experiment with other options such as the MST parser or the
EasyFirst parser.

72

parser uses history-based feature models and dis-
criminative machine learning. The specification
of the learning configuration can include any
kind of information (such as word-form, lemma,
category, subcategory or morphological features).
We will use one of its latest versions (MaltParser
version 1.7).

To fine-tune Maltparser we have used MaltOp-
timizer (Ballesteros and Nivre, 2012a; Ballesteros
and Nivre, 2012b). This tool is an interactive sys-
tem that first performs an analysis of the training
set in order to select a suitable starting point for
optimization and then guides the user through the
optimization of parsing algorithm, feature model,
and learning algorithm. Empirical evaluation on
data from the CoNLL 2006 and 2007 shared tasks
on dependency parsing shows that MaltOptimizer
consistently improves over the baseline of default
settings and sometimes even surpasses the result
of manual optimization.
The Mate parser (Bohnet and Nivre, 2012) is a
development of the algorithms described in (Car-
reras, 2007; Johansson and Nugues, 2008). It basi-
cally adopts the second order maximum spanning
tree dependency parsing algorithm. In particular,
this parser exploits a hash kernel, a new parallel
parsing and feature extraction algorithm that im-
proves accuracy as well as parsing speed (Bohnet,
2010).

2.3 Parser Combinations

The MaltBlender tool makes a two-stage optimiza-
tion of the result of several parser outcomes, based
on the work of Sagae and Lavie (2006), and it was
used for the first time for the ten languages in the
multilingual track of the CoNLL 2007 shared task
on dependency parsing(Hall et al., 2010). The first
stage consists in tuning several single-parser sys-
tems. The second stage consists in building an
ensemble system that will combine the different
parsers. When this system was evaluated on the
official test sets at the CoNLL 2007 shared task,
the ensemble system significantly outperformed
the single-parser system and achieved the highest
average labelled attachment score of all participat-
ing systems.

3 Contribution of Morphological
Information to Parsing

We examined the effect of each type of morpho-
logical information, contained in the FEATS col-

umn, to investigate their overall contribution to
parsing. This will help us to determine which are
the most relevant features for parsing. To carry out
this task we have used the Mate parser, due to lack
of time for testing, and also taking into consid-
eration that it gives better results than MaltParser
for all the languages’s baselines. Firstly, we will
obtain the baseline for each language parsing the
files with an empty FEATS column. This baseline
will help us to determine the contribution of each
morphological feature to parsing. Next, we trained
the parsers using one feature at a time obtaining as
many results as features for each language. Table
1 shows the effect of each information on the Mate
parser.

In this table we can observe that Basque is one
of the most sensitive languages regarding the influ-
ence of its features. Using case (KAS) as a unique
feature improves the labelled attachment score
over using an empty FEATS column by almost
5.7%. The next two better features are number
(NUM) and type of subordinate sentence (ERL).
They help with a 1.1% and 0.6% increase, respec-
tively. The rest of the features do not contribute
much in isolation, with a maximum of 0.2%. On
the other hand, including all the features results in
an improvement of 6.5%.

If we analyze the results for French we see that,
in contrast to Basque, the influence of the features
on the parser is minimum. The most significant
feature is gender (g), which helps with a 0.1% in-
crease. With respect to the improvement using the
other features, although they do not provide big in-
creases all of them contribute positively. In clos-
ing, including all the features we obtain a 84.6%
labelled attachment score with a 0.4% improve-
ment over not using any features.

As with French, the German morphological fea-
tures provide small increases. The most two sig-
nificant features are case and gender, which obtain
increases of 0.2%, 0.13%, respectively. It is inter-
esting to observe how including all the features we
obtain worse results than using only the case, al-
though the difference is not significant. That could
occur due to the weak influence of its features in
the final result and the negative influence of some
of them.

Hungarian is the language which offers more
features, 14 altogether. This language, in line with
Basque, tends to vary significantly its labelled at-
tachment score depending on the used morpholog-

73

Basque French German Hungarian Swedish
all feats 83.0 all feats 84.6 all feats 91.0 all feats 82.8 all feats 76.7
no feats 76.5 no feats 84.2 no feats 90.9 no feats 75.3 no feats 76.9

KAS 82.2 g 84.3 case 91.0 Cas 80.9 verbform 77.0
NUM 77.7 n 84.3 gender 91.0 PerP 76.3 definiteness 76.8
ERL 77.1 p 84.3 number 90.9 NumP 76.3 degree 76.8

DADUDIO 76.8 c 84.2 person 90.9 SubPOS 75.9 case 76.8
NORK 76.7 m 84.2 tense 90.9 Def 75.7 number 76.3

MDN 76.6 s 84.2 degree 90.8 Num 75.7 perfectform 76.3
NOR 76.6 t 84.2 mood 90.8 PerP 75.7 abbrv 76.3
ASP 76.4 Mood 75.5 mood 76.2

NORI 76.2 NumPd 75.4 pronounform 76.1
ADM 76.5 Coord 75.3 gender 76.0

Form 75.3
Tense 75.3
Type 75.3
Deg 75.0

Table 1: The effect of each feature sorted by language (MATE parser)

ical feature. If we focus on the three most signif-
icant features, the case (Cas) helps with a 5.6%
increase, person of possessor (PerP) with a 1%,
while number of possessor helps with a 0.9%. The
grammatical subcategory within the main part of
speech (SubPOS) improves the baseline in a 0.6%
and the number and person in a 0.4%. The remain-
ing features do not contribute very appreciatively
even obtaining negative results. Including all the
features we obtain a labelled attachment score of
82.83%. That means the real contribution of all
the features is 7.5%, this improvement being the
most important among all the used languages.

In common with French and German, the
Swedish morphological features do not seem to
help the parsers to achieve significant improve-
ments in terms of LAS. However, we can observe
some interesting phenomena. While in the other
languages the case is one of the best features, in
Swedish is does not help, achieving a negative re-
sult. In general, excluding the verb form (verb-
form), all the features obtain negative results with
respect to not using any feature. In this scenario
it is not surprising to verify that including all the
features does not help the Mate parser. Having
said this, the best three features are the verb form
(verbform), definiteness (definiteness) and degree
(degree).

4 Testing the Effect of Different
Morphosyntactic features on parsers

We examined the effect of the most significant
morphological features, examined in the previous

step, to investigate their overall contribution to
parsing. For this task, we created three variants for
each parser, apart from the baseline using all the
morphosyntactic features. We obtain these vari-
ants by: i) using the most 3 relevant features in
the FEATS column (see table 1 in previous sec-
tion), ii) moving the most relevant feature for each
language to the POS column and iii) moving the
most relevant feature to the CPOS column. Next,
we have tested parser combinations including all
the baselines and their variants in subsection 4.2.

4.1 Individual Parsers

Table 2 shows the effect of each information on
both parsers, Maltparser and Mate parser. If we
analyze the results on Basque, the difference be-
tween the two parsers is noticeable, as Mate ob-
tains on average a 3 point improvement with re-
spect to MaltParser. A similar difference occurs
on all the used languages. The best LAS in Basque
is acquired using the 3 best features in the FEATS
column with the Mate parser (83.4%). On a com-
parison with the LAS obtained by the Mate base-
line (All-Feats), that means a 0.4 improvement.
Regarding Maltparser’s results for Basque, we get
the best LAS (81.0%) moving the best feature
(case) to POS in its right-to-left version, increas-
ing the LAS baseline (All-Feats) by 1.0. We no-
tice that Maltparser and Mate tend to improve their
baseline scores using some of the presented vari-
ants.

On the other hand, the best score for French
is obtained using the baseline (All-Feats and

74

Basque French German Hungarian Swedish
Baselines

All − FeatsMalt 80.0 79.9 87.6 77.3 73.4
All − FeatsMate 83.0 84.6 91.0 82.3 76.7

Left2right
3− bestMalt 79.9 79.9 87.6 75.9 73.4

CPOS − bestMalt 80.3 79.7 87.5 76.6 72.9
POS − bestMalt 78.7 78.7 86.6 77.2 72.8

3− bestMate 83.4 84.3 90.8 82.4 76.6
CPOS − bestMate 82.7 84.3 91.0 82.7 76.8
POS − bestMate 82.2 83.4 90.5 82.5 76.5

Right2left
3− bestMalt 80.1 78.9 86.9 75.3 69.3

CPOS − bestMalt 80.0 79.0 86.7 76.6 69.3
POS − bestMalt 81.0 77.8 85.4 74.9 70.2

3− bestMate 83.3 84.3 90.9 82.1 76.5
CPOS − bestMate 83.1 84.6 91.0 82.6 77.0
POS − bestMate 81.6 83.5 90.6 82.4 76.4

Table 2: Testing the effect of features on MaltParser and Mate

the Mate parser, 84,6%). Contrary to Basque,
in French, although some of the used variants
achieve similar scores with respect to their base-
lines (All-Feats), they do not give noticeable in-
creases. The unique variant that equals its base-
line (79,9%) is 3− bestMalt using the left-to-right
version and the three best features (gender, num-
ber and person) in the FEATS column using Malt-
parser.

With respect to German, the only variant that
equals the baseline is CPOS − bestMate with
91.0% LAS. . If we focus on Maltparser’s (Mal-
tOptimizer) scores, we get the best result among
the variants with 3 − bestMalt (87.6%) using the
left-to-right version. The variants do not improve
Maltparser’s baseline.

Although some of the Hungarian variant scores
are very similar to their baselines, they give some
improvements over the baseline. The best two re-
sults on the Mate parser are 82.7% and 82.6%. We
obtain the first score moving the best feature (case)
to CPOS in its left-to-right version, and the second
one using the same configuration in its right-to-left
version. The best two scores on Maltparser with-
out taking the baseline into account are 77.2% and
76.6%, obtained when moving the best feature to
POS and moving the best feature to CPOS in its
right-to-left version, respectively.

The best two results for Swedish on the Mate
parser are 77.0% and 76.8%. We get the first re-
sult moving the best feature (verbform) to CPOS
in its right-to-left version and the second one in its

standard version. These two results are the only
variants that improve the baseline (76.7% LAS)
with a 0.30 and 0.17 increase, respectively. On the
other hand, if we focus on Maltparser, the variants
do not improve the baseline (73.4% LAS) where
the best two results are 73.4% and 72.9% LAS.
For the best result we use the three best features
(verbform, definiteness and degree) in the FEATS
column, while for the second one the best feature
(verbform) has been moved to CPOS.

Despite that only the Basque and Swedish vari-
ants haven been able to significantly improve their
baselines, in the next subsection we present a com-
bination system expecting to take advantage on the
variety of the parsed files (Surdeanu and Manning,
2010).

4.2 Parser Combinations

Although in several cases the use of specific mor-
phosyntactic information does not give noticeable
increases, we also tested the effect on parser com-
binations. Table 3 presents the result of combin-
ing the extended parsers with the baselines (us-
ing all the features) obtained in individual parsers.
The table shows that the Basque language has
achieved the biggest increase. Parser combination
in Basque helps with an improvement of 3.2 with
respect to the Mate baseline. Contrary to Basque,
French is the language that has obtained the small-
est increases in parser combination if we compare
it with the Mate (highest) parser baseline. The
combined system improves the Mate parser base-

75

Basque French German Hungarian Swedish
MaltParser baseline 80.0 79.9 87.6 77.3 73.4
Mate parser baseline 83.0 84.6 91.0 82.8 76.7
Parser combination 86.2 85.1 91.8 84.1 78.1

Table 3: Results of parser combinations

line by 0.5. Parser combination in German gives a
0.8 increase with respect to the best single parser
(Mate, 91.0). Our system achieves a 1.3 increase
for Hungarian with respect to the Mate parser’s
baseline. Finally, if we focus on Swedish, the
parser combination helps with a 1.4 increase with
respect to the Mate parser.

After examining the parsers involved in parser
combinations we noticed that there are always sev-
eral variants included in the best parser combina-
tions, although the only variant that appears in all
the best parser combinations is CPOS−bestMate

in its left-to-right version. Taking into account
that the most relevant feature for Basque, German
and Hungarian is the case, it would be interest-
ing to use the CPOS−caseMate variant for other
languages. Finally, the presented results suggest
that the introduced variants contribute positively
on parsing and they help to improve the scores ob-
tained by the base parsers.

5 Conclusion and Future Work

We have presented a combined system that was
designed after analyzing the relevance of the mor-
phological features in order to take advantage on
the effect of those features on some parsers. In
general the improvements have been noticeable,
specially for Basque. We can point out some in-
teresting avenues for research:

• Use of new parsing algorithms for testing
the effect of different morphological fea-
tures. The results of this work show that the
used techniques are specially useful for lan-
guages where the FEATS column, contain-
ing morpho-syntactic information, gives the
biggest increments with respect to not us-
ing the features, like Basque and Hungar-
ian. We expect that similar improvements
could be obtained for languages like Turkish
or Czech, which share many characteristics
with Basque and Hungarian.

• Experimenting different models for parser
combinations using new parsers. Several of
the parser variants we have used give only

slight modifications over the base algorithms,
even though when combined they give sig-
nificant increases. Widening the spectrum of
parsers and adding new algorithms can imply
an important boost in parser combination.

• Application to the rest of the languages of the
SPMRL 2013 Shared Task: Korean, Hebrew,
Arabic and Polish.

Acknowledgements

This research was supported by the Department of
Industry of the Basque Government (IT344-10, S
PE11UN114), the University of the Basque Coun-
try (GIU09/19) and the Spanish Ministry of Sci-
ence and Innovation (MICINN, TIN2010-20218).

References
Anne Abeillé, Lionel Clément, and François Toussenel.

2003. Building a treebank for french. In Anne
Abeillé, editor, Treebanks. Kluwer, Dordrecht.

I. Aduriz, M. J. Aranzabe, J. M. Arriola, A. Atutxa,
A. Dı́az de Ilarraza, A. Garmendia, and M. Oronoz.
2003. Construction of a Basque dependency tree-
bank. pages 201–204.

Bharat Ram Ambati, Samar Husain, Sambhav Jain,
Dipti Misra Sharma, and Rajeev Sangal. 2010. Two
methods to incorporate local morphosyntactic fea-
tures in hindi dependency parsing. In Proceedings of
the NAACL HLT 2010 First Workshop on Statistical
Parsing of Morphologically-Rich Languages, pages
22–30.

Miguel Ballesteros and Joakim Nivre. 2012a. Maltop-
timizer: A system for maltparser optimization. In
LREC, pages 2757–2763.

Miguel Ballesteros and Joakim Nivre. 2012b. Mal-
toptimizer: an optimization tool for maltparser. In
Proceedings of the Demonstrations at the 13th Con-
ference of the European Chaptr of the Association
for Computational Linguistics, pages 58–62.

Kepa Bengoetxea and Koldo Gojenola. 2010. Appli-
cation of different techniques to dependency pars-
ing of basque. In Proceedings of the NAACL
HLT 2010 First Workshop on Statistical Parsing of
Morphologically-Rich Languages, pages 31–39.

76

Bernd Bohnet and Joakim Nivre. 2012. A transition-
based system for joint part-of-speech tagging and la-
beled non-projective dependency parsing. In Pro-
ceedings of the 2012 Joint Conference on Empiri-
cal Methods in Natural Language Processing and
Computational Natural Language Learning, pages
1455–1465.

Bernd Bohnet. 2010. Very high accuracy and fast de-
pendency parsing is not a contradiction. In Proceed-
ings of the 23rd International Conference on Com-
putational Linguistics, pages 89–97.

Xavier Carreras. 2007. Experiments with a higher-
order projective dependency parser. In Proceed-
ings of the CoNLL Shared Task Session of EMNLP-
CoNLL 2007, Prague, Czech Republic, June.

Özlem Çetinoğlu and Jonas Kuhn. 2013. Towards
joint morphological analysis and dependency pars-
ing of turkish. In Proceedings of the Second In-
ternational Conference on Dependency Linguistics
(DepLing 2013), pages 23–32, Prague, Czech Re-
public, August. Charles University in Prague, Mat-
fyzpress, Prague, Czech Republic.

Gülsen Eryigit. 2007. Itu validation set for metu-
sabancı turkish treebank. URL: http://www3. itu.
edu. tr/ gulsenc/papers/validationset. pdf.

Johan Hall, Jens Nilsson, and Joakim Nivre. 2010.
Single malt or blended? a study in multilingual
parser optimization. In Trends in Parsing Technol-
ogy, pages 19–33. Springer.

Richard Johansson and Pierre Nugues. 2008.
Dependency-based syntactic-semantic analysis with
propbank and nombank. In Proceedings of the
Twelfth Conference on Computational Natural Lan-
guage Learning, pages 183–187.

Yuval Marton, Nizar Habash, and Owen Rambow.
2013. Dependency parsing of modern standard ara-
bic with lexical and inflectional features. Computa-
tional Linguistics, 39(1):161–194.

Joakim Nivre, Jens Nilsson, and Johan Hall. 2006. Tal-
banken05: A Swedish treebank with phrase struc-
ture and dependency annotation. In Proceedings of
LREC, pages 1392–1395, Genoa, Italy.

Joakim Nivre, Johan Hall, Sandra Kübler, Ryan Mc-
Donald, Jens Nilsson, Sebastian Riedel, and Deniz
Yuret. 2007. The CoNLL 2007 shared task
on dependency parsing. In Proceedings of the
CoNLL Shared Task Session of EMNLP-CoNLL
2007, Prague, Czech Republic, June.

Joakim Nivre, Johan Hall, Jens Nilsson, Atanas
Chanev, Gülsen Eryigit, Sandra Kübler, Svetoslav
Marinov, and Erwin Marsi. 2007b. Maltparser:
A language-independent system for data-driven de-
pendency parsing. Natural Language Engineering,
13(2):95–135.

Kemal Oflazer, Bilge Say, Dilek Zeynep Hakkani-
Tür, and Gökhan Tür. 2003. Building a turkish
treebank. Building and Exploiting Syntactically-
annotated Corpora.

Kenji Sagae and Alon Lavie. 2006. Parser com-
bination by reparsing. In Proceedings of the Hu-
man Language Technology Conference of the North
American Chapter of the ACL.

Djamé Seddah, Reut Tsarfaty, Sandra Kübler, Marie
Candito, Jinho Choi, Richárd Farkas, Jennifer Fos-
ter, Iakes Goenaga, Koldo Gojenola, Yoav Goldberg,
Spence Green, Nizar Habash, Marco Kuhlmann,
Wolfgang Maier, Joakim Nivre, Adam Przepi-
orkowski, Ryan Roth, Wolfgang Seeker, Yannick
Versley, Veronika Vincze, Marcin Woliński, Alina
Wróblewska, and Eric Villemonte de la Clérgerie.
2013. Overview of the spmrl 2013 shared task: A
cross-framework evaluation of parsing morpholog-
ically rich languages. In Proceedings of the 4th
Workshop on Statistical Parsing of Morphologically
Rich Languages: Shared Task, Seattle, WA.

Wolfgang Seeker and Jonas Kuhn. 2012. Making El-
lipses Explicit in Dependency Conversion for a Ger-
man Treebank. In Proceedings of the 8th Interna-
tional Conference on Language Resources and Eval-
uation, pages 3132–3139, Istanbul, Turkey. Euro-
pean Language Resources Association (ELRA).

Wolfgang Seeker and Jonas Kuhn. 2013. Morphologi-
cal and syntactic case in statistical dependency pars-
ing. Computational Linguistics, 39(1):23–55.

Mihai Surdeanu and Christopher D. Manning. 2010.
Ensemble models for dependency parsing: Cheap
and good? In Proceedings of the North Ameri-
can Chapter of the Association for Computational
Linguistics Conference (NAACL-2010), Los Ange-
les, CA, June.

Reut Tsarfaty, Djam Seddah, Yoav Goldberg, San-
dra Kübler, Marie Candito, Jennifer Foster, Yan-
nick Versley, Ines Rehbein, and Lamia Tounsi.
2010. Statistical parsing of morphologically rich
languages (spmrl) what, how and whither. In In Pro-
ceedings of the NAACL HLT 2010 First Workshop
on Statistical Parsing of Morphologically-Rich Lan-
guages.

Veronika Vincze, Dóra Szauter, Attila Almási, György
Móra, Zoltán Alexin, and János Csirik. 2010. Hun-
garian dependency treebank. In LREC.

77

Proceedings of the Fourth Workshop on Statistical Parsing of Morphologically Rich Languages, pages 78–85,
Seattle, Washington, USA, 18 October 2013. c©2013 Association for Computational Linguistics

The AI-KU System at the SPMRL 2013 Shared Task : Unsupervised
Features for Dependency Parsing

Volkan Cirik Husnu Sensoy
Artificial Intelligence Laboratory
Koç University, İstanbul, Turkey
{vcirik,hsensoy}@ku.edu.tr

Abstract

We propose the use of the word categories and
embeddings induced from raw text as auxil-
iary features in dependency parsing. To in-
duce word features, we make use of contex-
tual, morphologic and orthographic properties
of the words. To exploit the contextual infor-
mation, we make use of substitute words, the
most likely substitutes for target words, gen-
erated by using a statistical language model.
We generate morphologic and orthographic
properties of word types in an unsupervised
manner. We use a co-occurrence model with
these properties to embed words onto a 25-
dimensional unit sphere. The AI-KU sys-
tem shows improvements for some of the lan-
guages it is trained on for the first Shared Task
of Statistical Parsing of Morphologically Rich
Languages.

1 Introduction

For the first shared task of Workshop on Statistical
Parsing of Morphologically Rich Languages (Sed-
dah et al., 2013), we propose to use unsupervised
features as auxillary features for dependency pars-
ing.

We induce the unsupervised features using con-
textual, morphological and orthographic properties
of the words. We use possible substitutes of the tar-
get word which are generated by a statistical lan-
guage model to exploit the contextual information.
We induce morphological features with a HMM-
based model (Creutz and Lagus, 2005). We combine
contextual, morphological and orthographic features
of co-occurring words within the co-occurrence
data embedding framework (Maron et al., 2010).

The framework embeds word types sharing simi-
lar context, morphological and orthographic prop-
erties closely on a 25-dimensional sphere. Thus, it
provides the word embeddings on a 25 dimensional
sphere. We conduct experiments using these word
embeddings with MaltParser (Nivre et al., 2007) and
MaltOptimizer (Ballesteros and Nivre, 2012). In
addition to CONLL features (Buchholz and Marsi,
2006a), they are added as additional features and the
parsers are configured such that they are able to ex-
ploit these additional features. As a first step we use
real valued word embeddings as they are. Secondly,
we discretize the real valued word embeddings. Fi-
nally, we cluster them and find fine-grained word
categories for word types.

Our experiments show that, the AI-KU system
leads to better results than the baseline experiments
for some languages. We claim that with the cor-
rect parameter settings, these unsupervised features
could be useful for dependency parsing.

In the following sections, we introduce the related
work, the algorithm, experiments, results and pro-
vide a conclusion.

2 Related Work

The features extracted from unlabeled corpora are
already used for all major NLP tasks. Early stud-
ies mainly use clustering based representations (es-
pecially Brown clustering (Brown et al., 1992)) to
obtain those features. Miller et al. (2004; Freitag
(2004) utilized Brown Clusters to improve Named
Entity Recognition (NER) performance whereas
Biemann et al. (2007) used them for NER, Word
Sense Disambiguation(WSD), and chunking. Ush-
ioda (1996) extended Brown Clustering to cluster

78

not only words but also phrases using hierarcical
clustering and uses them to improve supervised part-
of-speech (PoS) tagging. More recently, Brown
Clusters are used for Chinese word segmentation
and NER (Liang, 2005).

Just like other tasks, clustering based representa-
tions are used to improve parser performance. Koo
et al. (2008; Suzuki et al. (2009) improved depen-
dency parsing by using Brown clusters. While Can-
dito and Seddah (2010; Candito and Crabbé (2009)
improved PCFG parsing by using them and Gold-
berg et al. (2009) improved PCFG parser for He-
brew by using HMM generated features. More re-
cently Socher et al. (2010) used word embeddings
computed using method explained in (Collobert and
Weston, 2008) for syntactic parsing.

3 Algorithm

In this section, the general flow of the algorithm will
be presented. First, we explain how we generate
the substitute vectors. Then, we explain the induc-
tion procedure of morphological features. In the fol-
lowing subsection, we explain how we use substi-
tute vectors and morphological features and gener-
ate word embeddings. The same flow is followed
for all languages we work on.

3.1 Substitute Vectors

A target word’s substitute vector is represented by
the vocabulary of words and their corresponding
probabilities of occurring in the position of the target
word.

(1) “ Nobody thought you could just in-
ject DNA into someone ’s body and they
would just suck it up.”

Probability Substitute Word
0.123 thought
0.091 knew
0.064 felt
0.062 said
0.052 believed
0.037 wish

Table 1: Substitute Vector for “thought” in above sen-
tence.

Table 1 illustrates the substitute vector of
“thought” in (1). There is a row for each word in
the vocabulary. For instance, probability of “knew”
occurring in the position of “thought” is 9.1% in this
context.

To calculate these probabilities, as described in
(Yatbaz et al., 2012), a 4-gram language model is
built with SRILM (Stolcke, 2002) on the corpora of
the target languages. For French, Hungarian, Pol-
ish and Swedish we used Europarl Corpus1(Koehn,
2005). For German, CONLL-X German Corpus
is used (Buchholz and Marsi, 2006b). For He-
brew, we combined HaAretz and Arutz 7 corpora of
MILA2(Itai and Wintner, 2008). For the tokens seen
less than 5 times we replace them with an unknown
tag to handle unseen words in training and test data.
We should note that these corpora are not provided
to the other participants.

To estimate probabilities of lexical substitutes, for
every token in our datasets, we use three tokens each
on the left and the right side of the token as a con-
text. Using Fastsubs (Yuret, 2012) we generated top
100 most likely substitute words. Top 100 substi-
tute probabilities are then normalized to represent a
proper probability distribution.

We should emphasize that a substitute vector is a
function of the context and does not depend on the
target word.

3.2 Morphological Features
In order to generate unsupervised word features, the
second set of features that we use are morphological
and orthographic features.

The orthographic feature set used is similar to the
one defined in (Berg-Kirkpatrick et al.,2010)

INITIAL-CAP Capitalized words with the
exception of sentence initial
words.

NUMBER The token starts with a
digit.

CONTAINS-HYPHEN Lowercase words with an
internal hyphen.

INITIAL-APOSTROPHE Tokens that start with an
apostrophe.

The morpological features are obtained using the
unlabeled corpora that are used for the generation

1http://www.statmt.org/europarl/
2http://www.mila.cs.technion.ac.il

79

Figure 1: The Flow of The Modification for Handling New Features

of substitute vectors, using Morfessor defined in
(Creutz and Lagus, 2005). We will only give a
brief sketch of the model used. Morfessor splits
each word into morphemes (word itself may also be
a morpheme) which can be categorized under four
groups, namely prefix, stem, suffix, non-morpheme.
The model is defined as a maximum a posteriori
(MAP) estimate which maximizes the lexicon (set
of morphemes) over the corpus.

The maximization problem is solved by using a
greedy algorithm that iteratively splits and merges
morphemes, then re-segments corpus using Viterbi
algorithm and reestimates probabilities until conver-
gence. Finally, a final merge step takes place to re-
move all non-morphemes.

3.3 Co-occurence Embedding

For a pair of categorical variables, the Spherical Co-
occurrence Data Embedding (S-CODE) framework
(Maron et al., 2010) represents each of their values
on a sphere such that frequently co-occurring values
are positioned closely on this sphere.

The input of S-CODE are tuples of values of cate-
gorical variables. In our case, these are word tokens,
their substitutes, morphological and orthograpic fea-
tures. We construct the tuples by sampling substitute
words using substitute vectors, their corresponding
morphological and orthographic features of the to-
kens. On each row of the co-occurrence input, there
are the target token, its substitute sampled from its
substitute vector, morphological and orthographic
features. Tokens having the similar substitutes, mor-
phological and orthographic features will be closely
located on the sphere at the end of this process. As

in (Yatbaz et al., 2012), the dimension of the sphere
is 25, in other words for each word type seen in the
corpora we have a 25 dimensional vector3.

4 Experiments

We conduct experiments using MaltParser (Nivre
et al., 2007) and MaltOptimizer (Ballesteros and
Nivre, 2012) with features provided in CONLL for-
mat and the additional unsupervised features that we
generated with default settings of the parsers. To
make use of additional features, we need to modify
MaltParser accordingly. Figure 1 shows that how
we use MaltOptimizer and MaltParser with new fea-
tures. In order to handle auxiliary features, the fea-
ture model file is modified in two different ways. We
handle new features with feature functions Input[0]
and Stack[0]4. We should note that other feature
functions should also be experimented as a future
work.

The following subsections explain the details of
the experiments.

4.1 Experiment I

Our first approach was trying to use word embed-
dings as they are with the MaltParser. For each token
in the training and the test set, we added the corre-
sponding 25-dimensional word vector from the word
embeddings file to the training and test sets. If the
word type is not present in the word embeddings,
then, we use the unknown word vector.

3The vectors can be downloaded here :
https://github.com/wolet/sprml13-word-embeddings

4Thanks for Joakim Nivre for his suggestions on this

80

Stack[0] Input[0]
LAS UAS LaA LAS UAS Labeled Accuracy

Real Valued Vectors 80.56 84.33 85.78 80.63 84.38 85.92
Binning, b=5 80.25 84.07 85.58 80.45 84.20 85.79
Binning, b=2 80.41 84.19 85.79 80.47 84.26 85.77
Clustering, k = 50 80.48 84.29 85.79 80.50 84.24 85.78
Clustering k = 300 80.49 84.23 85.83 80.58 84.31 85.82

LAS UAS LaS
Baseline 80.36 84.11 85.72

Table 2: Results on German with MaltParser of Development Set with Default Settings

Stack[0] Input[0]
LAS UAS LaS LAS UAS LaS

Real Valued Vectors 87.30 89.33 93.35 87.29 89.30 93.32
Binning, b =2 87.12 89.20 93.20 87.04 89.11 93.16
Clustering, k = 300 90.30 91.80 95.09 90.49 91.94 95.19

LAS UAS LaS
Baseline 90.38 91.88 95.14

Table 3: Results on German with MaltOptimizer of Development Set

Gold Predicted
LAS UAS LaS LAS UAS LaS Predicted (Unofficial)

Best System 90.29 91.92 95.95 85.86 89.19 92.20 LAS UAS LaS
AI-KU 1 86.39 88.21 94.07 72.57 78.54 82.39 AI-KU 1 79.92 83.94 88.51
AI-KU 2 86.31 88.14 94.05 72.55 78.55 82.36 AI-KU 2 79.84 83.85 88.45
Baseline 85.71 87.50 93.70 79.00 83.35 87.73

Table 4: Results on French

Gold Predicted
LAS UAS LaS LAS UAS LaS Predicted (Unofficial)

Best System 91.83 93.20 96.06 86.95 91.64 94.38 LAS UAS LaS
AI-KU 1 86.98 88.71 93.70 82.32 85.31 89.95 AI-KU 1 84.08 86.71 91.13
AI-KU 2 86.95 88.67 93.67 82.29 85.30 89.95 AI-KU 2 83.93 86.54 91.05
Baseline 86.96 87.67 93.67 82.75 85.38 90.15

Table 5: Results on German

Gold Predicted
LAS UAS LaS LAS UAS LaS

Best System 83.87 88.95 89.19 80.89 86.7 86.93
AI-KU 1 79.42 84.48 86.52 69.01 75.84 79.01
AI-KU 2 78.73 83.79 85.98 62.27 75.84 79.01
Baseline 80.03 84.9 86.97 73.01 79.89 81.28

Table 6: Results on Hebrew

81

Gold Predicted
LAS UAS LaS LAS UAS LaS Predicted (Unofficial)

Best System 88.06 91.14 92.58 86.13 89.81 90.92 LAS UAS LaS
AI-KU 1 83.67 87.08 89.64 78.92 83.77 85.98 AI-KU 1 79.98 84.42 87.12
AI-KU 2 83.63 87.06 89.58 78.76 83.60 85.95 AI-KU 2 79.74 84.12 86.93
Baseline 83.14 86.56 89.20 79.63 83.71 85.89

Table 7: Results on Hungarian

Gold Predicted
LAS UAS LaS LAS UAS LaS

Best System 89.58 93.24 93.42 87.07 91.75 91.24
AI-KU 1 85.16 88.86 90.87 81.86 86.96 88.06
AI-KU 2 85.12 88.79 90.84 78.31 84.18 85.64
Baseline 80.49 86.41 86.94 79.89 85.80 86.24

Table 8: Results on Polish

Gold Predicted
LAS UAS LaS LAS UAS LaS

Best System 83.97 89.11 87.63 82.13 88.06 85.93
AI-KU 1 78.87 85.19 83.44 76.35 83.30 81.37
AI-KU 2 78.57 85.12 83.25 76.35 83.24 81.35
Baseline 77.67 84.6 82.36 75.82 83.20 80.88

Table 9: Results on Swedish

Gold Predicted
Precision Recall F1 Precision Recal F1

Best System 99.41 99.38 99.39 81.68 79.97 80.81
AI-KU 1 99.41 99.38 99.39 74.47 71.51 72.96
AI-KU 2 99.38 99.36 99.37 74.34 71.51 72.89
MaltOptimizer Baseline 98.77 99.18 99.26 72.64 68.09 70.29

Table 10: Results of Multi Word Expressions on French

82

4.2 Experiment II

The second approach is discretizing the real valued
vectors. For each dimension of word embeddings,
we separate b equal sized bins. Then, for each vec-
tor’s dimensions, we assign their corresponding bin
numbers.

4.3 Experiment III

The third approach is clustering the word embed-
dings. We use a modified k-means algorithm (Arthur
and Vassilvitskii, 2007). We experiment with vary-
ing number of clusters k.

For each token in training and test file, we use
word type’s cluster id as an auxiliary feature. Again,
if the token is not in the word embeddings file, we
used the unknown word’s cluster id.

5 Results

In Table 2, the experiments on German with Malt-
Parser without the optimization step are demon-
strated. We use the default settings of the MaltParser
as our baseline. We use training data consisting of
5000 sentences with gold tags as training set and the
provided development data as test set.

When we use real valued word embeddings as
an auxiliary feature, we observe slight improvement
compared to MaltParser baseline. The large bin-
ning size results in worse results compared to base-
line due to sparsity. Clustering again leads to some
improvement compared to MaltParser baseline. We
also observe that increasing the number of clusters
result in better scores compared to smaller k.

In Table 3, the results on German with MaltOp-
timizer can be seen. As a baseline, again, we use
training data consisting of 5000 sentences with gold
tags as training set and the provided development
data as test set. We use the baseline experiment’s
parsing algorithm, feature model and learning algo-
rithm to experiment with word embedding, binning
and clustering on MaltParser.

Unlike in Table 2, in Table 3 we observe that only
the clustering experiment outperforms the baseline
but not significantly. Since clustering is leads to
best results, for all other languages, we apply the
same optimization and clustering pipeline. The only
difference is that when the MaltOptimizer suggests
Stack Projective as the best algorithm, instead of In-

put[0] ve use Stack[0], Stack[1], Stack[2] as feature
functions. The two systems of AI-KU only differ in
these feature functions.

In Table 3-7, the results of the best system, base-
line MaltOptimizer result and our two submitted
systems can be seen. For Polish, our system outper-
foms the MaltOptimizer baseline significantly. For
the rest of the languages, our systems are not signif-
icantly better or worse than the baseline. We make
an assumption that we need to find the optimum set-
tings, for instance the number of clusters, for each
language separately, instead of using the fixed set-
tings for all languages.

For French, German, Hungarian the model trained
on the data with gold features is mistakenly used for
testing on the data with predicted features. To cor-
rect these, for those languages, we report the unoffi-
cial results that are obtained by training on predicted
features.

For French, there is also another evaluation met-
ric. It is about capturing the Multi Word Expres-
sions(MWE). Table 10 reports the results of MWE
and it shows that our system is significantly better
than MaltOptimizer baseline.

6 Conclusion

We can speculate on these results in couple of ways.
First, for all languages we used the same number
of clusters. The optimum number of clusters may
vary with the syntactic properties of these languages.
Similarly, the optimum dimension of the word em-
beddings may vary with the languages. In addition,
for co-occurence embedding and morphological in-
duction we use the parameter settings of (Yatbaz et
al., 2012) which is optimized for Part-of-Speech in-
duction on Penn Treebank data. We suggest to find
the optimum parameter settings for co-occurrence
embedding and morphological induction as a future
work.

We only experimented with simple feature func-
tions, namely Input and Stack functions. Other con-
figuration of these functions may lead to better re-
sults. Lastly, as a future direction, we propose to
use real valued word embeddings and unsupervised
word categories as auxiliary features in the training
phase of the MaltOptimizer.

83

Acknowledgments

We would like to thank Joakim Nivre and Deniz
Yuret for valuable suggestions and their support.

References

D. Arthur and S. Vassilvitskii. 2007. k-means++: The
advantages of careful seeding. In Proceedings of the
eighteenth annual ACM-SIAM symposium on Discrete
algorithms, pages 1027–1035. Society for Industrial
and Applied Mathematics.

Miguel Ballesteros and Joakim Nivre. 2012. Maltop-
timizer: A system for maltparser optimization. In
LREC, pages 2757–2763.

Chris Biemann, Claudio Giuliano, and Alfio Gliozzo.
2007. Unsupervised part-of-speech tagging support-
ing supervised methods. In Proceedings of RANLP,
volume 7.

Peter F Brown, Peter V Desouza, Robert L Mercer, Vin-
cent J Della Pietra, and Jenifer C Lai. 1992. Class-
based n-gram models of natural language. Computa-
tional linguistics, 18(4):467–479.

S. Buchholz and E. Marsi. 2006a. CoNLL-X shared task
on multilingual dependency parsing. SIGNLL.

Sabine Buchholz and Erwin Marsi. 2006b. Conll-x
shared task on multilingual dependency parsing. In
Proceedings of the Tenth Conference on Computa-
tional Natural Language Learning, CoNLL-X ’06,
pages 149–164, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Marie Candito and Benoı̂t Crabbé. 2009. Improving gen-
erative statistical parsing with semi-supervised word
clustering. In Proceedings of the 11th International
Conference on Parsing Technologies, pages 138–141.
Association for Computational Linguistics.

Marie Candito and Djamé Seddah. 2010. Parsing word
clusters. In Proceedings of the NAACL HLT 2010 First
Workshop on Statistical Parsing of Morphologically-
Rich Languages, pages 76–84. Association for Com-
putational Linguistics.

Ronan Collobert and Jason Weston. 2008. A unified ar-
chitecture for natural language processing: Deep neu-
ral networks with multitask learning. In Proceedings
of the 25th international conference on Machine learn-
ing, pages 160–167. ACM.

Mathias Creutz and Krista Lagus. 2005. Inducing
the morphological lexicon of a natural language from
unannotated text. In Proceedings of AKRR’05, Inter-
national and Interdisciplinary Conference on Adap-
tive Knowledge Representation and Reasoning, pages
106–113, Espoo, Finland, June.

Dayne Freitag. 2004. Trained named entity recogni-
tion using distributional clusters. In Proceedings of
EMNLP, pages 262–269.

Yoav Goldberg, Reut Tsarfaty, Meni Adler, and Michael
Elhadad. 2009. Enhancing unlexicalized parsing per-
formance using a wide coverage lexicon, fuzzy tag-set
mapping, and em-hmm-based lexical probabilities. In
Proceedings of the 12th Conference of the European
Chapter of the Association for Computational Linguis-
tics, pages 327–335. Association for Computational
Linguistics.

Alon Itai and Shuly Wintner. 2008. Language resources
for Hebrew. Language Resources and Evaluation,
42(1):75–98, March.

Philipp Koehn. 2005. Europarl: A parallel corpus for sta-
tistical machine translation. In MT summit, volume 5.

Terry Koo, Xavier Carreras, and Michael Collins. 2008.
Simple semi-supervised dependency parsing. Colum-
bus, Ohio USA, June. ACL.

Percy Liang. 2005. Semi-supervised learning for natural
language. Master’s thesis, MIT, May.

Yariv Maron, Michael Lamar, and Elie Bienenstock.
2010. Sphere embedding: An application to part-of-
speech induction. In J. Lafferty, C. K. I. Williams,
J. Shawe-Taylor, R.S. Zemel, and A. Culotta, editors,
Advances in Neural Information Processing Systems
23, pages 1567–1575.

Scott Miller, Jethran Guinness, and Alex Zamanian.
2004. Name tagging with word clusters and discrim-
inative training. In In Proceedings of HLT-NAACL,
pages 337–342.

Joakim Nivre, Johan Hall, Jens Nilsson, Atanas Chanev,
Gülsen Eryigit, Sandra Kübler, Svetoslav Marinov,
and Erwin Marsi. 2007. Maltparser: A language-
independent system for data-driven dependency pars-
ing. Natural Language Engineering, 13(2):95–135.

Djame Seddah, Reut Tsarfaty, Sandra Kubler, Marie Can-
dito, Jinho Choi, Richard Farkas, Jennifer Foster, Iakes
Goenaga, Koldo Gojenola, Yoav Goldberg, Spence
Green, Nizar Habash, Marco Kuhlmann, Wolfgang
Maier, Joakim Nivre, Adam Przepiorkowski, Ryan
Roth, Wolfgang Seeker, Yannick Versley, Veronika
Vincze, Marcin Wolinski, Alina Wroblewska, and Eric
Villemonte de la Clergerie. 2013. Overview of the
spmrl 2013 shared task: A cross-framework evalua-
tion of parsing morphologically rich languages. In
Proceedings of the 4th Workshop on Statistical Pars-
ing of Morphologically Rich Languages: Shared Task,
Seattle, WA.

Richard Socher, Christopher D Manning, and Andrew Y
Ng. 2010. Learning continuous phrase representa-
tions and syntactic parsing with recursive neural net-
works. In Proceedings of the NIPS-2010 Deep Learn-
ing and Unsupervised Feature Learning Workshop.

84

Andreas Stolcke. 2002. Srilm-an extensible language
modeling toolkit. In Proceedings International Con-
ference on Spoken Language Processing, pages 257–
286, November.

Jun Suzuki, Hideki Isozaki, Xavier Carreras, and Michael
Collins. 2009. An empirical study of semi-supervised
structured conditional models for dependency parsing.
In Proceedings of the 2009 Conference on Empirical
Methods in Natural Language Processing: Volume 2-
Volume 2, pages 551–560. Association for Computa-
tional Linguistics.

Akira Ushioda. 1996. Hierarchical clustering of words
and applications to nlp tasks. In Proceedings of the
Fourth Workshop on Very Large Corpora, pages 28–
41.

Mehmet Ali Yatbaz, Enis Sert, and Deniz Yuret. 2012.
Learning syntactic categories using paradigmatic rep-
resentations of word context. In Proceedings of the
2012 Joint Conference on Empirical Methods in Natu-
ral Language Processing and Computational Natural
Language Learning, pages 940–951, Jeju Island, Ko-
rea, July. Association for Computational Linguistics.

Deniz Yuret. 2012. Fastsubs: An efficient and exact pro-
cedure for finding the most likely lexical substitutes
based on an n-gram language model. Signal Process-
ing Letters, IEEE, 19(11):725–728, Nov.

85

Proceedings of the Fourth Workshop on Statistical Parsing of Morphologically Rich Languages, pages 86–90,
Seattle, Washington, USA, 18 October 2013. c©2013 Association for Computational Linguistics

SPMRL’13 Shared Task System:
The CADIM Arabic Dependency Parser

Yuval Marton
Microsoft Corporation

City Center Plaza
Bellevue, WA, USA

Nizar Habash, Owen Rambow
CCLS

Columbia University
New York, NY, USA

cadim@ccls.columbia.edu

Sarah Alkuhlani
CS Department

Columbia University
New York, NY, USA

Abstract

We describe the submission from the
Columbia Arabic & Dialect Modeling
group (CADIM) for the Shared Task at
the Fourth Workshop on Statistical Pars-
ing of Morphologically Rich Languages
(SPMRL’2013). We participate in the
Arabic Dependency parsing task for pre-
dicted POS tags and features. Our system
is based on Marton et al. (2013).

1 Introduction

In this paper, we discuss the system that the
Columbia Arabic & Dialect Modeling group
(CADIM) submitted to the 2013 Shared Task on
Parsing Morphologically Rich Languages (Seddah
et al., 2013). We used a system for Arabic depen-
dency parsing which we had previously developed,
but retrained it on the training data splits used in this
task. We only participated in the Arabic dependency
parsing track, and in it, only optimized for predicted
(non-gold) POS tags and features.

We first summarize our previous work (Sec-
tion 2). We then discuss our submission and the re-
sults (Section 3).

2 Approach

In this section, we summarize Marton et al. (2013).
We first present some background information on
Arabic morphology and then discuss our method-
ology and main results. We present our best per-
forming set of features, which we also use in our
SPMRL’2013 submission.

2.1 Background

Morphology interacts with syntax in two ways:
agreement and assignment. In agreement, there is
coordination between the morphological features of
two words in a sentence based on their syntactic
configuration (e.g., subject-verb or noun-adjective
agreement in GENDER and/or NUMBER). In as-
signment, specific morphological feature values are
assigned in certain syntactic configurations (e.g.,
CASE assignment for the subject or direct object of
a verb).

The choice of optimal linguistic features for
a parser depends on three factors: relevance,
redundancy and accuracy. A feature has rel-
evance if it is useful in making an attach-
ment (or labeling) decision. A particular fea-
ture may or may not be relevant to parsing.
For example, the GENDER feature may help
parse the Arabic phrase �

èYK
Ym.
Ì'@/YK
Ym.

Ì'@
�
èPAJ
�Ë@ H. AK.

bAb AlsyArh̄ Aljdyd/Aljdydh̄1 ‘door the-car the-
newmasc.sg/fem.sg [lit.]’ using syntactic agreement:
if the-new is masculine (Aljdyd YK
Ym.

Ì'@), it should at-
tach to the masculine door (bAb H. AK.), resulting in
the meaning ‘the car’s new door’; if the-new is fem-
inine (Aljdydh̄

�
èYK
Ym.

Ì'@), it should attach to the femi-
nine the-car (AlsyArh̄ �

èPAJ
�Ë@), resulting in ‘the door
of the new car’. In contrast, the ASPECT feature does

1Arabic orthographic transliteration is presented in the HSB
scheme (Habash et al., 2007): (in alphabetical order)
@ H.

�
H

�
H h. h p X

	
XP 	P �

�
� �

	
�

	
 ¨

	
¨

	
¬

�
� ¼ È Ð

	
à è ð ø

A b t θ j H x d ð r z s š S D T Ď ς γ f q k l m n h w y

and the additional letters: ’ Z, Â

@, Ǎ @

, Ā

�
@, ŵ

ð', ŷ Zø', h̄ �
è, ý ø.

86

not constrain any syntactic decision.2 Even if rele-
vant, a feature may not necessarily contribute to op-
timal performance since it may be redundant with
other features that surpass it in relevance. For ex-
ample, the DET and STATE features alone both help
parsing because they help identify the idafa con-
struction (the modificiation of a nominal by a gen-
itive noun phrase), but they are redundant with each
other and the DET feature is more helpful since it
also helps with adjectival modification of nouns. Fi-
nally, the accuracy of automatically predicting the
feature values (ratio of correct predictions out of all
predictions) of course affects the value of a feature
on unseen text. Even if relevant and non-redundant,
a feature may be hard to predict with sufficient ac-
curacy by current technology, in which case it will
be of little or no help for parsing, even if helpful
when its gold values are provided. The CASE fea-
ture is very relevant and not redundant, but it cannot
be predicted with high accuracy and overall it is not
useful.

Different languages vary with respect to which
features may be most helpful given various tradeoffs
among these three factors. It has been shown pre-
viously that if the relevant morphological features
in assignment configurations can be recognized well
enough, then they contribute to parsing accuracy.
For example, modeling CASE in Czech improves
Czech parsing (Collins et al., 1999): CASE is rele-
vant, not redundant, and can be predicted with suf-
ficient accuracy. However, it had been more diffi-
cult showing that agreement morphology helps pars-
ing, with negative results for dependency parsing in
several languages (Nivre et al., 2008; Eryigit et al.,
2008; Nivre, 2009). In contrast to these negative re-
sults, Marton et al. (2013) showed positive results
for using agreement morphology for Arabic.

2.2 Methodology

In Marton et al. (2013), we investigated morphologi-
cal features for dependency parsing of Modern Stan-
dard Arabic (MSA). The goal was to find a set of rel-
evant, accurate and non-redundant features. We used
both the MaltParser (Nivre, 2008) and the Easy-First

2For more information on Arabic morphology in the con-
text of natural language processing see Habash (2010). For a
detailed analysis of morpho-syntactic agreement, see Alkuhlani
and Habash (2011).

Parser (Goldberg and Elhadad, 2010). Since the
Easy-First Parser performed better, we use it in all
experiments reported in this paper.

For MSA, the space of possible morphological
features is quite large. We determined which mor-
phological features help by performing a search
through the feature space. In order to do this, we
separated part-of-speech (POS) from the morpho-
logical features. We defined a core set of 12 POS
features, and then explored combinations of mor-
phological features in addition to this POS tagset.
This core set of POS tags is similar to those pro-
posed in cross-lingual work (Rambow et al., 2006;
Petrov et al., 2012). We performed this search inde-
pendently for Gold input features and predicted in-
put features. We used our MADA+TOKAN system
(Habash and Rambow, 2005; Habash et al., 2009;
Habash et al., 2012) for the prediction. As the Easy-
First Parser predicts links separately before labels,
we first optimized for unlabeled attachment score,
and then optimized the Easy-First Parser labeler for
label score.

As had been found in previous results, assignment
features, specifically CASE and STATE, are very
helpful in MSA. However, in MSA this is true only
under gold conditions: since CASE is rarely explicit
in the typically undiacritized written MSA, it has a
dismal accuracy rate, which makes it useless when
used in machine-predicted (real, non-gold) condi-
tion. In contrast with previous results, we showed
that agreement features are quite helpful in both gold
and predicted conditions. This is likely a result of
MSA having a rich agreement system, covering both
verb-subject and noun-adjective relations.

Additionally, almost all work to date in MSA
morphological analysis and part-of-speech (POS)
tagging has concentrated on the morphemic form of
the words. However, often the functional morphol-
ogy (which is relevant to agreement, and relates to
the meaning of the word) is at odds with the “sur-
face” (form-based) morphology; a well-known ex-
ample of this are the “broken” (irregular) plurals
of nominals, which often have singular-form mor-
phemes but are in fact plurals and show plural agree-
ment if the referent is rational. In Marton et al.
(2013), we showed that by modeling the functional
morphology rather than the form-based morphology,
we obtain a further increase in parsing performance

87

Feature Type Feature Explanation
Part-of-speech CORE12 12 tags for core parts-of-speech: verb, noun, adjective, adverb,

proper noun, pronoun, preposition, conjunction, relative pronoun,
particle, abbreviation, and punctuation

Inflectional features DET Presence of the determiner morpheme È@ Al
PERSON 1st, 2nd, or 3rd
FN*N Functional number: singular, dual, plural
FN*G Functional gender: masculine or feminine

Lexical features FN*R Rationality: rational, irrational, ambiguous, unknown or N/A
LMM Undiacritized lemma

Table 1: Features used in the CADIM submission with the Easy-First Parser (Goldberg and Elhadad, 2010).

Training Set Test Set LAS UAS LaS
5K (SPMRL’2013) dev ≤ 70 81.7 84.7 92.7
All (SPMRL’2013) dev ≤ 70 84.8 87.4 94.2
Marton et al. (2013) test (old split) ≤ 70 81.7 84.6 92.8
5K (SPMRL’2013) dev 81.1 84.2 92.7
All (SPMRL’2013) dev 84.0 86.6 94.1
5K (SPMRL’2013) test 80.5 83.5 92.7
All (SPMRL’2013) test 83.2 85.8 93.9
Marton et al. (2013) test (old split) 81.0 84.0 92.7

Table 2: Results of our system on Shared Task test data, Gold Tokenization, Predicted Morphological Tags; and for
reference also on the data splits used in our previous work (Marton et al., 2013); “≤ 70” refers to the test sentences
with 70 or fewer words.

Training Set Test Set Labeled Tedeval Score Unlabeled Tedeval Score
5K (SPMRL’2013) test ≤ 70 86.4 89.9
All (SPMRL’2013) test ≤ 70 87.8 90.8

Table 3: Results of our system on on Shared Task test data, Predicted Tokenization, Predicted Morphological Tags;
“≤ 70” refers to the test sentences with 70 or fewer words

(again, both when using gold and when using pre-
dicted POS and morphological features).

We also showed that for parsing with predicted
POS and morphological features, training on a com-
bination of gold and predicted POS and morpholog-
ical feature values outperforms the alternative train-
ing scenarios.

2.3 Best Performing Feature Set
The best performing set of features on non-gold in-
put, obtained in Marton et al. (2013), are shown in
Table 1. The features are clustered into three types.

• First is part-of-speech, represented using a

“core” 12-tag set.

• Second are the inflectional morphological fea-
tures: determiner clitic, person and functional
gender and number.

• Third are the rationality (humanness) feature,
which participates in morphosyntactic agree-
ment in Arabic (Alkuhlani and Habash, 2011),
and a form of the lemma, which abstract over
all inflectional morphology.

For the training corpus, we use a combination of
the gold and predicted features.

88

3 Our Submission

3.1 Data Preparation

The data split used in the shared task is different
from the data split we used in (Marton et al., 2013),
so we retrained our models on the new splits (Diab
et al., 2013). The data released for the Shared Task
showed inconsistent availability of lemmas across
gold and predicted input, so we used the ALMOR
analyzer (Habash, 2007) with the SAMA databases
(Graff et al., 2009) to determine a lemma given the
word form and the provided (gold or predicted) POS
tags. In addition to the lemmas, the ALMOR an-
alyzer also provides morphological features in the
feature-value representation our approach requires.
Finally, we ran our existing converter (Alkuhlani
and Habash, 2012) over this representation to obtain
functional number and gender, as well as the ratio-
nality feature.3 For simplicity reasons, we used the
MLE:W2+CATiB model (Alkuhlani and Habash,
2012), which was the best performing model on seen
words, as opposed to the combination system that
used a syntactic component with better results on
unseen words. We did not perform Alif or Ya nor-
malization on the data.

We trained two models: one on 5,000 sentences
of training data and one on the entire training data.

3.2 Results

Our performance in the Shared Task for Arabic De-
pendency, Gold Tokenization, Predicted Tags, is
shown in Table 2. Our performance in the Shared
Task for Arabic Dependency, Predicted Tokeniza-
tion, Predicted Tags, is shown in Table 3. For
predicted tokenization, only the IMS/Szeged sys-
tem which uses system combination (Run 2) out-
performed our parser on all measures; our parser
performed better than all other single-parser sys-
tems. For gold tokenization, our system is the sec-
ond best single-parser system after the IMS/Szeged
single system (Run 1). For gold tokenization and
predicted morphology (Table 2), we also give the
performance reported in our previous work (Mar-
ton et al., 2013). The increase over the previously

3The functional feature generator of (Alkuhlani and Habash,
2012) was trained on a different training set from the parser, but
the functional feature generator was not trained on any of the
test corpus for the Shared Task.

reported work may simply be due to the different
split for training and test, but it may also be due
to improvements to the functional feature prediction
(Alkuhlani and Habash, 2012), and the predicted
features provided by the Shared Task organizers.

References

Sarah Alkuhlani and Nizar Habash. 2011. A corpus for
modeling morpho-syntactic agreement in Arabic: gen-
der, number and rationality. In Proceedings of the 49th
Annual Meeting of the Association for Computational
Linguistics (ACL), Portland, Oregon, USA.

Sarah Alkuhlani and Nizar Habash. 2012. Identifying
broken plurals, irregular gender, and rationality in Ara-
bic text. In Proceedings of the 13th Conference of
the European Chapter of the Association for Compu-
tational Linguistics, pages 675–685. Association for
Computational Linguistics.

Michael Collins, Jan Hajic, Lance Ramshaw, and
Christoph Tillmann. 1999. A statistical parser for
Czech. In Proceedings of the 37th Annual Meeting of
the Association for Computational Linguistics (ACL),
pages 505–512, College Park, Maryland, USA, June.

Mona Diab, Nizar Habash, Owen Rambow, and Ryan
Roth. 2013. LDC Arabic Treebanks and Associated
Corpora: Data Divisions Manual. Technical Report
CCLS-13-02, Center for Computational Learning Sys-
tems, Columbia University.

Gülsen Eryigit, Joakim Nivre, and Kemal Oflazer. 2008.
Dependency parsing of Turkish. Computational Lin-
guistics, 34(3):357–389.

Yoav Goldberg and Michael Elhadad. 2010. An effi-
cient algorithm for easy-first non-directional depen-
dency parsing. In Proceedings of Human Language
Technology (HLT): the North American Chapter of the
Association for Computational Linguistics (NAACL),
pages 742–750, Los Angeles, California.

David Graff, Mohamed Maamouri, Basma Bouziri,
Sondos Krouna, Seth Kulick, and Tim Buckwal-
ter. 2009. Standard Arabic Morphological Analyzer
(SAMA) Version 3.1. Linguistic Data Consortium
LDC2009E73.

Nizar Habash and Owen Rambow. 2005. Arabic Tok-
enization, Part-of-Speech Tagging and Morphological
Disambiguation in One Fell Swoop. In Proceedings of
the 43rd Annual Meeting of the Association for Com-
putational Linguistics (ACL), pages 573–580, Ann Ar-
bor, Michigan.

Nizar Habash, Abdelhadi Soudi, and Tim Buckwalter.
2007. On Arabic Transliteration. In A. van den Bosch

89

and A. Soudi, editors, Arabic Computational Mor-
phology: Knowledge-based and Empirical Methods.
Springer.

Nizar Habash, Owen Rambow, and Ryan Roth. 2009.
MADA+TOKAN: A toolkit for Arabic tokenization,
diacritization, morphological disambiguation, POS
tagging, stemming and lemmatization. In Khalid
Choukri and Bente Maegaard, editors, Proceedings of
the Second International Conference on Arabic Lan-
guage Resources and Tools. The MEDAR Consortium,
April.

Nizar Habash, Owen Rambow, and Ryan Roth. 2012.
MADA+TOKAN Manual. Technical report, Techni-
cal Report CCLS-12-01, Columbia University.

Nizar Habash. 2007. Arabic Morphological Representa-
tions for Machine Translation. In Antal van den Bosch
and Abdelhadi Soudi, editors, Arabic Computational
Morphology: Knowledge-based and Empirical Meth-
ods. Kluwer/Springer.

Nizar Habash. 2010. Introduction to Arabic Natural
Language Processing. Morgan & Claypool Publish-
ers.

Yuval Marton, Nizar Habash, and Owen Rambow. 2013.
Dependency parsing of Modern Standard Arabic with
lexical and inflectional features. Computational Lin-
guistics, 39(1).

Joakim Nivre, Igor M. Boguslavsky, and Leonid K.
Iomdin. 2008. Parsing the SynTagRus Treebank of
Russian. In Proceedings of the 22nd International
Conference on Computational Linguistics (COLING),
pages 641–648.

Joakim Nivre. 2008. Algorithms for Deterministic Incre-
mental Dependency Parsing. Computational Linguis-
tics, 34(4).

Joakim Nivre. 2009. Parsing Indian languages with
MaltParser. In Proceedings of the ICON09 NLP Tools
Contest: Indian Language Dependency Parsing, pages
12–18.

Slav Petrov, Dipanjan Das, and Ryan McDonald. 2012.
A universal part-of-speech tagset. In Proceedings of
the Conference on Language Resources and Evalua-
tion (LREC), May.

Owen Rambow, Bonnie Dorr, David Farwell, Rebecca
Green, Nizar Habash, Stephen Helmreich, Eduard
Hovy, Lori Levin, Keith J. Miller, Teruko Mitamura,
Florence Reeder, and Siddharthan Advaith. 2006. Par-
allel syntactic annotation of multiple languages. In
Proceedings of the Fifth Conference on Language Re-
sources and Evaluation (LREC), Genoa, Italy.

Djamé Seddah, Reut Tsarfaty, Sandra Kübler, Marie Can-
dito, Jinho Choi, Richárd Farkas, Jennifer Foster, Iakes
Goenaga, Koldo Gojenola, Yoav Goldberg, Spence
Green, Nizar Habash, Marco Kuhlmann, Wolfgang

Maier, Joakim Nivre, Adam Przepiorkowski, Ryan
Roth, Wolfgang Seeker, Yannick Versley, Veronika
Vincze, Marcin Woliński, Alina Wróblewska, and Eric
Villemonte de la Clérgerie. 2013. Overview of the
spmrl 2013 shared task: A cross-framework evalua-
tion of parsing morphologically rich languages. In
Proceedings of the 4th Workshop on Statistical Pars-
ing of Morphologically Rich Languages: Shared Task,
Seattle, WA.

90

Proceedings of the Fourth Workshop on Statistical Parsing of Morphologically Rich Languages, pages 91–96,
Seattle, Washington, USA, 18 October 2013. c©2013 Association for Computational Linguistics

A Statistical Approach to Prediction of Empty Categories in Hindi
Dependency Treebank

Puneeth Kukkadapu, Prashanth Mannem
Language Technologies Research Center

IIIT Hyderabad, India
{puneeth.kukkadapu,prashanth}@research.iiit.ac.in

Abstract

In this paper we use statistical dependency
parsing techniques to detect NULL or Empty
categories in the Hindi sentences. We have
currently worked on Hindi dependency tree-
bank which is released as part of COLING-
MTPIL 2012 Workshop. Earlier Rule based
approaches are employed to detect Empty
heads for Hindi language but statistical learn-
ing for automatic prediction is not explored.
In this approach we used a technique of in-
troducing complex labels into the data to pre-
dict Empty categories in sentences. We have
also discussed about shortcomings and diffi-
culties in this approach and evaluated the per-
formance of this approach on different Empty
categories.

1 Introduction

Hindi is a morphologically rich and a relatively
free word order language (MoR-FWO). Parsing is
a challenging task for such MoR-FWO languages
like Turkish, Basque, Czech, Arabic, etc. be-
cause of their non-configurable nature. Previous re-
search showed that the dependency based annota-
tion scheme performs better than phrase based an-
notation scheme for such languages (Hudson, 1984;
Bharati et al., 1995). Dependency annotation for
Hindi is based on Paninian framework for building
the treebank (Begum et al., 2008). In recent years
data driven parsing on Hindi has shown good re-
sults, the availability of annotated corpora is a defi-
nite factor for this improvement (Nivre et al., 2006;
McDonald et al., 2005; Martins et al., 2009; Man-
nem and Dara, 2011). Other approaches such as

rule-based and hybrid of rule-based and data-driven
(Bharati et al., 2009a) for Hindi language have also
been tried out. In the shared task for Hindi Pars-
ing organized with COLING workshop Singla et al.
(2012) achieved best results for Gold-Standard data
with 90.99% (Labeled Attachment Score or LAS)
and 95.87% (Unlabeled Attachment Score or UAS).

Empty category is a nominal element which does
not have any phonological content and is therefore
unpronounced. Empty categories are annotated in
sentences to ensure a linguistically plausible struc-
ture. Empty categories play a crucial role in the an-
notation framework of the Hindi dependency tree-
bank (Begum et al., 2008; Bharati et al., 2009b). If
dependency structure of a sentence do not form a
fully connected tree then Empty category (denoted
by NULL in Hindi Treebank) is inserted in the sen-
tence. In the Hindi treebank, an Empty category has
at least one child. Traditional parsing algorithms do
not insert Empty categories and require the Empty
categories to be part of the input. These Empty
categories are manually annotated in the treebank.
In real time scenarios, like translation between lan-
guages, it is not possible to add the Empty cate-
gories into the sentences manually. So we require an
approach which can identify the presence of these
Empty categories and insert into appropriate posi-
tions in the sentence.

Figure 1 shows an Example of a Hindi sentence
annotated with a NULL category. The English trans-
lation for this sentence is, “Its not fixed what his big
bank will do”. The aim of this paper is to investigate
the problem of automatically predicting the Empty
categories in the sentences using the statistical de-

91

Figure 1: An Example of a Hindi sentence annotated with a NULL category.

pendency parsing technique and to shed some light
on the challenges of this problem. As the data-driven
parsing on Hindi language has achieved good results
(Singla et al., 2012), we try to use this approach to
predict Empty categories in the sentence. In this
approach the information about NULL categories is
encoded into the label set of the structure. In these
experiments we have used only Projective sentences
from the treebank. Non-projectivity makes it diffi-
cult to identify the exact position of NULLs during
introduction of NULLs in the sentence.

The rest of the paper is divided into the follow-
ing sections: Section 2 discusses about the related
work. Section 3 gives an overview of the Hindi data
we have used for our experiments. Section 4 con-
tains the details of our approach and section 5 dis-
cusses about experiments, parser, results and discus-
sion. We conclude the paper in section 6 with a sum-
mary and the future work.

2 Related Work

Previous work related to Empty categories predic-
tion on Hindi data is done by Gsk et al. (2011) which
is a rule based approach for detection of Empty cate-
gories and also presented detailed analysis of differ-
ent types of Empty categories present in the Hindi
treebank. They used hand-crafted rules in order
to identify each type of Empty category. As this
is a rule based approach it becomes language spe-
cific. There are many approaches for the recov-
ery of empty categories in the treebanks like Penn
treebank, both ML based (Collins, 1997; Johnson,

2002; Seeker et al., 2012), and rule based (Camp-
bell, 2004). Some approaches such as Yang and
Xue (2010) follow a post processing step of recov-
ering empty categories after parsing the text. Gsk
et al. (2011) have discussed about different types
of Empty categories in Hindi Treebank in detailed
manner. The main types of Empty categories are:

• Empty Subject where a clause is dependent on
missing subject (NP) of the verb, denoted as
NULL NP or NULL PRP.

• Backward Gapping where the verb (VM) is
absent in the clause that occurs before a co-
ordinating conjunct, denoted as NULL VM

• Forward Gapping where the verb (VM) is
absent in the clause that occurs after a co-
ordinating conjunct, denoted as NULL VM.

• Conjunction Ellipses where the Conjunction
(CC) is absent in the sentence, denoted as
NULL CC.

3 Data

We have used COLING-MTPIL workshop 2012
data for our experiments. This was released by the
organizers as part of the shared task in two differ-
ent settings. One being the manually annotated data
with POS tags, chunks and other information such as
gender, number, person etc. whereas the other one
contains only automatic POS tags without any other
information. We have used Gold standard data with

92

Type of NULL No. of Instances
NULL VM 247
NULL CC 184
NULL NP 71

NULL PRP 25

Table 1: Empty categories in Training + Development
Dataset of Hindi treebank.

Type of NULL No. of instances
NULL VM 26
NULL CC 36
NULL NP 9

NULL PRP 4

Table 2: Empty categories in Testing Dataset of Hindi
treebank.

all features provided for our experiments. Train-
ing set contains 12,041 sentences, development data
set consists of 1233 sentences and testing data set
consists of 1828 sentences. In our experiments we
have worked with only projective sentences. We
have combined the training and development data
sets into one data set and used as training in the final
experiments.

Training and Development data together consists
of 544 NULL instances (in 436 sentences) of 10,690
sentences. The major types of Empty categories
present in the training data are of type NULL CC,
NULL VM, NULL NN and NULL PRP categories.
Table 1 and Table 2 show the number of instances of
each category. Testing data consists of 80 instances
(72 sentences) of 1455 sentences.

4 Approach

There are 3 main steps involved in this process.

4.1 Pre-Processing
In the first step, we encode information about pres-
ence of Empty categories in a sentence into the
dependency relation label set of the sentence. If
NULLs are present in a sentence, we remove the
NULLs from the respective sentence in the treebank.
In a sentence the dependents or children of a NULL
category are attached to the parent of the NULL cat-
egory and their respective labels are combined with
dependency label of NULL category which indicates

the presence of NULL and also says that such words
or tokens are children of NULL category. Instead of
just combining the labels we also add a sense of di-
rection to the complex label which indicates whether
the position of NULL is to the right or left of this
token in the sentence and subsequently NULLs are
also detached from its parent node. Therefore a
complex label in a sentence indicates the presence
of a NULL category in the sentence.

Example: Null-label r dep-label is a generic
type of a complex label. In this format ’r’ indicates
that a NULL instance is to the right of this token.
Null-label is the dependency relation label joining
the Null instance and its parent and dep-label is the
dependency relation label joining the current token
or word to its parent which is a NULL instance.
Figure 2 illustrates this step.

4.2 Data-driven parsing

In the second step a Data-driven parser is trained
using the training data (with complex dependency
relation labels) and when this parser model is used
on the test data it predicts the complex labels in the
output. In this approach we have tried out different
data-driven parsers such as Malt (Nivre et al., 2006),
Turbo (Martins et al., 2010) and MST (McDonald
et al., 2005) for this experiment which were shown
earlier to be performing better for Hindi Parsing by
Kukkadapu et al. (2012) and found that Malt parser
performs better than the rest on this data with com-
plex labels.

4.3 Post-processing

In the final step, Post-processing is applied on the
output predicted by the parser in the above step. In
this step presence of NULLs are identified using the
complex labels and their position in the sentence
is identified using sense of direction in these labels
(i.e., whether NULL instance is to the left ’l’ or right
’r’ of this token). During the insertion of NULLs
into the sentence Projectivity of the sentence must
be preserved. Keeping this constraint intact and us-
ing the direction information from the dependency
relation labels, NULLs are introduced into the sen-
tence. Figure 2 illustrates this step.

The advantage in using statistical approach rather
than a rule based approach to predict NULLs is, it

93

Figure 2: Process

can be easily used to predict NULLs in other MoR-
FWO languages. The problem with this approach
is, it can’t handle Empty categories occurring as
Leaf nodes (or Terminal nodes in the dependency
tree) and as Root nodes. As we have mentioned
earlier, the dependency annotation scheme of Hindi
language does not allow for Empty categories to oc-
cur as Leaf nodes (or Terminal nodes). But if these
Empty categories occur as Root nodes in the depen-
dency tree then such cases are not disturbed in our
approach.

5 Experiments and Results

5.1 Parser settings
As mentioned earlier we had used Malt parser for
our experiments. Malt Parser implements the tran-
sition based approach to dependency parsing which
has two components:
1) A transition system for mapping sentences into
dependency trees.
2) A classifier for predicting the next transition for
every possible system configuration.

Malt parser provides two learning algorithms
LIBSVM and LIBLINEAR. It also provides various
options for parsing algorithms and we have exper-
imented on nivre-eager, nivre-standard and stack-
proj parsing algorithms. Nivre-eager has shown
good results in our experiments.

5.2 Features and Template
Feature model is the template, which governs the
learning from the given training data. We observed
feature model used by Kosaraju et al. (2010) per-
forms best.

In order to get best results in the second step
(Data-driven parsing) we have experimented with

Type of NULL Category Recall
NULL VM 50
NULL CC 69.45
NULL NN 88.89
NULL PRP 50

Table 3: Empty categories Predicted by this approach on
test data.

various features provided in the data. Kosaraju et al.
(2010) and Husain et al. (2010) showed the best fea-
tures that can be used in FEATS column in CoNLL-
X format. These features are vibhakti (post posi-
tional marker), TAM (tense, aspect and modality),
chunk features like chunk head, chunk distance and
chunk boundary information have proved to be ef-
fective in parsing of Hindi language and our results
on overall accuracy of data is consistent with their
results.

5.3 Results and Discussion

The Results obtained on the test dataset are shown
below and Recall on each Empty category are given
in Table 3:

The Results obtained by using this approach on
the test set including all the Empty category types is
as follows:

Precision = 84.9
Recall = 69.23
F-measure = 76.26
In computation of the above results the exact po-

sition of NULLs in the sentence are not considered.
These values indicate the efficiency of the system
in identifying the presence of the Empty categories
in the system. However, this approach inserted the

94

NULLs in exact positions with a Precision of more
than 85%, i.e., of all the NULL instances it has in-
serted correctly, it has inserted 85% of them in exact
positions in the sentences.

The approach was able to insert NULL NP to-
kens with good accuracy but it had a tough time pre-
dicting NULL VM tokens. This was also consistent
with Gsk et al. (2011) conclusions about Empty cat-
egories in Hindi treebank.

In case of NULL VM categories we have ob-
served some inconsistency in the annotation of these
sentences. In these sentences which have multiple
clauses with main verb (VM) token missing, certain
sentences are annotated with NULL VM for each
clause where main verb (VM) token is missing and
certain sentences are annotated with one NULL VM
for all the clauses with main verb (VM) missing.
This may be a reason for accuracy drop in predict-
ing NULL VM tokens. The main reason for low ac-
curacy as we have observed is that the output pre-
dicted by the parser is low for these complex labels.
The test data consists of 202 complex labels whereas
the parser has been able to predict only 102 of them,
which is a huge drop in accuracy for complex labels.
The overall accuracy of parser on the test data (only
projective sentences) has been high 91.11%(LAS),
95.86%(UAS) and 92.65%(LS). The low accuracy
of the parser on complex labels may be due to less
number of these instances compared to size of the
corpus. Another reason may be due to the introduc-
tion of complex labels the size of label set has in-
creased significantly and it may be difficult for the
parser to learn the rare labels.

6 Conclusion and Future work

In this paper, we presented a statistical approach to
Empty category prediction using Data-driven pars-
ing. We have used state-of-the-art parser for Hindi
language with an accuracy above 90% and have
achieved a decent F-score of 76.26 in predicting
Empty categories. We look to try out this approach
for other MoR-FWO languages and compare the
performances on different languages. We need to
identify Features which would help in identifying
NULL CC category and also should try this ap-
proach on a big data set with a significant number
of instances of NULLs and also look to extend this

approach to Non-Projective sentences.

References
Rafiya Begum, Samar Husain, Arun Dhwaj, Dipti Misra

Sharma, Lakshmi Bai, and Rajeev Sangal. 2008. De-
pendency annotation scheme for indian languages. In
Proceedings of IJCNLP.

A. Bharati, V. Chaitanya, R. Sangal, and KV Ramakrish-
namacharyulu. 1995. Natural language processing: A
Paninian perspective. Prentice-Hall of India.

Akshar Bharati, Samar Husain, Dipti Misra, and Rajeev
Sangal. 2009a. Two stage constraint based hybrid ap-
proach to free word order language dependency pars-
ing. In Proceedings of the 11th International Confer-
ence on Parsing Technologies, pages 77–80. Associa-
tion for Computational Linguistics.

Akshara Bharati, Dipti Misra Sharma, Samar Husain,
Lakshmi Bai, Rafiya Begam, and Rajeev Sangal.
2009b. Anncorra: Treebanks for indian languages,
guidelines for annotating hindi treebank.

Richard Campbell. 2004. Using linguistic principles to
recover empty categories. In Proceedings of the 42nd
annual meeting on association for computational lin-
guistics, page 645. Association for Computational Lin-
guistics.

Michael Collins. 1997. Three generative, lexicalised
models for statistical parsing. In Proceedings of the
eighth conference on European chapter of the Associ-
ation for Computational Linguistics, pages 16–23. As-
sociation for Computational Linguistics.

Chaitanya Gsk, Samar Husain, and Prashanth Mannem.
2011. Empty categories in hindi dependency treebank:
Analysis and recovery. In Proceedings of the 5th Lin-
guistic Annotation Workshop, pages 134–142. Associ-
ation for Computational Linguistics.

R.A. Hudson. 1984. Word grammar. Blackwell Oxford.
Samar Husain, Prashanth Mannem, Bharat Ram Ambati,

and Phani Gadde. 2010. The icon-2010 tools contest
on indian language dependency parsing. Proceedings
of ICON-2010 Tools Contest on Indian Language De-
pendency Parsing, ICON, 10:1–8.

Mark Johnson. 2002. A simple pattern-matching al-
gorithm for recovering empty nodes and their an-
tecedents. In Proceedings of the 40th Annual Meeting
on Association for Computational Linguistics, pages
136–143. Association for Computational Linguistics.

P. Kosaraju, S.R. Kesidi, V.B.R. Ainavolu, and
P. Kukkadapu. 2010. Experiments on indian language
dependency parsing. Proceedings of the ICON10 NLP
Tools Contest: Indian Language Dependency Parsing.

Puneeth Kukkadapu, Deepak Kumar Malladi, and
Aswarth Dara. 2012. Ensembling various dependency

95

parsers: Adopting turbo parser for indian languages.
In 24th International Conference on Computational
Linguistics, page 179.

P. Mannem and A. Dara. 2011. Partial parsing from bi-
text projections. In Proceedings of the 49th Annual
Meeting of the Association for Computational Lin-
guistics: Human Language Technologies, pages 1597–
1606.

A.F.T. Martins, N.A. Smith, and E.P. Xing. 2009. Con-
cise integer linear programming formulations for de-
pendency parsing. In Proceedings of the Joint Confer-
ence of the 47th Annual Meeting of the ACL and the 4th
International Joint Conference on Natural Language
Processing of the AFNLP: Volume 1-Volume 1, pages
342–350.

A.F.T. Martins, N.A. Smith, E.P. Xing, P.M.Q. Aguiar,
and M.A.T. Figueiredo. 2010. Turbo parsers: Depen-
dency parsing by approximate variational inference.
In Proceedings of the 2010 Conference on Empirical
Methods in Natural Language Processing, pages 34–
44.

R. McDonald, F. Pereira, K. Ribarov, and J. Hajič. 2005.
Non-projective dependency parsing using spanning
tree algorithms. In Proceedings of the conference on
Human Language Technology and Empirical Meth-
ods in Natural Language Processing (EMNLP), pages
523–530.

J. Nivre, J. Hall, and J. Nilsson. 2006. Maltparser: A
data-driven parser-generator for dependency parsing.
In Proceedings of LREC, volume 6, pages 2216–2219.

Wolfgang Seeker, Richárd Farkas, Bernd Bohnet, Hel-
mut Schmid, and Jonas Kuhn. 2012. Data-driven de-
pendency parsing with empty heads. In Proceedings
of COLING 2012: Posters, pages 1081–1090, Mum-
bai, India, December. The COLING 2012 Organizing
Committee.

Karan Singla, Aniruddha Tammewar, Naman Jain, and
Sambhav Jain. 2012. Two-stage approach for
hindi dependency parsing using maltparser. Training,
12041(268,093):22–27.

Yaqin Yang and Nianwen Xue. 2010. Chasing the ghost:
recovering empty categories in the chinese treebank.
In Proceedings of the 23rd International Conference
on Computational Linguistics: Posters, pages 1382–
1390. Association for Computational Linguistics.

96

Proceedings of the Fourth Workshop on Statistical Parsing of Morphologically Rich Languages, pages 97–107,
Seattle, Washington, USA, 18 October 2013. c©2013 Association for Computational Linguistics

An Empirical Study on the Effect of Morphological and Lexical Features in

Persian Dependency Parsing

Mojtaba Khallash, Ali Hadian and Behrouz Minaei-Bidgoli

Department of Computer Engineering

Iran University of Science and Technology

{khallash,hadian}@comp.iust.ac.ir, b minaei@iust.ac.ir

Abstract

This paper investigates the impact of dif-

ferent morphological and lexical information

on data-driven dependency parsing of Per-

sian, a morphologically rich language. We

explore two state-of-the-art parsers, namely

MSTParser and MaltParser, on the recently re-

leased Persian dependency treebank and es-

tablish some baselines for dependency pars-

ing performance. Three sets of issues are

addressed in our experiments: effects of us-

ing gold and automatically derived features,

finding the best features for the parser, and

a suitable way to alleviate the data sparsity

problem. The final accuracy is 87.91% and

88.37% labeled attachment scores for Malt-

Parser and MSTParser, respectively.

1 Introduction

Researchers have paid a lot of attention to data-

driven dependency parsing in recent years (Bohnet

and Kuhn, 2012; Bohnet and Nivre, 2012; Balles-

teros and Nivre, 2013). This approach is language-

independent and is solely dependent on the availabil-

ity of annotated corpora. Using data-driven parsers

for some languages requires careful selection of fea-

tures and tuning of the parameters to reach maxi-

mum performance. Difficulty of dependency pars-

ing in each language depends on having either free

word order or morphological information. Lan-

guages with free word order have a high degree

of freedom in arranging the words of a sentence.

Consequently, they usually have a high percentage

of non-projective structures. Morphology is deter-

mined by large inventory of word forms (Tsarfaty et

al., 2010).

According to the results from CoNLL shared

task 2007, languages are classified to three classes,

namely low, medium and high accuracy languages.

Among them, low-accuracy languages have high de-

gree of free word order along with inflection (Nivre

et al., 2007a). Languages which are more challeng-

ing in parsing are called morphologically rich lan-

guages (MRLs). In MRLs, multiple levels of infor-

mation, concerning syntactic units and relations, are

expressed at the word-level (Tsarfaty et al., 2010).

Free word order can be handled by non-projective

parsing algorithms via either post-processing the

output of a strictly projective parser (Nivre and

Nilsson, 2005), combining adjacent (Nivre, 2009)

or non-adjacent sub-structures (McDonald et al.,

2005). Nevertheless, there is no general solution

for resolving rich morphology issue and hence many

researcher focus on features of a specific language.

Most data-driven dependency parsers do not use any

information that is specific to the language being

parsed, but it is shown that using language specific

features has a crucial role in improving the overall

parsing accuracy (Ambati et al., 2010a).

Persian is an Indo-European language that is writ-

ten in Perso-Arabic script (written from right to

left). The canonical word order of Persian is SOV

97

(subject-object-verb), but there are a lot of frequent

exceptions in word order that turn this language into

a free word order language (Shamsfard, 2011). This

language has a high degree of free word order and

complex inflections. As an example of rich mor-

phology, there are more than 100 conjugates and

2800 declensions for some lemmas in Persian (Ra-

sooli et al., 2011).

Dependency treebank for Persian (Rasooli et al.,

2013) language has newly become available. Due to

the lack of deep research on dependency parsing in

Persian, we establish some baselines for dependency

parsing performance. We also conduct a set of ex-

periments in order to estimate the effect of errors in

morphological disambiguation on the parsers. We

show that with two simple changes to the input data,

performance of the two parsers can be improved for

both gold (manually annotated) and predicted data.

The remainder of the paper is organized as fol-

lows. Section 2 presents a brief overview of recent

studies on parsing morphologically rich languages.

In section 3, we introduce available morphological

features annotated in our experiments. Section 4 de-

scribes the experimental setup, including corpus and

parsers we use, and presents our experiments. Ex-

perimental evaluation and analysis of parsing errors

are demonstrated in Section 5. Finally, we draw con-

clusions and suggest future work in Section 6.

2 Related work

Many studies have been done on using morpholog-

ical features for parsing morphologically rich lan-

guages, (e.g. Bengoetxea and Gojenola (2010),

Seeker and Kuhn (2013), etc.). Koo et al. (2008) in-

troduce cluster-based features that incorporate word

clusters derived from a large corpus of plain text, to

improve statistical dependency parsing for English

and Czech. Agirre et al. (2011) use lexical semantic

information derived from WordNet.

Marton et al. (2011) augment the baseline model

for Arabic with nine morphological features. They

show that using predicted features causes a substan-

tial drop in accuracy while it greatly improves per-

formance in the gold settings. They show that us-

ing noisy morphological information is worse than

using nothing at all. Same phenomenon is re-

ported for Hebrew (Goldberg and Elhadad, 2010),

except that using morphological-agreement feature

improves the accuracy of both gold and predicted

morphological information.

Another interesting research direction is to find

the most beneficial features for dependency parsing

for each language. Ambati et al. (2010b) explored

the pool of features for Hindi through a series of ex-

periments. In their setting, features are incremen-

tally selected to create the best parser feature set. In

Korean, Choi and Palmer (2011b) focus on feature

extraction and suggest a rule-based way of selecting

important morphemes to use only these as features

to build dependency parsing models.

For the Persian language, Seraji et al. (2012b) in-

vestigated state-of-the-art dependency parsing algo-

rithms on UPDT1 (Seraji et al., 2012a). They test

three feature settings, namely gold POS tags for both

the training and the test sets (GG), gold POS tags for

the training set and auto-generated POS tags for the

test set (GA), and auto-generated POS tags for both

the training and the test sets (AA). The best result

is obtained in GG setting with 68.68% and 63.60%

LAS, for MaltParser (Nivre et al., 2007b) and MST-

Parser (McDonald et al., 2005) respectively. Using

AA and GA settings show worse results than GG,

namely 2.29% and 3.66% drop in accuracy for Malt-

Parser, and 1.8% and 3.23% drop for MSTParser.

They only explore the effect of gold and non-gold

POS tags with a small treebank with about 1,300

sentences. We apply GG and AA settings in our ex-

periments on a larger treebank that contains richer

morphological information. We define pool of 10

morphological and lexical semantic features in or-

der to create the best feature set for the parser.

3 Features of Persian

In this section, among possible morphological and

semantic features that exist in Persian, we briefly re-

view a subset of them that is either annotated in Per-

sian dependency treebank (Rasooli et al., 2013) or is

available from other studies.

3.1 Features from Treebank

Table 1 represents the features available in the Per-

sian dependency treebank, along with possible val-

ues for each feature.

1Uppsala Persian Dependency Treebank

98

Feature Values

Attachment {NXT, PRV, ISO}

Animacy {animate, inanimate}

Number {singular, plural}

Person {1, 2, 3}

Comparison {positive, comparative, superlative}

TMA see Table 2

Table 1: Description of features in Treebank

In some special cases, we have to break a word

into smaller parts in order to capture the syntac-

tic relations between the elements of the sentence.

For example, the two-word sentence XQ» Õç'
 @Y� ‘se-

dAyam kard’ (called me), consist of three mor-

phemes: @Y� (calling), Õç'
 (me), and XQ» (to do)

that have NXT (attached to the next word), PRV

(attached to the previous word), and ISO (isolated

word) attachment, respectively.

Person and number play a role in constraining

syntactic structure. Verbs usually agree with sub-

ject in person and number (Shamsfard, 2011). This

agreement is useful feature to detect subject of sen-

tence. for example in “Y	J�J 	̄P Aë ém��'. ,Qå���” (hey boy,

the kids are gone) sentence, both boy and kids are

noun, but only kids has number agreement with verb.

Tense, mood, and aspect are not separately anno-

tated in the treebank, but they can be induced from

the TMA value. Table 2 shows the conversion ta-

ble which consists of 14 valid TMA values. There is

not a unique mapping from TMA to aspect, because

in some conditions there is interference between the

aspects. For example, in indicative imperfective per-

fect, the verb has perfect or continuous aspects.

3.2 Automatic Semantic Features

Word Clusters [WC] We use all the words of the

treebank as inputs to the modified version of Brown

clustering algorithm (Liang, 2005). In order to tune

the parameters for the two parsers, we tweak the

cluster count from 50 to 300 with steps of 50, and bit

strings from 4 to 14. Finally, we choose 300 clusters

and 6–bit strings for MaltParser and 150 clusters and

10–bit strings for MSTParser2.

2https://github.com/mojtaba-khallash/

word-clustering

TMA Meaning Mood Tense

HA Imperative Imp. Pres.

AY Indicative Future Ind. Fut.

GNES Indicative Imperfective Perfect Ind. Past

GBES Indicative Imperfective Pluperfect Ind. Past

GES Indicative Imperfective Preterit Ind. Past

GN Indicative Perfect Ind. Past

GB Indicative Pluperfect Ind. Past

H Indicative Present Ind. Pres.

GS Indicative Preterit Ind. Past

GBESE Subjunctive Imperfective Pluperfect Sub. Past

GESEL Subjunctive Imperfective Preterit Sub. Past

GBEL Subjunctive Pluperfect Sub. Past

HEL Subjunctive Present Sub. Pres.

GEL Subjunctive Preterit Sub. Past

Table 2: Tense/Mood/Aspect types in Persian verbs.

Imp., Ind., Sub., Fut., and Pres. stand for imperative, in-

dicative, subjunctive, future and present, respectively.

Semantic Verb Clustering [VC]: Semantic verb

cluster is a generalization over verbs according to

their semantic properties that capture large amounts

of verb meaning without defining details for each

verb. Aminian et al. (2013) clustered 1082 Persian

verbs into 43 (fine-grained) semantic classes using

spectral clustering. For each verb in the treebank,

we included the corresponding cluster ID if the verb

exists in the list of clustered verbs3.

Synset Identifier [SID]: FarsNet (Shamsfard et

al., 2010) is a lexical ontology for the Persian lan-

guage that contains approximately 10000 synsets.

For each word in the treebank, we look up for pos-

sible synsets in FarsNet. If any synset is found, we

add the ID of the first synset to our feature set. About

59% of words in the treebank were supplied with a

synset.

Semantic File [SF]: In English WordNet, each

synset belongs to a unique semantic file. There is

a total of 45 semantic files (1 for adverbs, 3 for

adjectives, 15 for verbs, and 26 for nouns), based

on syntactic and semantic categories (Agirre et al.,

2011). FarsNet has a mapping to those of WordNet

synsets. We use both synsetID and semantic files

as instances of fine-grained and coarse-grained se-

mantic representations, respectively. Thus, we can

3https://github.com/mojtaba-khallash/

verb-spectral-cluster

99

learn what level of granularity in semantic features

can help improve performance of the parser4.

4 Experiments

Corpus Persian dependency treebank version

1.0 (Rasooli et al., 2013) is a freely-available re-

source5 with about 30,000 sentences, and half a mil-

lion tokens, annotated with syntactic roles in addi-

tion to morpho-syntactic features. The annotation

employs 17 coarse-grained and 30 fine-grained POS

tags, 22 morphological feature values and 43 depen-

dency labels. 21.93% of the sentences and 2.47% of

the edges are non-projective.

Table 3 provides statistical properties of Persian

dependency treebank, compared to UPDT6. In Per-

sian dependency treebank, syntactic and/or morpho-

logical features are represented as key-value pairs

separated by vertical bars (‘|’), while in UPDT, they

are represented as a single atomic feature.

Treebank Persian DT UPDT

Tok 498081 151671

Sen 29982 6000

AvgSL 16.61 25.28

Lem yes no

CPoS 17 15

PoS 30 30

MSF 22 30

Dep 43 48

NPT 2.47% 0.17%

NPS 21.93% 2.73%

Table 3: Comparison of UPDT (Seraji et al., 2012a)

and Persian dependency treebank (Rasooli et al., 2013).

Tok = number of tokens; Sen = number of sentences;

AvgSL = Average sentence length; Lem = lemmatiza-

tion present; CPoS = number of coarse-grained part-

of-speech tags; PoS = number of (fine-grained) part-of-

speech tags; MSF = number of morphosyntactic features

(split into atoms); Dep = number of dependency types;

NPT = proportion of non-projective dependencies/tokens

(%); NPS = proportion of non-projective dependency

graphs/sentences (%)

The data is split into standard train, development

4https://github.com/mojtaba-khallash/

semantic-tagger
5http://www.dadegan.ir/en
6Freely available at http://stp.lingfil.uu.se/

˜mojgan/UPDT.html

and test sets by the ratio of 80-10-10 percent in the

CoNLL dependency format. Furthermore, the tree-

bank is released in two representations with little

changes in their annotations. A sample comparison

between the two annotations is shown in Figure 1.

In the first representation, which is manually anno-

tated, the accusative case marker @P /rA/ is supposed

to be the head of the object plus rA. In the second

representation, which is an automatic conversion of

the first one obtained by reverse ordering the man-

ual annotation, rA is not the head of the object word.

Instead, rA is regarded as the accusative case marker

for the direct object.

. ÐY	K @ñ 	k ú �æ 	®Ã é» @P úG. A
�J» root

. read said that acc. the book
PUNC V V SUBR POSTP N

PUNC

ROOT

OBJ

PREDEP

NCL

POSDEP

(a) First representation: Manually annotating accusative case

marker @P as object of the sentence

. ÐY	K @ñ 	k ú �æ 	®Ã é» @P úG. A
�J» root

. read said that acc. the book
PUNC V V SUBR POSTP N

PUNC

ROOT

OBJ

ACC-CASE

NCL

POSDEP

(b) Second representation: Automatic conversion of first rep-

resentation. The accusative case marker @P depends on original

object of the sentence.

Figure 1: Two representation of object-verb relation for

“I read the book that you mentioned.” (Rasooli et al.,

2013).

Evaluation metric The most commonly used

metrics for dependency parsing are unlabeled attach-

ment score (UAS), labeled attachment score (LAS)

and label accuracy (LA). UAS is the proportion of

words that are assigned the correct head, LAS is

the proportion of words that are assigned the correct

head and dependency type, and LA is the proportion

of words that are assigned the correct dependency

100

type. We use LAS as our evaluation metric and

take punctuation into account as for evaluating out

parsing results. We use McNemars statistical signif-

icance test as implemented by (Nilsson and Nivre,

2008), and denote p < 0.05 and p < 0.01 with +

and ++, respectively.

Parsers We use two off-the-shelf data-driven

parsers, namely MaltParser (Nivre et al., 2007b)

and MSTParser (McDonald et al., 2005), which are

the two state-of-the-art dependency parsers that rep-

resent dominant approaches in data-driven depen-

dency parsing.

MaltParser7 is based on a transition-based ap-

proach to dependency parsing. Transition-based ap-

proach is based on transition systems for deriving

dependency trees, that greedily searches for highest

scoring transitions and uses features extracted from

parse history to predict the next transition (Choi and

Palmer, 2011a). We use MaltParser 1.7.1 along with

nine different parsing algorithms. In order to se-

lect the best algorithm and tune the parameters of

MaltParser, we use MaltOptimizer (Ballesteros and

Nivre, 2012) on the whole of training data. Mal-

tOptimizer analyzes data in three-phase optimiza-

tion process: data analysis, parsing algorithm selec-

tion, and feature selection.

MSTParser8 is based on a graph-based approach

to dependency parsing. The algorithm searches

globally in a complete graph to extract a spanning

tree during derivations using dynamic programming.

We use MSTParser 0.5 which has two implementa-

tions of maximum spanning tree (MST) algorithm

with projective and non-projective models9.

Baseline Experiments We run three phases of

MaltOptimizer on the training set in order to find

the best parsing algorithm in MaltParser. The first

phase validates the data and gains 84.02% LAS with

the default settings. In the second phase, using

non-projective version of the Covington algorithm,

which has the best accuracy, and after parameter tun-

7http://www.maltparser.org/
8http://www.seas.upenn.edu/˜strctlrn/

MSTParser/MSTParser.html
9We developed an all-in-one dependency parsing tool-

box that integrates different dependency parsing algo-

rithms: https://github.com/mojtaba-khallash/

dependency-parsing-toolbox

ing, 85.86% LAS was obtained. In the third phase,

the feature model was optimized and by tuning the

regularization parameter of the multiclass SVM; it

led to 87.43% LAS. Finally, we trained the best

algorithm with optimized settings on training set

and parsed on development set, thereby we reached

87.70% LAS as the baseline of MaltParser.

We tested four parsing algorithms that exist in

MSTParser and as a result, non-projective algorithm

with a second-order feature decoder gave 88.04%

LAS, which shows the highest improvement. There-

fore, we selected that as our baseline for MSTParser.

The baselines are obtained on the first represen-

tation of the treebank. We found baselines for the

second representation of the treebank on the devel-

opment set. Results are compared in Table 4.

The first representation performs better than the

second one. This was expected before, since rA is a

constant word that is annotated as the object of a sen-

tence in the first representation. This helps parsers to

find the object in a sentence. Moreover, as shown in

Figure 1, rA is closer to the verb than the direct ob-

ject, hence it has more chance to select.

Representation Malt MST

First 87.70 88.04

Second 87.22 (-0.48) 87.03 (-1.01)

Table 4: Comparison of two representations of Persian

treebank

Results In our experiments, we use the first repre-

sentation of treebank with algorithms and new con-

figurations presented in previous paragraph. For all

experiments in this section, we use training and de-

velopment sets of the treebank. In order to study

the effects of morphology in dependency parsing of

Persian, we organize experiments into three types

of challenges which are presented by Tsarfaty et al.

(2010): architecture and setup, representation and

modeling, and estimation and smoothing.

Architecture and Setup When using dependency

parsing on real-world tasks, we usually face with

sentences that must be tokenized, lemmatized, and

tagged with part of speech and morphological infor-

mation to offer those information as input features

to the parsing algorithms. Bijankhan corpus (Bi-

jankhan, 2004) is the first manually tagged Persian

101

corpus that consists of morpho-syntactic and mini-

mal semantic annotation of words. It is commonly

used to train POS tagger, but its POS tagset is differ-

ent from tagset of the treebank that we use. Sarabi et

al. (2013) introduce PLP Toolkit which is a compre-

hensive Persian Language Processing (PLP) toolkit

that contains fundamental NLP tools such as to-

kenizer, POS tagger, lemmatizer and dependency

parser. They merged the POS tagset of 10 million

words from bijankhan corpus with Persian depen-

dency treebank in order to create a bigger corpus

with the same tagset. They choose the tagset of Per-

sian dependency treebank as the base setting and

convert Bijankhan tagset to them. They have 11

coarse-grained and 45 fine-grained POS tags. PLP

POS tagger can automatically recognize three mor-

phological features, namely number, person, and

TMA. TMA values of the PLP tool are not the same

as Persian dependency treebank. Despite 14 possi-

ble TMA values in dependency treebank (Table 2),

only four out of the 14 values exist in PLP (AY, GS,

H, and HA), because there is no other value in Bi-

jankhan tagset for verbs. The accuracy of PLP POS

tagger on the fine grained tagset is about 98.5%. We

use this tagger and apply it on our training, develop-

ment, and test data. Results from these experiments

are presented in Table 5.

POS tags type Malt MST

Gold 87.70 88.04

Predicted 86.98 (-0.72) 86.81 (-1.23)

Table 5: Effect of gold vs. predicted POS tags and mor-

phological information in dependency parsers for Per-

sian.

Representation and Modeling In our experi-

ment, we use ten features of morphological and se-

mantic information. Using a forward selection pro-

cedure, the best feature set for each parser can be

found. Beside morphological features which exist

in the treebank (Attachment [A], Person [P], Num-

ber [N], TMA), we add Tense [T] and Mood [M]

with a simple conversion table, shown in Table 2,

based on the value of TMA.

Table 6 shows the effect of each feature for Malt-

Parser and MSTParser parser. For the former, mood

with slight differences achieves the best result and

Feature Malt Feature MST

Baseline 87.70 Baseline 88.04

M 87.77 TMA 88.21+

TMA 87.77 M 88.17

T 87.73 P 88.09

SF 87.70 T 88.04

WC 87.69 N 88.04

VC 87.68 SID 88.03

SID 87.67 SF 88.03

A 87.67 WC 88.02

P 87.66 VC 87.98

N 87.65 A 87.93

Table 6: Effect of each feature on two parsers

for the latter, TMA has the highest accuracy than

other features. TMA and two derivate features,

namely T and M, stands at the top of this ranking,

and four semantic features are placed in the middle.

This means that our newly added features can help

to improve performance of each parser.

In the next steps, we incrementally add one fea-

ture to the best result from previous step. As shown

in Table 7, combination of M and SF obtains the

best result for MaltParser (87.81%), while for MST-

Parser, combination of TMA and WC is the best

(88.25%). In the second step, adding one seman-

tic feature gets the best result. By trying to continue

this approach, we do not see any improvement in the

accuracy for both parser10.

Feature Malt Feature MST

{M,SF} 87.81 {TMA,WC} 88.25

{M,T} 87.79 {TMA,SID} 88.21

{M,VC} 87.78 {TMA,N} 88.16

{M,TMA} 87.77 {TMA,P} 88.14

{M,N} 87.76 {TMA,M} 88.13

{M,WC} 87.75 {TMA,A} 88.11

{M,A} 87.75 {TMA,T} 88.11

{M,P} 87.73 {TMA,VC} 88.07

{M,SID} 87.69 {TMA,SF} 88.05

Table 7: Combinations of two features

10https://github.com/mojtaba-khallash/

treebank-transform

102

Estimation and Smoothing Using a few training

data, especially for languages with rich morphol-

ogy, lexical features may infrequently appear during

training. In MRLs like Persian, due to many feature

combination by the inflectional system, we face a

high rate of out-of-vocabulary. There are some ways

to cope with this problem:

• Replacing word forms by lemma: Lemma of

a word has less data sparsity than word form.

• Number Normalization This is the default ap-

proach in MSTParser, in which each number is

replaced by a constant. We apply this approach

for numbers written either in English or Persian

scripts.

• Word Clustering and Semantic File: The

cluster ID of a word or its semantic file can be

used instead of the original word form. These

are two ways to categorize words into a group

bigger than their lemma.

Table 8 illustrates the effect of each smoothing

method on the accuracy for parsing MaltParser and

MSTParser. For MaltParser, number normalization

is the only technique that improves the accuracy.

For MSTParser, replacing word forms by lemma and

number normalization improves the accuracy. In the

case of MSTParser, we apply each method sepa-

rately and simultaneously on the development set,

but replacing word forms by lemma gets the best im-

provement, and hence we use it in our final configu-

ration.

Smoothing Malt MST

Baseline 87.70 88.04

Replacing word forms by lemma 87.38 88.10

Number Normalization 87.71 88.09

Word Clustering 86.98 87.47

Semantic File 87.31 85.25

Table 8: Accuracy obtained after applying different

sparsity-reduction tricks.

5 Error Analysis

We use the best configurations from the previous

section on the training and test data, for gold an-

notation and an automatically derived one. Table 9

shows the final test results of the two parsers for Per-

sian. In addition to LAS, we also include UAS and

LA to facilitate comparisons in the future. Baseline

results are included in the table. In the case of Malt-

Parser, after applying new configurations on data,

we repeat the third phase of MaltOptimizer in order

to find the best feature template for the new training

data. It seems that the graph-based parser performs

better than transitions-based parsers in general. De-

spite a high overall parsing accuracy, only 1017 and

922 (33.91% and 30.74%) of sentences in the test

set (with 2999 sentences) are parsed without errors

by MaltParser and MSTParser, respectively. Malt-

Parser has lower overall accuracy compared to MST-

Parser, but the number of completely correct parsed

sentences for MaltParser is more than MSTParser.

In the case of predicted setting, as mentioned in sec-

tion 4, there are four values for TMA. This means

that we cannot create tense and mood from TMA.

For this reason, we force to use TMA in the final

configuration of both parsers in the predicted setting.

In order to evaluate parsing errors, we use the

same approach as (McDonald and Nivre, 2011) to

shows a set of linguistic and structural properties of

the baseline and our best setting for each parser11.

Length Factors Figure 2 shows the accuracy rel-

ative to the sentence length in test data. Since there

are very limited long sentences in our treebank,

the parser cannot predict longer sentences correctly.

Consequently, the two parsers tend to have lower ac-

curacies for longer sentences. Both parsers have the

same performance, but MSTParser tends to perform

better on shorter sentences, that is in contrast with

results showed by McDonald and Nivre (2011). We

compare each parser with its corresponding base-

lines. Both parsers in all lengths perform better than

their baselines. For MaltParser, improvements occur

for longer sentences while for MSTParser improve-

ments occur at smaller sentences. These results are

in contrast with the results reported by McDonald

and Nivre (2011).

Graph Factors Figure 3 shows the accuracy for

arcs relative to their distance to the artificial root

node12. The area under the curve of final MaltParser

11In our analysis, we use MaltEval (Nilsson and Nivre, 2008).
12Number of arcs in the reverse path from the modifier of the

arc to the root.

103

Parser Method LAS UAS LA

Malt

Baseline 87.68 (87.04) 90.41 (89.92) 90.03 (89.49)

Final 87.91++ (87.16)+ 90.58+ (90.05)++ 90.22+ (89.60)+

Diff. +0.23 (+0.12) +0.17 (+0.13) +0.19 (+0.11)

MST

Baseline 87.98 (86.82) 91.30 (90.27) 90.53 (89.90)

Final 88.37++ (86.97) 91.55++ (90.36) 90.86++ (90.05)

Diff. +0.39 (+0.15) +0.25 (+0.09) +0.33 (+0.15)

Table 9: Baseline and final results of gold (predicted) test data for MaltParser

1–10 11–20 21–30 31–40 41–50 >50
75

80

85

90

95

Sentence Length

D
ep

en
d
en

cy
A

cc
u
ra

cy

Final

Baseline

(a) Accuracy of MaltParser per sentence length

1–10 11–20 21–30 31–40 41–50 >50
75

80

85

90

95

Sentence Length

D
ep

en
d
en

cy
A

cc
u
ra

cy

Final

Baseline

(b) Accuracy of MSTParser per sentence length

Figure 2: Accuracy relative to sentence length. Both

parsers perform better than their baselines.

is less than baseline, but it is over baseline for MST-

Parser. F-score of MSTParser for shorter distance is

much better than the baseline and by increasing the

distance to root, F-score degrades to be less than the

baseline.

Linguistic Factors MaltParser and MSTParser

can find 90.22% and 90.86% of all labels correctly.

Figure 4 shows the F-score of some important de-

pendency labels in the test data. MaltParser only

improves subject and object categories, while MST-

Parser improves object, ROOT, and adverb cate-

1 2 3 4 5 6 >6
85

86

87

88

89

Distance to Root
F

-S
co

re

(a) Baseline () and final () accuracy of MaltParser

1 2 3 4 5 6 >6
86

87

88

89

Distance to Root

F
-S

co
re

(b) Baseline () and final () accuracy of MSTParser

Figure 3: Dependency arc F-score relative to the distance

to root

gories. If we only consider the final results, Malt-

Parser performs better for predicting subject and ob-

ject, while MSTParser performs better for predicting

ROOT and ezafe dependent (MOZ)13, and both have

the same accuracy for adverb.

Table 10 gives the accuracy of arcs for each de-

pendent part-of-speech. Final MSTParser performs

13Ezafe construction is referred to nouns or pronouns that im-

ply a possessed-possessor relation (like first name-last name).

The relation between the possessed and possessor is called

mozaf (MOZ) that its sign is a vowel /e/ that pronounced right

after the head noun (Dadegan Research Group, 2012).

104

SBJ OBJ ROOT MOZ ADV
0

20

40

60

80

100

Dependency Type

F
-S

co
re

Baseline

F inal

(a) Accuracy of MaltParser per dependency type

SBJ OBJ ROOT MOZ ADV
0

20

40

60

80

100

Dependency Type

F
-S

co
re

Baseline

F inal

(b) Accuracy of MSTParser per dependency type

Figure 4: Dependency label F-score relative to some de-

pendency types.

better than its baseline for all categories, except pro-

nouns and better than MaltParser for all categories,

except preposition. Final MaltParser, performs bet-

ter than its baseline in all categories, except preposi-

tion.

6 Conclusion

In this paper, we have investigated a number of is-

sues in data-driven dependency parsing of Persian.

Because there is no previous study on parsing the

POS
Malt MST

Baseline Final Baseline Final

Verb 89.96 90.09 90.96 91.86

Noun 89.67 90.13 90.15 90.23

Pronoun 92.56 92.94 93.53 93.43

Adjective 87.80 88.37 87.77 88.56

Adverb 80.80 82.37 82.61 83.94

Conjunction 86.03 86.40 86.58 87.36

Preposition 70.93 70.32 69.74 70.76

Table 10: Accuracy for each dependent part of speech

Persian dependency treebank (Rasooli et al., 2013),

we first have drawn the baseline for each parser, by

selecting best performing algorithm and tuning its

parameters. For MaltParser (Nivre et al., 2007b) dif-

ferent between best algorithm (non-projective ver-

sion of Covington) with default settings and after op-

timizing feature template by the third phase of Mal-

tOptimizer (Ballesteros and Nivre, 2012) is about

1.5 percent. This shows that the definition of fea-

ture template is a crucial aspect of transition-based

parsing.

Our first experiment shows the effect of using au-

tomatic annotation of POS tags and morphological

information. Our new configuration improves two

parsers in both gold and predicted setting, but the

improvement for MSTParser is higher than for Malt-

Parser. MSTParser has higher accuracy in the gold

setting, while MaltParser has better performance in

predicted setting. It might mean that MaltParser is

more robust against noisy information.

In the second experiment, we have explored the

best combination of morphological and lexical se-

mantic features for dependency parsing of Persian.

We find that the combination of one morphological

feature and one lexical semantic feature gets the best

combination for each parser. Our lexical semantic

features can be automatically produced for any word

and thus we need to predict one morphological fea-

ture for real-world settings.

Finally we have proposed two simple methods for

reducing data sparsity of each parser. After apply-

ing our solutions to three types of challenges, we

reached 87.91% and 88.37% LAS on the test set

(0.23% and 0.39% improvement over our baseline)

for MaltParser and MSTParser, respectively.

Note that all of the experiments we reported in

this paper use existing parsers as black boxes. We

only changed the input data to obtain the best pos-

sible performance given our data sets. We plan to

explore modifications of the underlying parsing al-

gorithms to better make use of morphological infor-

mation.

Acknowledgments

We would like to thank Mohammad-Sadegh Rasooli

and our anonymous reviewers for helpful feedback

and suggestions. We would also thank Zahra Sarabi

105

for providing us the data and information about the

PLP toolkit.

References

Eneko Agirre, Kepa Bengoetxea, Koldo Gojenola, and

Joakim Nivre. 2011. Improving Dependency Pars-

ing with Semantic Classes. In Proceedings of the 49th

Annual Meeting of the Association for Computational

Linguistics (ACL ’11): shortpapers, pages 699–703.

Baharat Ram Ambati, Samar Husain, Sambhav Jain,

Dipti Misra Sharma, and Rajeev Sangal. 2010a. Two

methods to incorporate local morphosyntactic fea-

tures in Hindi dependency parsing. In Proceedings

of NAACL HLT 2010 First workshop on Statistical

Parsing of Morphologically-Rich Languages (SPMRL

2010), pages 22–30.

Baharat Ram Ambati, Samar Husain, Joakim Nivre, and

Rajeev Sangal. 2010b. On the Role of Morphosyntac-

tic Features in Hindi Dependency Parsing. In Proceed-

ings of the NAACL HLT 2010 First Workshop on Sta-

tistical Parsing of Morphologically-Rich Languages,

pages 94–102.

Maryam Aminian, Mohammad Sadegh Rasooli, and Hos-

sein Sameti. 2013. Unsupervised Induction of Persian

Semantic Verb Classes Based on Syntactic Informa-

tion. In Language Processing and Intelligent Informa-

tion Systems, pages 112–124.

Miguel Ballesteros and Joakim Nivre. 2012. MaltOp-

timizer: A System for MaltParser Optimization. In

Proceedings of the Eighth International Conference

on Language Resources and Evaluation (LREC 2012),

pages 23–27.

Miguel Ballesteros and Joakim Nivre. 2013. Going to

the Roots of Dependency Parsing. Computational Lin-

guistics, pages 5–13.

Kepa Bengoetxea and Koldo Gojenola. 2010. Applica-

tion of Different Techniques to Dependency Parsing of

Basque. In Proceedings of the NAACL HLT 2010 First

Workshop on Statistical Parsing of Morphologically-

Rich Languages, pages 31–39.

Mahmood Bijankhan. 2004. The role of the corpus in

writing a grammar: An introduction to a software. Ira-

nian Journal of Linguistics.

Bernd Bohnet and Jonas Kuhn. 2012. The Best of

Both Worlds A Graph-based Completion Model for

Transition-based Parsers. In Proceedings of the 13th

Conference of the European Chapter of the Associa-

tion for Computational Linguistics, pages 77–87.

Bernd Bohnet and Joakim Nivre. 2012. A Transition-

Based System for Joint Part-of-Speech Tagging and

Labeled Non-Projective Dependency Parsing. In Pro-

ceedings of the 2012 Joint Conference on Empirical

Methods in Natural Language Processing and Compu-

tational Natural Language Learning (EMNLP-CoNLL

2012), pages 1455–1465.

Jinho D. Choi and Martha Palmer. 2011a. Getting the

Most out of Transition-based Dependency Parsing. In

Proceedings of the 49th Annual Meeting of the Associ-

ation for Computational Linguistics (ACL ’11): short-

papers, pages 687–692.

Jinho D. Choi and Martha Palmer. 2011b. Statistical De-

pendency Parsing in Korean: From Corpus Genera-

tion To Automatic Parsing. In Proceedings of the 2nd

Workshop on Statistical Parsing of Morphologically-

Rich Languages (SPMRL 2011), pages 1–11.

Dadegan Research Group. 2012. Persian Dependency

Treebank Annotation Manual and User Guide. Tech-

nical report, SCICT.

Yoav Goldberg and Michael Elhadad. 2010. Easy First

Dependency Parsing of Modern Hebrew. In Proceed-

ings of the NAACL HLT 2010 First Workshop on Sta-

tistical Parsing of Morphologically-Rich Languages,

pages 103–107.

Terry Koo, Xavier Carreras, and Michael Collins. 2008.

Simple Semi-supervised Dependency Parsing. In Pro-

ceedings of ACL-08: HLT, pages 595–603.

Percy Liang. 2005. Semi-Supervised Learning for Natu-

ral Language. Ph.D. thesis, Massachusetts Institute of

Technology.

Yuval Marton, Nizar Habash, and Owen Rambow. 2011.

Improving Arabic Dependency Parsing with Form-

based and Functional Morphological Features. In Pro-

ceedings of the 49th Annual Meeting of the Association

for Computational Linguistics (ACL ’11), pages 1586–

1596.

Ryan McDonald and Joakim Nivre. 2011. Analyzing

and Integrating Dependency Parsers. Computational

Linguistics, pages 197–230.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and

Jan Hajič. 2005. Non-projective Dependency Parsing

using Spanning Tree Algorithms. In Proceedings of

the conference on Human Language Technology and

Empirical Methods in Natural Language Processing,

pages 523–530.

Jens Nilsson and Joakim Nivre. 2008. MaltEval: An

Evaluation and Visualization Tool for Dependency

Parsing. In Proceedings of the Sixth International

Language Resources and Evaluation (LREC ’08).

Joakim Nivre and Jens Nilsson. 2005. Pseudo-Projective

Dependency Parsing. In Proceedings of the 43rd An-

nual Meeting of the Association for Computational

Linguistics (ACL ’05), pages 99–106.

Joakim Nivre, Johan Hall, Sandra Kübler, Ryan McDon-

ald, Jens Nilsson, Sebastian Riedel, and Deniz Yuret.

2007a. The CoNLL 2007 Shared Task on Dependency

106

Parsing. In Proceedings of the CoNLL Shared Task

Session of EMNLP-CoNLL 2007, pages 915–932.

Joakim Nivre, Johan Hall, Jens Nilsson, Atanas Chanev,

Gülsen Eryigit, Sandra Kübler, Svetoslav Marinov,

and Erwin Marsi. 2007b. MaltParser: A language-

independent system for data-driven dependency pars-

ing. Natural Language Engineering, pages 95–135.

Joakim Nivre. 2009. Non-Projective Dependency Pars-

ing in Expected Linear Time. In Proceedings of

the Joint Conference of the 47th Annual Meeting of

the ACL and the 4th International Joint Conference

on Natural Language Processing (IJCNLP) of the

AFNLP, pages 351–359.

Mohammad Sadegh Rasooli, Omid Kashefi, and Behrouz

Minaei-Bidgoli. 2011. Effect of Adaptive Spell

Checking in Persian. In 7th International Conference

on Natural Language Processing andKnowledge En-

gineering (NLP-KE), pages 161–164.

Mohammad Sadegh Rasooli, Manouchehr Kouhestani,

and Amirsaeid Moloodi. 2013. Development of a Per-

sian Syntactic Dependency Treebank. In Proceedings

of the 2013 Conference of the North American Chap-

ter of the Association for Computational Linguistics:

Human Language Technologies, pages 306–314.

Zahra Sarabi, Hooman Mahyar, and Mojgan Farhoodi.

2013. PLP Toolkit: Persian Language Processing

Toolkit. In 3rd International eConference on Com-

puter and Knowledge Engineering (ICCKE 2013).

Wolfgang Seeker and Jonas Kuhn. 2013. Morphological

and Syntactic Case in Statistical Dependency Parsing.

Computational Linguistics, pages 23–55.

Mojgan Seraji, Beáta Megyesi, and Joakim Nivre. 2012a.

Bootstrapping a Persian Dependency Treebank. Lin-

guistic Issues in Language Technology, pages 1–10.

Mojgan Seraji, Beáta Megyesi, and Joakim Nivre. 2012b.

Dependency Parsers for Persian. In Proceedings of

10th Workshop on Asian Language Resources, COL-

ING 2012, 24th International Conference on Compu-

tational Linguistics.

Mehrnoush Shamsfard, Akbar Hesabi, Hakimeh Fadaei,

Niloofar Mansoory, Ali Famian, Somayeh Bagher-

beigi, Elham Fekri, Maliheh Monshizadeh, and

S. Mostafa Assi. 2010. Semi Automatic Development

Of FarsNet: The Persian Wordnet. In Proceedings of

5th Global WordNet Conference (GWA2010).

Mehrnoush Shamsfard. 2011. Challenges and Open

Problems in Persian Text processing. In The 5th Lan-

guage and Technology Conference (LTC 2011), pages

65–69.

Reut Tsarfaty, Djamé Seddah, Yoav Goldberg, Sandra

Kübler, Marie Candito, Jennifer Foster, Yannick Ver-

sley, Ines Rehbein, and Lamia Tounsi. 2010. Sta-

tistical Parsing of Morphologically Rich Languages

(SPMRL) What, How and Whither. In Proceedings

of the NAACL HLT 2010 First Workshop on Statistical

Parsing of Morphologically-Rich Languages, pages 1–

12.

107

Proceedings of the Fourth Workshop on Statistical Parsing of Morphologically Rich Languages, pages 108–118,
Seattle, Washington, USA, 18 October 2013. c©2013 Association for Computational Linguistics

Constructing a Practical Constituent Parser from a Japanese Treebank with
Function Labels

Takaaki Tanaka and Masaaki Nagata
NTT Communication Science Laboratories

Nippon Telegraph and Telephone Corporation

{tanaka.takaaki, nagata.masaaki }@lab.ntt.co.jp

Abstract

We present an empirical study on construct-
ing a Japanese constituent parser, which can
output function labels to deal with more de-
tailed syntactic information. Japanese syn-
tactic parse trees are usually represented as
unlabeled dependency structure between bun-
setsu chunks, however, such expression is in-
sufficient to uncover the syntactic information
about distinction between complements and
adjuncts and coordination structure, which is
required for practical applications such as syn-
tactic reordering of machine translation. We
describe a preliminary effort on constructing
a Japanese constituent parser by a Penn Tree-
bank style treebank semi-automatically made
from a dependency-based corpus. The eval-
uations show the parser trained on the tree-
bank has comparable bracketing accuracy as
conventional bunsetsu-based parsers, and can
output such function labels as the grammatical
role of the argument and the type of adnominal
phrases.

1 Introduction

In Japanese NLP, syntactic structures are usually
represented as dependencies between grammatical
chunks calledbunsetsus. A bunsetsu is a grammat-
ical and phonological unit in Japanese, which con-
sists of an independent-word such as noun, verb
or adverb followed by a sequence of zero or more
dependent-words such as auxiliary verbs, postposi-
tional particles or sentence final particles. It is one
of main features of Japanese that bunsetsu order is
much less constrained than phrase order in English.

Since dependency between bunsetsus can treat flexi-
ble bunsetsu order, most publicly available Japanese
parsers including CaboCha (Kudo et al., 2002) and
KNP (Kawahara et al., 2006) return bunsetsu-based
dependency as syntactic structure. Such bunsetsu-
based parsers generally perform with high accuracy
and have been widely used for various NLP applica-
tions.

However, bunsetsu-based representations also
have serious shortcomings for dealing with Japanese
sentence hierarchy. The internal structure of a bun-
setsu has strong morphotactic constraints in contrast
to flexible bunsetsu order. A Japanese predicate
bunsetsu consists of a main verb followed by a se-
quence of auxiliary verbs and sentence final parti-
cles. There is an almost one-dimensional order in
the verbal constituents, which reflects the basic hi-
erarchy of the Japanese sentence structure including
voice, tense, aspect and modality. Bunsetsu-based
representation cannot provide the linguistic structure
that reflects the basic sentence hierarchy.

Moreover, bunsetsu-based structures are unsuit-
able for representing such nesting structure as co-
ordinating conjunctions. For instance, bunsetsu rep-
resentation of a noun phrase “技術-の (technology-
GEN) / 向上-と (improvement-CONJ) /経済-の
(economy-GEN) /発展 (growth) ” technology im-
provement and economic growthdoes not allow
us to easily interpret it, which means((technol-
ogy improvement) and (economic growth))or (tech-
nology (improvement and economic growth)), be-
cause bunsetsu-based dependencies do not con-
vey information about left boundary of each noun
phrase (Asahara, 2013). This drawback complicates

108

operating syntactically meaningful units in such ap-
plications as statistical machine translation, which
needs to recognize syntactic units in building a trans-
lation model (e.g. tree-to-string and tree-to-tree) and
in preordering source language sentences.

Semantic analysis, such as predicate-argument
structure analysis, is usually done as a pipeline pro-
cess after syntactic analysis (Iida et al., 2011 ;
Hayashibe et al., 2011); but in Japanese, the dis-
crepancy between syntactic and semantic units cause
difficulties integrating semantic analysis with syn-
tactic analysis.

Our goal is to construct a practical constituent
parser that can deal with appropriate grammatical
units and output grammatical functions as semi-
semantic information, e.g., grammatical or seman-
tic roles of arguments and gapping types of relative
clauses. We take an approach to deriving a grammar
from manually annotated corpora by training prob-
abilistic models like current statistical constituent
parsers of de facto standards (Petrov et al., 2006;
Klein et al., 2003 ; Charniak, 2000; Bikel, 2004).
We used a constituent-based treebank that Uematsu
et al. (2013) converted from an existing bunsetsu-
based corpus as a base treebank, and retag the non-
terminals and transform the tree structures in de-
scribed in Section 3. We will present the results of
evaluations of the parser trained with the treebank in
Section 4, and show some analyses in Section 5.

2 Related work

The number of researches on Japanese constituent-
based parser is quite few compared to that of
bunsetsu-dependency-based parser. Most of them
have been conducted under lexicalized grammatical
formalism.

HPSG (Head-driven Phrase Structure Gram-
mar) (Sag et al., 2003) is a representative one.
Gunji et al. (1987) proposed JPSG (Japanese Phrase
Structure Grammar) that is theoretically precise to
handle the free word order problem of Japanese. Na-
gata et al. (1993) built a spoken-style Japanese
grammar and a parser running on it. Siegel et al (
2002) constructed a broad-coverage linguistically
precise grammar JACY, which integrates semantics,
MRS (Minimal Recursion Semantics) (Copestake,
2005). Bond et al. (2008) built a large-scale

Japanese treebank Hinoki based on JACY and used
it for parser training.

Masuichi et al.(2003) developed a Japanese LFG
(Lexicalized-Functional Grammar) (Kaplan et al.,
1982) parser whose grammar is sharing the de-
sign with six languages. Uematsu et al. (2013)
constructed a CCG (Combinatory Categorial Gram-
mar) bank based on the scheme proposed by
Bekki (2010), by integrating several corpora includ-
ing a constituent-based treebank converted from a
dependency-base corpus.

These approaches above use a unification-based
parser, which offers rich information integrating
syntax, semantics and pragmatics, however, gener-
ally requires a high computational cost. We aim
at constructing a more light-weighted and practical
constituent parser, e.g. a PCFG parser, from Penn
Treebank style treebank with function labels. Gab-
bard et al. (2006) introduced function tags by modi-
fying those in Penn Treebank to their parser. Even
though Noro et al. (2005) built a Japanese corpus for
deriving Japanese CFG, and evaluated its grammar,
they did not treat the predicate-argument structure or
the distinction of adnominal phrases.

This paper is also closely related to the work of
Korean treebank transformations (Choi et al., 2012).
Most of the Korean corpus was built using grammat-
ical chunkseojeols, which resemble Japanese bun-
setsus and consist of content words and morphemes
that represent grammatical functions. Choi et al.
transformed the eojeol-based structure of Korean
treebanks into entity-based to make them more suit-
able for parser training. We converted an existing
bunsetsu-based corpus into a constituent-based one
and integrating other information into it for training
a parser.

3 Treebank for parser training

In this section, we describe the overview of our tree-
bank for training a parser.

3.1 Construction of a base treebank

Our base treebank is built from a bunsetsu-
dependency-based corpus, the Kyoto Corpus (Kuro-
hashi et al., 2003), which is a collection of news-
paper articles, that is widely used for training data
for Japanese parsers and other applications. We

109

S

IP-MAT[nad]:A

VP[nad]:A

VP[nad]:A

AUX

た
-PAST

VB[nad]

与え
give

PP-OBJ

PCS

を
-ACC

NN

本
book

PP-OB2

PCS

に
-DAT

NN

生徒
student

S

IP-MAT[nad]:A

VP[nad]:A

AUX

た
-PAST

VB[nad]

与え
give

PP-OBJ

PCS

を
-ACC

NN

本
book

PP-OB2

PCS

に
-DAT

NN

生徒
student

(I) gave the student a book.

binary tree n-ary (flattened) tree

Figure 1: Verb Phrase with subcategorization and voice information

NN General noun
NNP Proper noun
NPR Pronoun
NV Verbal noun
NADJ Adjective noun
NADV Adverbial noun (incl. temporal noun)
NNF Formal noun (general)
NNFV Formal noun (adverbial)
PX Prefix
SX Suffix
NUM Numeral
CL Classifier
VB Verb
ADJ Adjective
ADNOM Adnominal adjective
ADV Adverb
PCS Case particle
PBD Binding particle
PADN Adnominal particle
PCO Parallel particle
PCJ Conjunctive particle
PEND Sentence-ending particle
P Particle (others)
AUX Auxiliary verb
CONJ Conjunction
PNC Punctuation
PAR Parenthesis
SYM Symbol
FIL Filler

Table 1: Preterminal tags

automatically converted from dependency structure
to phrase structure by the previously described
method (Uematsu et al., 2013), and conversion er-
rors of structures and tags were manually corrected.

We adopted the annotation schema used in
Japanese Keyaki treebank (Butler et al., 2012) and
Annotation Manual for the Penn Historical Corpora
and the PCEEC (Santorini, 2010) as reference to re-
tag the nonterminals and transform the tree struc-
tures.

The original Kyoto Corpus has fine-grained part-
of-speech tags, which we converted into simpler
preterminal tags shown in Table 1 for training by
lookup tables. First the treebank’s phrase tags ex-
cept function tags are assigned by simple CFG rule
sets, then, function tags are added by integrating the
information from the other resources or manually
annotated. We integrate predicate-argument infor-
mation from the NAIST Text Corpus (NTC) (Iida et
al., 2007) into the treebank by automatically con-
verting and adding tag suffixes (e.g.-SBJ , -ARG0
described in section 3.3) to the original tags of the
argument phrases. The structure information about
coordination and apposition are manually annotated.

3.2 Complementary information

We selectively added the following information as
tag suffixes and tested their effectiveness.

Inflection We introduced tag suffixes for inflec-
tion as clues to identify the attachment position of
the verb and adjective phrases, because Japanese
verbs and adjectives have inflections, which depends

110

(no label) base form
cont continuative form
attr attributive form
neg negative form
hyp hypothetical form
imp imperative form
stem stem

Table 2: Inflection tag suffixes

on their modifying words and phrases (e.g. noun
and verb phrases). Symbols in Table 2 are attached
to tagsVB, ADJ andAUX, based on their inflection
form. The inflection information is propagated to the
phrases governing the inflected word as a head. We
adopted these symbols from the notation of Japanese
CCG described in (Bekki, 2010).

Subcategorization and voice Each verb has a
subcategorization frame, which is useful for build-
ing verb phrase structure. For instance,掴む
tsukamu“grasp” takes two arguments, nominative
and accusative cases,与える ataeru “give” takes
three arguments: nominative, accusative and dative
cases. We also added suffixes to verb tags to de-
note which arguments they require (n:nominative,
a:accusative andd: dative). For instance, the
verb与える “give” takes three arguments (nomina-
tive, accusative and dative cases), it is tagged with
VB[nad] .

We retrieve this information from a Japanese case
frame dictionary, Nihongo Goitaikei (Ikehara et al.,
1997), which has 14,000 frames for 6,000 verbs and
adjectives. As an option, we also added voice infor-
mation (A:active,P:passive andC:causative) to the
verb phrases, because it effectively helps to discrim-
inate cases.

3.3 Annotation schema

We introduce phrase and function tags in Table 3 and
use them selectively based on the options described
below.

Tree Structure We first built a treebank with bi-
nary tree structure (except the root and terminal
nodes), because it is comparably easy to convert
the existing Japanese dependency-based corpus to
it. We converted the dependency-based corpus by
a previously described method in (Uematsu et al.,
2013). The binary tree’s structure has the follow-

NP Noun phrase
PP Postposition phrase
VP Verb phrase
ADJP Adjective phrase
ADVP Adverbial phrase
CONJP Conjunction phrase
S Sentence (=root)
IP Inflectional phrase
IP-MAT Matrix clause
IP-ADV Adverb clause
IP-REL Gapping relative clause
IP-ADN Non-gapping adnominal clause
CP Complementizer phrase
CP-THT Sentential complement

Function tags
semantic role for mandatory argument (gap notation)
-ARG0 (arg0)
-ARG1 (arg1)
-ARG2 (arg2)
grammatical role for mandatory argument (gap notation)
-SBJ (sbj) Subjective case
-OBJ (obj) Objective case
-OB2 (ob2) Indirect object case
arbitrary argument
-TMP Temporal case
-LOC Locative case
-COORD Coordination (for n-ary)
-NCOORD Left branch of NP coord. (for binary)
-VCOORD Left branch of VP coord. (for binary)
-APPOS Apposition
-QUE Question

Table 3: Phrase tags

ing characteristics about verb phrase (VP) and post-
position phrase (PP): VP from the same bunsetsu
is a left-branching subtree and the PP-VP structure
(roughly corresponding to the argument-predicate
structure) is a right-branching subtree. Pure binary
trees tend to be very deep and difficult to annotate
and interpret by humans. We also built an n-ary tree
version by flattening these structures.

The predicate-argument structure, which is usu-
ally represented by PPs and a VP in the treebank,
particularly tends to be deep in binary trees based
on the number of arguments. To flatten the structure,
we remove the internal VP nodes by intermediately
re-attaching all of the argument PPs to the VP that
dominates the predicate. Figure 1 shows an example
of flattening the PP-VP structure.

For noun phrases, since compound nouns and nu-
merals cause deep hierarchy, the structure that in-
cludes them is flattened under the parentNP. The
coordinating structure is preserved, and eachNPel-
ement of the coordination is flattened

111

IP-MAT

VP

VP

P

た
-PAST

VB

追いかけ
chase

PP-OBJ

PCS

を
-ACC

NN

猫
cat

PP-SBJ

PCS

が
-NOM

NN

犬
dog

NP

NP

NN

犬
dog

IP-REL sbj

VP

P

た
-PAST

VB

追いかけ
chase

PP-OBJ

PCS

を
-ACC

NN

猫
cat

NP

NP

NN

写真
photo

IP-ADN

VP

VP

AUX

いる
-PROG

VP

P

て

VB

追いかけ
chase

PP-OBJ

PCS

を
-ACC

NN

猫
cat

PP-SBJ

PCS

が
-NOM

NP

犬
dog

The dog chased the cat. The dog that chased the cat The photo of a dog chasing a cat

Figure 2: Leftmost tree shows annotation of grammatical roles in a basic inflectional phrase. Right two trees show
examples of adnominal phrases.

Predicates and arguments The predicate’s argu-
ment is basically marked with particles, which rep-
resent cases in Japanese; thus, they are represented
as a postpositional phrase, which is composed of
a noun phrase and particles. The leftmost tree in
Figure 2 is an example of the parse result of the
following sentence:犬-が inu-ga “dog-NOM” 猫-
を neko-o“cat-ACC”追いかけた oikaketa“chased”
(The dog chased the cat.)

We annotated predicate arguments by two dif-
ferent schemes (different tag sets) in our treebank:
grammatical roles and semantic roles. In using a tag
set based on grammatical roles, the arguments are
assigned with the suffixes based on their syntactic
roles in the sentence, like Penn Treebank:SBJ (sub-
ject),OBJ(direct object), andOB2(indirect object).
Figure 2 is annotated by this scheme.

Alternatively, the arguments are labeled based on
their semantic roles from case frame of predicates,
like PropBank (Palmer et al., 2005):ARG0, ARG1
andARG2. These arguments are annotated by con-
verting semantic roles defined in the case frame dic-
tionary Goitaikei into simple labels, the labels are
not influenced by case alternation.

In both annotation schemes, we also annotated
two types of arbitrary arguments with semantic role
labels: LOC (locative) andTMP(temporal), which
can be assigned consistently and are useful for vari-
ous applications.

Adnominal clauses Clauses modifying noun
phrases are divided into two types: (gapping) rela-
tive and non-gapping adnominal clauses. Relative
clauses are denoted by adding function tag-REL to
phrase tagIP . Such a gap is directly attached to
IP-REL tag as a suffix consisting of an underscore
and small letters in our treebank, e.g.,IP-REL sbj
for a subject-gap relative clause, so that the parser
can learn the type of gap simultaneously, unlike
the Penn Treebank style, where gaps are marked
as trace ‘*T*’. For instance, note the structure of
the following noun phrase, which is shown in the
middle tree in Figure 2:猫-を neko-o“cat-ACC”
追いかけた oikake-ta “to chase” 犬 inu “dog”
“neko-o (cat-ACC) oikaketa (chase) inu” (The dog
that chased the cat.). We also adopt another type of
gap notation that resembles the predicate-argument
structure: semantic role notation. In the example
above, tagIP-REL arg0 is attached to the relative
clause instead.

We attach tagIP-ADN to another type of ad-
nominal clauses, which has no gap, the modified
noun phrase is not an argument of the predicate in
the adnominal clause. The rightmost in Figure 2 is
an example of a non-gapping clause:犬-が inu-ga
“dog-NOM” 猫-を neko-o“cat-ACC” 追いかけて
いる oikake-teiru“chasing”写真 shashin“photo”
(A photo of a dog chasing a cat.), where there is no
predicate-argument relation between the verb追い
かける chaseand the noun写真 photo.

112

Coordination and apposition The notation of
such parallel structure as coordination and apposi-
tion differs based on the type of tree structure. For
binary trees, the coordination is represented by a
left-branching tree, which is a conjunction or a con-
junction particle that first joined a left hand con-
stituent; the phrase is marked as a modifier consist-
ing of coordination (-NCOORDand -VCOORDfor
NP and VP coordinations), as shown on the left side
of Figure 3. On the other hand, in n-ary trees, all the
coordination elements and conjunctions are aligned
flatly under the parent phrase with suffix-COORD.
The apposition is represented in the same way using
tag-APPOS instead.

Phrase and sentential elements Since predicate
arguments are often omitted in Japanese, discrimi-
nation between the fragment of larger phrases and
sentential elements is not clear. In treebank, we em-
ploy IP and CP tags for inflectional and comple-
mentizer phrases, assuming that tags with function
tag suffixes to the phrase correspond to the max-
imum projection of the predicate (verb or adjec-
tive). The matrix phrase and the adverbial phrase
haveIP-MAT andIP-ADV tags respectively. This
annotation schema is adopted based on the Penn
Historical Corpora (Santorini, 2010) and Japanese
Keyaki treebank (Butler et al., 2012) as previously
described, while IP in our treebank is not so flat as
them.

Such sentential complements as that-clauses in
English are tagged withCP-THT. In other words,
the sentential elements, which are annotated with
SBAR, S, and trace *T* in the Penn Treebank, are
tagged withCPor IP in our treebank.

4 Evaluation

The original Kyoto Corpus has 38,400 sentences
and they were automatically converted to constituent
structures. The function tags are also added to the
corpus by integrating predicate-argument informa-
tion in the NAIST Text corpus. Since the conver-
sion contains errors of structures and tags, about half
of them were manually checked to avoid the effects
of the conversion errors.

We evaluated our treebank’s effectiveness for
parser training with 18,640 sentences, which were
divided into three sets: 14,895 sentences for a train-

Tag set LF1 Comp UF1 Comp
binary tree
Base 88.4 34.0 89.6 37.9
Baseinf 88.5⋆ 33.5 90.0⋆ 39.3

Full sr 80.7 13.6 88.4 35.9
Full sr inf 81.1⋆ 15.5⋆ 88.7⋆ 36.9
Full sr lex 79.8⋆ 13.1 87.7⋆ 34.3
Full sr vsub 80.3⋆ 12.5 87.9⋆ 35.1
Full sr vsub alt 78.6⋆ 13.3 86.7⋆ 32.5⋆

Fullgr 81.0 15.6 88.5 37.3
Fullgr inf 81.3⋆ 15.3 88.8 37.2
Fullgr lex 80.3⋆ 14.2 87.9⋆ 33.6⋆
Fullgr vsub 81.2 15.5 88.5 35.2
Fullgr vsub alt 77.9⋆ 11.7⋆ 86.0⋆ 29.9⋆
n-ary tree
Full sr 76.7 11.4 85.3 28.0
Full sr inf 76.9 11.6 85.4 28.7
Full sr lex 76.5 11.1 84.7⋆ 27.9
Full sr vsub 76.5 10.8 84.9⋆ 26.2
Full sr vsub alt 76.6 11.0 84.8⋆ 27.2

Fullgr 77.2 13.2 85.3 29.2
Fullgr inf 77.4 12.0⋆ 85.5 28.3
Fullgr lex 77.6 12.2⋆ 85.0 28.5
Fullgr vsub 77.1 12.7⋆ 84.8⋆ 28.8
Fullgr vsub alt 76.9 12.2⋆ 84.7⋆ 26.3⋆

Table 4: Parse results displayed by labeled and unla-
beled F1 metrics and proportion of sentences completely
matching gold standard (Comp). Basecontains only ba-
sic tags, not grammatical function tags. Figures with ‘⋆’
indicate statistically significant differences (α = 0.05)
from the results without complementary information, i.e.,
Full sr or Fullgr.

113

NP

NN

利益
interest

PP

PADN

の
-GEN

NP

NNP

B 社
B Company

PP-NCOORD

PCJ

と
CONJ

NNP

A 社
A Company

NP

NN

利益
interest

PP

PADN

の
-GEN

NP-COORD

NNP

B 社
B Company

PCJ

と
CONJ

NNP

A 社
A Company

the interests of A Company and B Company

Figure 3: Noun phrase coordination

tag set UAS
binary tree
Base 89.1
Baseinf 89.4

Full sr 87.9
Full sr inf 88.3
Fullgr 88.0
Fullgr inf 88.5⋆
n-ary (flattened) tree
Full sr 82.8
Full sr inf 83.3
Fullgr 82.9
Fullgr inf 83.0

Table 5: Dependency accuracies of the results converted
into bunsetsu dependencies.

ing set, 1,860 sentences for a test set, and the re-
mainder for a development set.

The basic evaluations were under the condition of
using the original tag sets: the basic setBase, which
contains all the preterminal tags in Table 1 and the
phrase tags in Table Table 3, except the IP and CP
tags, and the full setFull , which hasBase+ IP, CP
tags, and all the function tags. The basic setBase
is provided to evaluate the constituent parser perfor-
mance in case that we need better performance at the
cost of limiting the information.

We used two types of function tag sets:Full sr for
semantic roles andFull gr for grammatical roles.

We added the following complementary informa-
tion to the tags and named the new tag setsBaseor

Full and suffix:

inf: add inflection information to the POS tag
(verbs, adjectives, and auxiliary verbs) and the
phrase tags (Table 2).

lex: lexicalize the closed words, i.e., auxiliary
verbs and particles.

vsub: add verb subcategorization to the verb and
verb phrase tags.

vsub alt: add verb subcategorization and case al-
ternation to the verb and verb phrase tags.

In comparing the system output with the gold stan-
dard, we remove the complementary information to
ignore different level of annotation, thus, we do not
discriminate betweenVB[na] and VB[nad] for
example.

We used the Berkeley parser (Petrov et al., 2006)
for our evaluation and trained with six iterations for
latent annotations. In training the n-ary trees, we
used a default Markovization parameter (h = 0, v =
1), because the parser performed the best with the
development set.

Table 4 shows the parsing results of the test sets.
On the whole, the binary tree outperformed the n-
ary tree. This indicates that the binary tree struc-
ture was converted from bunsetsu-based dependen-
cies, whose characteristics are described in Section
3.3, and is better for parser training than the partially
flattened structure.

114

As for additional information, the inflection suf-
fixes slightly improved the F1-metrics. This is
mainly because the inflection information gives the
category of the attached phrase (e.g., the attributive
form for noun phrases). The others did not provide
any improvement, even though we expected the sub-
categorization and case alternation information to
help the parser detect and discriminate the grammat-
ical roles, probably because we simply introduced
the information by concatenating the suffixes to the
base tags to adapt an off-the-shelf parser in our eval-
uation. For instance,VB[n] andVB[na] are rec-
ognized as entirely independent categories; a sophis-
ticated model, which can treat them hierarchically,
would improve the performance.

For comparison with a bunsetsu-based depen-
dency parser, we convert the parser output into unla-
beled bunsetsu dependencies by the following sim-
ple way. We first extract all bunsetsu chunks in
a sentence and find a minimum phrase including
each bunsetsu chunk from a constituent structure.
For each pair of bunsetsus having a common parent
phrase, we add a dependency from the left bunsetsu
to the right one, since Japanese is a head-final lan-
guage.

The unlabeled attachment scores of the converted
dependencies are shown as the accuracies in Table 5,
since most bunsetsu-based dependency parsers out-
put only unlabeled structure.

The Baseinf results are comparable with the
bunsetsu-dependency results (90.46%) over the
same corpus (Kudo et al., 2002)1, which has only
the same level of information. Constituent parsing
with treebank almost matched the current bunsetsu
parsing.

5 Analysis

In this section, we analyze the error of parse results
from the point of view of the discrimination of gram-
matical and semantic roles, adnominal clause and
coordination.

Grammatical and semantic roles Predicate argu-
ments usually appeared as PP, which is composed of
noun phrases and particles. We focus on PPs with
function labels. Table 6 shows the PP results with

1The division for the training and test sets is different.

tag P R F1

PP-ARG0 64.9 75.0 69.6
PP-ARG1 70.6 80.1 75.1
PP-ARG2 60.3 68.5 64.1

PP-TMP 40.1 43.6 41.8
PP-LOC 23.8 17.2 20.0

tag P R F1

PP-SBJ 69.6 81.5 75.1
PP-OBJ 72.6 83.5 77.7
PP-OB2 63.6 71.4 67.3

PP-TMP 45.0 48.0 46.5
PP-LOC 21.3 15.9 18.2

Table 6: Discrimination of semantic role and grammati-
cal role labels (upper: semantic roles, lower: grammatical
role)

system\ gold PP-SBJ PP-OBJ PP-OB2
PP-SBJ *74.9 6.5 2.3
PP-OBJ 5.8 *80.1 0.5
PP-OB2 1.7 0.3 *68.5
PP-TMP 0.2 0.0 0.5
PP-LOC 0.2 0.0 0.4
PP 6.5 2.0 16.8
other labels 0.5 0.2 0.3
no span 10.2 10.9 11.0

system\ gold PP-TMP PP-LOC
PP-SBJ 4.7 4.1
PP-OBJ 0.0 0.0
PP-OB2 6.0 13.8
PP-TMP *43.6 2.8
PP-LOC 2.0 *17.2
PP 37.6 49.7
other labels 1.4 5.0
no span 4.7 7.4

Table 7: Confusion matrix for grammatical role labels
(recall). Figures with ‘*’ indicate recall.(binary tree,
Fullgr)

tag P R F1

IP-REL sbj 48.4 54.3 51.1
IP-REL obj 27.8 22.7 24.9
IP-REL ob2 17.2 29.4 21.7
IP-ADN 50.9 55.4 53.1
CP-THT 66.1 66.6 66.3

Table 8: Results of adnominal phrase and sentential ele-
ment (binary tree,Fullgr)

115

grammatical and semantic labels under theFull sr
andFullgr conditions respectively.

The precision and the recall of mandatory argu-
ments did not reach a high level. The results are
related to predicate argument structure analysis in
Japanese. But, they cannot be directly compared,
because the parser in this evaluation must output a
correct target phrase and select it as an argument, al-
though most researches select a word using a gold
standard parse tree. Hayashibe et al. (2011) re-
ported the best precision of ARG0 discrimination to
be 88.42 %2, which is the selection results from
the candidate nouns using the gold standard parse
tree of NTC. If the cases where the correct candi-
dates did not appear in the parser results are ex-
cluded (10.8 %), the precision is 72.7 %. The main
remaining error is to label to non-argument PP with
suffix -ARG0 (17.0%), thus, we must restrain the
overlabeling to improve the precision.

The discrimination of grammatical role is higher
than that of semantic role, which is more directly es-
timated by case particles following the noun phrases.
The confusion matrix for the recall in Table 7 shows
main problem is parse error, where correct phrase
span does not exist (no span), and marks 10-11%.
The second major error is discrimination from bare
PPs (PPs without suffixes), mainly because the clues
to judge whether the arguments are mandatory or ar-
bitrary lack in the treebank. Since even the manda-
tory arguments are often omitted in Japanese, it is
not facilitate to identify arguments of predicates by
using only syntactic information.

Adnominal phrases We need to discriminate be-
tween two types of adnominal phrases as described
in Section 3.3: IP-REL and IP-ADN . Table 8
shows the discrimination results of the adnominal
phrase types. The difference betweenIP-REL
(gapped relative clauses) andIP-ADN is closely re-
lated to the discrimination of the grammatical role:
whether the antecedent is the argument of the head
predicate of the relative clause.

Table 8 shows the discrimination results of the
adnominal phrases. The results indicate the diffi-
culties of discriminating the type of gaps of rela-

2The figure is calculated only for the arguments that appear
as the dependents of predicates, excluding the omitted argu-
ments.

tive clauseIP-REL . The confusion matrix in Ta-
ble 9 shows that the discrimination between gaps
and non-gaps, i.e.,IP-REL andIP-ADN , is moder-
ate as forIP-REL sbj and IP-REL obj . How-
ever, IP-REL ob2 is hardly recognized, because
it is difficult to determine whether the antecedent,
which is marked with particle ‘ni’, is a mandatory ar-
gument (IP-REL ob2) or not (IP-ADN). Increas-
ing training samples would improve the discrimina-
tion, since there are only 290IP-REL ob2 tags for
8,100IP-ADN tags in the training set.

Naturally discrimination only by syntactic infor-
mation has limitation; this baseline can be improved
by incorporating semantic information.

Coordination Figure 10 shows the coordination
results, which are considered the baseline for only
using syntactic information. Improvement is possi-
ble by incorporating semantic information, since the
disambiguation of coordination structure essentially
needs semantic information.

6 Conclusion

We constructed a Japanese constituent-based parser
to be released from the constraints of bunsetsu-based
analysis to simplify the integration of syntactic and
semantic analysis. Our evaluation results indicate
that the basic performance of the parser trained with
the treebank almost equals bunsetsus-based parsers
and has the potential to supply detailed syntactic
information by grammatical function labels for se-
mantic analysis, such as predicate-argument struc-
ture analysis.

Future work will be to refine the annotation
scheme to improve parser performance and to eval-
uate parser results by adapting them to such NLP
applications as machine translation.

Acknowledgments

We would like to thank Associate Professor Yusuke
Miyao, Associate Professor Takuya Matsuzaki of
National Institute of Informatics and Sumire Ue-
matsu of the University of Tokyo for providing us
the language resources and giving us valuable sug-
gestions.

116

system\ gold IP-REL sbj IP-REL obj
IP-REL sbj *55.0 30.3
IP-REL obj 8.5 *33.3
IP-REL ob2 0.5 0.0
IP-ADN 10.0 9.0
IP-ADV 0.3 0.0
VP 8.5 7.6
other labels 1.2 6.2
no span 16.0 13.6

system\ gold IP-REL ob2 IP-ADN
IP-REL sbj 29.4 7.5
IP-REL obj 0.0 0.6
IP-REL ob2 *11.8 0.0
IP-ADN 23.5 *57.3
IP-ADV 0.5 0.3
VP 17.6 9.3
other labels 5.4 3.0
no span 11.8 22.0

Table 9: Confusion matrix for adnominal phrases (recall).
Figures with ‘*’ indicate recall.(binary tree,Fullgr)

tag P R F1

NP-COORD 62.6 60.7 61.6
VP-COORD 57.6 50.0 53.5
NP-APPOS 46.0 40.0 42.8

Table 10: Results of coordination and apposition (binary
tree,Fullgr)

References

Masayuki Asahara. 2013. Comparison of syntactic de-
pendency annotation schemata . InProceedings of
the 3rd Japanese Corpus Linguistics Workshop, In
Japanese.

Daisuke Bekki. 2010. Formal theory of Japanese syntax.
Kuroshio Shuppan, In Japanese.

Daniel M. Bikel. 2004. A distributional analysis of a
lexicalized statistical parsing model. InProceedings
of Empirical Methods in Natural Language Processing
(EMNLP 2004), Vol.4, pp. 182–189.

Francis Bond, Sanae Fujita and Takaaki Tanaka. 2008.
The Hinoki syntactic and semantic treebank of
Japanese. InJournal of Language Resources and
Evaluation, Vol.42, No. 2, pp. 243–251

Alastair Butler, Zhu Hong, Tomoko Hotta, Ruriko
Otomo, Kei Yoshimoto and Zhen Zhou. 2012. Keyaki
Treebank: phrase structure with functional informa-
tion for Japanese. InProceedings of Text Annotation
Workshop.

Eugene Charniak. 2000. A maximum-entropy-inspired
parser. InProceedings of the 1st North American
chapter of the Association for Computational Linguis-
tics conference, (NAACL 2000), pp. 132–139.

DongHyun Choi, Jungyeul Park and Key-Sun Choi.
2012. Korean treebank transformation for parser train-
ing. In Proceedings of the 50th Annual Meeting of
the Association for Computational Linguistics (ACL
2012), pp. 78-88.

Ann Copestake, Dan Flickinger, Carl Pollard and Ivan A.
Sag. 2005. Minimal recursion semantics: an introduc-
tion. Research on Language and Computation, Vol. 3,
No. 4, pp. 281-332.

Ryan Gabbard, Mitchell Marcus and Seth Kulick. 2006.
Fully parsing the Penn Treebank. InProceedings of
the Human Language Technology Conference of the
North American Chapter of the Association of Compu-
tational Linguistics (HLT-NAACL 2006), pp. 184–191.

Takao Gunji. 1987 Japanese phrase structure grammar:
a unification-based approach. D.Reidel.

Yuta Hayashibe, Mamoru Komachi and Yujzi Mat-
sumoto. 2011. Japanese predicate argument struc-
ture analysis exploiting argument position and type. In
Proceedings of the 5th International Joint Conference
on Natural Language Processing (IJCNLP 2011), pp.
201-209.

Ryu Iida, Mamoru Komachi Kentaro Inui and Yuji Mat-
sumoto. 2007. Annotating a Japanese text corpus with
predicate-argument and coreference relations. InPro-
ceedings of Linguistic Annotation Workshop, pp. 132–
139.

Ryu Iida, Massimo Poesio. 2011. A cross-lingual ILP
solution to zero anaphora resolution. InProceedings

117

of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Tech-
nologies (ACL-HLT 2011), pp. 804-813.

Satoru Ikehara, Masahiro Miyazaki, Satoshi Shirai, Akio
Yokoo, Kentaro Ogura, Yoshifumi Ooyama and Yoshi-
hiko Hayashi. 1998. Nihongo Goitaikei. Iwanami
Shoten, In Japanese.

Ronald M. Kaplan and Joan Bresnan. 1982. Lexical-
Functional Grammar: a formal system for grammat-
ical representation. Inthe Mental Representation of
Grammatical Relations(Joan Bresnan ed.), pp. 173–
281. The MIT Press.

Daisuke Kawahara and Sadao Kurohashi. 2006. A
fully-lexicalized probabilistic model for Japanese syn-
tactic and case structure analysis. InProceedings of
the Human Language Technology Conference of the
North American Chapter of the Association of Compu-
tational Linguistics (HLT-NAACL 2006), pp. 176–183.

Dan Klein and Christopher D. Manning. 2003. Fast exact
inference with a factored model for natural language
processing.Advances in Neural Information Process-
ing Systems, 15:3–10.

Taku Kudo and Yuji Matsumoto. 2002. Japanese de-
pendency analysis using cascaded chunking. InPro-
ceedings of the 6th Conference on Natural Language
Learning (CoNLL-2002), Volume 20, pp. 1–7.

Sadao Kurohashi and Makoto Nagao. 2003. Building a
Japanese parsed corpus – while improving the parsing
system. In Abeille (ed.),Treebanks: Building and us-
ing parsed corpora, Chap. 14, pp. 249–260. Kluwer
Academic Publishers.

Mitchell P. Marcus, Beatrice Santorini, Mary Ann
Marcinkiewicz. 1993. Building a large annotated cor-
pus of English: the Penn Treebank. InJournal of Com-
putational Linguistics. Vol.19, No.2, pp. 313–330.

Hiroshi Masuichi, Tomoko Okuma, Hiroki Yoshimura
and Yasunari Harada. 2003 Japanese parser on the ba-
sis of the Lexical-Functional Grammar formalism and
its evaluation. InProceedings of the 17th Pacific Asia
Conference on Language, Information and Computa-
tion (PACLIC 17), pp. 298-309.

Masaaki Nagata and Tsuyoshi Morimoto,. 1993.
A unification-based Japanese parser for speech-to-
speech translation. InIEICE Transaction on Informa-
tion and Systems. Vol.E76-D, No.1, pp. 51–61.

Tomoya Noro, Taiichi Hashimoto, Takenobu Tokunaga
and Hotsumi Tanaka. 2005. Building a large-scale
Japanese syntactically annotated corpus for deriving a
CFG. in Proceedings of Symposium on Large-Scale
Knowledge Resources (LKR2005), pp..159 – 162.

Matha Palmer, Daniel Gildea and Paul Kingsbury. 2005.
The Proposition Bank: n annotated corpus of semantic
roles. Computational Linguistics, Vol.31 No. 1, pp.
71–106.

Slav Petrov, Leon Barrett, Romain Thibaux and Dan
Klein.. 2006. Learning accurate, compact, and in-
terpretable tree annotation. InProceedings of the 21st
International Conference on Computational Linguis-
tics and the 44th Annual Meeting of the Association
for Computational Linguistics (COLING-ACL 2006),
pp. 433-440.

Ivan A. Sag, Thomas Wasow and Emily M. Bender,.
2003. Syntactic theory: a formal introduction.2nd
Edition, CSLI Publications.

Beatrice Santorini. 2010. Annotation manual for the
Penn Historical Corpora and the PCEEC (Release 2).
Department of Linguistics, University of Pennsylva-
nia.

Melanie Siegel and Emily M. Bender. 2002. Efficient
deep processing of Japanese. InProceedings of the
3rd Workshop on Asian Language Resources and In-
ternational Standardization at the 19th International
Conference on Computational Linguistics, Vol. 12, pp.
1–8.

Sumire Uematsu, Takuya Matsuzaki, Hiroaki Hanaoka,
Yusuke Miyao and Hideki Mima. 2013. Integrat-
ing multiple dependency corpora for inducing wide-
coverage Japanese CCG resources. InProceedings of
the 51st Annual Meeting of the Association for Com-
putational Linguistics (ACL 2013), pp. 1042–1051.

118

Proceedings of the Fourth Workshop on Statistical Parsing of Morphologically Rich Languages, pages 119–128,
Seattle, Washington, USA, 18 October 2013. c©2013 Association for Computational Linguistics

Context Based Statistical Morphological Analyzer and its Effect on Hindi
Dependency Parsing

Deepak Kumar Malladi and Prashanth Mannem
Language Technologies Research Center

International Institute of Information Technology
Hyderabad, AP, India - 500032

{deepak.malladi, prashanth}@research.iiit.ac.in

Abstract

This paper revisits the work of (Malladi and
Mannem, 2013) which focused on building
a Statistical Morphological Analyzer (SMA)
for Hindi and compares the performance of
SMA with other existing statistical analyzer,
Morfette. We shall evaluate SMA in vari-
ous experiment scenarios and look at how it
performs for unseen words. The later part
of the paper presents the effect of the pre-
dicted morph features on dependency parsing
and extends the work to other morphologically
rich languages: Hindi and Telugu, without any
language-specific engineering.

1 Introduction

Hindi is one of the widely spoken language in the
world with more than 250 million native speakers1.
Language technologies could play a major role in re-
moving the digital divide that exists between speak-
ers of various languages. Hindi, being a morpho-
logically rich language with a relatively free word
order (Mor-FOW), poses a variety of challenges for
NLP that may not be encountered when working on
English.

Morphological analysis is the task of analyzing
the structure of morphemes in a word and is gen-
erally a prelude to further complex tasks such as
parsing, machine translation, semantic analysis etc.
These tasks need an analysis of the words in the
sentence in terms of lemma, affixes, parts of speech
(POS) etc.

1http://www.ethnologue.com/statistics/size

NLP for Hindi has suffered due to the lack
of a high coverage automatic morphological ana-
lyzer. For example, the 2012 Hindi Parsing Shared
Task (Sharma et al., 2012) held with COLING-
2012 workshop had a gold-standard input track and
an automatic input track, where the former had
gold-standard morphological analysis, POS tags and
chunks of a sentence as input and the automatic track
had only the sentence along with automatic POS
tags as input. The morphological information which
is crucial for Hindi parsing was missing in the au-
tomatic track as the existing analyzer had limited
coverage. Parsing accuracies of gold-standard input
track were significantly higher than that of the other
track. But in the real scenario NLP applications,
gold information is not provided. Even Ambati et
al. (2010b) and Bharati et al. (2009a) have exploited
the role of morpho-syntactic features in Hindi de-
pendency parsing. Hence we need a high coverage
and accurate morphological analyzer.

2 Related work

Previous efforts on Hindi morphological analysis
concentrated on building rule based systems that
give all the possible analyses for a word form ir-
respective of its context in the sentence. The
paradigm based analyzer (PBA) by Bharati et al.
(1995) is one of the most widely used applications
among researchers in the Indian NLP community.
In paradigm based analysis, words are grouped into
a set of paradigms based on the inflections they take.
Each paradigm has a set of add-delete rules to ac-
count for its inflections and words belonging to a
paradigm take the same inflectional forms. Given a

119

L G N P C T/V
↓ ↓ ↓ ↓ ↓ ↓

xeSa
(country)

xeSa m sg 3 d 0
xeSa m pl 3 d 0
xeSa m sg 3 o 0

cAhie
(want)

cAha any sg 2h ie
cAha any pl 2h eM

L-lemma, G-gender, N-number, P-person
C-case, T/V-TAM or Vibhakti

Table 1: Multiple analyses given by the PBA for the
words xeSa and cAhie

word, the PBA identifies the lemma, coarse POS tag,
gender, number, person, case marker, vibhakti2 and
TAM (tense, aspect, modality). Being a rule-based
system, the PBA takes a word as input and gives all
the possible analyses as output. (Table 1 presents an
example). It doesn’t pick the correct analysis for a
word in its sentential context.

Goyal and Lehal’s analyser (2008), which is a re-
implementation of the PBA with few extensions, has
not done any comparative evaluation. Kanuparthi
et al. (2012) built a derivational morphological ana-
lyzer for Hindi by introducing a layer over the PBA.
It identifies 22 derivational suffixes which helps in
providing derivational analysis for the word whose
suffix matches with one of these 22 suffixes.

The large scale machine translation projects3 that
are currently under way in India use shallow parser
built on PBA and an automatic POS tagger. The
shallow parser prunes the morphological analyses
from PBA to select the correct one using the POS
tags from the tagger. Since it is based on PBA, it
suffers from similar coverage issues for out of vo-
cabulary (OOV) words.

The PBA, developed in 1995, has a limited vo-
cabulary and has received only minor upgrades since
then. Out of 17,666 unique words in the Hindi Tree-
bank (HTB) released during the 2012 Hindi Parsing
Shared Task (Sharma et al., 2012), the PBA does
not have entries for 5,581 words (31.6%).

Apart from the traditional rule-based approaches,
Morfette (Chrupała et al., 2008) is a modular, data-

2Vibhakti is a Sanskrit grammatical term that encompasses
post-positionals and case endings for nouns, as well as inflec-
tion and auxiliaries for verbs (Pedersen et al., 2004).

3http://sampark.iiit.ac.in/

Data #Sentences #Words
Training 12,041 268,096

Development 1,233 26,416
Test 1,828 39,775

Table 2: HTB statistics

driven, probabilistic system which learns to perform
joint morphological tagging and lemmatization from
morphologically annotated corpora. The system is
composed of two learning modules, one for mor-
phological tagging and one for lemmati- zation, and
one decoding module which searches for the best se-
quence of pairs of morphological tags and lemmas
for an input sequence of wordforms.

Malladi and Mannem (2013) have build a Statis-
tical Morphological Analyzer (SMA) with minimal
set of features but they haven’t compared their sys-
tem with Morfette. In our work we shall discuss
in detail about SMA with more concentration on
evaluating the system in various scenarios and shall
extend the approach to other morphologically rich
languages. Later we evaluate the effect of the pre-
dicted morph features (by SMA) on Hindi depen-
dency parsing.

3 Hindi Dependency Treebank (HTB)

A multi layered and multi representational tree-
bank for Hindi is developed by annotating with
morpho-syntactic (morphological analyses, POS
tags, chunk) and syntacto-semantic (dependency re-
lations labeled in the computational paninian frame-
work) information. A part of the HTB (constituting
of 15,102 sentences) was released for Hindi Pars-
ing Shared Task. Table 2 shows the word counts of
training, development and test sections of HTB.

With the existing morph analyzer (PBA) perform-
ing poorly on OOV words and the availability of an
annotated treebank, Malladi and Mannem (2013) set
out to build a high-coverage automatic Hindi morph
analyzer by learning each of the seven morpholog-
ical attributes separately from the Hindi Treebank.
During this process, it was realized that vibhakti
and TAM can be better predicted using heuristics on
fine-grained POS tags than by training on the HTB.

In the rest of the section, we discuss the meth-
ods used by SMA to predict each of the seven mor-

120

MorphFeature Values
Gender masculine, feminine, any, none
Number singular, plural, any, none
Person 1, 1h, 2, 2h, 3, 3h, any, none

CaseMarker direct, oblique, any, none

Table 3: Morph features and the values they take

source target gloss
k i y A k a r a do

l a d a k e l a d a k A boy
l a d a k I l a d a k I girl

l a d a k I y A M l a d a k I girl

Table 4: Sample parallel corpus for lemma prediction

phological attributes and their effect on Hindi depen-
dency parsing. Table 3 lists the values that each of
the morph attributes take in HTB.

4 Statistical Morphological Analyzer
(SMA)

The output of a morphological analyzer depends on
the language that it is developed for. Analyzers for
English (Goldsmith, 2000) predict just the lemmas
and affixes mainly because of its restricted agree-
ment based on semantic features such as animacy
and natural gender. But in Hindi, agreement de-
pends on lexical features such as grammatical gen-
der, number, person and case. Hence, it is crucial
that Hindi analyzers predict these along with TAM
and vibhakti which have been found to be useful for
syntactic parsing (Ambati et al., 2010b; Bharati et
al., 2009a).

Hindi has syntactic agreement (of GNP and case)
of two kinds: modifier-head agreement and noun-
verb agreement. Modifiers, including determiners,
agree with their head noun in gender, number and
case, and finite verbs agree with some noun in the
sentence in gender, number and person (Kachru,
2006). Therefore, apart from lemma and POS tags,
providing gender, number and person is also crucial
for syntactic parsing.4

4While nouns, pronouns and adjectives have both GNP and
case associated with them, verbs only have GNP. TAM is valid
only for verbs and vibhakti (post-position) is only associated
with nouns and pronouns.

4.1 Lemma prediction

The PBA uses a large vocabulary along with
paradigm tables consisting of add-delete rules to find
the lemma of a given word. All possible add-delete
rules are applied on a given word form and the re-
sulting lemma is checked against the vocabulary to
find if it is right or not. If no such lemma exists (for
OOV words), it returns the word itself as the lemma.

While the gender, number and person of a word
form varies according to the context (due to syntac-
tic agreement with head words), there are very few
cases where a word form can have more than one
lemma in a context. For example, vaha can either
be masculine or feminine depending on the form that
the verb takes. It is feminine in vaha Gara gayI
(she went home) and masculine in vaha Gara
gayA (he went home). The lemma for vaha can
only be vaha irrespective of the context and also
the lemma for gayI and gayA is jA. This makes
lemma simpler to predict among the morphological
features, provided there is access to a dictionary of
all the word forms along with their lemmas. Unfor-
tunately, such a large lemma dictionary doesn’t ex-
ist. There are 15,752 word types in training, 4,292
word types in development and 5,536 word types
in test sections of HTB respectively. Among these
18.5% of the types in development and 20.2% in test
data are unseen in training data.

SMA analyzer perceives lemma prediction from a
machine translation perspective, with the characters
in the input word form treated as the source sentence
and those in the lemma as the target. The strings
on source and target side are split into sequences
of characters separated by space, as shown in Ta-
ble 4. The phrase based model (Koehn et al., 2007)
in Moses is trained on the parallel data created from
the training part of HTB. The translation model ac-
counts for the changes in the affixes (sequence of
characters) from word form to lemma whereas the
language model accounts for which affixes go with
which stems. In this perspective, the standard MT
experiment of switching source and target to attain
better accuracy would not apply since it is unrea-
sonable to predict the word form from the lemma
without taking the context into account.

Apart from the above mentioned approach, we ap-
ply a heuristic on top of SMA, wherein proper nouns

121

Gender Word Gloss
masculine cAvala, paMKA rice, fan
feminine rela, xAla train, pulse

any jA go
none karIba near

Table 5: Gender value examples

Number Word Gloss
singular ladZake boy-Sg-Oblique
plural ladZake boy-Pl-Direct
any banA make
none karIba near

Table 6: Number value examples

(NNP) take the word form itself as the lemma.

4.2 Gender, Number, Person and Case
Prediction

Unlike lemma prediction, SMA uses SVM (support
vector machine) machine learning algorithm to pre-
dict GNP and case.

Though knowing the syntactic head of a word
helps in enforcing agreement (and thereby accu-
rately predicting the correct GNP), parsing is usu-
ally a higher level task and is not performed be-
fore morphological analysis. Hence, certain cases of
GNP prediction are similar in nature to the standard
chicken and egg problem.

4.2.1 Gender
Gender prediction is tricky in Hindi as even native

speakers tend to make errors while annotating. Gen-
der prediction in English is easy when compared to
Hindi since gender in English is inferred based on
the biological characteristics the word is referring
to. For example, Train has neuter gender in En-
glish whereas in Hindi, it exhibits feminine charac-
teristics. A dictionary of word-gender information
may usually suffice for gender prediction in English
but in Hindi it isn’t the case as gender could vary
based on its agreement with verb/modifier. The val-
ues that gender can take for a word in a given context
are masculine(m), feminine(f), any (either m or f) or
none (neither m nor f). Table 5 gives example for
each gender value.

Nouns inherently carry gender information. Pro-

Case Word Gloss
direct ladZake boy-Pl
oblique ladZake boy-sg
any bAraha twelve (cardinals)
none kaha say

Table 7: Case value examples

nouns (of genitive form), adjectives and verbs inflect
according to the gender of the noun they refer to.

4.2.2 Number
Every noun belongs to a unique number class.

Noun modifiers and verbs have different forms for
each number class and inflect accordingly to match
the grammatical number of the nouns to which they
refer.

Number takes the values singular (sg), plural (pl),
any (either sg or pl) and none (neither sg nor pl). Ta-
ble 6 lists examples for each of the values. In it,
ladZake takes the grammatical number sg (in di-
rect case) or pl (in oblique case) depending on the
context in which it occurs. It may be noted that since
PBA does not consider the word’s context, it outputs
both the values and leaves the disambiguation to the
subsequent stages.

4.2.3 Person
Apart from first, second and third persons, Hindi

also has the honorific forms, resulting in 1h, 2h and
3h. Postpositions do not have person information,
hence none is also a possible value. Apart from the
above mentioned grammatical person values, any is
also a feasible value.

4.2.4 Case Marker
Case markers in Hindi (direct and oblique) are at-

tributed to nouns and pronouns. Table 7 lists few
examples.

Words which inflect for gender, number, person
and case primarily undergo affixation at the end.

Features for GNP & Case Marker
The following features were tried out in building

the models for gender, number, person and case pre-
diction:

• Word level features

– Word

122

– Last 2 characters
– Last 3 characters
– Last 4 characters
– Character N-grams of the word
– Lemma
– Word Length

• Sentence level features

– Lexical category5

– Next word
– Previous word

Combinations of these features have been tried
out to build the SVM models for GNP and case. For
each of these tasks, feature tuning was done sep-
arately. In Malladi and Mannem (2013), a linear
SVM classification (Fan et al., 2008) is used to build
statistical models for GNP and case but we found
that with RBF kernel (non-linear SVM)6 we achieve
better accuracies. Furthermore, the parameters (C,
γ) of the RBF kernel are learned using grid search
technique.

4.3 Vibhakti and TAM
Vibhakti and TAM are helpful in identifying the
karaka7 dependency labels in HTB. While nouns
and pronouns take vibhakti, verbs inflect for TAM.
Both TAM and vibhakti occur immediately after the
words in their respective word classes.

Instead of building statistical models for vibhakti
and TAM prediction, SMA uses heuristics on POS
tag sequences to predict the correct value. The POS
tags of words following nouns, pronouns and verbs
give an indication as to what the vibhakti/TAM are.
Words with PSP (postposition) and NST (noun with
spatial and temporal properties) tags are generally
considered as the vibhakti for the preceding nouns
and pronouns. A postposition in HTB is annotated
as PSP only if it is written separately (usane/PRP
vs usa/PRP ne/PSP). For cases where the postposi-
tion is not written separately SMA relies on the tree-
bank data to get the suffix. Similarly, words with

5POS is considered as a sentence level feature since tagging
models use the word ngrams to predict the POS category

6LIBSVM tool is used to build non-linear SVM models for
our experiments (Chang and Lin, 2011).

7karakas are syntactico-semantic relations which are em-
ployed in Paninian framework (Begum et al., 2008; Bharati et
al., 2009b)

VAUX tag form the TAM for the immediately pre-
ceding verb.

The PBA takes individual words as input and
hence does not output the entire vibhakti or TAM
of the word in the sentence. It only identifies these
values for those words which have the information
within the word form (e.g. usakA he+Oblique,
kiyA do+PAST).

In the sentence,

rAma/NNP kA/PSP kiwAba/NN
cori/NN ho/VM sakawA/VAUX
hE/VAUX

PBA identifies rAma’s vibhakti as 0 and ho’s TAM
as 0. Whereas in HTB, vibhakti and TAM of rAma
and ho are annotated as 0 kA and 0 saka+wA hE
respectively. SMA determines this information pre-
cisely and Morfette which can predict other morph
features, is not capable of predicting TAM and Vib-
hakti as these features are specific to Indian lan-
guages.

5 Evaluation Systems

SMA is compared with a baseline system, Morfette
and two versions of the PBA wherever relevant. The
baseline system takes the word form itself as the
lemma and selects the most frequent value for the
rest of the attributes.

Since PBA is a rule based analyzer which gives
more than one analysis for words, we use two ver-
sions of it for comparison. The first system is the
oracle PBA (referred further as O-PBA) which uses
an oracle to pick the best analysis from the list of
all analyses given by the PBA. The second version
of the PBA (F-PBA) picks the first analysis from the
output as the correct analysis.

Morfette can perdict lemma, gender, number, per-
son and case attributes but it cannot predict TAM
and Vibhakti as they do not have a definite set of pre-
defined values unlike other morphological attributes.

6 Experiments and Results

SMA approach to Hindi morphological analysis
is based on handling each of the seven attributes
(lemma, gender, number, person, case, vibhakti and
TAM) separately. However, evaluation is performed

123

Analysis
Test Data - Overall(%) Test Data - OOV of SMA(%)

Baseline F-PBA O-PBA Morfette SMA Baseline F-PBA O-PBA Morfette SMA

L 71.12 83.10 86.69 94.14 95.84 78.10 82.08 82.48 90.30 89.51

G 37.43 72.98 79.59 95.05 96.19 60.22 43.07 44.06 72.03 82.65

N 52.87 72.22 80.50 94.09 95.37 69.60 44.53 47.56 84.89 90.44

P 45.59 74.33 84.13 94.88 96.38 78.30 52.51 53.89 84.76 94.85

C 29.31 58.24 81.20 93.91 95.32 43.60 31.40 47.36 80.21 88.52

V/T 65.40 53.05 59.65 NA 97.04 58.31 33.58 34.56 NA 96.04

L+C 16.46 48.84 72.06 88.56 91.39 32.52 28.50 44.66 72.89 79.09

L+V/T 54.78 44.57 51.71 NA 93.06 53.56 31.73 32.72 NA 86.41

G+N+P 23.05 61.10 73.81 88.36 91.11 47.49 35.75 39.58 62.33 76.52

G+N+P+C 9.72 45.73 70.87 84.43 87.78 21.04 20.91 35.95 55.74 69.99

L+G+N+P 20.27 53.29 66.28 83.44 87.51 44.72 34.63 38.46 57.85 69.13

L+G+N+P+C 8.57 38.25 63.41 79.73 84.25 19.33 19.92 34.89 51.52 63.06

L+G+N+P+C+V/T 1.25 32.53 42.80 NA 82.12 4.02 14.51 18.67 NA 60.07

L-lemma, G-gender, N-number, P-person, C-case, V/T-Vibhakti/TAM

Table 8: Accuracies of SMA compared with F-PBA, O-PBA and baseline systems.

on individual attributes as well as on the combined
output.

SMA builds models for lemma, gender, number,
person and case prediction trained on the training
data of the HTB. All the models are tuned on devel-
opment data and evaluated on test data of the HTB.

Table 8 presents the accuracies of five systems
(baseline, F-PBA, O-PBA, Morfette and SMA) in
predicting the morphological attributes of all the
words in the HTB’s test data and also for OOV
words of SMA (i.e. words that occur in the test sec-
tion but not in training section of HTB)8. The accu-
racies are the percentages of words in the data with
the correct analysis. It may be noted that SMA per-
forms significantly better than the best analyses of
PBA and the baseline system in all the experiments
conducted. As far as Morfette is concerned, it per-
forms on par with SMA in terms of overall accuracy
but for OOV words, except for lemma prediction,
SMA outperforms Morfette by significant margin.

Table 13 lists the accuracies of lemma, gender,
number, person and case for the most frequently oc-
curring POS tags. Table 12 reports the same for
OOV words. The number of OOV words in postpo-

8OOV words for SMA need not be out of vocabulary for
PBA’s dictionaries. Table 8 lists accuracies for OOV words of
SMA. We shall also report accuracies for OOV words of PBA
in the later part of the paper (Table 11).

Metric Exp-1a Exp-2b Exp-3c

LAS 87.75 89.41 89.82
UAS 94.41 94.50 94.81
LA 89.89 91.67 91.96

Table 9: MALT Parser’s accuracies on HTB test data.
Unlabeled Attachment Score (UAS) is the percentage of
words with correct heads. Labeled Accuracy (LA) is the
percentage of words with correct dependency labels. La-
beled Attachment Score (LAS) is the percentage of words
with both correct heads and labels.

aExp-1: Without morph features
bExp-2: With morph features predicted by SMA
cExp-3: With gold morph features (as annotated in HTB)

sition and pronoun categories is quite less and hence
have not been included in the table.

Hindi derivational morph analyzer (Kanuparthi
et al., 2012) and the morph analyzer developed by
Punjab University (Goyal and Lehal, 2008) do not
add much to PBA accuracy since they are devel-
oped with PBA as the base. Out of 334,287 words
in HTB, the derivational morph analyzer identified
only 9,580 derivational variants. For the remaining
words, it gives similar analysis as PBA.

6.1 Lemma
The evaluation metric for lemma’s model is accu-
racy, which is the percentage of predicted lemmas

124

that are correct. The phrase based translation sys-
tem used to predict lemmas achieved an accuracy of
95.84% compared to O-PBA’s 86.69%. For OOV
words, the PBA outputs the word itself as the lemma
whereas the translation-based lemma model is ro-
bust enough to give the analysis.

The translation-based lemma model and O-PBA
report accuracies of 89.51% and 82.48% respec-
tively for OOV words of SMA. In terms of
both overall and OOV accuracies, translation-based
model outperforms PBA. Though SMA performs
better than Morfette in terms of overall accuracy, but
for OOV accuracy Morfette narrowly outperforms
SMA.

The postposition accuracy is significantly worse
than the overall accuracy. This is because the con-
fusion is high among postpositions in HTB. For ex-
ample, out of 14,818 occurrences of ke, it takes the
lemma kA in 7,763 instances and ke in 7,022 cases.
This could be the result of an inconsistency in the an-
notation process of HTB. The accuracies for verbs
are low (when compared to Nouns, Adjectives) as
well mainly because verbs in Hindi take more inflec-
tions than the rest. The accuracy for verbs is even
lower for OOV words (69.23% in Table 12).

6.2 Gender, Number, Person and Case
The accuracies of gender, number, person and case
hover around 95% but the combined (G+N+P) accu-
racy drops to 91.11%. This figure is important if one
wants to enforce agreement in parsing.

The OOV accuracy for person is close to overall
accuracy as most of the OOV words belong to the
3rd person category. It is not the same case for gen-
der and number. Gender particularly suffers a sig-
nificant drop of 14% for OOV words confirming the
theory that gender prediction is a difficult problem
without knowing the semantics of the word.

The number and person accuracies for verbs are
consistently low for OOV words as well as for seen
words. This could be because SMA doesn’t handle
long distance agreement during GNP prediction.

Until now, we reported accuracies for OOV words
of SMA. Table 11 lists accuracies for OOV words
of the PBA (i.e. words which are not analyzed by
the PBA) in the test section of HTB. SMA clearly
outperforms baseline system and also performs bet-
ter than F-PBA and O-PBA as they do not give any

Analysis Accuracy OOV Accuracy
Gender 95.74 80.08
Number 95.29 89.71
Person 96.12 94.06
Case 95.16 88.32

G+N+P 90.92 74.14
G+N+P+C 87.72 68.47

Table 10: Joint Model for Gender, Number, Person, Case

analyses.
In a nutshell, we have evaluated SMA for OOV

words of the PBA as well as for OOV words of
SMA. In both the cases, SMA performed better than
other systems. We shall evaluate SMA in a chal-
lenging scenario wherein training data consists of
the words from the HTB which are analyzed by the
PBA and test data consists of the remaining unana-
lyzed words by the PBA. Thereby, the entire test data
contains only out of vocabulary instances for both
SMA and PBA. Table 14 presents the results of this
new evaluation. The results are almost similar with
that of OOV results shown in Table 8 except for Per-
son. The reason behind that could be, in the training
data there are only 0.1% instances of 3h class but in
test data their presence is quite significant (approx-
imately 10%). The training instances for 3h class
were not sufficient for the model to learn and hence
very few of these instances were identified correctly.
This explains the drop in Person accuracy for this
experiment scenario.

It may be noted that, we have used gold POS tags
for all our experiments related to GNP and case pre-
diction. There are numerous efforts on building POS
taggers for Hindi. The ILMT pos tagger9 is 96.5%
accurate on the test data of the HTB. Table 15 re-
ports the accuracies of gender, number, person and
case using the automatic POS tags predicted by the
ILMT tagger. The results are similar to that of the
experiments conducted with gold POS tags.

Malladi and Mannem (2013) have build separate
models for gender, number, person and case. Table
10 reports the results of Joint Model for these morph
attributes. In terms of accuracy, Joint Model is as
efficient as individual models.

9http://ilmt.iiit.ac.in/

125

Analysis Baseline SMA
Lemma 65.40 95.96
Gender 57.09 95.93
Number 76.79 95.17
Person 65.76 96.42
Case 46.39 95.17

Table 11: Accuracy for OOV words of PBA

Analysis Noun Verb Adjective
Lemma 92.18 69.23 88.35
Gender 80.49 86.15 92.23
Number 92.35 76.92 87.38
Person 96.64 75.38 100.00
Case 88.81 98.46 70.87

Table 12: OOV accuracies for words (by POS tags)

6.3 TAM and Vibhakti

The proposed heuristics for Vibhakti and TAM pre-
diction gave accuracy of 97.04% on test data set of
HTB. On the entire HTB data, SMA achieved accu-
racy of 98.88%. O-PBA gave accuracy of 59.65%
for TAM and Vibhakti prediction on test part of
HTB. The reason behind low performance of O-
PBA is that it identifies the TAM and vibhakti val-
ues for each word separately and doesn’t consider
the neighbouring words in the sentence.

7 Effect on Parsing

The effect of morphological features on parsing is
well documented (Ambati et al., 2010a). Previous
works used gold morphological analysis to prove
their point. In this work, we also evaluated the effect
of automatic morph features (predicted by SMA)
on dependency parsing. MALT parser was trained

Analysis N V PSP JJ PRP

Lemma 98.50 94.28 89.41 97.99 98.78

Gender 93.30 95.34 98.93 98.42 94.24

Number 96.26 89.67 96.45 96.26 88.98

Person 98.58 85.28 99.45 99.57 90.94

Case 94.67 98.95 93.26 83.76 95.90

N:Noun, V:Verb, PSP:postposition, JJ:adjective, PRP:pronoun

Table 13: Overall accuracies for words (by POS tags)

Analysis Baseline SMA
Gender 57.09 73.09
Number 76.79 85.71
Person 65.76 77.93
Case 33.62 89.05

Table 14: Evaluation of SMA in a challenging scenario: train-
ing data consists only of words analyzed by PBA and test data
consists of remaining unanalyzed words.

Analysis Overall OOV
Gender 95.68 80.41
Number 94.97 90.30
Person 96.09 96.17
Case 94.61 88.19

Table 15: Accuracy of SMA with auto POS tags

on gold-standard POS tagged HTB data with and
with out morph features. Table 9 lists the evaluation
scores for these settings. While the unlabeled at-
tachment score (UAS) does not show significant im-
provement, the labeled attachment score (LAS) and
label accuracy (LA) have increased significantly.
Ambati et al. (2010a) also reported similar results
with gold-standard morph features. Lemma, case,
vibhakti and TAM features contribute to the increase
in label accuracy because of the karaka labels in
Paninian annotation scheme (Begum et al., 2008).

Table 9 also lists the performance of MALT parser
with gold morph features (as annotated in HTB).
It may be noted that, predicted morph features had
similar effect on hindi dependency parsing as of gold
features which is desirable making SMA usable for
real scenario applications.

8 Extending the work to Telugu and Urdu

We shall look at how SMA performs in prediciting
GNP and case for other morphologically rich Indian
languages: Telugu and Urdu. At this stage, we have
not done any language-dependent engineering effort

Language #Sentences #Words
Urdu 5230 68588

Telugu 1600 6321

Table 16: Telugu and Urdu Treebank Statistics

126

Analysis
Telugu Urdu

Overall OOV Overall OOV
Gender 96.49 89.85 89.14 88.18
Number 90.65 75.13 91.62 91.35
Person 94.82 85.79 93.37 95.53
Case 96.49 89.34 85.49 79.01

Table 17: SMA for other Mor-FOW languages: Telugu and
Urdu

in improving the results rather we want to see how
well the system works for other languages using the
minimalistic feature set employed for Hindi mor-
phological analysis.

Telugu Treebank was released for ICON 2010
Shared Task(Husain et al., 2010) and a modified ver-
sion of that data is used for our experiments. Urdu
Treebank which is still under development at IIIT
Hyderabad10 is used for experiments related to Urdu
morph analysis. Refer table 16 for treebank statis-
tics.

Table 17 shows the evaluation results for Telugu
and Urdu.

9 Conclusion and Future work

In conclusion, SMA is a robust state-of-the-art sta-
tistical morphological analyzer which outperforms
previous analyzers for Hindi by a considerable mar-
gin. SMA achieved an accuracy of 63.06% for
lemma, gender, number, person and case whereas
PBA and Morfette are 34.89% and 51.52% accurate
respectively. With the predicted morphological at-
tributes by SMA, we achieve a labeled attachment
score of 89.41 while without these morphological at-
tributes the parsing accuracy drops to 87.75.

The agreement phenomenon in Hindi provides
challenges in predicting gender, number and person
of words in their sentential context. These can be
better predicted if dependency relations are given as
input. However, the standard natural language anal-
ysis pipeline forbids using parse information during
morphological analysis. This provides an oppor-
tunity to explore joint modelling of morphological
analysis and syntactic parsing for Hindi. We plan to
experiment this as part of our future work.

Performance of Morfette is comparable to SMA
10iiit.ac.in

and for lemma prediction in the case of OOV words,
Morfette outperforms SMA. We plan to build a hy-
brid system whose feature set includes features from
both the systems.

References

Bharat Ram Ambati, Samar Husain, Sambhav Jain,
Dipti Misra Sharma, and Rajeev Sangal. 2010a. Two
methods to incorporate local morphosyntactic features
in hindi dependency parsing. In Proceedings of the
NAACL HLT 2010 First Workshop on Statistical Pars-
ing of Morphologically-Rich Languages, pages 22–30.
Association for Computational Linguistics.

Bharat Ram Ambati, Samar Husain, Joakim Nivre, and
Rajeev Sangal. 2010b. On the role of morphosyn-
tactic features in hindi dependency parsing. In Pro-
ceedings of the NAACL HLT 2010 First Workshop
on Statistical Parsing of Morphologically-Rich Lan-
guages, pages 94–102. Association for Computational
Linguistics.

Rafiya Begum, Samar Husain, Arun Dhwaj, Dipti Misra
Sharma, Lakshmi Bai, and Rajeev Sangal. 2008. De-
pendency annotation scheme for indian languages. In
Proceedings of IJCNLP.

Akshar Bharati, Vineet Chaitanya, Rajeev Sangal, and
KV Ramakrishnamacharyulu. 1995. Natural lan-
guage processing: A Paninian perspective. Prentice-
Hall of India New Delhi.

Akshar Bharati, Samar Husain, Meher Vijay, Kalyan
Deepak, Dipti Misra Sharma, and Rajeev Sangal.
2009a. Constraint based hybrid approach to parsing
indian languages. Proc of PACLIC 23. Hong Kong.

Akshara Bharati, Dipti Misra Sharma, Samar Husain,
Lakshmi Bai, Rafiya Begam, and Rajeev Sangal.
2009b. Anncorra: Treebanks for indian languages,
guidelines for annotating hindi treebank.

Chih-Chung Chang and Chih-Jen Lin. 2011. LIBSVM:
A library for support vector machines. ACM Transac-
tions on Intelligent Systems and Technology, 2:27:1–
27:27.

Grzegorz Chrupała, Georgiana Dinu, and Josef Van Gen-
abith. 2008. Learning morphology with morfette.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui
Wang, and Chih-Jen Lin. 2008. LIBLINEAR: A li-
brary for large linear classification. Journal of Ma-
chine Learning Research, 9:1871–1874.

John Goldsmith. 2000. Linguistica: An automatic mor-
phological analyzer. In Proceedings of 36th meeting
of the Chicago Linguistic Society.

Vishal Goyal and G. Singh Lehal. 2008. Hindi morpho-
logical analyzer and generator. In Emerging Trends in

127

Engineering and Technology, 2008. ICETET’08. First
International Conference on, pages 1156–1159. IEEE.

Samar Husain, Prashanth Mannem, Bharat Ram Ambati,
and Phani Gadde. 2010. The icon-2010 tools contest
on indian language dependency parsing. Proceedings
of ICON-2010 Tools Contest on Indian Language De-
pendency Parsing, ICON, 10:1–8.

Yamuna Kachru. 2006. Hindi, volume 12. John Ben-
jamins Publishing Company.

Nikhil Kanuparthi, Abhilash Inumella, and Dipti Misra
Sharma. 2012. Hindi derivational morphological an-
alyzer. In Proceedings of the Twelfth Meeting of the
Special Interest Group on Computational Morphology
and Phonology, pages 10–16. Association for Compu-
tational Linguistics.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran, Richard
Zens, et al. 2007. Moses: Open source toolkit for sta-
tistical machine translation. In Proceedings of the 45th
Annual Meeting of the ACL on Interactive Poster and
Demonstration Sessions, pages 177–180. Association
for Computational Linguistics.

Deepak Kumar Malladi and Prashanth Mannem. 2013.
Statistical morphological analyzer for hindi. In Pro-
ceedings of 6th International Joint Conference on Nat-
ural Language Processing.

Mark Pedersen, Domenyk Eades, Samir K Amin, and
Lakshmi Prakash. 2004. Relative clauses in hindi
and arabic: A paninian dependency grammar analy-
sis. COLING 2004 Recent Advances in Dependency
Grammar, pages 9–16.

Dipti Misra Sharma, Prashanth Mannem, Joseph Van-
Genabith, Sobha Lalitha Devi, Radhika Mamidi, and
Ranjani Parthasarathi, editors. 2012. Proceedings of
the Workshop on Machine Translation and Parsing in
Indian Languages. Mumbai, India, December.

128

Proceedings of the Fourth Workshop on Statistical Parsing of Morphologically Rich Languages, pages 129–134,
Seattle, Washington, USA, 18 October 2013. c©2013 Association for Computational Linguistics

Representation of Morphosyntactic Units and Coordination Structures
in the Turkish Dependency Treebank

Umut Sulubacak Gülşen Eryiğit
Department of Computer Engineering

Istanbul Technical University
Istanbul, 34469, Turkey

{sulubacak, gulsen.cebiroglu}@itu.edu.tr

Abstract

This paper presents our preliminary conclu-
sions as part of an ongoing effort to construct a
new dependency representation framework for
Turkish. We aim for this new framework to ac-
commodate the highly agglutinative morphol-
ogy of Turkish as well as to allow the annota-
tion of unedited web data, and shape our deci-
sions around these considerations. In this pa-
per, we firstly describe a novel syntactic repre-
sentation for morphosyntactic sub-word units
(namely inflectional groups (IGs) in Turkish)
which allows inter-IG relations to be discerned
with perfect accuracy without having to hide
lexical information. Secondly, we investigate
alternative annotation schemes for coordina-
tion structures and present a better scheme
(nearly 11% increase in recall scores) than the
one in Turkish Treebank (Oflazer et al., 2003)
for both parsing accuracies and compatibility
for colloquial language.

1 Introduction

In recent years, dependency parsing has globally
seen great deal of attention, and has constituted
the underlying framework for the syntactic pars-
ing of many multilingual studies. Even though
constituency parsing and grammars are still the
preferred formalism for some well-researched lan-
guages, others may have certain traits that put con-
stituency parsing in an unfavorable position against
dependency parsing, such as flexible constituent or-
dering, which is typical of several prominent lan-
guages including Turkish. Although Turkish is de-
cidedly more workable over the dependency for-
malism, it has invariably fallen short of usual pars-

ing accuracies compared to other languages, as seen
clearly in some recent works such as (McDonald and
Nivre, 2011).

There are more parameters to parsing than the for-
malism alone, among which the correctness of the
corpora used in learning procedures and the annota-
tion schemes of syntactic relations are held in con-
sideration as part of this work. Between the two,
the emphasis is on the annotation scheme, which
is proven to significantly affect the parsing per-
formance (Bosco et al., 2010; Boyd and Meurers,
2008). Our motivation for this research is that these
factors must also contribute to some extent to the
performance deficiency in parsing Turkish, besides
the inherent difficulty of parsing the language. Our
aim is to investigate these points and suggest im-
provements where applicable.

2 Parsing Framework and Data Set

As our parsing framework, we use MaltParser (Nivre
et al., 2007) which is a data-driven dependency
parser with an underlying SVM learner based on
LIBSVM (Chang and Lin, 2001). MaltParser is
widely used and has shown high performances
across various languages (Nivre et al., 2006a). We
run MaltParser with Nivre’s Arc-Standard parsing
algorithm (Nivre, 2003) and use the same optimized
parameters as in (Eryiğit et al., 2008). We also use
the learning features from the last cited work as our
baseline feature set and an updated version from
(Eryiğit et al., 2011) of the same data set (Oflazer,
2003). The only difference from the configuration
of (Eryiğit et al., 2011) is that our baseline parser
does not exclude non-projective sentences from the
corpus for training, which explains the baseline ac-

129

Figure 1: The original and the novel IG representations for the word sağlamlaştırılmasının, which respectively comes
to mean strong, to become strong, to strengthen, to be strengthened and of the strengthening of after each derivation.
The new morphological tags introduced after each derivation pertain to the relevant IG, and common morphological
features for the IGs of a single word such as the agreement are given under the final IG. Model I is the original
representation, while Model II is the new representation we propose.

curacy differences (e.g. 67.4% against our 65.0% in
labelled attachment score).

3 Proposed Annotation Schemes

3.1 IGs

Within the context of data-driven parsing, the most
apparent problem of languages with productive
derivational morphology is that words can poten-
tially yield a very large morphological tag set, which
causes severe sparsity in the morphological features
of words. To alleviate this problem, words are
split into morphosyntactic parts called inflectional
groups (IGs), taking intermediate derivational af-
fixes as boundaries. It is a known fact that analyz-
ing sentences as being composed of IGs rather than
surface word forms yields better results in major
NLP problems such as morphological disambigua-
tion (Hakkani-Tür et al., 2002) and syntactic parsing
(Eryiğit et al., 2008).

Within the domain of dependency parsing, IGs
as syntactic tokens are not as free as independent
words, since the IGs of each word must be con-
nected to each other with an exclusive dependency
relation named DERIV. However, other tokens are
free to be connected to an arbitrary IG of a word,
with the added benefit of more compact morpholog-
ical feature sets to help make the distinction.

Other languages with productive derivation, such
as Uralic or Ugric languages, or those orthographi-
cally differing from the well-studied European lan-

guages, such as Semitic languages, can also benefit
from using non-word-based morphosyntactic pars-
ing tokens, as evidenced for instance by the recent
considerations of splitting up tokens based on mor-
phemes for Hebrew (Tsarfaty and Goldberg, 2008).

3.1.1 Current IG Representation
Since MaltParser accepts input in the standard

data format of the CoNLL-X Shared Task (Buch-
holz and Marsi, 2006), the ways in which IGs can
be represented for the parser are limited. The stan-
dard method for annotating IGs using the CoNLL-X
data fields, as described in (Eryiğit et al., 2008), in-
volves marking up the FORM and LEMMA fields with
underscores rather than with lexical data as shown in
Figure 1. At first, this method is convenient, as cur-
rent feature vectors readily take lexical information
into account, and as such, a linear transition-based
parser would easily learn to connect adjacent words
as IGs of the same word as long as the head word
has an underscore for a stem. However, an obvious
drawback is that the actual lexical information gets
lost in favor of marking IGs, preventing the potential
usage of that information in deciding on inter-word
dependencies.

3.1.2 Proposed IG Representation
As an improvement over the original IG repre-

sentation described in Section 3.1.1, we propose a
slightly different annotation scheme which does not
lock out the lexical data columns, by making use of

130

a new column named IG. This new column takes a
boolean value that is true for non-final IGs of multi-
IG words much like the original FORM column, ef-
fectively marking the dependents that must be con-
nected to the next token in line with the dependency
relation DERIV. Once this representation gets inte-
grated, lexical information may be assigned to the
FORM and LEMMA columns, of which the former
gets surface lexical forms of the current stage of
derivation, and the latter gets the FORM data of the
previous IG.

3.2 Coordination Structures

Among the most controversial annotation schemes
are those of coordination structures (CS), which are
groups of two or more tokens that are in coordina-
tion with each other, usually joined with conjunc-
tions or punctuation, such as an “and” relation. The
elements in coordination are the conjuncts of the CS,
all of which are semantically linked to a single ex-
ternal head. A large variety of annotation methods
are employed by different corpora, as thoroughly
explained in (Popel et al., 2013). We chose three
schemes to compare for our parser, which are il-
lustrated in Figure 2. There does not seem to be a
standard annotation rising as the best scheme, which
is convenient because different schemes would have
advantages and disadvantages against different for-
malisms and algorithms.

Figure 2: I) The original annotation scheme in the Turk-
ish Treebank. II) Swedish Style, an alternative scheme in
the manner of Talbanken (Nivre et al., 2006b). III) Stan-
ford Style, another alternative scheme in the manner of
the Stanford dependencies (De Marneffe and Manning,
2008), all with a head-right configuration as per (Popel et
al., 2013), as would be appropriate for the predominantly
head-final Turkish.

3.2.1 Current Coordination Representation
In the original Turkish Treebank, CSs are anno-

tated as shown in scheme I in Figure 2, which ap-
pears to be problematic in several ways. This struc-
ture requires a prior conjunct to be connected to an
intermediate conjunction, which in turn would be
connected to a posterior conjunct, completing the
coordination. The CS is then represented by the
posterior conjunct, and the dependency relation be-
tween the prior conjunct and the conjunction must
be identical to the dependency relation between the
posterior conjunct and the external head, even if it
would not semantically make sense.

Considering the tokens are processed incremen-
tally from left to right during parsing, one difficulty
with this method lies in correctly guessing the de-
pendency relation between the prior argument and
the conjunction before the posterior argument and
the external head are even encountered, and unsur-
prisingly, directional parsers fail at this task more
often than usual, resulting in added recall error for
many dependency relations not necessarily related to
coordinations. Another problem is that the scheme
requires an intermediate conjunction or punctuation
to work, which cannot be relied on even for edited
texts, and would fare much worse if applied on web
data. One final drawback of this method is that it is
arguably more confusing for human annotators com-
pared to a straightforward method in which the argu-
ments in coordination are directly connected.

3.3 Proposed Coordination Representation

The drawbacks we have identified in the original CS
annotation scheme encourage us to explore alterna-
tive approaches to coordinations. After investigating
many annotation methods, we expect that the repre-
sentation shown as the Swedish Style in Figure 2 will
have the best performance in alleviating the issues
described in Section 3.2.1.

Evaluating the Swedish Style representation, we
observe that the CS does not depend on correctly
placed conjunctions between the arguments, which
increases compatibility in the absence of well-
formatted sentences. Additionally, the dependency
relation between the CS and the external head is
not duplicated with this method, which should con-
tribute to the reduction of recall error for many de-
pendency types. Finally, we believe this scheme is
easier for human annotators to understand and apply,

131

and decreases the risk of annotation errors, which
are very common in the Turkish Treebank.

4 Experiments

In order to practically evaluate our proposed IG and
coordination representations, we first took our ini-
tial data set as our baseline, and then applied certain
manual and automatic transformations to the data in
order to create the experimental data sets. Since all
of our data were based on a training corpus without
an exclusive validation set, we decided to apply 10-
fold cross-validation on all of our models to better
evaluate the results.

For our tests on IG representations, we attempted
to automatically transform our baseline corpus by
populating the new IG column with boolean data
derived from the IG relations in the gold-standard,
and then automatically fill out the null lexical fields
by an automatic morphological synthesis procedure
using our morphological tool (Oflazer, 1994). The
synthesis procedure, albeit a non-trivial implemen-
tation, successfully covered the majority (over 95%)
of the lexical data, and we were able to manually an-
notate the remaining unrecognized tokens. To allow
MaltParser to recognize the new fields, the CoNLL-
X sentence format has been slightly adjusted and
submitted as a custom input data format, and the
baseline feature vector has been augmented with two
extra features for the IG column information from
the tokens on top of the Stack and Input pipes. The
final model is named the LexedIG model.

On the other hand, we needed to perform a com-
plete selective manual review of the corpus and cor-
rect numerous annotation errors in CSs before a
healthy conversion could be made. Afterwards, we
ran automatic conversion routines to map all CSs
to the aforementioned Swedish Style and the com-
monly used Stanford Style in order to compare their
specific performances. Since a sizeable amount of
manual corrections were made before the conver-
sions, we took the manually reviewed version as an
intermediate model in order to distinguish the contri-
bution of the automatic conversions from the manual
review.

4.1 Metrics
For every model we evaluated via cross-validation,
we made specific accuracy analyses and report the
precision (P), recall (R) and F scores per depen-

Baseline LexedIG
P R F P R F

ABLAT 61, 46% 77, 44% 0, 69 61, 50% 76, 67% 0, 68
APPOS 66, 67% 12, 87% 0, 22 58, 97% 11, 39% 0, 19
CLASS 72, 98% 71, 80% 0, 72 72, 57% 71, 61% 0, 72
COORD 83, 95% 53, 70% 0, 66 83, 57% 54, 87% 0, 66
DATIV 60, 69% 71, 57% 0, 66 61, 08% 70, 68% 0, 66
DERIV 100,00% 100,00% 1,00 100,00% 100,00% 1,00
DETER 91, 18% 93, 70% 0, 92 91, 23% 93, 80% 0, 92
INSTR 44, 64% 38, 38% 0, 41 45, 87% 40, 96% 0, 43
INTEN 87, 99% 81, 95% 0, 85 87, 35% 81, 84% 0, 85
LOCAT 73, 40% 79, 25% 0, 76 73, 90% 79, 60% 0, 77
MODIF 86, 04% 81, 58% 0, 84 86, 33% 81, 74% 0, 84
MWE 71, 72% 58, 72% 0, 65 71, 50% 59, 42% 0, 65

NEGAT 92, 56% 70, 00% 0, 80 92, 86% 73, 13% 0, 82
OBJEC 77, 90% 71, 36% 0, 74 78, 32% 71, 92% 0, 75
POSSE 87, 44% 80, 80% 0, 84 86, 58% 81, 27% 0, 84
QUEST 86, 10% 77, 16% 0, 81 85, 77% 77, 16% 0, 81
RELAT 70, 00% 49, 41% 0, 58 70, 49% 50, 59% 0, 59
ROOT 68, 83% 99, 77% 0, 81 69, 63% 99, 77% 0, 82
S.MOD 54, 25% 50, 25% 0, 52 54, 29% 50, 92% 0, 53
SENTE 93, 25% 89, 63% 0, 91 93, 20% 89, 68% 0, 91
SUBJE 69, 54% 68, 94% 0, 69 69, 87% 69, 65% 0, 70
VOCAT 69, 61% 29, 46% 0, 41 69, 23% 29, 88% 0, 42

Table 1: Specific accuracies per dependency relation for
the IG-related models.

dency relation. Furthermore, we also calculated gen-
eral accuracies as micro-averages from the cross-
validation sets, for which we used two metrics,
namely the labelled attachment score ASL and the
unlabelled attachment score ASU , which are both
accuracy metrics that compute the percentage of cor-
rectly parsed dependencies over all tokens, where
the unlabelled metric only requires a match with the
correct head, and the labelled metric additionally re-
quires the correct dependency relation to be chosen.

4.2 Results and Discussion

Our test results with the LexedIG model suggest
that our proposed IG representation works perfectly
well, as the perfect precision and recall scores of the
original model for DERIV relations are preserved
in the new model. Besides this, the reconstructed
lexical information that we had populated the new
model with caused only slight changes in overall ac-
curacy that are not statistically significant, which is
likely due to the sparsity of lexical data. Regardless,
a model with lexical information for all tokens is es-
sentially superior to a similarly performing model
without such information. We foresee that being
able to see lexical forms in the data would increase
both the speed and the accuracy of human annota-
tion. Additionally, as these experiments were done
in preparation for the parsing of web data, we be-
lieve that in the near future, with the ability to un-
supervisedly parse large amounts of data found on

132

Baseline Corrected Swedish Style Stanford Style
P R F P R F P R F P R F

ABLAT 61, 46% 77, 44% 0, 69 61, 70% 79, 46% 0, 69 61, 25% 79, 19% 0, 69 61, 84% 80, 20% 0, 70
APPOS 66, 67% 12, 87% 0, 22 62, 86% 9, 78% 0, 17 65, 79% 12, 82% 0, 21 67, 57% 12, 82% 0, 22
CLASS 72, 98% 71, 80% 0, 72 72, 54% 71, 76% 0, 72 72, 33% 74, 52% 0, 73 72, 78% 74, 22% 0, 73
CONJU N/A N/A N/A N/A N/A N/A 79, 78% 72, 38% 0, 76 76, 99% 60, 85% 0, 68
COORD 83, 95% 53,70% 0, 66 83, 88% 54,23% 0, 66 79, 15% 64,64% 0, 71 73, 82% 58,68% 0, 65
DATIV 60, 69% 71, 57% 0, 66 61, 57% 71, 77% 0, 66 60, 62% 72, 83% 0, 66 61, 36% 73, 81% 0, 67
DERIV 100, 00% 100, 00% 1, 00 100, 00% 100, 00% 1, 00 100, 00% 100, 00% 1, 00 100, 00% 100, 00% 1, 00
DETER 91, 18% 93, 70% 0, 92 91, 08% 93, 74% 0, 92 91, 14% 94, 28% 0, 93 91, 15% 93, 97% 0, 93
INSTR 44, 64% 38, 38% 0, 41 46, 72% 39, 48% 0, 43 46, 05% 41, 08% 0, 43 45, 25% 41, 49% 0, 43
INTEN 87, 99% 81, 95% 0, 85 87, 30% 82, 71% 0, 85 87, 46% 82, 47% 0, 85 87, 83% 82, 26% 0, 85
LOCAT 73, 40% 79, 25% 0, 76 73, 92% 79, 35% 0, 77 72, 33% 78, 91% 0, 75 72, 42% 79, 73% 0, 76
MODIF 86, 04% 81, 58% 0, 84 85, 80% 81, 47% 0, 84 85, 80% 81, 84% 0, 84 85, 83% 81, 06% 0, 83
MWE 71, 72% 58, 72% 0, 65 72, 46% 59, 09% 0, 65 74, 11% 58, 87% 0, 66 72, 55% 60, 18% 0, 66

NEGAT 92, 56% 70, 00% 0, 80 92, 68% 66, 28% 0, 77 92, 91% 73, 29% 0, 82 92, 00% 71, 43% 0, 80
OBJEC 77, 90% 71, 36% 0, 74 77, 61% 71, 54% 0, 74 78, 42% 72, 12% 0, 75 78, 67% 72, 08% 0, 75
POSSE 87, 44% 80, 80% 0, 84 87, 03% 80, 68% 0, 84 87, 69% 83, 37% 0, 85 87, 25% 82, 89% 0, 85
QUEST 86, 10% 77, 16% 0, 81 86, 15% 77, 78% 0, 82 86, 15% 78, 05% 0, 82 86, 15% 78, 05% 0, 82
RELAT 70, 00% 49, 41% 0, 58 71, 67% 49, 43% 0, 59 72, 13% 50, 57% 0, 59 69, 35% 49, 43% 0, 58
ROOT 68, 83% 99, 77% 0, 81 68, 84% 99, 49% 0, 81 70, 41% 99, 79% 0, 83 66, 28% 99, 81% 0, 80
S.MOD 54, 25% 50, 25% 0, 52 51, 31% 49, 28% 0, 50 53, 55% 50, 09% 0, 52 53, 88% 49, 91% 0, 52
SENTE 93, 25% 89, 63% 0, 91 92, 74% 89, 02% 0, 91 93, 50% 88, 80% 0, 91 93, 36% 88, 90% 0, 91
SUBJE 69, 54% 68, 94% 0, 69 69, 61% 68, 14% 0, 69 69, 89% 69, 70% 0, 70 69, 75% 69, 60% 0, 70
VOCAT 69, 61% 29, 46% 0, 41 67, 86% 24, 78% 0, 36 61, 05% 25, 66% 0, 36 69, 62% 24, 34% 0, 36

Table 2: Specific accuracies per dependency relation for the coordination-related models.

the web, sparse data will no longer be a significant
problem, and lexical data will gain further value.

A comparison of the alternative CS models with
the baseline suggests that, while the manual cor-
rection itself did not cause a noticeable change,
the automatic conversion procedures that it made
possible resulted in significant improvements. The
Swedish Style and Stanford Style models fared
slightly better in the accuracy of some dependency
types commonly joined in CSs such as SUBJECT,
OBJECT, and DATIVE, INSTRUMENTAL and
ABLATIVE.ADJUNCTs, but not always enough to
warrant statistical significance. Apart from those,
the largest improvement is in the COORDINATION
relation itself, which had a slight drop in precision
for both final models (likely due to the increased av-
erage dependency distances) but at the great benefit
of the recall increasing from 53.70% to 58.68% for
the Stanford Style and 64.64% for the Swedish Style.

5 Conclusion

In this paper, we proposed novel annotation schemes
for Turkish morphosyntactic sub-word units and co-
ordination structures that are superior to the Turk-
ish Treebank representations in terms of ease of use,
parsing performance and/or compatibility with sen-

ASU ASL

Baseline 74.5%± 0.2 65.0%± 0.2
LexedIG 74.6%± 0.1 65.1%± 0.2

Baseline 74.5%± 0.2 65.0%± 0.2
Corrected 74.5%± 0.1 65.0%± 0.2

Swedish Style 74.5%± 0.2 65.6%± 0.2
Stanford Style 73.2%± 0.2 64.1%± 0.2

Table 3: General parsing accuracies for all models, in-
cluding standard error.

tences that are not well-formed. Our findings sub-
stantiate our thesis that annotation schemes have
both room for improvement and a high impact po-
tential on parsing performance. In the light of our
results, we intend to sustain our research and draw
better annotation schemes for other syntactic struc-
tures such as copulae and modifier sub-types to serve
not only Turkish, but also other languages with rich
morphology.

Acknowledgments

The authors would like to acknowledge that this
work is part of a research project supported by ICT
COST Action IC1207 and TÜBİTAK 1001 (Grant
Number 112E276).

133

References
Cristina Bosco, Simonetta Montemagni, Alessandro

Mazzei, Vincenzo Lombardo, Felice dell’Orletta,
Alessandro Lenci, Leonardo Lesmo, Giuseppe Attardi,
Maria Simi, Alberto Lavelli, et al. 2010. Comparing
the influence of different treebank annotations on de-
pendency parsing. In LREC.

Adriane Boyd and Detmar Meurers. 2008. Revisiting the
impact of different annotation schemes on pcfg pars-
ing: A grammatical dependency evaluation. In Pro-
ceedings of the Workshop on Parsing German, pages
24–32. Association for Computational Linguistics.

Sabine Buchholz and Erwin Marsi. 2006. Conll-x shared
task on multilingual dependency parsing. In Proceed-
ings of the Tenth Conference on Computational Nat-
ural Language Learning, pages 149–164. Association
for Computational Linguistics.

Chih-Chung Chang and Chih-Jen Lin, 2001. LIBSVM: A
Library for Support Vector Machines. Software avail-
able at http://www.csie.ntu.edu.tw/∼cjlin/libsvm.

Marie-Catherine De Marneffe and Christopher D Man-
ning. 2008. The stanford typed dependencies repre-
sentation. In Coling 2008: Proceedings of the work-
shop on Cross-Framework and Cross-Domain Parser
Evaluation, pages 1–8. Association for Computational
Linguistics.

Gülşen Eryiğit, Tugay Ilbay, and Ozan Arkan Can. 2011.
Multiword expressions in statistical dependency pars-
ing. In Proceedings of the Second Workshop on Sta-
tistical Parsing of Morphologically Rich Languages
(IWPT), pages 45–55, Dublin, Ireland, October. As-
sociation for Computational Linguistics.

Gülşen Eryiğit, Joakim Nivre, and Kemal Oflazer. 2008.
Dependency parsing of Turkish. Computational Lin-
guistics, 34(3):357–389.

Dilek Hakkani-Tür, Kemal Oflazer, and Gökhan Tür.
2002. Statistical morphological disambiguation for
agglutinative languages. Journal of Computers and
Humanities, 36(4):381–410.

Ryan McDonald and Joakim Nivre. 2011. Analyzing
and integrating dependency parsers. Computational
Linguistics, 37(1):197–230.

Joakim Nivre, Johan Hall, Jens Nilsson, Gülşen Eryiğit,
and Stetoslav Marinov. 2006a. Labeled pseudo-
projective dependency parsing with support vector
machines. In Proceedings of the 10th Conference
on Computational Natural Language Learning, pages
221–225, New York, NY.

Joakim Nivre, Jens Nilsson, and Johan Hall. 2006b. Tal-
banken05: A swedish treebank with phrase structure
and dependency annotation. In Proceedings of the fifth
International Conference on Language Resources and
Evaluation (LREC), pages 1392–1395.

Joakim Nivre, Johan Hall, Jens Nilsson, Atanas Chanev,
Gülşen Eryiğit, Sandra Kübler, Stetoslav Mari-
nov, and Erwin Marsi. 2007. Maltparser: A
language-independent system for data-driven depen-
dency parsing. Natural Language Engineering Jour-
nal, 13(2):99–135.

Joakim Nivre. 2003. An efficient algorithm for projec-
tive dependency parsing. In Proceedings of the 8th In-
ternational Workshop on Parsing Technologies, pages
149–160, Nancy.

Kemal Oflazer, Bilge Say, Dilek Z. Hakkani-Tür, and
Gökhan Tür. 2003. Building a Turkish treebank. In A.
Abeillé, editor, Treebanks: Building and Using Parsed
Corpora, pages 261–277. Kluwer, London.

Kemal Oflazer. 1994. Two-level description of Turk-
ish morphology. Literary and Linguistic Computing,
9(2):137–148.

Kemal Oflazer. 2003. Dependency parsing with an ex-
tended finite-state approach. Computational Linguis-
tics, 29(4):515–544.

Martin Popel, David Mareček, Jan Štěpánek, Daniel Ze-
man, and Zděněk Žabokrtský. 2013. Coordination
structures in dependency treebanks. In Proceedings
of the 51st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 517–527, Sofia, Bulgaria, August. Association
for Computational Linguistics.

Reut Tsarfaty and Yoav Goldberg. 2008. Word-based
or morpheme-based? annotation strategies for mod-
ern hebrew clitics. In Nicoletta Calzolari (Con-
ference Chair), Khalid Choukri, Bente Maegaard,
Joseph Mariani, Jan Odijk, Stelios Piperidis, and
Daniel Tapias, editors, Proceedings of the Sixth In-
ternational Conference on Language Resources and
Evaluation (LREC’08), Marrakech, Morocco, may.
European Language Resources Association (ELRA).
http://www.lrec-conf.org/proceedings/lrec2008/.

134

Proceedings of the Fourth Workshop on Statistical Parsing of Morphologically Rich Languages, pages 135–145,
Seattle, Washington, USA, 18 October 2013. c©2013 Association for Computational Linguistics

(Re)ranking Meets Morphosyntax: State-of-the-art Results
from the SPMRL 2013 Shared Task∗

Anders Björkelund§, Özlem Çetinoğlu§, Richárd Farkas†, Thomas Müller§‡, and Wolfgang Seeker§

§Institute for Natural Language Processing , University of Stuttgart, Germany
†Department of Informatics, University of Szeged, Hungary

‡Center for Information and Language Processing, University of Munich, Germany
{anders,ozlem,muellets,seeker}@ims.uni-stuttgart.de

rfarkas@inf.u-szeged.hu

Abstract

This paper describes the IMS-SZEGED-CIS
contribution to the SPMRL 2013 Shared Task.
We participate in both the constituency and
dependency tracks, and achieve state-of-the-
art for all languages. For both tracks we make
significant improvements through high quality
preprocessing and (re)ranking on top of strong
baselines. Our system came out first for both
tracks.

1 Introduction

In this paper, we present our contribution to the 2013
Shared Task on Parsing Morphologically Rich Lan-
guages (MRLs). MRLs pose a number of interesting
challenges to today’s standard parsing algorithms,
for example a free word order and, due to their rich
morphology, greater lexical variation that aggravates
out-of-vocabulary problems considerably (Tsarfaty
et al., 2010).

Given the wide range of languages encompassed
by the term MRL, there is, as of yet, no clear con-
sensus on what approaches and features are gener-
ally important for parsing MRLs. However, devel-
oping tailored solutions for each language is time-
consuming and requires a good understanding of
the language in question. In our contribution to the
SPMRL 2013 Shared Task (Seddah et al., 2013), we
therefore chose an approach that we could apply to
all languages in the Shared Task, but that would also
allow us to fine-tune it for individual languages by
varying certain components.

∗Authors in alphabetical order.

For the dependency track, we combined the n-
best output of multiple parsers and subsequently
ranked them to obtain the best parse. While this
approach has been studied for constituency parsing
(Zhang et al., 2009; Johnson and Ural, 2010; Wang
and Zong, 2011), it is, to our knowledge, the first
time this has been applied successfully within de-
pendency parsing. We experimented with different
kinds of features in the ranker and developed fea-
ture models for each language. Our system ranked
first out of seven systems for all languages except
French.

For the constituency track, we experimented
with an alternative way of handling unknown words
and applied a products of Context Free Grammars
with Latent Annotations (PCFG-LA) (Petrov et al.,
2006), whose output was reranked to select the best
analysis. The additional reranking step improved
results for all languages. Our system beats vari-
ous baselines provided by the organizers for all lan-
guages. Unfortunately, no one else participated in
this track.

For both settings, we made an effort to automat-
ically annotate our data with the best possible pre-
processing (POS, morphological information). We
used a multi-layered CRF (Müller et al., 2013) to
annotate each data set, stacking with the information
provided by the organizers when this was beneficial.
The high quality of our preprocessing considerably
improved the performance of our systems.

The Shared Task involved a variety of settings as
to whether gold or predicted part-of-speech tags and
morphological information were available, as well
as whether the full training set or a smaller (5k sen-

135

Arabic Basque French German Hebrew Hungarian Korean Polish Swedish
MarMoT 97.38/92.22 97.02/87.08 97.61/90.92 98.10/91.80 97.09/97.67 98.72/97.59 94.03/87.68 98.12/90.84 97.27/97.13
Stacked 98.23/89.05 98.56/92.63 97.83/97.62

Table 1: POS/morphological feature accuracies on the development sets.

tences) training set was used for training. Through-
out this paper we focus on the settings with pre-
dicted preprocessing information with gold segmen-
tation and the full1 training sets. Unless stated other-
wise, all given numbers are drawn from experiments
in this setting. For all other settings, we refer the
reader to the Shared Task overview paper (Seddah et
al., 2013).

The remainder of the paper is structured as fol-
lows: We present our preprocessing in Section 2 and
afterwards describe both our systems for the con-
stituency (Section 3) and for the dependency tracks
(Section 4). Section 5 discusses the results on the
Shared Task test sets. We conclude with Section 6.

2 Preprocessing

We first spent some time on preparing the data sets,
in particular we automatically annotated the data
with high-quality POS and morphological informa-
tion. We consider this kind of preprocessing to be an
essential part of a parsing system, since the quality
of the automatic preprocessing strongly affects the
performance of the parsers.

Because our tools work on CoNLL09 format, we
first converted the training data from the CoNLL06
format to CoNLL09. We thus had to decide whether
to use coarse or fine part-of-speech (POS) tags. In
a preliminary experiment we found that fine tags are
the better option for all languages but Basque and
Korean. For Korean the reason seems to be that the
fine tag set is huge (> 900) and that the same infor-
mation is also provided in the feature column.

We predict POS tags and morphological features
jointly using the Conditional Random Field (CRF)
tagger MarMoT2 (Müller et al., 2013).

MarMoT incrementally creates forward-
backward lattices of increasing order to prune
the sizable space of possible morphological analy-
ses. We use MarMoT with the default parameters.

1Although, for Hebrew and Swedish only 5k sentences were
available for training, and the two settings thus coincide.

2https://code.google.com/p/cistern/

Since morphological dictionaries can improve au-
tomatic POS tagging considerably, we also created
such dictionaries for each language. For this, we an-
alyzed the word forms provided in the data sets with
language-specific morphological analyzers except
for Hebrew and German where we just extracted the
morphological information from the lattice files pro-
vided by the organizers. For the other languages
we used the following tools: Arabic: AraMorph
a reimplementation of Buckwalter (2002), Basque:
Apertium (Forcada et al., 2011), French: an IMS
internal tool,3 Hungarian: Magyarlanc (Zsibrita et
al., 2013), Korean: HanNanum (Park et al., 2010),
Polish: Morfeusz (Woliński, 2006), and Swedish:
Granska (Domeij et al., 2000).

The created dictionaries were shared with the
other Shared Task participants. We used these dic-
tionaries as additional features for MarMoT.

For some languages we also integrated the pre-
dicted tags provided by the organizers into the fea-
ture model. These stacked models gave improve-
ments for Swedish, Polish and Basque (cf. Table 1
for accuracies).

For the full setting the training data was annotated
using 5-fold jackknifing. In the 5k setting, we addi-
tionally added all sentences not present in the parser
training data to the training data sets of the tagger.
This is similar to the predicted 5k files provided by
the organizers, where more training data than the 5k
was also used for prediction.

Table 3 presents a comparison between our graph-
based baseline parser using the preprocessing ex-
plained in this section (denoted mate) and the
preprocessing provided by the organizers (denoted
mate’). Our preprocessing yields improvements
for all languages but Swedish. The worse perfor-
mance for Swedish is due to the fact that the pre-
dictions provided by the organizers were produced
by models that were trained on a much larger data

3The French morphology was written by Zhenxia Zhou,
Max Kisselew and Helmut Schmid. It is an extension of Zhou
(2007) and implemented in SFST (Schmid, 2005).

136

Arabic Basque French German Hebrew Hungarian Korean Polish Swedish
Berkeley 78.24 69.17 79.74 81.74 87.83 83.90 70.97 84.11 74.50
Replaced 78.70 84.33 79.68 82.74 89.55 89.08 82.84 87.12 75.52
Product 80.30 86.21 81.42 84.56 90.49 89.80 84.15 88.32 79.25
Reranked 81.24 87.35 82.49 85.01 90.49 91.07 84.63 88.40 79.53

Table 2: PARSEVAL scores on the development sets.

set. The comparison with other parsers demonstrates
that for some languages (e.g., Hebrew or Korean)
the improvements due to better preprocessing can
be greater than the improvements due to a better
parser. For instance, for Hebrew the parser trained
on the provided preprocessing is more than three
points (LAS) behind the three parsers trained on
our own preprocessing. However, the difference be-
tween these three parsers is less than a point.

3 Constituency Parsing

The phrase structure parsing pipeline is based on
products of Context Free Grammars with Latent An-
notations (PCFG-LA) (Petrov et al., 2006) and dis-
criminative reranking. We further replace rare words
by their predicted morphological analysis.

We preprocess the treebank trees by removing the
morphological annotation of the POS tags and the
function labels of all non-terminals. We also reduce
the 177 compositional Korean POS tags to their first
atomic tag, which results in a POS tag set of 9 tags.

PCFG-LAs are incrementally built by split-
ting non-terminals, refining parameters using EM-
training and reversing splits that only cause small
increases in likelihood.

Running the Berkeley Parser4 – the reference im-
plementation of PCFG-LAs – on the data sets results
in the PARSEVAL scores given in Table 2 (Berke-
ley). The Berkeley parser only implements a simple
signature-based unknown word model that seems to
be ineffective for some of the languages, especially
Basque and Korean.

We thus replace rare words (frequency < 20) by
the predicted morphological tags of Section 2 (or the
true morphological tag for the gold setup). The intu-
ition is that our discriminative tagger has a more so-
phisticated unknown word treatment than the Berke-
ley parser, taking for example prefixes, suffixes and

4http://code.google.com/p/
berkeleyparser/

the immediate lexical context into account. Further-
more, the morphological tag contains most of the
necessary syntactic information. An exception, for
instance, might be the semantic information needed
to disambiguate prepositional attachment. We think
that replacing rare words by tags has an advan-
tage over constraining the pre-terminal layer of the
parser, because the parser can still decide to assign
a different tag, for example in cases were the tag-
ger produces errors due to long-distance dependen-
cies. The used frequency threshold of 20 results
in token replacement rates of 18% (French) to 57%
(Korean and Polish), which correspond to 209 (for
Polish) to 3221 (for Arabic) word types that are not
replaced. The PARSEVAL scores for the described
method are again given in Table 2 (Replaced). The
method yields improvements for all languages ex-
cept for French where we observe a drop of 0.06.
The improvements range from 0.46 for Arabic to
1.02 for Swedish, 3.1 for Polish and more than 10
for Basque and Korean.

To further improve results, we employ the
product-of-grammars procedure (Petrov, 2010),
where different grammars are trained on the same
data set but with different initialization setups. We
trained 8 grammars and used tree-level inference.
In Table 2 (Product) we can see that this leads to
improvements from 0.72 for Hungarian to 3.73 for
Swedish.

On the 50-best output of the product parser,
we also carry out discriminative reranking. The
reranker is trained for the maximum entropy objec-
tive function of Charniak and Johnson (2005) and
use the standard feature set – without language-
specific feature engineering – from Charniak and
Johnson (2005) and Collins (2000). We use a
slightly modified version of the Mallet toolkit (Mc-
Callum, 2002) for reranking.

Improvements range from negligible differences
(< .1) for Hebrew and Polish to substantial differ-
ences (> 1.) for Basque, French, and Hungarian.

137

mate parser

best-first
parser

turboparser

merged list
of 50-100 best
trees/sentence

merged list
scored by
all parsers

ranker

ptb trees

Parsing Ranking

IN OUT

scores

scores

scores

features

Figure 1: Architecture of the dependency ranking system.

For our final submission, we used the reranker
output for all languages except French, Hebrew, Pol-
ish, and Swedish. This decision was based on an
earlier version of the evaluation setting provided by
the organizers. In this setup, reranking did not help
or was even harmful for these four languages. The
figures in Table 2 use the latest evaluation script and
are thus consistent with the test set results presented
in Section 5.

After the submission deadline the Shared Task
organizers made us aware that we had surprisingly
low exact match scores for Polish (e.g., 1.22 for
the reranked setup). The reason seems to be that
the Berkeley parser cannot produce unary chains of
length > 2. The gold development set contains 1783
such chains while the prediction of the reranked sys-
tem contains none. A particularly frequent unary
chain with 908 occurences in the gold data is ff →
fwe → formaczas. As this chain cannot be pro-
duced the parser leaves out the fwe phrase. Inserting
new fwe nodes between ff and formacszas nodes
raises the PARSEVAL scores of the reranked model
from 88.40 to 90.64 and the exact match scores to
11.34. This suggests that the Polish results could be
improved substantially if unary chains were properly
dealt with, for example by collapsing unary chains.5

4 Dependency Parsing

The core idea of our dependency parsing system
is the combination of the n-best output of several

5Thanks to Slav Petrov for pointing us to the unary chain
length limit.

parsers followed by a ranking step on the com-
bined list. Specifically, we first run two parsers that
each output their 50-best analyses for each sentence.
These 50-best analyses are merged together into one
single n-best list of between 50 and 100 analyses
(depending on the overlap between the n-best lists
of the two parsers). We then use the two parsers
plus an additional one to score each tree in the n-
best lists according to their parsing model, thus pro-
viding us with three different scores for each tree in
the n-best lists. The n-best lists are then given to
a ranker, which ranks the list using the three scores
and a small set of additional features in order to find
the best overall analysis. Figure 1 shows a schematic
of the process.

As a preprocessing step, we reduced the depen-
dency label set for the Hungarian training data.
The Hungarian dependency data set encodes ellipses
through composite edge labels which leads to a pro-
liferation of edge labels (more than 400). Since
many of these labels are extremely rare and thus hard
to learn for the parsers, we reduced the set of edge la-
bels during the conversion. Specifically, we retained
the 50 most frequent labels, while reducing the com-
posite labels to their base label.

For producing the initial n-best lists, we use
the mate parser6 (Bohnet, 2010) and a variant of
the EasyFirst parser (Goldberg and Elhadad, 2010),
which we here call best-first parser.

The mate parser is a state-of-the-art graph-based
dependency parser that uses second-order features.

6https://code.google.com/p/mate-tools

138

The parser works in two steps. First, it uses dy-
namic programming to find the optimal projective
tree using the Carreras (2007) decoder. It then
applies the non-projective approximation algorithm
proposed by McDonald and Pereira (2006) in or-
der to produce non-projective parse trees. The non-
projective approximation algorithm is a greedy hill
climbing algorithm that starts from the optimal pro-
jective parse and iteratively tries to reattach all to-
kens, one at a time, everywhere in the sentence as
long as the tree property holds. It halts when the in-
crease in the score of the tree according to the pars-
ing model is below a certain threshold.

n-best lists are obtained by applying the non-
projective approximation algorithm in a non-greedy
manner, exploring multiple possibilities. All trees
are collected in a list, and when no new trees are
found, or newer trees have a significantly lower
score than the currently best one, search halts. The
n best trees are then retrieved from the list. It
should be noted that, in the standard case, the non-
projective approximation algorithm may find a local
optimum, and that there may be other trees that have
a higher score which were not explored. Thus the
best parse in the greedy case may not necessarily
be the one with the highest score in the n-best list.
Since the parser is trained with the greedy version
of the non-projective approximation algorithm, the
greedily chosen output parse tree is of special in-
terest. We thus flag this tree as the baseline mate
parse, in order to use that for features in the ranker.
The baseline mate parse is also our overall baseline
in the dependency track.

The best-first parser deviates from the EasyFirst
parser in several small respects: The EasyFirst de-
coder creates dependency links between the roots of
adjacent substructures, which gives an O(n log n)
complexity, but restricts the output to projective
trees. The best-first parser is allowed to choose as
head any node of an adjacent substructure instead of
only the root, which increases complexity to O(n2),
but accounts for a big part of possible non-projective
structures. We additionally implemented a swap-
operation (Nivre, 2009; Tratz and Hovy, 2011) to
account for the more complex structures. The best-
first parser relies on a beam-search strategy7 to pur-

7Due to the nature of the decoder, the parser can produce

sue multiple derivations, which we also use to pro-
duce the n-best output.

In the scoring step, we additionally apply the tur-
boparser8 (Martins et al., 2010), which is based on
linear programming relaxations.9 We changed all
three parsers such that they would return a score for
a given tree. We use this to extract scores from each
parser for all trees in the n-best lists. It is impor-
tant to have a score from every parser for every tree,
as previously observed by Zhang et al. (2009) in the
context of constituency reranking.

4.1 Ranking

Table 3 shows the performance of the individual
parsers measured on the development sets. It also
displays the oracle scores over the different n-best
lists, i.e., the maximal possible score over an n-best
list if the best tree is always selected.

The mate parser generally performs best followed
by turboparser, while the best-first parser comes last.
But we can see from the oracle scores that the best-
first parser often shows comparable or even higher
oracle scores than mate, and that the combination
of the n-best lists always adds substantial improve-
ments to the oracle scores. These findings show that
the mate and best-first parsers are providing differ-
ent sets of n-best lists. Moreover, all three parsers
rely on different parsing algorithms and feature sets.
For these reasons, we hypothesized that the parsers
contribute different views on the parse trees and that
their combination would result in better overall per-
formance.

In order to leverage the diversity between the
parsers we experimented with ranking10 on the
n-best lists. We used the same ranking model in-
troduced in Section 3 here as well. The model is
trained to select the best parse according to the la-
beled attachment score (LAS). The training data for
the ranker was created by 5-fold jackknifing on the
training sets. The feature sets for the ranker for

spurious ambiguities in the beam. If this occurs, only the one
with the higher score is kept.

8http://www.ark.cs.cmu.edu/TurboParser/
9Ideally we would also extract n-best lists from the tur-

boparser, however time prevented us from making the necessary
modifications.

10We refrain from calling it reranking in this setting, since
we are using merged n-best lists and the initial ranking is not
entirely clear to begin with.

139

Arabic Basque French German Hebrew Hungarian Korean Polish Swedish
Baseline results for individual parsers

mate’ 88.50/83.50 88.18/84.49 92.71/90.85 83.63/75.89 87.07/82.84 86.06/82.39 91.17/85.81 83.65/77.16
mate 87.68/85.42 89.11/84.43 88.30/84.84 93.15/91.46 86.05/79.37 88.03/84.41 87.91/85.76 91.51/86.30 83.53/77.05
bf 87.61/85.32 84.07/75.90 87.45/83.92 92.90/91.10 86.10/79.57 83.85/75.94 86.54/83.97 90.10/83.75 82.27/75.36
turbo 87.82/85.35 88.88/83.84 88.24/84.57 93.59/91.54 85.74/78.95 86.86/82.80 88.35/86.23 90.97/85.55 83.24/76.15

Oracle scores for n-best lists
mate 90.85/88.74 93.39/89.85 90.99/87.81 97.14/95.84 89.05/83.03 91.41/88.19 94.86/92.96 95.19/91.67 87.19/81.66
bf 91.47/89.46 91.68/86.46 91.38/88.68 97.40/96.60 91.04/85.67 87.64/81.79 94.90/92.94 96.25/93.74 87.60/82.46
merged 92.65/90.71 95.15/91.91 92.97/90.43 98.19/97.44 92.39/87.18 92.12/88.76 96.23/94.65 97.28/95.29 89.87/84.96

Table 3: Baseline performance and n-best oracle scores (UAS/LAS) on the development sets. mate’ uses the prepro-
cessing provided by the organizers, the other parsers use the preprocessing described in Section 2.

each language were optimized manually via cross-
validation on the training sets. The features used for
each language, as well as a default (baseline) fea-
ture set, are shown in Table 4. We now outline the
features we used in the ranker:

Score from the base parsers – denoted B, M,
T, for the best-first, mate, and turbo parsers, re-
spectively. We also have indicator features whether
a certain parse was the best according to a given
parser, denoted GB, GM, GT, respectively. Since
the mate parser does not necessarily assign the high-
est score to the baseline mate parse, the GM fea-
ture is a ternary feature which indicates whether a
parse is the same as the baseline mate parse, or bet-
ter, or worse. We also experimented with transfor-
mations and combinations of the scores from the
parsers. Specifically, BMProd denotes the product
of B and M; BMeProd denotes the sum of B and M
in e-space, i.e., eB+M ; reBMT, reBT, reMT denote
the normalized product of the corresponding scores,
where scores are normalized in a softmax fashion
such that all features take on values in the interval
(0, 1).

Projectivity features (Hall et al., 2007) – the
number of non-projective edges in a tree, denoted
np. Whether a tree is ill-nested, denoted I. Since ill-
nested trees are extremely rare in the treebanks, this
helps the ranker filter out unlikely candidates from
the n-best lists. For a definition and further discus-
sion of ill-nestedness, we refer to (Havelka, 2007).

Constituent features – from the constituent track
we also have constituent trees of all sentences which
can be used for feature extraction. Specifically, for
every head-dependent pair, we extract the path in the
constituent tree between the nodes, denoted ptbp.

Case agreement – on head-dependent pairs that
both have a case value assigned among their mor-
phological features, we mark whether it is the same
case or not, denoted case.

Function label uniqueness – on each training set
we extracted a list of function labels that generally
occur at most once as the dependent of a node, e.g.,
subjects or objects. Features are then extracted from
all nodes that have one or more dependents of each
label aimed at capturing mistakes such as double
subjects on a verb. This template is denoted FL.

In addition to the features mentioned above, we
experimented with a variety of feature templates, in-
cluding features drawn from previous work on de-
pendency reranking (Hall, 2007), e.g., lexical and
POS-based features over edges, “subcategorization”
frames (i.e., the concatenation of POS-tags that are
headed by a certain node in the tree), etc, although
these features did not seem to help. For German we
created feature templates based on the constraints
used in the constraint-based parser by Seeker and
Kuhn (2013). This includes, e.g., violations in case
or number agreement between heads and depen-
dents, as well as more complex features that con-
sider labels on entire verb complexes. None of these
features yielded any clear improvements though. We
also experimented with features that target some
specific constructions (and specifics of annotation
schemes) which the parsers typically cannot fully
see, such as coordination, however, also here we saw
no clear improvements.

4.2 Effects of Ranking
In Table 5, we show the improvements from using
the ranker, both with the baseline and optimized fea-
tures sets for the ranker. For the sake of comparison,

140

Arabic Basque French German Hebrew Hungarian Korean Polish Swedish
Baseline 87.68/85.42 89.11/84.43 88.30/84.84 93.15/91.46 86.05/79.37 88.03/84.41 87.91/85.76 91.51/86.30 83.53/77.05
Ranked-dflt 88.54/86.32 89.99/85.43 88.85/85.39 94.06/92.36 87.28/80.44 88.16/84.54 88.71/86.65 92.26/87.12 84.51/77.83
Ranked 88.93/86.74 89.95/85.61 89.37/85.96 94.20/92.68 87.63/81.02 88.38/84.77 89.20/87.12 93.02/87.69 85.04/78.57
Oracle 92.65/90.71 95.15/91.91 92.97/90.43 98.19/97.44 92.39/87.18 92.12/88.76 96.23/94.65 97.28/95.29 89.87/84.96

Table 5: Performance (UAS/LAS) of the reranker on the development sets. Baseline denotes our baseline. Ranked-dflt
and Ranked denote the default and optimized ranker feature sets, respectively. Oracle denotes the oracle scores.

default B, M, T, GB, GM, GT, I
Arabic B, M, T, GB, GM, I, ptbp, reBMT
Basque B, M, T, GB, GM, GT, I, ptbp, I, reMT, case
French B, M, T, GB, GM, GT, I, ptbp
German B, M, T, GM, I, BMProd, FL
Hebrew B, M, T, GB, GM, GT, I, ptbp, FL, BMeProd
Hungarian B, M, T, GB, GM, GT, I, ptbp, reBM, FL
Korean B, M, T, GB, GM, GT, I, ptbp, reMT, FL
Polish B, M, T, GB, GM, GT, I, ptbp, np
Swedish B, M, T, GB, GM, GT, I, ptbp, reBM, FL

Table 4: Feature sets for the dependency ranker for each
language. default denotes the default ranker feature set.

the baseline mate parses as well as the oracle parses
on the merged n-best lists are repeated from Table 3.
We see that ranking clearly helps, both with a tai-
lored feature set, as well as the default feature set.
The improvement in LAS between the baseline and
the tailored ranking feature sets ranges from 1.1%
(French) to 1.6% (Hebrew) absolute, with the excep-
tion of Hungarian, where improvements on the dev
set are more modest (contrary to the test set results,
cf. Section 5). Even with the default feature set, the
improvements range from 0.5% (French) to 1.1%
(Hebrew) absolute, again setting Hungarian aside.
We believe that this is an interesting result consid-
ering the simplicity of the default feature set.

5 Test Set Results

In this section we outline our final results on the test
sets. As previously, we focus on the setting with
predicted tags in gold segmentation and the largest
training set. We also present results on Arabic and
Hebrew for the predicted segmentation setting. For
the gold preprocessing and all 5k settings, we refer
the reader to the Shared Task overview paper (Sed-
dah et al., 2013).11

In Table 7, we present our results in the con-

11Or the results page online: http://www.spmrl.org/
spmrl2013-sharedtask-results.html

stituency track. Since we were the only participat-
ing team in the constituency track, we compare our-
selves with the best baseline12 provided by the or-
ganizers. Our system outperforms the baseline for
all languages in terms of PARSEVAL F1. Follow-
ing the trend on the development sets, reranking is
consistently helping across languages.13 Despite the
lack of other submissions in the shared task, we be-
lieve our numbers are generally strong and hope that
they can serve as a reference for future work on con-
stituency parsing on these data sets.

Table 8 displays our results in the dependency
track. We submitted two runs: a baseline, which
is the baseline mate parse, and the reranked trees.
The table also compares our results to the best per-
forming other participant in the shared task (denoted
Other) as well as the MaltParser (Nivre et al., 2007)
baseline provided by the shared task organizers (de-
noted ST Baseline). We obtain the highest scores
for all languages, with the exception of French. It is
also clear that we make considerable gains over our
baseline, confirming our results on the development
sets reported in Section 4. It is also noteworthy that
our baseline (i.e., the mate parser with our own pre-
processing) outperforms the best other system for 5
languages.

Arabic Hebrew
Other 90.75/8.48 88.33/12.20
Dep. Baseline 91.13/9.10 89.27/15.01
Dep. Ranked 91.74/9.83 89.47/16.97
Constituency 92.06/9.49 89.30/13.60

Table 6: Unlabeled TedEval scores (accuracy/exact
match) for the test sets in the predicted segmentation set-
ting. Only sentences of length ≤ 70 are evaluated.

12It should be noted that the Shared Task organizers com-
puted 2 different baselines on the test sets. The best baseline
results for each language thus come from different parsers.

13We remind the reader that our submission decisions are not
based on figures in Table 2, cf. Section 3.

141

Arabic Basque French German Hebrew Hungarian Korean Polish Swedish
ST Baseline 79.19 74.74 80.38 78.30 86.96 85.22 78.56 86.75 80.64
Product 80.81 87.18 81.83 80.70 89.46 90.58 83.49 87.55 83.99
Reranked 81.32 87.86 82.86 81.27 89.49 91.85 84.27 87.76 84.88

Table 7: Final PARSEVAL F1 scores for constituents on the test set for the predicted setting. ST Baseline denotes the
best baseline (out of 2) provided by the Shared Task organizers. Our submission is underlined.

Arabic Basque French German Hebrew Hungarian Korean Polish Swedish
ST Baseline 83.18/80.36 79.77/70.11 82.49/77.98 81.51/77.81 76.49/69.97 80.72/70.15 85.72/82.06 82.19/75.63 80.29/73.21
Other 85.78/83.20 89.19/84.25 89.19/85.86 90.80/88.66 81.05/73.63 88.93/84.97 85.84/82.65 88.12/82.56 87.28/80.88
Baseline 86.96/84.81 89.32/84.25 87.87/84.37 90.54/88.37 85.88/79.67 89.09/85.31 87.41/85.51 90.30/85.51 86.85/80.67
Ranked 88.32/86.21 89.88/85.14 88.68/85.24 91.64/89.65 86.70/80.89 89.81/86.13 88.47/86.62 91.75/87.07 88.06/82.13

Table 8: Final UAS/LAS scores for dependencies on the test sets for the predicted setting. Other denotes the highest
scoring other participant in the Shared Task. ST Baseline denotes the MaltParser baseline provided by the Shared Task
organizers.

Table 6 shows the unlabeled TedEval (Tsarfaty et
al., 2012) scores (accuracy/exact match) on the test
sets for the predicted segmentation setting for Ara-
bic and Hebrew. Note that these figures only include
sentences of length less than or equal to 70. Since
TedEval enables cross-framework comparison, we
compare our submissions from the dependency track
to our submission from the constituency track. In
these runs we used the same systems that were used
for the gold segmentation with predicted tags track.
The predicted segmentation was provided by the
Shared Task organizers. We also compare our re-
sults to the best other system from the Shared Task
(denoted Other).

Also here we obtain the highest results for both
languages. However, it is unclear what syntactic
paradigm (dependencies or constituents) is better
suited for the task. All in all it is difficult to assess
whether the differences between the best and second
best systems for each language are meaningful.

6 Conclusion

We have presented our contribution to the 2013
SPMRL Shared Task. We participated in both the
constituency and dependency tracks. In both tracks
we make use of a state-of-the-art tagger for POS and
morphological features. In the constituency track,
we use the tagger to handle unknown words and em-
ploy a product-of-grammars-based PCFG-LA parser
and parse tree reranking. In the dependency track,
we combine multiple parsers output as input for a
ranker.

Since there were no other participants in the con-
stituency track, it is difficult to draw any conclusions
from our results. We do however show that the ap-
plication of product grammars, our handling of rare
words, and a subsequent reranking step outperforms
a baseline PCFG-LA parser.

In the dependency track we obtain the best re-
sults for all languages except French among 7 partic-
ipants. Our reranking approach clearly outperforms
a baseline graph-based parser. This is the first time
multiple parsers have been used in a dependency
reranking setup.

Aside from minor decisions made on the basis
of each language, our approach is language agnos-
tic and does not target morphology in any particu-
lar way as part of the parsing process. We show
that with a strong baseline and with no language
specific treatment it is possible to achieve state-of-
the-art results across all languages. Our architec-
ture for the dependency parsing track enables the use
of language-specific features in the ranker, although
we only had minor success with features that target
morphology. However, it may be the case that ap-
proaches from previous work on parsing MRLs, or
the approaches taken by other teams in the Shared
Task, can be successfully combined with ours and
improve parsing accuracy even more.

Acknowledgments

Richárd Farkas is funded by the European Union and
the European Social Fund through the project Fu-
turICT.hu (grant no.: TÁMOP-4.2.2.C-11/1/KONV-

142

2012-0013). Thomas Müller is supported by a
Google Europe Fellowship in Natural Language
Processing. The remaining authors are funded by
the Deutsche Forschungsgemeinschaft (DFG) via
the SFB 732, projects D2 and D8 (PI: Jonas Kuhn).

We also express our gratitude to the treebank
providers for each language: Arabic (Maamouri et
al., 2004; Habash and Roth, 2009; Habash et al.,
2009; Green and Manning, 2010), Basque (Aduriz
et al., 2003), French (Abeillé et al., 2003), He-
brew (Sima’an et al., 2001; Tsarfaty, 2010; Gold-
berg, 2011; Tsarfaty, 2013), German (Brants et al.,
2002; Seeker and Kuhn, 2012), Hungarian (Csendes
et al., 2005; Vincze et al., 2010), Korean (Choi
et al., 1994; Choi, 2013), Polish (Świdziński and
Woliński, 2010), and Swedish (Nivre et al., 2006).

References
Anne Abeillé, Lionel Clément, and François Toussenel.

2003. Building a treebank for french. In Anne
Abeillé, editor, Treebanks. Kluwer, Dordrecht.

I. Aduriz, M. J. Aranzabe, J. M. Arriola, A. Atutxa,
A. Dı́az de Ilarraza, A. Garmendia, and M. Oronoz.
2003. Construction of a Basque dependency treebank.
In TLT-03, pages 201–204.

Bernd Bohnet. 2010. Top Accuracy and Fast Depen-
dency Parsing is not a Contradiction. In Proceed-
ings of the 23rd International Conference on Compu-
tational Linguistics (Coling 2010), pages 89–97, Bei-
jing, China, August. Coling 2010 Organizing Commit-
tee.

Sabine Brants, Stefanie Dipper, Silvia Hansen, Wolf-
gang Lezius, and George Smith. 2002. The TIGER
treebank. In Erhard Hinrichs and Kiril Simov, edi-
tors, Proceedings of the First Workshop on Treebanks
and Linguistic Theories (TLT 2002), pages 24–41, So-
zopol, Bulgaria.

Tim Buckwalter. 2002. Buckwalter Arabic Morpholog-
ical Analyzer Version 1.0. Linguistic Data Consor-
tium, University of Pennsylvania, 2002. LDC Catalog
No.: LDC2002L49.

Xavier Carreras. 2007. Experiments with a Higher-
Order Projective Dependency Parser. In Proceedings
of the CoNLL Shared Task Session of EMNLP-CoNLL
2007, pages 957–961, Prague, Czech Republic, June.
Association for Computational Linguistics.

Eugene Charniak and Mark Johnson. 2005. Coarse-to-
fine n-best parsing and MaxEnt discriminative rerank-
ing. In Proceedings of the 43rd Annual Meeting on
Association for Computational Linguistics, ACL ’05,
pages 173–180.

Key-Sun Choi, Young S Han, Young G Han, and Oh W
Kwon. 1994. Kaist tree bank project for korean:
Present and future development. In Proceedings of
the International Workshop on Sharable Natural Lan-
guage Resources, pages 7–14. Citeseer.

Jinho D. Choi. 2013. Preparing korean data for
the shared task on parsing morphologically rich lan-
guages. ArXiv e-prints.

Michael Collins. 2000. Discriminative Reranking for
Natural Language Parsing. In Proceedings of the Sev-
enteenth International Conference on Machine Learn-
ing, ICML ’00, pages 175–182.

Dóra Csendes, Janós Csirik, Tibor Gyimóthy, and András
Kocsor. 2005. The Szeged treebank. In Václav Ma-
toušek, Pavel Mautner, and Tomáš Pavelka, editors,
Text, Speech and Dialogue: Proceedings of TSD 2005.
Springer.

Rickard Domeij, Ola Knutsson, Johan Carlberger, and
Viggo Kann. 2000. Granska-an efficient hybrid sys-
tem for Swedish grammar checking. In In Proceed-
ings of the 12th Nordic Conference in Computational
Linguistics.

Mikel L Forcada, Mireia Ginestı́-Rosell, Jacob Nord-
falk, Jim O’Regan, Sergio Ortiz-Rojas, Juan An-
tonio Pérez-Ortiz, Felipe Sánchez-Martı́nez, Gema
Ramı́rez-Sánchez, and Francis M Tyers. 2011. Aper-
tium: A free/open-source platform for rule-based ma-
chine translation. Machine Translation.

Yoav Goldberg and Michael Elhadad. 2010. An Ef-
ficient Algorithm for Easy-First Non-Directional De-
pendency Parsing. In Human Language Technologies:
The 2010 Annual Conference of the North American
Chapter of the Association for Computational Linguis-
tics, pages 742–750, Los Angeles, California, June.
Association for Computational Linguistics.

Yoav Goldberg. 2011. Automatic syntactic processing of
Modern Hebrew. Ph.D. thesis, Ben Gurion University
of the Negev.

Spence Green and Christopher D. Manning. 2010. Bet-
ter arabic parsing: Baselines, evaluations, and anal-
ysis. In Proceedings of the 23rd International Con-
ference on Computational Linguistics (Coling 2010),
pages 394–402, Beijing, China, August. Coling 2010
Organizing Committee.

Nizar Habash and Ryan Roth. 2009. Catib: The
columbia arabic treebank. In Proceedings of the ACL-
IJCNLP 2009 Conference Short Papers, pages 221–
224, Suntec, Singapore, August. Association for Com-
putational Linguistics.

Nizar Habash, Reem Faraj, and Ryan Roth. 2009. Syn-
tactic Annotation in the Columbia Arabic Treebank. In
Proceedings of MEDAR International Conference on
Arabic Language Resources and Tools, Cairo, Egypt.

143

Keith Hall, Jiri Havelka, and David A. Smith. 2007.
Log-Linear Models of Non-Projective Trees, k-best
MST Parsing and Tree-Ranking. In Proceedings of the
CoNLL Shared Task Session of EMNLP-CoNLL 2007,
pages 962–966, Prague, Czech Republic, June. Asso-
ciation for Computational Linguistics.

Keith Hall. 2007. K-best Spanning Tree Parsing. In Pro-
ceedings of the 45th Annual Meeting of the Association
of Computational Linguistics, pages 392–399, Prague,
Czech Republic, June. Association for Computational
Linguistics.

Jiri Havelka. 2007. Beyond Projectivity: Multilin-
gual Evaluation of Constraints and Measures on Non-
Projective Structures. In Proceedings of the 45th
Annual Meeting of the Association of Computational
Linguistics, pages 608–615, Prague, Czech Republic,
June. Association for Computational Linguistics.

Mark Johnson and Ahmet Engin Ural. 2010. Rerank-
ing the Berkeley and Brown Parsers. In Human Lan-
guage Technologies: The 2010 Annual Conference of
the North American Chapter of the Association for
Computational Linguistics, pages 665–668, Los An-
geles, California, June. Association for Computational
Linguistics.

Mohamed Maamouri, Ann Bies, Tim Buckwalter, and
Wigdan Mekki. 2004. The Penn Arabic Treebank:
Building a Large-Scale Annotated Arabic Corpus. In
NEMLAR Conference on Arabic Language Resources
and Tools.

Andre Martins, Noah Smith, Eric Xing, Pedro Aguiar,
and Mario Figueiredo. 2010. Turbo Parsers: Depen-
dency Parsing by Approximate Variational Inference.
In Proceedings of the 2010 Conference on Empirical
Methods in Natural Language Processing, pages 34–
44, Cambridge, MA, October. Association for Compu-
tational Linguistics.

Andrew Kachites McCallum. 2002. ”mal-
let: A machine learning for language toolkit”.
http://mallet.cs.umass.edu.

Ryan McDonald and Fernando Pereira. 2006. On-
line learning of approximate dependency parsing al-
gorithms. In Proceedings of the 11th Conference of
the European Chapter of the Association for Compu-
tational Linguistics, pages 81–88, Trento, Italy. Asso-
ciation for Computational Linguistics.

Thomas Müller, Helmut Schmid, and Hinrich Schütze.
2013. Efficient Higher-Order CRFs for Morphological
Tagging. In In Proceedings of EMNLP.

Joakim Nivre, Jens Nilsson, and Johan Hall. 2006. Tal-
banken05: A Swedish treebank with phrase structure
and dependency annotation. In Proceedings of LREC,
pages 1392–1395, Genoa, Italy.

Joakim Nivre, Johan Hall, Jens Nilsson, Atanas Chanev,
Gülşen Eryiğit, Sandra Kübler, Svetoslav Marinov,

and Erwin Marsi. 2007. MaltParser: A language-
independent system for data-driven dependency pars-
ing. Natural Language Engineering, 13:95–135, 6.

Joakim Nivre. 2009. Non-Projective Dependency Pars-
ing in Expected Linear Time. In Proceedings of the
Joint Conference of the 47th Annual Meeting of the
ACL and the 4th International Joint Conference on
Natural Language Processing of the AFNLP, pages
351–359, Suntec, Singapore, August. Association for
Computational Linguistics.

S Park, D Choi, E-k Kim, and KS Choi. 2010. A plug-in
component-based Korean morphological analyzer. In
Proceedings of HCLT2010.

Slav Petrov, Leon Barrett, Romain Thibaux, and Dan
Klein. 2006. Learning accurate, compact, and inter-
pretable tree annotation. In Proceedings of the 21st
International Conference on Computational Linguis-
tics and the 44th annual meeting of the Association for
Computational Linguistics, pages 433–440. Associa-
tion for Computational Linguistics.

Slav Petrov. 2010. Products of Random Latent Variable
Grammars. In Human Language Technologies: The
2010 Annual Conference of the North American Chap-
ter of the Association for Computational Linguistics,
pages 19–27, Los Angeles, California, June. Associa-
tion for Computational Linguistics.

Helmut Schmid. 2005. A programming language for
finite state transducers. In FSMNLP.

Djamé Seddah, Reut Tsarfaty, Sandra Kübler, Marie Can-
dito, Jinho Choi, Richárd Farkas, Jennifer Foster, Iakes
Goenaga, Koldo Gojenola, Yoav Goldberg, Spence
Green, Nizar Habash, Marco Kuhlmann, Wolfgang
Maier, Joakim Nivre, Adam Przepiorkowski, Ryan
Roth, Wolfgang Seeker, Yannick Versley, Veronika
Vincze, Marcin Woliński, and Alina Wróblewska.
2013. Overview of the SPMRL 2013 Shared Task: A
Cross-Framework Evaluation of Parsing Morphologi-
cally Rich Languages. In Proceedings of the 4th Work-
shop on Statistical Parsing of Morphologically Rich
Languages: Shared Task, Seattle, WA.

Wolfgang Seeker and Jonas Kuhn. 2012. Making El-
lipses Explicit in Dependency Conversion for a Ger-
man Treebank. In Proceedings of the 8th Interna-
tional Conference on Language Resources and Eval-
uation, pages 3132–3139, Istanbul, Turkey. European
Language Resources Association (ELRA).

Wolfgang Seeker and Jonas Kuhn. 2013. Morphological
and Syntactic Case in Statistical Dependency Parsing.
Computational Linguistics, 39(1):23–55.

Khalil Sima’an, Alon Itai, Yoad Winter, Alon Altman,
and Noa Nativ. 2001. Building a Tree-Bank for
Modern Hebrew Text. In Traitement Automatique des
Langues.

144

Marek Świdziński and Marcin Woliński. 2010. Towards
a bank of constituent parse trees for Polish. In Text,
Speech and Dialogue: 13th International Conference
(TSD), Lecture Notes in Artificial Intelligence, pages
197—204, Brno, Czech Republic. Springer.

Stephen Tratz and Eduard Hovy. 2011. A Fast, Ac-
curate, Non-Projective, Semantically-Enriched Parser.
In Proceedings of the 2011 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1257–1268, Edinburgh, Scotland, UK., July. Associa-
tion for Computational Linguistics.

Reut Tsarfaty, Djamé Seddah, Yoav Goldberg, Sandra
Kuebler, Yannick Versley, Marie Candito, Jennifer
Foster, Ines Rehbein, and Lamia Tounsi. 2010. Sta-
tistical Parsing of Morphologically Rich Languages
(SPMRL) What, How and Whither. In Proc. of the
SPMRL Workshop of NAACL-HLT, pages 1–12, Los
Angeles, CA, USA.

Reut Tsarfaty, Joakim Nivre, and Evelina Andersson.
2012. Joint Evaluation of Morphological Segmen-
tation and Syntactic Parsing. In Proceedings of the
50th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages
6–10, Jeju Island, Korea, July. Association for Com-
putational Linguistics.

Reut Tsarfaty. 2010. Relational-Realizational Parsing.
Ph.D. thesis, University of Amsterdam.

Reut Tsarfaty. 2013. A Unified Morpho-Syntactic
Scheme of Stanford Dependencies. Proceedings of
ACL.

Veronika Vincze, Dóra Szauter, Attila Almási, György
Móra, Zoltán Alexin, and János Csirik. 2010. Hun-
garian dependency treebank. In LREC.

Zhiguo Wang and Chengqing Zong. 2011. Parse Rerank-
ing Based on Higher-Order Lexical Dependencies. In
Proceedings of 5th International Joint Conference on
Natural Language Processing, pages 1251–1259, Chi-
ang Mai, Thailand, November. Asian Federation of
Natural Language Processing.

Marcin Woliński. 2006. Morfeusz - A practical tool for
the morphological analysis of Polish. In Intelligent in-
formation processing and web mining, pages 511–520.
Springer.

Hui Zhang, Min Zhang, Chew Lim Tan, and Haizhou
Li. 2009. K-Best Combination of Syntactic Parsers.
In Proceedings of the 2009 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1552–1560, Singapore, August. Association for Com-
putational Linguistics.

Zhenxia Zhou. 2007. Entwicklung einer französischen
Finite-State-Morphologie. Diplomarbeit, Institute for
Natural Language Processing, University of Stuttgart.

János Zsibrita, Veronika Vincze, and Richárd Farkas.
2013. Magyarlanc 2.0: Szintaktikai elemzés és fel-
gyorsı́tott szófaji egyértelműsı́tés. In IX. Magyar
Számı́tógépes Nyelvészeti Konferencia.

145

Proceedings of the Fourth Workshop on Statistical Parsing of Morphologically Rich Languages, pages 146–182,
Seattle, Washington, USA, 18 October 2013. c©2013 Association for Computational Linguistics

Overview of the SPMRL 2013 Shared Task:
Cross-Framework Evaluation of Parsing Morphologically Rich Languages∗

Djamé Seddaha, Reut Tsarfatyb, Sandra Küblerc,
Marie Canditod, Jinho D. Choie, Richárd Farkasf , Jennifer Fosterg, Iakes Goenagah,

Koldo Gojenolai, Yoav Goldbergj , Spence Greenk, Nizar Habashl, Marco Kuhlmannm,
Wolfgang Maiern, Joakim Nivreo, Adam Przepiórkowskip, Ryan Rothq, Wolfgang Seekerr,

Yannick Versleys, Veronika Vinczet, Marcin Wolińskiu,
Alina Wróblewskav, Eric Villemonte de la Clérgeriew

aU. Paris-Sorbonne/INRIA, bWeizman Institute, cIndiana U., dU. Paris-Diderot/INRIA, eIPsoft Inc., f,tU. of Szeged,
gDublin City U., h,iU. of the Basque Country, jBar Ilan U., kStanford U., l,qColumbia U., m,oUppsala U., nDüsseldorf U.,

p,u,vPolish Academy of Sciences, rStuttgart U., sHeidelberg U., wINRIA

Abstract

This paper reports on the first shared task on
statistical parsing of morphologically rich lan-
guages (MRLs). The task features data sets
from nine languages, each available both in
constituency and dependency annotation. We
report on the preparation of the data sets, on
the proposed parsing scenarios, and on the eval-
uation metrics for parsing MRLs given dif-
ferent representation types. We present and
analyze parsing results obtained by the task
participants, and then provide an analysis and
comparison of the parsers across languages and
frameworks, reported for gold input as well as
more realistic parsing scenarios.

1 Introduction

Syntactic parsing consists of automatically assigning
to a natural language sentence a representation of
its grammatical structure. Data-driven approaches
to this problem, both for constituency-based and
dependency-based parsing, have seen a surge of inter-
est in the last two decades. These data-driven parsing
approaches obtain state-of-the-art results on the de
facto standard Wall Street Journal data set (Marcus et
al., 1993) of English (Charniak, 2000; Collins, 2003;
Charniak and Johnson, 2005; McDonald et al., 2005;
McClosky et al., 2006; Petrov et al., 2006; Nivre et
al., 2007b; Carreras et al., 2008; Finkel et al., 2008;

∗Contact authors: djame.seddah@paris-sorbonne.fr,
reut.tsarfaty@weizmann.ac.il, skuebler@indiana.edu

Huang, 2008; Huang et al., 2010; Zhang and Nivre,
2011; Bohnet and Nivre, 2012; Shindo et al., 2012),
and provide a foundation on which many tasks oper-
ating on semantic structure (e.g., recognizing textual
entailments) or even discourse structure (coreference,
summarization) crucially depend.

While progress on parsing English — the main
language of focus for the ACL community — has in-
spired some advances on other languages, it has not,
by itself, yielded high-quality parsing for other lan-
guages and domains. This holds in particular for mor-
phologically rich languages (MRLs), where impor-
tant information concerning the predicate-argument
structure of sentences is expressed through word for-
mation, rather than constituent-order patterns as is the
case in English and other configurational languages.
MRLs express information concerning the grammati-
cal function of a word and its grammatical relation to
other words at the word level, via phenomena such
as inflectional affixes, pronominal clitics, and so on
(Tsarfaty et al., 2012c).

The non-rigid tree structures and morphological
ambiguity of input words contribute to the challenges
of parsing MRLs. In addition, insufficient language
resources were shown to also contribute to parsing
difficulty (Tsarfaty et al., 2010; Tsarfaty et al., 2012c,
and references therein). These challenges have ini-
tially been addressed by native-speaking experts us-
ing strong in-domain knowledge of the linguistic
phenomena and annotation idiosyncrasies to improve
the accuracy and efficiency of parsing models. More

146

recently, advances in PCFG-LA parsing (Petrov et al.,
2006) and language-agnostic data-driven dependency
parsing (McDonald et al., 2005; Nivre et al., 2007b)
have made it possible to reach high accuracy with
classical feature engineering techniques in addition
to, or instead of, language-specific knowledge. With
these recent advances, the time has come for estab-
lishing the state of the art, and assessing strengths
and weaknesses of parsers across different MRLs.

This paper reports on the first shared task on sta-
tistical parsing of morphologically rich languages
(the SPMRL Shared Task), organized in collabora-
tion with the 4th SPMRL meeting and co-located
with the conference on Empirical Methods in Natural
Language Processing (EMNLP). In defining and exe-
cuting this shared task, we pursue several goals. First,
we wish to provide standard training and test sets for
MRLs in different representation types and parsing
scenarios, so that researchers can exploit them for
testing existing parsers across different MRLs. Sec-
ond, we wish to standardize the evaluation protocol
and metrics on morphologically ambiguous input,
an under-studied challenge, which is also present in
English when parsing speech data or web-based non-
standard texts. Finally, we aim to raise the awareness
of the community to the challenges of parsing MRLs
and to provide a set of strong baseline results for
further improvement.

The task features data from nine, typologically di-
verse, languages. Unlike previous shared tasks on
parsing, we include data in both dependency-based
and constituency-based formats, and in addition to
the full data setup (complete training data), we pro-
vide a small setup (a training subset of 5,000 sen-
tences). We provide three parsing scenarios: one in
which gold segmentation, POS tags, and morphologi-
cal features are provided, one in which segmentation,
POS tags, and features are automatically predicted
by an external resource, and one in which we provide
a lattice of multiple possible morphological analyses
and allow for joint disambiguation of the morpholog-
ical analysis and syntactic structure. These scenarios
allow us to obtain the performance upper bound of
the systems in lab settings using gold input, as well
as the expected level of performance in realistic pars-
ing scenarios — where the parser follows a morpho-
logical analyzer and is a part of a full-fledged NLP
pipeline.

The remainder of this paper is organized as follows.
We first survey previous work on parsing MRLs (§2)
and provide a detailed description of the present task,
parsing scenarios, and evaluation metrics (§3). We
then describe the data sets for the nine languages
(§4), present the different systems (§5), and empiri-
cal results (§6). Then, we compare the systems along
different axes (§7) in order to analyze their strengths
and weaknesses. Finally, we summarize and con-
clude with challenges to address in future shared
tasks (§8).

2 Background

2.1 A Brief History of the SPMRL Field

Statistical parsing saw initial success upon the avail-
ability of the Penn Treebank (PTB, Marcus et al.,
1994). With that large set of syntactically annotated
sentences at their disposal, researchers could apply
advanced statistical modeling and machine learning
techniques in order to obtain high quality structure
prediction. The first statistical parsing models were
generative and based on treebank grammars (Char-
niak, 1997; Johnson, 1998; Klein and Manning, 2003;
Collins, 2003; Petrov et al., 2006; McClosky et al.,
2006), leading to high phrase-structure accuracy.

Encouraged by the success of phrase-structure
parsers for English, treebank grammars for additional
languages have been developed, starting with Czech
(Hajič et al., 2000) then with treebanks of Chinese
(Levy and Manning, 2003), Arabic (Maamouri et
al., 2004b), German (Kübler et al., 2006), French
(Abeillé et al., 2003), Hebrew (Sima’an et al., 2001),
Italian (Corazza et al., 2004), Spanish (Moreno et al.,
2000), and more. It quickly became apparent that
applying the phrase-based treebank grammar tech-
niques is sensitive to language and annotation prop-
erties, and that these models are not easily portable
across languages and schemes. An exception to that
is the approach by Petrov (2009), who trained latent-
annotation treebank grammars and reported good
accuracy on a range of languages.

The CoNLL shared tasks on dependency parsing
(Buchholz and Marsi, 2006; Nivre et al., 2007a) high-
lighted the usefulness of an alternative linguistic for-
malism for the development of competitive parsing
models. Dependency relations are marked between
input tokens directly, and allow the annotation of

147

non-projective dependencies that are parseable effi-
ciently. Dependency syntax was applied to the de-
scription of different types of languages (Tesnière,
1959; Mel’čuk, 2001), which raised the hope that in
these settings, parsing MRLs will further improve.

However, the 2007 shared task organizers (Nivre
et al., 2007a) concluded that: "[Performance] classes
are more easily definable via language characteris-
tics than via characteristics of the data sets. The
split goes across training set size, original data for-
mat [...], sentence length, percentage of unknown
words, number of dependency labels, and ratio of
(C)POSTAGS and dependency labels. The class
with the highest top scores contains languages with
a rather impoverished morphology." The problems
with parsing MRLs have thus not been solved by de-
pendency parsing, but rather, the challenge has been
magnified.

The first event to focus on the particular challenges
of parsing MRLs was a dedicated panel discussion
co-located with IWPT 2009.1 Work presented on
Hebrew, Arabic, French, and German made it clear
that researchers working on non-English parsing face
the same overarching challenges: poor lexical cover-
age (due to high level of inflection), poor syntactic
coverage (due to more flexible word ordering), and,
more generally, issues of data sparseness (due to
the lack of large-scale resources). Additionally, new
questions emerged as to the evaluation of parsers in
such languages – are the word-based metrics used
for English well-equipped to capture performance
across frameworks, or performance in the face of
morphological complexity? This event provoked ac-
tive discussions and led to the establishment of a
series of SPMRL events for the discussion of shared
challenges and cross-fertilization among researchers
working on parsing MRLs.

The body of work on MRLs that was accumulated
through the SPMRL workshops2 and hosting ACL
venues contains new results for Arabic (Attia et al.,
2010; Marton et al., 2013a), Basque (Bengoetxea
and Gojenola, 2010), Croatian (Agic et al., 2013),
French (Seddah et al., 2010; Candito and Seddah,
2010; Sigogne et al., 2011), German (Rehbein, 2011),
Hebrew (Tsarfaty and Sima’an, 2010; Goldberg and

1http://alpage.inria.fr/iwpt09/panel.en.
html

2See http://www.spmrl.org/ and related workshops.

Elhadad, 2010a), Hindi (Ambati et al., 2010), Ko-
rean (Chung et al., 2010; Choi and Palmer, 2011) and
Spanish (Le Roux et al., 2012), Tamil (Green et al.,
2012), amongst others. The awareness of the model-
ing challenges gave rise to new lines of work on top-
ics such as joint morpho-syntactic processing (Gold-
berg and Tsarfaty, 2008), Relational-Realizational
Parsing (Tsarfaty, 2010), EasyFirst Parsing (Gold-
berg, 2011), PLCFRS parsing (Kallmeyer and Maier,
2013), the use of factored lexica (Green et al., 2013),
the use of bilingual data (Fraser et al., 2013), and
more developments that are currently under way.

With new models and data, and with lingering in-
terest in parsing non-standard English data, questions
begin to emerge, such as: What is the realistic per-
formance of parsing MRLs using today’s methods?
How do the different models compare with one an-
other? How do different representation types deal
with parsing one particular language? Does the suc-
cess of a parsing model on a language correlate with
its representation type and learning method? How to
parse effectively in the face of resource scarcity? The
first step to answering all of these questions is pro-
viding standard sets of comparable size, streamlined
parsing scenarios, and evaluation metrics, which are
our main goals in this SPMRL shared task.

2.2 Where We Are At: The Need for
Cross-Framework, Realistic, Evaluation
Procedures

The present task serves as the first attempt to stan-
dardize the data sets, parsing scenarios, and evalu-
ation metrics for MRL parsing, for the purpose of
gaining insights into parsers’ performance across lan-
guages. Ours is not the first cross-linguistic task on
statistical parsing. As mentioned earlier, two previ-
ous CoNLL shared tasks focused on cross-linguistic
dependency parsing and covered thirteen different
languages (Buchholz and Marsi, 2006; Nivre et al.,
2007a). However, the settings of these tasks, e.g.,
in terms of data set sizes or parsing scenarios, made
it difficult to draw conclusions about strengths and
weaknesses of different systems on parsing MRLs.

A key aspect to consider is the relation between
input tokens and tree terminals. In the standard sta-
tistical parsing setup, every input token is assumed
to be a terminal node in the syntactic parse tree (after
deterministic tokenization of punctuation). In MRLs,

148

morphological processes may have conjoined several
words into a single token. Such tokens need to be seg-
mented and their analyses need to be disambiguated
in order to identify the nodes in the parse tree. In
previous shared tasks on statistical parsing, morpho-
logical information was assumed to be known in ad-
vance in order to make the setup comparable to that
of parsing English. In realistic scenarios, however,
morphological analyses are initially unknown and are
potentially highly ambiguous, so external resources
are used to predict them. Incorrect morphological
disambiguation sets a strict ceiling on the expected
performance of parsers in real-world scenarios. Re-
sults reported for MRLs using gold morphological
information are then, at best, optimistic.

One reason for adopting this less-than-realistic
evaluation scenario in previous tasks has been the
lack of sound metrics for the more realistic scenario.
Standard evaluation metrics assume that the number
of terminals in the parse hypothesis equals the num-
ber of terminals in the gold tree. When the predicted
morphological segmentation leads to a different num-
ber of terminals in the gold and parse trees, standard
metrics such as ParsEval (Black et al., 1991) or At-
tachment Scores (Buchholz and Marsi, 2006) fail
to produce a score. In this task, we use TedEval
(Tsarfaty et al., 2012b), a metric recently suggested
for joint morpho-syntactic evaluation, in which nor-
malized tree-edit distance (Bille, 2005) on morpho-
syntactic trees allows us to quantify the success on
the joint task in realistic parsing scenarios.

Finally, the previous tasks focused on dependency
parsing. When providing both constituency-based
and dependency-based tracks, it is interesting to com-
pare results across these frameworks so as to better
understand the differences in performance between
parsers of different types. We are now faced with
an additional question: how can we compare pars-
ing results across different frameworks? Adopting
standard metrics will not suffice as we would be com-
paring apples and oranges. In contrast, TedEval is
defined for both phrase structures and dependency
structures through the use of an intermediate repre-
sentation called function trees (Tsarfaty et al., 2011;
Tsarfaty et al., 2012a). Using TedEval thus allows us
to explore both dependency and constituency parsing
frameworks and meaningfully compare the perfor-
mance of parsers of different types.

3 Defining the Shared-Task

3.1 Input and Output

We define a parser as a structure prediction function
that maps sequences of space-delimited input tokens
(henceforth, tokens) in a language to a set of parse
trees that capture valid morpho-syntactic structures
in that language. In the case of constituency parsing,
the output structures are phrase-structure trees. In de-
pendency parsing, the output consists of dependency
trees. We use the term tree terminals to refer to the
leaves of a phrase-structure tree in the former case
and to the nodes of a dependency tree in the latter.

We assume that input sentences are represented
as sequences of tokens. In general, there may be a
many-to-many relation between input tokens and tree
terminals. Tokens may be identical to the terminals,
as is often the case in English. A token may be
mapped to multiple terminals assigned their own POS
tags (consider, e.g., the token “isn’t”), as is the case
in some MRLs. Several tokens may be grouped into
a single (virtual) node, as is the case with multiword
expressions (MWEs) (consider “pomme de terre” for
“potatoe”). This task covers all these cases.

In the standard setup, all tokens are tree terminals.
Here, the task of a parser is to predict a syntactic
analysis in which the tree terminals coincide with the
tokens. Disambiguating the morphological analyses
that are required for parsing corresponds to selecting
the correct POS tag and possibly a set of morpho-
logical features for each terminal. For the languages
Basque, French, German, Hungarian, Korean, Polish,
and Swedish, we assume this standard setup.

In the morphologically complex setup, every token
may be composed of multiple terminals. In this case,
the task of the parser is to predict the sequence of tree
terminals, their POS tags, and a correct tree associ-
ated with this sequence of terminals. Disambiguating
the morphological analysis therefore requires split-
ting the tokens into segments that define the terminals.
For the Semitic languages Arabic and Hebrew, we
assume this morphologically complex setup.

In the multiword expression (MWEs) setup, pro-
vided here for French only, groupings of terminals
are identified as MWEs (non-terminal nodes in con-
stituency trees, marked heads in dependency trees).
Here, the parser is required to predict how terminals
are grouped into MWEs on top of predicting the tree.

149

3.2 Data Sets
The task features nine languages from six language
families, from Germanic languages (Swedish and
German) and Romance (French) to Slavic (Polish),
Koreanic (Korean), Semitic (Arabic, Hebrew), Uralic
(Hungarian), and the language isolate Basque.

These languages cover a wide range of morpho-
logical richness, with Arabic, Basque, and Hebrew
exhibiting a high degree of inflectional and deriva-
tional morphology. The Germanic languages, Ger-
man and Swedish, have greater degrees of phrasal
ordering freedom than English. While French is not
standardly classified as an MRL, it shares MRLs char-
acteristics which pose challenges for parsing, such as
a richer inflectional system than English.

For each contributing language, we provide two
sets of annotated sentences: one annotated with la-
beled phrase-structure trees, and one annotated with
labeled dependency trees. The sentences in the two
representations are aligned at token and POS levels.
Both representations reflect the predicate-argument
structure of the same sentence, but this information
is expressed using different formal terms and thus
results in different tree structures.

Since some of our native data sets are larger than
others, we provide the training set in two sizes: Full
containing all sentences in the standard training set
of the language, and 5k containing the number of
sentences that is equivalent in size to our smallest
training set (5k sentences). For all languages, the data
has been split into sentences, and the sentences are
parsed and evaluated independently of one another.

3.3 Parsing Scenarios
In the shared task, we consider three parsing scenar-
ios, depending on how much of the morphological
information is provided. The scenarios are listed
below, in increasing order of difficulty.

• Gold: In this scenario, the parser is provided
with unambiguous gold morphological segmen-
tation, POS tags, and morphological features for
each input token.

• Predicted: In this scenario, the parser is pro-
vided with disambiguated morphological seg-
mentation. However, the POS tags and mor-
phological features for each input segment are
unknown.

Scenario Segmentation PoS+Feat. Tree
Gold X X –
Predicted X 1-best –
Raw (1-best) 1-best 1-best –
Raw (all) – – –

Table 1: A summary of the parsing and evaluation sce-
narios. X depicts gold information, – depicts unknown
information, to be predicted by the system.

• Raw: In this scenario, the parser is provided
with morphologically ambiguous input. The
morphological segmentation, POS tags, and
morphological features for each input token are
unknown.

The Predicted and Raw scenarios require predict-
ing morphological analyses. This may be done using
a language-specific morphological analyzer, or it may
be done jointly with parsing. We provide inputs that
support these different scenarios:

• Predicted: Gold treebank segmentation is given
to the parser. The POS tags assignment and mor-
phological features are automatically predicted
by the parser or by an external resource.

• Raw (1-best): The 1st-best segmentation and
POS tags assignment is predicted by an external
resource and given to the parser.

• Raw (all): All possible segmentations and POS
tags are specified by an external resource. The
parser selects jointly a segmentation and a tree.

An overview of all shown in table 1. For languages
in which terminals equal tokens, only Gold and Pre-
dicted scenarios are considered. For Semitic lan-
guages we further provide input for both Raw (1-
best) and Raw (all) scenarios. 3

3.4 Evaluation Metrics
This task features nine languages, two different repre-
sentation types and three different evaluation scenar-
ios. In order to evaluate the quality of the predicted
structures in the different tracks, we use a combina-
tion of evaluation metrics that allow us to compare
the systems along different axes.

3The raw Arabic lattices were made available later than the
other data. They are now included in the shared task release.

150

In this section, we formally define the different
evaluation metrics and discuss how they support sys-
tem comparison. Throughout this paper, we will be
referring to different evaluation dimensions:

• Cross-Parser Evaluation in Gold/Predicted
Scenarios. Here, we evaluate the results of dif-
ferent parsers on a single data set in the Gold
or Predicted setting. We use standard evalu-
ation metrics for the different types of anal-
yses, that is, ParsEval (Black et al., 1991)
on phrase-structure trees, and Labeled At-
tachment Scores (LAS) (Buchholz and Marsi,
2006) for dependency trees. Since ParsEval is
known to be sensitive to the size and depth of
trees (Rehbein and van Genabith, 2007b), we
also provide the Leaf-Ancestor metric (Samp-
son and Babarczy, 2003), which is less sensitive
to the depth of the phrase-structure hierarchy. In
both scenarios we also provide metrics to evalu-
ate the prediction of MultiWord Expressions.

• Cross-Parser Evaluation in Raw Scenarios.
Here, we evaluate the results of different parsers
on a single data set in scenarios where morpho-
logical segmentation is not known in advance.
When a hypothesized segmentation is not iden-
tical to the gold segmentation, standard evalua-
tion metrics such as ParsEval and Attachment
Scores break down. Therefore, we use TedEval
(Tsarfaty et al., 2012b), which jointly assesses
the quality of the morphological and syntactic
analysis in morphologically-complex scenarios.

• Cross-Framework Evaluation. Here, we com-
pare the results obtained by a dependency parser
and a constituency parser on the same set of sen-
tences. In order to avoid comparing apples and
oranges, we use the unlabeled TedEval metric,
which converts all representation types inter-
nally into the same kind of structures, called
function trees. Here we use TedEval’s cross-
framework protocol (Tsarfaty et al., 2012a),
which accomodates annotation idiosyncrasies.

• Cross-Language Evaluation. Here, we com-
pare parsers for the same representation type
across different languages. Conducting a com-
plete and faithful evaluation across languages

would require a harmonized universal annota-
tion scheme (possibly along the lines of (de
Marneffe and Manning, 2008; McDonald et al.,
2013; Tsarfaty, 2013)) or task based evaluation.
As an approximation we use unlabeled TedEval.
Since it is unlabeled, it is not sensitive to label
set size. Since it internally uses function-trees,
it is less sensitive to annotation idiosyncrasies
(e.g., head choice) (Tsarfaty et al., 2011).

The former two dimensions are evaluated on the full
sets. The latter two are evaluated on smaller, compa-
rable, test sets. For completeness, we provide below
the formal definitions and essential modifications of
the evaluation software that we used.

3.4.1 Evaluation Metrics for Phrase Structures
ParsEval The ParsEval metrics (Black et al., 1991)
are evaluation metrics for phrase-structure trees. De-
spite various shortcomings, they are the de-facto stan-
dard for system comparison on phrase-structure pars-
ing, used in many campaigns and shared tasks (e.g.,
(Kübler, 2008; Petrov and McDonald, 2012)). As-
sume that G and H are phrase-structure gold and
hypothesized trees respectively, each of which is rep-
resented by a set of tuples (i, A, j) where A is a
labeled constituent spanning from i to j. Assume
that g is the same as G except that it discards the
root, preterminal, and terminal nodes, likewise for h
and H . The ParsEval scores define the accuracy of
the hypothesis in terms of the normalized size of the
intersection of the constituent sets.

Precision(g, h) = |g∩h|
|h|

Recall(g, h) = |g∩h|
|g|

F1(g, h) = 2×P×R
P+R

We evaluate accuracy on phrase-labels ignoring any
further decoration, as it is in standard practices.
Evalb, the standard software that implements Par-
sEval,4 takes a parameter file and ignores the labels
specified therein. As usual, we ignore root and POS
labels. Contrary to the standard practice, we do take
punctuation into account. Note that, as opposed to the
official version, we used the SANCL’2012 version5

modified to actually penalize non-parsed trees.
4http://www.spmrl.org/

spmrl2013-sharedtask-metrics.html/#Evalb
5Modified by Petrov and McDonald (2012) to be less sensi-

tive to punctuation errors.

151

Leaf-Ancestor The Leaf-Ancestor metric (Samp-
son and Babarczy, 2003) measures the similarity be-
tween the path from each terminal node to the root
node in the output tree and the corresponding path
in the gold tree. The path consists of a sequence of
node labels between the terminal node and the root
node, and the similarity of two paths is calculated
by using the Levenshtein distance. This distance is
normalized by path length, and the score of the tree
is an aggregated score of the values for all terminals
in the tree (xt is the leaf-ancestor path of t in tree x).

LA(h, g) =
∑

t∈yield(g) Lv(ht,gt)/(len(ht)+len(gt))

|yield(g)|

This metric was shown to be less sensitive to dif-
ferences between annotation schemes in (Kübler et
al., 2008), and was shown by Rehbein and van Gen-
abith (2007a) to evaluate trees more faithfully than
ParsEval in the face of certain annotation decisions.
We used the implementation of Wagner (2012).6

3.4.2 Evaluation Metrics for Dependency
Structures

Attachment Scores Labeled and Unlabeled At-
tachment scores have been proposed as evaluation
metrics for dependency parsing in the CoNLL shared
tasks (Buchholz and Marsi, 2006; Nivre et al., 2007a)
and have since assumed the role of standard metrics
in multiple shared tasks and independent studies. As-
sume that g, h are gold and hypothesized dependency
trees respectively, each of which is represented by
a set of arcs (i, A, j) where A is a labeled arc from
terminal i to terminal j. Recall that in the gold and
predicted settings, |g| = |h| (because the number of
terminals determines the number of arcs and hence it
is fixed). So Labeled Attachment Score equals preci-
sion and recall, and it is calculated as a normalized
size of the intersection between the sets of gold and
parsed arcs.7

Precision(g, h) = |g∩h|
|g|

Recall(g, h) = |g∩h|
|h|

LAS(g, h) = |g∩h|
|g| = |g∩h|

|h|

6The original version is available at
http://www.grsampson.net/Resources.
html, ours at http://www.spmrl.org/
spmrl2013-sharedtask-metrics.html/#Leaf.

7http://ilk.uvt.nl/conll/software.html.

3.4.3 Evaluation Metrics for Morpho-Syntactic
Structures

TedEval The TedEval metrics and protocols have
been developed by Tsarfaty et al. (2011), Tsarfaty
et al. (2012a) and Tsarfaty et al. (2012b) for coping
with non-trivial evaluation scenarios, e.g., comparing
parsing results across different frameworks, across
representation theories, and across different morpho-
logical segmentation hypotheses.8 Contrary to the
previous metrics, which view accuracy as a normal-
ized intersection over sets, TedEval computes the ac-
curacy of a parse tree based on the tree-edit distance
between complete trees. Assume a finite set of (pos-
sibly parameterized) edit operations A = {a1....an},
and a cost function c : A → 1. An edit script is the
cost of a sequence of edit operations, and the edit dis-
tance of g, h is the minimal cost edit script that turns
g into h (and vice versa). The normalized distance
subtracted from 1 provides the level of accuracy on
the task. Formally, the TedEval score on g, h is de-
fined as follows, where ted is the tree-edit distance,
and the |x| (size in nodes) discards terminals and root
nodes.

TedEval(g, h) = 1− ted(g, h)

|g|+ |h|

In the gold scenario, we are not allowed to manipu-
late terminal nodes, only non-terminals. In the raw
scenarios, we can add and delete both terminals and
non-terminals so as to match both the morphological
and syntactic hypotheses.

3.4.4 Evaluation Metrics for
Multiword-Expression Identification

As pointed out in section 3.1, the French data set is
provided with tree structures encoding both syntactic
information and groupings of terminals into MWEs.
A given MWE is defined as a continuous sequence of
terminals, plus a POS tag. In the constituency trees,
the POS tag of the MWE is an internal node of the
tree, dominating the sequence of pre-terminals, each
dominating a terminal. In the dependency trees, there
is no specific node for the MWE as such (the nodes
are the terminals). So, the first token of a MWE is
taken as the head of the other tokens of the same
MWE, with the same label (see section 4.4).

8http://www.tsarfaty.com/unipar/
download.html.

152

To evaluate performance on MWEs, we use the
following metrics.

• R_MWE, P_MWE, and F_MWE are recall, pre-
cision, and F-score over full MWEs, in which
a predicted MWE counts as correct if it has the
correct span (same group as in the gold data).

• R_MWE +POS, R_MWE +POS, and F_MWE

+POS are defined in the same fashion, except
that a predicted MWE counts as correct if it has
both correct span and correct POS tag.

• R_COMP, R_COMP, and F_COMP are recall,
precision and F-score over non-head compo-
nents of MWEs: a non-head component of MWE

counts as correct if it is attached to the head of
the MWE, with the specific label that indicates
that it is part of an MWE.

4 The SPMRL 2013 Data Sets

4.1 The Treebanks
We provide data from nine different languages anno-
tated with two representation types: phrase-structure
trees and dependency trees.9 Statistics about size,
average length, label set size, and other character-
istics of the treebanks and schemes are provided in
Table 2. Phrase structures are provided in an ex-
tended bracketed style, that is, Penn Treebank brack-
eted style where every labeled node may be extended
with morphological features expressed. Dependency
structures are provided in the CoNLL-X format.10

For any given language, the dependency and con-
stituency treebanks are aligned at the token and ter-
minal levels and share the same POS tagset and mor-
phological features. That is, any form in the CoNLL
format is a terminal of the respective bracketed tree.
Any CPOS label in the CoNLL format is the pre-
terminal dominating the terminal in the bracketed
tree. The FEATS in the CoNLL format are repre-
sented as dash-features decorated on the respective
pre-terminal node in the bracketed tree. See Fig-
ure 1(a)–1(b) for an illustration of this alignment.

9Additionally, we provided the data in TigerXML format
(Brants et al., 2002) for phrase structure trees containing cross-
ing branches. This allows the use of more powerful parsing
formalisms. Unfortunately, we received no submissions for this
data, hence we discard them in the rest of this overview.

10See http://ilk.uvt.nl/conll/.

For ambiguous morphological analyses, we pro-
vide the mapping of tokens to different segmentation
possibilities through lattice files. See Figure 1(c) for
an illustration, where lattice indices mark the start
and end positions of terminals.

For each of the treebanks, we provide a three-way
dev/train/set split and another train set containing the
first 5k sentences of train (5k). This section provides
the details of the original treebanks and their anno-
tations, our data-set preparation, including prepro-
cessing and data splits, cross-framework alignment,
and the prediction of morphological information in
non-gold scenarios.

4.2 The Arabic Treebanks

Arabic is a morphologically complex language which
has rich inflectional and derivational morphology. It
exhibits a high degree of morphological ambiguity
due to the absence of the diacritics and inconsistent
spelling of letters, such as Alif and Ya. As a conse-
quence, the Buckwalter Standard Arabic Morpholog-
ical Analyzer (Buckwalter, 2004; Graff et al., 2009)
produces an average of 12 analyses per word.

Data Sets The Arabic data set contains two tree-
banks derived from the LDC Penn Arabic Treebanks
(PATB) (Maamouri et al., 2004b):11 the Columbia
Arabic Treebank (CATiB) (Habash and Roth, 2009),
a dependency treebank, and the Stanford version
of the PATB (Green and Manning, 2010), a phrase-
structure treebank. We preprocessed the treebanks
to obtain strict token matching between the treebanks
and the morphological analyses. This required non-
trivial synchronization at the tree token level between
the PATB treebank, the CATiB treebank and the mor-
phologically predicted data, using the PATB source
tokens and CATiB feature word form as a dual syn-
chronized pivot.

The Columbia Arabic Treebank The Columbia
Arabic Treebank (CATiB) uses a dependency repre-
sentation that is based on traditional Arabic grammar
and that emphasizes syntactic case relations (Habash
and Roth, 2009; Habash et al., 2007). The CATiB
treebank uses the word tokenization of the PATB

11The LDC kindly provided their latest version of the Arabic
Treebanks. In particular, we used PATB 1 v4.1 (Maamouri et al.,
2005), PATB 2 v3.1 (Maamouri et al., 2004a) and PATB 3 v3.3.
(Maamouri et al., 2009)

153

Arabic Basque French German Hebrew Hungarian Korean Polish Swedish

train:
#Sents 15,762 7,577 14,759 40,472 8,146 23,010 6,578
#Tokens 589,220 96,368 443,113 719,532 170,141 351,184 68,424
Lex. Size 36,906 25,136 27,470 77,222 40,782 11,1540 22,911
Avg. Length 37.38 12.71 30.02 17.77 20.88 15.26 10.40

Ratio #NT/#Tokens 0.19 0.82 0.34 0.60 0.59 0.60 0.94
Ratio #NT/#Sents 7.40 10.50 10.33 10.70 12.38 9.27 9.84

#Non Terminals 22 12 32 25 16 8 34
#POS tags 35 25 29 54 16 1,975 29
#total NTs 116,769 79,588 152,463 433,215 100,885 213,370 64,792

Dep. Label Set Size 9 31 25 43 417 22 27

train5k:
#Sents 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000
#Tokens 224,907 61,905 150,984 87,841 128,046 109,987 68,336 52,123 76,357
Lex. Size 19,433 18,405 15,480 17,421 15,975 29,009 29,715 18,632 14,110
Avg. Length 44.98 12.38 30.19 17.56 25.60 21.99 13.66 10.42 15.27

Ratio #NT/#Tokens 0.15 0.83 0.34 0.60 0.42 0.57 0.68 0.94 0.58
Ratio #NT/#Sents 7.18 10.33 10.32 10.58 10.97 12.57 9.29 9.87 8.96

#Non Terminals 22 12 29 23 60 16 8 34 8
#POS Tags 35 25 29 51 50 16 972 29 25
#total NTs 35,909 5,1691 51,627 52,945 54,856 62,889 46,484 49,381 44,845

Dep. Label Set Size 9 31 25 42 43 349 20 27 61

dev:
#Sents 1,985 948 1,235 5,000 500 1,051 2,066 821 494
#Tokens 73,932 13,851 38,820 76,704 11,301 29,989 30,480 8,600 9,341
Lex. Size 12,342 5,551 6,695 15,852 3,175 10,673 15,826 4,467 2,690
Avg. Length 37.24 14.61 31.43 15.34 22.60 28.53 14.75 10.47 18.90

Ratio #NT/#Tokens 0.19 0.74 0.33 0.63 0.47 047 0.63 0.94 0.48
Ratio #NT/#Sents 7.28 10.92 10.48 9.71 10.67 13.66 9.33 9.90 9.10

#Non Terminals 21 11 27 24 55 16 8 31 8
#POS Tags 32 23 29 50 47 16 760 29 24
#total NTs 14,452 10,356 12,951 48,560 5,338 14,366 19,283 8,132 4,496

Dep. Label Set Size 9 31 25 41 42 210 22 26 59

test:
#Sents 1959 946 2541 5000 716 1009 2287 822 666
#Tokens 73878 11457 75216 92004 16998 19908 33766 8545 10690
Lex. Size 12254 4685 10048 20149 4305 7856 16475 4336 3112
Avg. Length 37.71 12.11 29.60 18.40 23.74 19.73 14.76 10.39 16.05

Ratio #NT/#Tokens 0.19 0.83 0.34 0.60 0.47 0.62 0.61 0.95 0.57
Ratio #NT/#Sents 7.45 10.08 10.09 11.07 11.17 12.26 9.02 9.94 9.18

#Non Terminals 22 12 30 23 54 15 8 31 8
#POS Tags 33 22 30 52 46 16 809 27 25
#total NTs 14,610 9,537 25,657 55,398 8,001 12,377 20,640 8,175 6,118

Dep. Label Set Size 9 31 26 42 41 183 22 27 56

Table 2: Overview of participating languages and treebank properties. ’Sents’ = number of sentences, ’Tokens’ =
number of raw surface forms. ’Lex. size’ and ’Avg. Length’ are computed in terms of tagged terminals. ‘NT’ = non-
terminals in constituency treebanks, ‘Dep Labels’ = dependency labels on the arcs of dependency treebanks. – A more
comprehensive table is available at http://www.spmrl.org/spmrl2013-sharedtask.html/#Prop.

154

(a) Constituency Tree
% % every line is a single tree in a bracketed Penn Treebank format

(ROOT (S (NP (NNP-#pers=3|num=sing# John))(VP (VB-#pers=3|num=sing# likes)(NP (NNP-#pers=3|num=sing# Mary)))))

(b) Dependency Tree
%% every line describes a terminal: terminal-id form lemma CPOS FPOS FEATS Head Rel PHead PRel

1 John John NNP NNP pers=3|num=sing 2 sbj _ _

2 likes like VB VB pers=3|num=sing 0 root _ _

3 Mary Mary NNP NNP pers=3|num=sing 2 obj _ _

Input Lattice

0 1 2 3 4 5 6

1:AIF/NN

1:AIF/VB

1:AIF/NNT

2:LA/RB

3:NISH/VB

3:NISH/NN

4:L/PREP

4:LHSTIR/VB

4:HSTIR/VB

5:ZAT/PRP

%% every line describes a terminal: start-id end-id form lemma CPOS FPOS FEATS token-id

0 1 AIF AIF NN NN _ 1
0 1 AIF AIF NNT NNT _ 1
0 1 AIF AIF VB VB _ 1
1 2 LA LA RB RB _ 2
2 3 NISH NISH VB VB _ 3
2 3 NISH NISH NN NN _ 3
3 5 LHSTIR HSTIR VB VB _ 4
3 4 L L PREP PREP _ 4
4 5 HSTIR HSTIR VB VB _ 4
5 6 ZAT ZAT PRP PRP _ 5

Figure 1: File formats. Trees (a) and (b) are aligned constituency and dependency trees for a mockup English example.
Boxed labels are shared across the treebanks. Figure (c) shows an ambiguous lattice. The red part represents the yield
of the gold tree. For brevity, we use empty feature columns, but of course lattice arcs may carry any morphological
features, in the FEATS CoNLL format.

and employs a reduced POS tagset consisting of six
tags only: NOM (non-proper nominals including
nouns, pronouns, adjectives and adverbs), PROP
(proper nouns), VRB (active-voice verbs), VRB-
PASS (passive-voice verbs), PRT (particles such as
prepositions or conjunctions) and PNX (punctuation).
(This stands in extreme contrast with the Buckwalter
Arabic tagset (PATB official tagset) which is almost
500 tags.) To obtain these dependency trees, we used
the constituent-to-dependency tool (Habash and Roth,
2009). Additional CATiB trees were annotated di-
rectly, but we only use the portions that are converted
from phrase-structure representation, to ensure that
the constituent and dependency yields can be aligned.

The Stanford Arabic Phrase Structure Treebank
In order to stay compatible with the state of the art,
we provide the constituency data set with most of the
pre-processing steps of Green and Manning (2010),

as they were shown to improve baseline performance
on the PATB parsing considerably.12

To convert the original PATB to preprocessed
phrase-structure trees á la Stanford, we first discard
all trees dominated by X, which indicates errors and
non-linguistic text. At the phrasal level, we collapse
unary chains with identical categories like NP→ NP.
We finally remove all traces, but, unlike Green and
Manning (2010), we keep all function tags.

In the original Stanford instance, the pre-terminal
morphological analyses were mapped to the short-
ened Bies tag set provided with the treebank (where
Determiner markers, “DT”, were added to definite
noun and adjectives, resulting in 32 POS tags). Here
we use the Kulick tagset (Kulick et al., 2006) for

12Both the corpus split and pre-processing code are available
with the Stanford parser at http://nlp.stanford.edu/
projects/arabic.shtml.

155

pre-terminal categories in the phrase-structure trees,
where the Bies tag set is included as a morphological
feature (stanpos) in our PATB instance.

Adapting the Data to the Shared Task We con-
verted the CATiB representation to the CoNLL rep-
resentation and added a ‘split-from-previous’ and
‘split-from-next’ markers as in LDC’s tree-terminal
fields.

A major difference between the CATiB treebank
and the Stanford treebank lies in the way they han-
dle paragraph annotations. The original PATB con-
tains sequences of annotated trees that belong to a
same discourse unit (e.g., paragraph). While the
CATiB conversion tool considers each sequence a
single parsing unit, the Stanford pre-processor treats
each such tree structure rooted at S, NP or Frag as
a tree spanning a single sentence. To be compati-
ble with the predicted morphology data which was
bootstrapped and trained on the CATiB interpretation,
we deterministically modified the original PATB by
adding pseudo XP root nodes, so that the Stanford
pre-proprecessor will generate the same tree yields
as the CATiB treebank.

Another important aspect of preprocessing (often-
delegated as a technicality in the Arabic parsing lit-
erature) is the normalization of token forms. Most
Arabic parsing work used transliterated text based on
the schemes proposed by Buckwalter (2002). The
transliteration schemes exhibit some small differ-
ences, but enough to increase the out-of-vocabulary
rate by a significant margin (on top of strictly un-
known morphemes). This phenomenon is evident in
the morphological analysis lattices (in the predicted
dev set there is a 6% OOV rate without normalization,
and half a point reduction after normalization is ap-
plied, see (Habash et al., 2009b; Green and Manning,
2010)). This rate is much lower for gold tokenized
predicted data (with an OOV rate of only 3.66%,
similar to French for example). In our data set, all
tokens are minimally normalized: no diacritics, no
normalization.13

Data Splits For the Arabic treebanks, we use the
data split recommended by the Columbia Arabic and
Dialect Modeling (CADiM) group (Diab et al., 2013).

13Except for the minimal normalization present in MADA’s
back-end tools. This script was provided to the participants.

The data of the LDC first three annotated Arabic Tree-
banks (ATB1, ATB2 and ATB3) were divided into
roughly a 10/80/10% dev/train/test split by word vol-
ume. When dividing the corpora, document bound-
aries were maintained. The train5k files are simply
the first 5,000 sentences of the training files.

POS Tagsets Given the richness of Arabic mor-
phology, there are multiple POS tag sets and tokeniza-
tion schemes that have been used by researchers, (see,
e.g., Marton et al. (2013a)). In the shared task, we fol-
low the standard PATB tokenization which splits off
several categories of orthographic clitics, but not the
definite article Al+. On top of that, we consider three
different POS tag sets with different degrees of gran-
ularity: the Buckwalter tag set (Buckwalter, 2004),
the Kulick Reduced Tag set (Kulick et al., 2006), and
the CATiB tag set (Habash et al., 2009a), considering
that granularity of the morphological analyses may
affect syntactic processing. For more information see
Habash (2010).

Predicted Morphology To prepare input for the
Raw scenarios (§3.3), we used the MADA+TOKAN
system (Habash et al., 2009b). MADA is a system
for morphological analysis and disambiguation of
Arabic. It can predict the 1-best tokenization, POS
tags, lemmas and diacritization in one fell swoop.
The MADA output was also used to generate the
lattice files for the Raw-all scenario.

To generate input for the gold token / predicted
tag input scenario, we used Morfette (Chrupała et al.,
2008), a joint lemmatization and POS tagging model
based on an averaged perceptron. We generated two
tagging models, one trained with the Buckwalter tag
set, and the other with the Kulick tag set. Both were
mapped back to the CATiB POS tag set such that all
predicted tags are contained in the feature field.14

4.3 The Basque Treebank
Basque is an agglutinative language with a high ca-
pacity to generate inflected wordforms, with free
constituent order of sentence elements with respect
to the main verb. Contrary to many other treebanks,
the Basque treebank was originally annotated with
dependency trees, which were later on converted to
constituency trees.

14A conversion script from the rich Buckwalter tagset to
CoNLL-like features was provided to the participants.

156

The Basque Dependency Treebank (BDT) is a
dependency treebank in its original design, due to
syntactic characteristics of Basque such as its free
word order. Before the syntactic annotation, mor-
phological analysis was performed, using the Basque
morphological analyzer of Aduriz et al. (2000). In
Basque each lemma can generate thousands of word-
forms — differing in morphological properties such
as case, number, tense, or different types of subordi-
nation for verbs. If only POS category ambiguity is
resolved, the analyses remain highly ambiguous.

For the main POS category, there is an average of
1.55 interpretations per wordform, which rises to 2.65
for the full morpho-syntactic information, resulting
in an overall 64% of ambiguous wordforms. The
correct analysis was then manually chosen.

The syntactic trees were manually assigned. Each
word contains its lemma, main POS category, POS
subcategory, morphological features, and the la-
beled dependency relation. Each form indicates mor-
phosyntactic features such as case, number and type
of subordination, which are relevant for parsing.

The first version of the Basque Dependency Tree-
bank, consisting of 3,700 sentences (Aduriz et al.,
2003), was used in the CoNLL 2007 Shared Task on
Dependency Parsing (Nivre et al., 2007a). The cur-
rent shared task uses the second version of the BDT,
which is the result of an extension and redesign of the
original requirements, containing 11,225 sentences
(150,000 tokens).

The Basque Constituency Treebank (BCT) was
created as part of the CESS-ECE project, where the
main aim was to obtain syntactically annotated con-
stituency treebanks for Catalan, Spanish and Basque
using a common set of syntactic categories. BCT
was semi-automatically derived from the dependency
version (Aldezabal et al., 2008). The conversion pro-
duced complete constituency trees for 80% of the
sentences. The main bottlenecks have been sentence
connectors and non-projective dependencies which
could not be straightforwardly converted into projec-
tive tree structures, requiring a mechanism similar to
traces in the Penn English Treebank.

Adapting the Data to the Shared Task As the
BCT did not contain all of the original non-projective
dependency trees, we selected the set of 8,000 match-

ing sentences in both treebanks for the shared task.15

This implies that around 2k trees could not be gen-
erated and therefore were discarded. Furthermore,
the BCT annotation scheme does not contain attach-
ment for most of the punctuation marks, so those
were inserted into the BCT using a simple lower-left
attachment heuristic. The same goes for some con-
nectors that could not be aligned in the first phase.

Predicted Morphology In order to obtain pre-
dicted tags for the non-gold scenarios, we used the
following pipeline. First, morphological analysis as
described above was performed, followed by a dis-
ambiguation step. At that point, it is hard to obtain a
single interpretation for each wordform, as determin-
ing the correct interpretation for each wordform may
require knowledge of long-distance elements on top
of the free constituency order of the main phrasal el-
ements in Basque. The disambiguation is performed
by the module by Ezeiza et al. (1998), which uses
a combination of knowledge-based disambiguation,
by means of Constraint Grammar (Karlsson et al.,
1995; Aduriz et al., 1997), and a posterior statistical
disambiguation module, using an HMM.16

For the shared task data, we chose a setting that
disambiguates most word forms, and retains ≥ 97%
of the correct interpretations, leaving an ambiguity
level of 1.3 interpretations. For the remaining cases
of ambiguity, we chose the first interpretation, which
corresponds to the most frequent option. This leaves
open the investigation of more complex approaches
for selecting the most appropriate reading.17

4.4 The French Treebank
French is not a morphologically rich language per se,
though its inflectional system is richer than that of
English, and it also exhibits a limited amount of word
order variation occurring at different syntactic levels
including the word level (e.g. pre- or post-nominal

15We generated a 80/10/10 split, – train/dev/test – The first 5k
sentences of the train set were used as a basis for the train5k.

16Note that the statistical module can be parametrized accord-
ing to the level of disambiguation to trade off precision and
recall. For example, disambiguation based on the main cate-
gories (abstracting over morpho-syntactic features) maintains
most of the correct interpretations but still gives an output with
several interpretations per wordform.

17This is not an easy task. The ambiguity left is the hardest to
solve given that the knowledge-based and statistical disambigua-
tion processes have not been able to pick out a single reading.

157

adjective, pre- or post-verbal adverbs) and the phrase
level (e.g. possible alternations between post verbal
NPs and PPs). It also has a high degree of multi-
word expressions, that are often ambiguous with a
literal reading as a sequence of simple words. The
syntactic and MWE analysis shows the same kind of
interaction (though to a lesser extent) as morphologi-
cal and syntactic interaction in Semitic languages —
MWEs help parsing, and syntactic information may
be required to disambiguate MWE identification.

The Data Set The French data sets were gener-
ated from the French Treebank (Abeillé et al., 2003),
which consists of sentences from the newspaper Le
Monde, manually annotated with phrase structures
and morphological information. Part of the treebank
trees are also annotated with grammatical function
tags for dependents of verbs. In the SPMRL shared
task release, we used only this part, consisting of
18,535 sentences,18 split into 14,759 sentences for
training, 1,235 sentences for development, and 2,541
sentences for the final evaluation.19

Adapting the Data to the Shared Task The con-
stituency trees are provided in an extended PTB
bracketed format, with morphological features at the
pre-terminal level only. They contain slight, auto-
matically performed, modifications with respect to
the original trees of the French treebank. The syntag-
matic projection of prepositions and complementiz-
ers was normalized, in order to have prepositions and
complementizers as heads in the dependency trees
(Candito et al., 2010).

The dependency representations are projective de-
pendency trees, obtained through automatic conver-
sion from the constituency trees. The conversion pro-
cedure is an enhanced version of the one described
by Candito et al. (2010).

Both the constituency and the dependency repre-
sentations make use of coarse- and fine-grained POS
tags (CPOS and FPOS respectively). The CPOS are
the categories from the original treebank. The FPOS

18The process of functional annotation is still ongoing, the
objective of the FTB providers being to have all the 20000 sen-
tences annotated with functional tags.

19The first 9,981 training sentences correspond to the canoni-
cal 2007 training set. The development set is the same and the
last 1235 sentences of the test set are those of the canonical test
set.

are merged using the CPOS and specific morphologi-
cal information such as verbal mood, proper/common
noun distinction (Crabbé and Candito, 2008).

Multi-Word Expressions The main difference
with respect to previous releases of the bracketed
or dependency versions of the French treebank
lies in the representation of multi-word expressions
(MWEs). The MWEs appear in an extended format:
each MWE bears an FPOS20 and consists of a se-
quence of terminals (hereafter the “components” of
the MWE), each having their proper CPOS, FPOS,
lemma and morphological features. Note though that
in the original treebank the only gold information
provided for a MWE component is its CPOS. Since
leaving this information blank for MWE components
would have provided a strong cue for MWE recog-
nition, we made sure to provide the same kind of
information for every terminal, whether MWE com-
ponent or not, by providing predicted morphological
features, lemma, and FPOS for MWE components
(even in the “gold” section of the data set). This infor-
mation was predicted by the Morfette tool (Chrupała
et al., 2008), adapted to French (Seddah et al., 2010).

In the constituency trees, each MWE corresponds
to an internal node whose label is the MWE’s FPOS
suffixed by a +, and which dominates the component
pre-terminal nodes.

In the dependency trees, there is no “node” for a
MWE as a whole, but one node (a terminal in the
CoNLL format) per MWE component. The first com-
ponent of a MWE is taken as the head of the MWE.
All subsequent components of the MWE depend on
the first one, with the special label dep_cpd. Further-
more, the first MWE component bears a feature mwe-
head equal to the FPOS of the MWE. For instance,
the MWE la veille (the day before) is an adverb, con-
taining a determiner component and a common noun
component. Its bracketed representation is (ADV+
(DET la) (NC veille)), and in the dependency repre-
sentation, the noun veille depends on the determiner
la, which bears the feature mwehead=ADV+.

Predicted Morphology For the predicted mor-
phology scenario, we provide data in which the
mwehead has been removed and with predicted

20In the current data, we did not carry along the lemma and
morphological features pertaining to the MWE itself, though this
information is present in the original trees.

158

FPOS, CPOS, lemma, and morphological features,
obtained by training Morfette on the whole train set.

4.5 The German Treebank
German is a fusional language with moderately free
word order, in which verbal elements are fixed in
place and non-verbal elements can be ordered freely
as long as they fulfill the ordering requirements of
the clause (Höhle, 1986).

The Data Set The German constituency data set
is based on the TiGer treebank release 2.2.21 The
original annotation scheme represents discontinuous
constituents such that all arguments of a predicate
are always grouped under a single node regardless of
whether there is intervening material between them
or not (Brants et al., 2002). Furthermore, punctua-
tion and several other elements, such as parentheses,
are not attached to the tree. In order to make the
constituency treebank usable for PCFG parsing, we
adapted this treebank as described shortly.

The conversion of TiGer into dependencies is a
variant of the one by Seeker and Kuhn (2012), which
does not contain empty nodes. It is based on the same
TiGer release as the one used for the constituency
data. Punctuation was attached as high as possible,
without creating any new non-projective edges.

Adapting the Data to the Shared Task For
the constituency version, punctuation and other
unattached elements were first attached to the tree.
As attachment target, we used roughly the respec-
tive least common ancestor node of the right and
left terminal neighbor of the unattached element (see
Maier et al. (2012) for details), and subsequently, the
crossing branches were resolved.

This was done in three steps. In the first step, the
head daughters of all nodes were marked using a
simple heuristic. In case there was a daughter with
the edge label HD, this daughter was marked, i.e.,
existing head markings were honored. Otherwise, if
existing, the rightmost daughter with edge label NK
(noun kernel) was marked. Otherwise, as default, the
leftmost daughter was marked. In a second step, for
each continuous part of a discontinuous constituent,
a separate node was introduced. This corresponds

21This version is available from http://www.ims.
uni-stuttgart.de/forschung/ressourcen/
korpora/tiger.html

to the "raising" algorithm described by Boyd (2007).
In a third steps, all those newly introduced nodes
that did not cover the head daughter of the original
discontinuous node were deleted. For the second
and the third step, we used the same script as for the
Swedish constituency data.

Predicted Morphology For the predicted scenario,
a single sequence of POS tags and morphologi-
cal features has been assigned using the MATE
toolchain via a model trained on the train set via cross-
validation on the training set. The MATE toolchain
was used to provide predicted annotation for lem-
mas, POS tags, morphology, and syntax. In order to
achieve the best results for each annotation level, a
10-fold jackknifing was performed to provide realis-
tic features for the higher annotation levels. The pre-
dicted annotation of the 5k training set were copied
from the full data set.22

4.6 The Hebrew Treebank

Modern Hebrew is a Semitic language, characterized
by inflectional and derivational (templatic) morphol-
ogy and relatively free word order. The function
words for from/to/like/and/when/that/the are prefixed
to the next token, causing severe segmentation ambi-
guity for many tokens. In addition, Hebrew orthogra-
phy does not indicate vowels in modern texts, leading
to a very high level of word-form ambiguity.

The Data Set Both the constituency and the de-
pendency data sets are derived from the Hebrew
Treebank V2 (Sima’an et al., 2001; Guthmann et
al., 2009). The treebank is based on just over 6000
sentences from the daily newspaper ‘Ha’aretz’, man-
ually annotated with morphological information and
phrase-structure trees and extended with head infor-
mation as described in Tsarfaty (2010, ch. 5). The
unlabeled dependency version was produced by con-
version from the constituency treebank as described
in Goldberg (2011). Both the constituency and depen-
dency trees were annotated with a set grammatical
function labels conforming to Unified Stanford De-
pendencies by Tsarfaty (2013).

22We also provided a predicted-all scenario, in which we
provided morphological analysis lattices with POS and mor-
phological information derived from the analyses of the SMOR
derivational morphology (Schmid et al., 2004). These lattices
were not used by any of the participants.

159

Adapting the Data to the Shared Task While
based on the same trees, the dependency and con-
stituency treebanks differ in their POS tag sets, as
well as in some of the morphological segmentation
decisions. The main effort towards the shared task
was unifying the two resources such that the two tree-
banks share the same lexical yields, and the same
pre-terminal labels. To this end, we took the layering
approach of Goldberg et al. (2009), and included two
levels of POS tags in the constituency trees. The
lower level is lexical, conforming to the lexical re-
source used to build the lattices, and is shared by
the two treebanks. The higher level is syntactic, and
follows the tag set and annotation decisions of the
original constituency treebank.23 In addition, we uni-
fied the representation of morphological features, and
fixed inconsistencies and mistakes in the treebanks.

Data Split The Hebrew treebank is one of the
smallest in our language set, and hence it is provided
in only the small (5k) setting. For the sake of com-
parability with the 5k set of the other treebanks, we
created a comparable size of dev/test sets containing
the first and last 500 sentences respectively, where
the rest serve as the 5k training.24

Predicted Morphology The lattices encoding the
morphological ambiguity for the Raw (all) scenario
were produced by looking up the possible analyses
of each input token in the wide-coverage morpholog-
ical analyzer (lexicon) of the Knowledge Center for
Processing Hebrew (Itai and Wintner, 2008; MILA,
2008), with a simple heuristic for dealing with un-
known tokens. A small lattice encoding the possible
analyses of each token was produced separately, and
these token-lattices were concatenated to produce the
sentence lattice. The lattice for a given sentence may
not include the gold analysis in cases of incomplete
lexicon coverage.

The morphologically disambiguated input files for
the Raw (1-best) scenario were produced by run-
ning the raw text through the morphological disam-

23Note that this additional layer in the constituency treebank
adds a relatively easy set of nodes to the trees, thus “inflating”
the evaluation scores compared to previously reported results.
To compensate, a stricter protocol than is used in this task would
strip one of the two POS layers prior to evaluation.

24This split is slightly different than the split in previous stud-
ies.

biguator (tagger) described in Adler and Elhadad
(2006; Goldberg et al. (2008),Adler (2007). The
disambiguator is based on the same lexicon that is
used to produce the lattice files, but utilizes an extra
module for dealing with unknown tokens Adler et al.
(2008). The core of the disambiguator is an HMM
tagger trained on about 70M unannotated tokens us-
ing EM, and being supervised by the lexicon.

As in the case of Arabic, we also provided data
for the Predicted (gold token / predicted morphol-
ogy) scenario. We used the same sequence labeler,
Morfette (Chrupała et al., 2008), trained on the con-
catenation of POS and morphological gold features,
leading to a model with respectable accuracy.25

4.7 The Hungarian Treebank

Hungarian is an agglutinative language, thus a lemma
can have hundreds of word forms due to derivational
or inflectional affixation (nominal declination and
verbal conjugation). Grammatical information is typ-
ically indicated by suffixes: case suffixes mark the
syntactic relationship between the head and its argu-
ments (subject, object, dative, etc.) whereas verbs
are inflected for tense, mood, person, number, and
the definiteness of the object. Hungarian is also char-
acterized by vowel harmony.26 In addition, there are
several other linguistic phenomena such as causa-
tion and modality that are syntactically expressed in
English but encoded morphologically in Hungarian.

The Data Set The Hungarian data set used in
the shared task is based on the Szeged Treebank,
the largest morpho-syntactic and syntactic corpus
manually annotated for Hungarian. This treebank
is based on newspaper texts and is available in
both constituent-based (Csendes et al., 2005) and
dependency-based (Vincze et al., 2010) versions.

Around 10k sentences of news domain texts were
made available to the shared task.27 Each word is
manually assigned all its possible morpho-syntactic

25POS+morphology prediction accuracy is 91.95% overall
(59.54% for unseen tokens). POS only prediction accuracy is
93.20% overall (71.38% for unseen tokens).

26When vowel harmony applies, most suffixes exist in two
versions – one with a front vowel and another one with a back
vowel – and it is the vowels within the stem that determine which
form of the suffix is selected.

27The original treebank contains 82,000 sentences, 1.2 million
words and 250,000 punctuation marks from six domains.

160

tags and lemmas and the appropriate one is selected
according to the context. Sentences were manu-
ally assigned a constituency-based syntactic struc-
ture, which includes information on phrase structure,
grammatical functions (such as subject, object, etc.),
and subcategorization information (i.e., a given NP
is subcategorized by a verb or an infinitive). The
constituency trees were later automatically converted
into dependency structures, and all sentences were
then manually corrected. Note that there exist some
differences in the grammatical functions applied to
the constituency and dependency versions of the tree-
bank, since some morpho-syntactic information was
coded both as a morphological feature and as dec-
oration on top of the grammatical function in the
constituency trees.

Adapting the Data to the Shared Task Origi-
nally, the Szeged Dependency Treebank contained
virtual nodes for elided material (ELL) and phonolog-
ically covert copulas (VAN). In the current version,
they have been deleted, their daughters have been
attached to the parent of the virtual node, and have
been given complex labels, e.g. COORD-VAN-SUBJ,
where VAN is the type of the virtual node deleted,
COORD is the label of the virtual node and SUBJ is
the label of the daughter itself. When the virtual node
was originally the root of the sentence, its daughter
with a predicative (PRED) label has been selected as
the new root of the sentence (with the label ROOT-
VAN-PRED) and all the other daughters of the deleted
virtual node have been attached to it.

Predicted Morphology In order to provide the
same POS tag set for the constituent and dependency
treebanks, we used the dependency POS tagset for
both treebank instances. Both versions of the tree-
bank are available with gold standard and automatic
morphological annotation. The automatic POS tag-
ging was carried out by a 10-fold cross-validation
on the shared task data set by magyarlanc, a natu-
ral language toolkit for processing Hungarian texts
(segmentation, morphological analysis, POS tagging,
and dependency parsing). The annotation provides
POS tags and deep morphological features for each
input token (Zsibrita et al., 2013).28

28The full data sets of both the constituency and de-
pendency versions of the Szeged Treebank are available at

4.8 The Korean Treebank

The Treebank The Korean corpus is generated by
collecting constituent trees from the KAIST Tree-
bank (Choi et al., 1994), then converting the con-
stituent trees to dependency trees using head-finding
rules and heuristics. The KAIST Treebank consists
of about 31K manually annotated constituent trees
from 97 different sources (e.g., newspapers, novels,
textbooks). After filtering out trees containing an-
notation errors, a total of 27,363 trees with 350,090
tokens are collected.

The constituent trees in the KAIST Treebank29 also
come with manually inspected morphological analy-
sis based on ‘eojeol’. An eojeol contains root-forms
of word tokens agglutinated with grammatical affixes
(e.g., case particles, ending markers). An eojeol can
consist of more than one word token; for instance, a
compound noun “bus stop” is often represented as
one eojeol in Korean, 버스정류장, which can be
broken into two word tokens,버스 (bus) and정류장
(stop). Each eojeol in the KAIST Treebank is sepa-
rated by white spaces regardless of punctuation. Fol-
lowing the Penn Korean Treebank guidelines (Han
et al., 2002), punctuation is separated as individual
tokens, and parenthetical notations surrounded by
round brackets are grouped into individual phrases
with a function tag (PRN in our corpus).

All dependency trees are automatically converted
from the constituent trees. Unlike English, which
requires complicated head-finding rules to find the
head of each phrase (Choi and Palmer, 2012), Ko-
rean is a head final language such that the rightmost
constituent in each phrase becomes the head of that
phrase. Moreover, the rightmost conjunct becomes
the head of all other conjuncts and conjunctions in
a coordination phrase, which aligns well with our
head-final strategy.

The constituent trees in the KAIST Treebank do
not consist of function tags indicating syntactic or
semantic roles, which makes it difficult to generate
dependency labels. However, it is possible to gener-
ate meaningful labels by using the rich morphology
in Korean. For instance, case particles give good

the following website: www.inf.u-szeged.hu/rgai/
SzegedTreebank, and magyarlanc is downloadable from:
www.inf.u-szeged.hu/rgai/magyarlanc.

29See Lee et al. (1997) for more details about the bracketing
guidelines of the KAIST Treebank.

161

indications of what syntactic roles eojeols with such
particles should take. Given this information, 21
dependency labels were generated according to the
annotation scheme proposed by Choi (2013).

Adapting the Data to the Shared Task All details
concerning the adaptation of the KAIST treebank
to the shared task specifications are found in Choi
(2013). Importantly, the rich KAIST treebank tag set
of 1975 POS tag types has been converted to a list of
CoNLL-like feature-attribute values refining coarse
grained POS categories.

Predicted Morphology Two sets of automatic
morphological analyses are provided for this task.
One is generated by the HanNanum morphological
analyzer.30 The HanNanum morphological ana-
lyzer gives the same morphemes and POS tags as the
KAIST Treebank. The other is generated by the Se-
jong morphological analyzer.31 The Sejong morpho-
logical analyzer gives a different set of morphemes
and POS tags as described in Choi and Palmer (2011).

4.9 The Polish Treebank

The Data Set Składnica is a constituency treebank
of Polish (Woliński et al., 2011; Świdziński and
Woliński, 2010). The trees were generated with
a non-probabilistic DCG parser Świgra and then
disambiguated and validated manually. The ana-
lyzed texts come from the one-million-token sub-
corpus of the National Corpus of Polish (NKJP,
(Przepiórkowski et al., 2012)) manually annotated
with morpho-syntactic tags.

The dependency version of Składnica is a re-
sult of an automatic conversion of manually disam-
biguated constituent trees into dependency structures
(Wróblewska, 2012). The conversion was an entirely
automatic process. Conversion rules were based
on morpho-syntactic information, phrasal categories,
and types of phrase-structure rules encoded within
constituent trees. It was possible to extract dependen-
cies because the constituent trees contain information
about the head of the majority of constituents. For
other constituents, heuristics were defined in order to
select their heads.

30http://kldp.net/projects/hannanum
31http://www.sejong.or.kr

The version of Składnica used in the shared task
comprises parse trees for 8,227 sentences.32

Predicted Morphology For the shared task Pre-
dicted scenario, an automatic morphological an-
notation was generated by the PANTERA tagger
(Acedański, 2010).

4.10 The Swedish Treebank

Swedish is moderately rich in inflections, including
a case system. Word order obeys the verb second
constraint in main clauses but is SVO in subordinate
clauses. Main clause order is freer than in English
but not as free as in some other Germanic languages,
such as German. Also, subject agreement with re-
spect to person and number has been dropped in
modern Swedish.

The Data Set The Swedish data sets are taken
from the Talbanken section of the Swedish Treebank
(Nivre and Megyesi, 2007). Talbanken is a syntacti-
cally annotated corpus developed in the 1970s, orig-
inally annotated according to the MAMBA scheme
(Teleman, 1974) with a syntactic layer consisting
of flat phrase structure and grammatical functions.
The syntactic annotation was later automatically con-
verted to full phrase structure with grammatical func-
tions and from that to dependency structure, as de-
scribed by Nivre et al. (2006).

Both the phrase structure and the dependency
version use the functional labels from the original
MAMBA scheme, which provides a fine-grained clas-
sification of syntactic functions with 65 different la-
bels, while the phrase structure annotation (which
had to be inferred automatically) uses a coarse set
of only 8 labels. For the release of the Swedish tree-
bank, the POS level was re-annotated to conform to
the current de facto standard for Swedish, which is
the Stockholm-Umeå tagset (Ejerhed et al., 1992)
with 25 base tags and 25 morpho-syntactic features,
which together produce over 150 complex tags.

For the shared task, we used version 1.2 of the
treebank, where a number of conversion errors in
the dependency version have been corrected. The
phrase structure version was enriched by propagating
morpho-syntactic features from preterminals (POS

32Składnica is available from http://zil.ipipan.waw.
pl/Sklicense.

162

tags) to higher non-terminal nodes using a standard
head percolation table, and a version without crossing
branches was derived using the lifting strategy (Boyd,
2007).

Adapting the Data to the Shared Task Explicit
attribute names were added to the feature field and the
split was changed to match the shared task minimal
training set size.

Predicted Morphology POS tags and morpho-
syntactic features were produced using the Hun-
PoS tagger (Halácsy et al., 2007) trained on the
Stockholm-Umeå Corpus (Ejerhed and Källgren,
1997).

5 Overview of the Participating Systems

With 7 teams participating, more than 14 systems for
French and 10 for Arabic and German, this shared
task is on par with the latest large-scale parsing evalu-
ation campaign SANCL 2012 (Petrov and McDonald,
2012). The present shared task was extremely de-
manding on our participants. From 30 individuals or
teams who registered and obtained the data sets, we
present results for the seven teams that accomplished
successful executions on these data in the relevant
scenarios in the given the time frame.

5.1 Dependency Track
Seven teams participated in the dependency track.
Two participating systems are based on MaltParser:
MALTOPTIMIZER (Ballesteros, 2013) and AI:KU
(Cirik and Şensoy, 2013). MALTOPTIMIZER uses
a variant of MaltOptimizer (Ballesteros and Nivre,
2012) to explore features relevant for the processing
of morphological information. AI:KU uses a combi-
nation of MaltParser and the original MaltOptimizer.
Their system development has focused on the inte-
gration of an unsupervised word clustering method
using contextual and morphological properties of the
words, to help combat sparseness.

Similarly to MaltParser ALPAGE:DYALOG

(De La Clergerie, 2013) also uses a shift-reduce
transition-based parser but its training and decoding
algorithms are based on beam search. This parser is
implemented on top of the tabular logic programming
system DyALog. To the best of our knowledge, this
is the first dependency parser capable of handling
word lattice input.

Three participating teams use the MATE parser
(Bohnet, 2010) in their systems: the BASQUETEAM

(Goenaga et al., 2013), IGM:ALPAGE (Constant et
al., 2013) and IMS:SZEGED:CIS (Björkelund et al.,
2013). The BASQUETEAM uses the MATE parser in
combination with MaltParser (Nivre et al., 2007b).
The system combines the parser outputs via Malt-
Blender (Hall et al., 2007). IGM:ALPAGE also uses
MATE and MaltParser, once in a pipeline architec-
ture and once in a joint model. The models are com-
bined via a re-parsing strategy based on (Sagae and
Lavie, 2006). This system mainly focuses on MWEs
in French and uses a CRF tagger in combination
with several large-scale dictionaries to handle MWEs,
which then serve as input for the two parsers.

The IMS:SZEGED:CIS team participated in both
tracks, with an ensemble system. For the depen-
dency track, the ensemble includes the MATE parser
(Bohnet, 2010), a best-first variant of the easy-first
parser by Goldberg and Elhadad (2010b), and turbo
parser (Martins et al., 2010), in combination with
a ranker that has the particularity of using features
from the constituent parsed trees. CADIM (Marton et
al., 2013b) uses their variant of the easy-first parser
combined with a feature-rich ensemble of lexical and
syntactic resources.

Four of the participating teams use exter-
nal resources in addition to the parser. The
IMS:SZEGED:CIS team uses external morpholog-
ical analyzers. CADIM uses SAMA (Graff et al.,
2009) for Arabic morphology. ALPAGE:DYALOG

and IGM:ALPAGE use external lexicons for French.
IGM:ALPAGE additionally uses Morfette (Chrupała
et al., 2008) for morphological analysis and POS
tagging. Finally, as already mentioned, AI:KU clus-
ters words and POS tags in an unsupervised fashion
exploiting additional, un-annotated data.

5.2 Constituency Track

A single team participated in the constituency parsing
task, the IMS:SZEGED:CIS team (Björkelund et al.,
2013). Their phrase-structure parsing system uses a
combination of 8 PCFG-LA parsers, trained using a
product-of-grammars procedure (Petrov, 2010). The
50-best parses of this combination are then reranked
by a model based on the reranker by Charniak and

163

Johnson (2005).33

5.3 Baselines

We additionally provide the results of two baseline
systems for the nine languages, one for constituency
parsing and one for dependency parsing.

For the dependency track, our baseline system is
MaltParser in its default configuration (the arc-eager
algorithm and liblinear for training). Results marked
as BASE:MALT in the next two sections report the
results of this baseline system in different scenarios.

The constituency parsing baseline is based on the
most recent version of the PCFG-LA model of Petrov
et al. (2006), used with its default settings and five
split/merge cycles, for all languages.34 We use this
parser in two configurations: a ‘1-best’ configura-
tion where all POS tags are provided to the parser
(predicted or gold, depending on the scenario), and
another configuration in which the parser performs
its own POS tagging. These baselines are referred to
as BASE:BKY+POS and BASE:BKY+RAW respec-
tively in the following results sections. Note that
even when BASE:BKY+POS is given gold POS tags,
the Berkeley parser sometimes fails to reach a perfect
POS accuracy. In cases when the parser cannot find a
parse with the provided POS, it falls back on its own
POS tagging for all tokens.

6 Results

The high number of submitted system variants and
evaluation scenarios in the task resulted in a large
number of evaluation scores. In the following evalu-
ation, we focus on the best run for each participant,
and we aim to provide key points on the different
dimensions of analysis resulting from our evaluation
protocol. We invite our interested readers to browse
the comprehensive representation of our results on
the official shared-task results webpages.35

33Note that a slight but necessary change in the configuration
of one of our metrics, which occurred after the system submis-
sion deadline, resulted in the IMS:SZEGED:CIS team to submit
suboptimal systems for 4 languages. Their final scores are ac-
tually slightly higher and can be found in (Björkelund et al.,
2013).

34For Semitic languages, we used the lattice based PCFG-LA
extension by Goldberg (2011).

35http://www.spmrl.org/
spmrl2013-sharedtask-results.html.

6.1 Gold Scenarios
This section presents the parsing results in gold sce-
narios, where the systems are evaluated on gold seg-
mented and tagged input. This means that the se-
quence of terminals, POS tags, and morphological
features are provided based on the treebank anno-
tations. This scenario was used in most previous
shared tasks on data-driven parsing (Buchholz and
Marsi, 2006; Nivre et al., 2007a; Kübler, 2008). Note
that this scenario was not mandatory. We thank our
participants for providing their results nonetheless.

We start by reviewing dependency-based parsing
results, both on the trees and on multi-word expres-
sion, and continue with the different metrics for
constituency-based parsing.

6.1.1 Dependency Parsing
Full Training Set The results for the gold parsing
scenario of dependency parsing are shown in the top
block of table 3.

Among the six systems, IMS:SZEGED:CIS
reaches the highest LAS scores, not only on aver-
age, but for every single language. This shows that
their approach of combining parsers with (re)ranking
provides robust parsing results across languages with
different morphological characteristics. The second
best system is ALPAGE:DYALOG, the third best sys-
tem is MALTOPTIMIZER. The fact that AI:KU is
ranked below the Malt baseline is due to their sub-
mission of results for 6 out of the 9 languages. Simi-
larly, CADIM only submitted results for Arabic and
ranked in the third place for this language, after the
two IMS:SZEGED:CIS runs. IGM:ALPAGE and
BASQUETEAM did not submit results for this setting.

Comparing LAS results across languages is prob-
lematic due to the differences between languages,
treebank size and annotation schemes (see section 3),
so the following discussion is necessarily tentative. If
we consider results across languages, we see that the
lowest results (around 83% for the best performing
system) are reached for Hebrew and Swedish, the
languages with the smallest data sets. The next low-
est result, around 86%, is reached for Basque. Other
languages reach similar LAS scores, around 88-92%.
German, with the largest training set, reaches the
highest LAS, 91.83%.

Interstingly, all systems have high LAS scores
on the Korean Treebank given a training set size

164

team Arabic Basque French German Hebrew Hungarian Korean Polish Swedish avg.

1) gold setting / full training set

IMS:SZEGED:CIS 89.83 86.68 90.29 91.83 83.87 88.06 89.59 89.58 83.97 88.19
ALPAGE:DYALOG 85.87 80.39 87.69 88.25 80.70 79.60 88.23 86.00 79.80 84.06
MALTOPTIMIZER 87.03 82.07 85.71 86.96 80.03 83.14 89.39 80.49 77.67 83.61
BASE:MALT 82.28 69.19 79.86 79.98 76.61 72.34 88.43 77.70 75.73 78.01
AI:KU 86.39 86.98 79.42 83.67 85.16 78.87 55.61
CADIM 85.56 9.51

2) gold setting / 5k training set

IMS:SZEGED:CIS 87.35 85.69 88.73 87.70 83.87 87.21 83.38 89.16 83.97 86.34
ALPAGE:DYALOG 83.25 79.11 85.66 83.88 80.70 78.42 81.91 85.67 79.80 82.04
MALTOPTIMIZER 85.30 81.40 84.93 83.59 80.03 82.37 83.74 79.79 77.67 82.09
BASE:MALT 80.36 67.13 78.16 76.64 76.61 71.27 81.93 76.64 75.73 76.05
AI:KU 84.98 83.47 79.42 82.84 84.37 78.87 54.88
CADIM 82.67 9.19

3) predicted setting / full training set

IMS:SZEGED:CIS 86.21 85.14 85.24 89.65 80.89 86.13 86.62 87.07 82.13 85.45
ALPAGE:DYALOG 81.20 77.55 82.06 84.80 73.63 75.58 81.02 82.56 77.54 79.55
MALTOPTIMIZER 81.90 78.58 79.00 82.75 73.01 79.63 82.65 79.89 75.82 79.25
BASE:MALT 80.36 70.11 77.98 77.81 69.97 70.15 82.06 75.63 73.21 75.25
AI:KU 72.57 82.32 69.01 78.92 81.86 76.35 51.23
BASQUETEAM 84.25 84.51 88.66 84.97 80.88 47.03
IGM:ALPAGE 85.86 9.54
CADIM 83.20 9.24

4) predicted setting / 5k training set

IMS:SZEGED:CIS 83.66 83.84 83.45 85.08 80.89 85.24 80.80 86.69 82.13 83.53
MALTOPTIMIZER 79.64 77.59 77.56 79.22 73.01 79.00 75.90 79.50 75.82 77.47
ALPAGE:DYALOG 78.65 76.06 80.11 73.07 73.63 74.48 73.79 82.04 77.54 76.60
BASE:MALT 78.48 68.12 76.54 74.81 69.97 69.08 74.87 75.29 73.21 73.37
AI:KU 71.23 79.16 69.01 78.04 81.30 76.35 50.57
BASQUETEAM 83.19 82.65 84.70 84.01 80.88 46.16
IGM:ALPAGE 83.60 9.29
CADIM 80.51 8.95

Table 3: Dependency parsing: LAS scores for full and 5k training sets and for gold and predicted input. Results in bold
show the best results per language and setting.

of approximately 23,000 sentences, which is a little
over half of the German treebank. For German, on
the other hand, only the IMS:SZEGED:CIS system
reaches higher LAS scores than for Korean. This
final observation indicates that more than treebank
size is important for comparing system performance
across treebanks. This is the reason for introducing
the reduced set scenario, in which we can see how the
participating system perform on a common ground,
albeit small.

5k Training Set The results for the gold setting
on the 5k train set are shown in the second block
of Table 3. Compared with the full training, we
see that there is a drop of around 2 points in this

setting. Some parser/language pairs are more sensi-
tive to data sparseness than others. CADIM, for in-
stance, exhibit a larger drop than MALTOPTIMIZER

on Arabic, and MALTOPTIMIZER shows a smaller
drop than IMS:SZEGED:CIS on French. On average,
among all systems that covered all languages, MALT-
OPTIMIZER has the smallest drop when moving to
5k training, possibly since the automatic feature opti-
mization may differ for different data set sizes.

Since all languages have the same number of sen-
tences in the train set, these results can give us limited
insight into the parsing complexity of the different
treebanks. Here, French, Arabic, Polish, and Korean
reach the highest LAS scores while Swedish reaches

165

Team F_MWE F_COMP F_MWE+POS

1) gold setting / full training set
AI:KU 99.39 99.53 99.34
IMS:SZEGED:CIS 99.26 99.39 99.21
MALTOPTIMIZER 98.95 98.99 0
ALPAGE:DYALOG 98.32 98.81 0
BASE:MALT 68.7 72.55 68.7

2) predicted setting / full training set
IGM:ALPAGE 80.81 81.18 77.37
IMS:SZEGED:CIS 79.45 80.79 70.48
ALPAGE:DYALOG 77.91 79.25 0
BASQUE-TEAM 77.19 79.81 0
MALTOPTIMIZER 70.29 74.25 0
BASE:MALT 67.49 71.01 0
AI:KU 0 0 0

3) predicted setting / 5k training set
IGM:ALPAGE 77.66 78.68 74.04
IMS:SZEGED:CIS 77.28 78.92 70.42
ALPAGE:DYALOG 75.17 76.82 0
BASQUETEAM 73.07 76.58 0
MALTOPTIMIZER 65.76 70.42 0
BASE:MALT 62.05 66.8 0
AI:KU 0 0 0

Table 4: Dependency Parsing: MWE results

the lowest one. Treebank variance depends not only
on the language but also on annotation decisions,
such as label set (Swedish, interestingly, has a rela-
tively rich one). A more careful comparison would
then take into account the correlation of data size,
label set size and parsing accuracy. We investigate
these correlations further in section 7.1.

6.1.2 Multiword Expressions
MWE results on the gold setting are found at

the top of Table 4. All systems, with the excep-
tion of BASE:MALT, perform exceedingly well in
identifying the spans and non-head components of
MWEs given gold morphology.36 These almost per-
fect scores are the consequence of the presence of
two gold MWE features, namely MWEHEAD and
PRED=Y, which respectively indicate the node span
of the whole MWE and its dependents, which do not
have a gold feature field. The interesting scenario is,
of course, the predicted one, where these features are
not provided to the parser, as in any realistic applica-
tion.

36Note that for the labeled measure F_MWE+POS, both
MALTOPTIMIZER and ALPAGE:DYALOG have an F-score of
zero, since they do not attempt to predict the MWE label at all.

6.1.3 Constituency Parsing
In this part, we provide accuracy results for phrase-

structure trees in terms of ParsEval F-scores. Since
ParsEval is sensitive to the non-terminals-per-word
ratio in the data set (Rehbein and van Genabith,
2007a; Rehbein and van Genabith, 2007b), and given
the fact that this ratio varies greatly within our data
set (as shown in Table 2), it must be kept in mind that
ParsEval should only be used for comparing parsing
performance over treebank instances sharing the ex-
act same properties in term of annotation schemes,
sentence length and so on. When comparing F-Scores
across different treebanks and languages, it can only
provide a rough estimate of the relative difficulty or
ease of parsing these kinds of data.

Full Training Set The F-score results for the gold
scenario are provided in the first block of Table 5.
Among the two baselines, BASE:BKY+POS fares
better than BASE:BKY+RAW since the latter selects
its own POS tags and thus cannot benefit from the
gold information. The IMS:SZEGED:CIS system
clearly outperforms both baselines, with Hebrew as
an outlier.37

As in the dependency case, the results are not
strictly comparable across languages, yet we can
draw some insights from them. We see consider-
able differences between the languages, with Basque,
Hebrew, and Hungarian reaching F-scores in the low
90s for the IMS:SZEGED:CIS system, Korean and
Polish reaching above-average F-scores, and Ara-
bic, French, German, and Swedish reaching F-scores
below the average, but still in the low 80s. The per-
formance is, again, not correlated with data set sizes.
Parsing Hebrew, with one of the smallest training
sets, obtains higher accuracy many other languages,
including Swedish, which has the same training set
size as Hebrew. It may well be that gold morphologi-
cal information is more useful for combatting sparse-
ness in languages with richer morphology (though
Arabic here would be an outlier for this conjecture),
or it may be that certain treebanks and schemes are
inherently harder to parser than others, as we investi-
gate in section 7.

For German, the language with the largest training

37It might be that the easy layer of syntactic tags benefits from
the gold POS tags provided. See section 4 for further discussion
of this layer.

166

team Arabic Basque French German Hebrew Hungarian Korean Polish Swedish avg.

1) gold setting / full training set
IMS:SZEGED:CIS 82.20 90.04 83.98 82.07 91.64 92.60 86.50 88.57 85.09 86.97
BASE:BKY+POS 80.76 76.24 81.76 80.34 92.20 87.64 82.95 88.13 82.89 83.66
BASE:BKY+RAW 79.14 69.78 80.38 78.99 87.32 81.44 73.28 79.51 78.94 78.75

2) gold setting / 5k training set
IMS:SZEGED:CIS 79.47 88.45 82.25 74.78 91.64 91.87 80.10 88.18 85.09 84.65
BASE:BKY+POS 77.54 74.06 78.07 71.37 92.20 86.74 72.85 87.91 82.89 80.40
BASE:BKY+RAW 75.22 67.16 75.91 68.94 87.32 79.34 60.40 78.30 78.94 74.61

3) predicted setting / full training set
IMS:SZEGED:CIS 81.32 87.86 81.83 81.27 89.46 91.85 84.27 87.55 83.99 85.49
BASE:BKY+POS 78.66 74.74 79.76 78.28 85.42 85.22 78.56 86.75 80.64 80.89
BASE:BKY+RAW 79.19 70.50 80.38 78.30 86.96 81.62 71.42 79.23 79.18 78.53

4) predicted setting / 5k training set
IMS:SZEGED:CIS 78.85 86.65 79.83 73.61 89.46 90.53 78.47 87.46 83.99 83.21
BASE:BKY+POS 74.84 72.35 76.19 69.40 85.42 83.82 67.97 87.17 80.64 77.53
BASE:BKY+RAW 74.57 66.75 75.76 68.68 86.96 79.35 58.49 78.38 79.18 74.24

Table 5: Constituent Parsing: ParsEval F-scores for full and 5k training sets and for gold and predicted input. Results in
bold show the best results per language and setting.

set and the highest scores in dependency parsing,
the F-scores are at the lower end. These low scores,
which are obtained despite the larger treebank and
only moderately free word-order, are surprising. This
may be due to case syncretism; gold morphological
information exhibits its own ambiguity and thus may
not be fully utilized.

5k Training Set Parsing results on smaller com-
parable test sets are presented in the second block
of Table 5. On average, IMS:SZEGED:CIS is less
sensitive than BASE:BKY+POS to the reduced size.
Systems are not equally sensitive to reduced training
sets, and the gaps range from 0.4% to 3%, with Ger-
man and Korean as outliers (Korean suffering a 6.4%
drop in F-score and German 7.3%). These languages
have the largest treebanks in the full setting, so it is
not surprising that they suffer the most. But this in
itself does not fully explain the cross-treebank trends.
Since ParsEval scores are known to be sensitive to
the label set sizes and the depth of trees, we provide
LeafAncestor scores in the following section.

6.1.4 Leaf-Ancestor Results
The variation across results in the previous subsec-

tion may have been due to differences across annota-
tion schemes. One way to neutralize this difference

(to some extent) is to use a different metric. We
evaluated the constituency parsing results using the
Leaf-Ancestor (LA) metric, which is less sensitive
to the number of nodes in a tree (Rehbein and van
Genabith, 2007b; Kübler et al., 2008). As shown in
Table 6, these results are on a different (higher) scale
than ParsEval, and the average gap between the full
and 5k setting is lower.

Full Training Set The LA results in gold setting
for full training sets are shown in the first block of Ta-
ble 6. The trends are similar to the ParsEval F-scores.
German and Arabic present the lowest LA scores
(in contrast to the corresponding F-scores, Arabic is
a full point below German for IMS:SZEGED:CIS).
Basque and Hungarian have the highest LA scores.
Hebrew, which had a higher F-score than Basque,
has a lower LA than Basque and is closer to French.
Korean also ranks worse in the LA analysis. The
choice of evaluation metrics thus clearly impacts sys-
tem rankings – F-scores rank some languages suspi-
ciously high (e.g., Hebrew) due to deeper trees, and
another metric may alleviate that.

5k Training Set The results for the leaf-ancestor
(LA) scores in the gold setting for the 5k training set
are shown in the second block of Table 6. Across

167

team Arabic Basque French German Hebrew Hungarian Korean Polish Swedish avg.

1) gold setting / full training set
IMS:SZEGED:CIS 88.61 94.90 92.51 89.63 92.84 95.01 91.30 94.52 91.46 92.31
BASE:BKY+POS 87.85 91.55 91.74 88.47 92.69 92.52 90.82 92.81 90.76 91.02
BASE:BKY+RAW 87.05 89.71 91.22 87.77 91.29 90.62 87.11 90.58 88.97 89.37

2) gold setting / 5k training set
IMS:SZEGED:CIS 86.68 94.21 91.56 85.74 92.84 94.79 88.87 94.17 91.46 91.15
BASE:BKY+POS 86.26 90.72 89.71 84.11 92.69 92.11 86.75 92.91 90.76 89.56
BASE:BKY+RAW 84.97 88.68 88.74 83.08 91.29 89.94 81.82 90.31 88.97 87.53

3) predicted setting / full training set
IMS:SZEGED:CIS 88.45 94.50 91.79 89.32 91.95 94.90 90.13 94.11 91.05 91.80
BASE:BKY+POS 86.60 90.90 90.96 87.46 89.66 91.72 89.10 92.56 89.51 89.83
BASE:BKY+RAW 86.97 89.91 91.11 87.46 90.77 90.50 86.68 90.48 89.16 89.23

4) predicted setting / 5k training set
IMS:SZEGED:CIS 86.69 93.85 90.76 85.20 91.95 94.05 87.99 93.99 91.05 90.61
BASE:BKY+POS 84.76 89.83 89.18 83.05 89.66 91.24 84.87 92.74 89.51 88.32
BASE:BKY+RAW 84.63 88.50 89.00 82.69 90.77 89.93 81.50 90.08 89.16 87.36

Table 6: Constituent Parsing: Leaf-Ancestor scores for full and 5k training sets and for gold and predicted input.

parsers, IMS:SZEGED:CIS again has a smaller drop
than BASE:BKY+POS on the reduced size. German
suffers the most from the reduction of the training
set, with a loss of approximately 4 points. Korean,
however, which was also severely affected in terms
of F-scores, only loses 1.17 points in the LA score.
On average, the LA seem to reflect a smaller drop
when reducing the training set — this underscores
again the impact of the choice of metrics on system
evaluation.

6.2 Predicted Scenarios

Gold scenarios are relatively easy since syntactically
relevant morphological information is disambiguated
in advance and is provided as input. Predicted scenar-
ios are more difficult: POS tags and morphological
features have to be automatically predicted, by the
parser or by external resources.

6.2.1 Dependency Parsing
Eight participating teams submitted dependency

results for this scenario. Two teams submitted for a
single language. Four teams covered all languages.

Full Training Set The results for the predicted
scenario in full settings are shown in the third
block of Table 3. Across the board, the re-
sults are considerably lower than the gold sce-

nario. Again, IMS:SZEGED:CIS is the best per-
forming system, followed by ALPAGE:DYALOG and
MALTOPTIMIZER. The only language for which
IMS:SZEGED:CIS is outperformed is French, for
which IGM:ALPAGE reaches higher results (85.86%
vs. 85.24%). This is due to the specialized treatment
of French MWEs in the IGM:ALPAGE system, which
is thereby shown to be beneficial for parsing in the
predicted setting.

If we compare the results for the predicted set-
ting and the gold one, given the full training set,
the IMS:SZEGED:CIS system shows small differ-
ences between 1.5 and 2 percent. The only ex-
ception is French, for which the LAS drops from
90.29% to 85.24% in the predicted setting. The
other systems show somewhat larger differences than
IMS:SZEGED:CIS, with the highest drops for Ara-
bic and Korean. The AI:KU system shows a similar
problem as IMS:SZEGED:CIS for French.

5k Training Set When we consider the predicted
setting for the 5k training set, in the last block of
Table 3, we see the same trends as comparing with
the full training set or when comparing to the gold
setting. Systems suffer from not having gold stan-
dard data, and they suffer from the small training set.
Interestingly, the loss between the different training
set sizes in the predicted setting is larger than in the

168

gold setting, but only marginally so, with a differ-
ence < 0.5. In other words, the predicted setting
adds a challenge to parsing, but it only minimally
compounds data sparsity.

6.2.2 Multiword Expressions Evaluation
In the predicted setting, shown in the second

block of table 4 for the full training set and in the
third block of the same table for the 5k training set,
we see that only two systems, IGM:ALPAGE and
IMS:SZEGED:CIS can predict the MWE label when
it is not present in the training set. IGM:ALPAGE’s
approach of using a separate classifier in combination
with external dictionaries is very successful, reach-
ing an F_MWE+POS score of 77.37. This is com-
pared to the score of 70.48 by IMS:SZEGED:CIS,
which predicts this node label as a side effect of
their constituent feature enriched dependency model
(Björkelund et al., 2013). AI:KU has a zero score
for all predicted settings, which results from an erro-
neous training on the gold data rather than the pre-
dicted data.38

6.2.3 Constituency Parsing
Full Training Set The results for the predicted set-
ting with the full training set are shown in the third
block of table 5. A comparison with the gold setting
shows that all systems have a lower performance in
the predicted scenario, and the differences are in the
range of 0.88 for Arabic and 2.54 for Basque. It is
interesting to see that the losses are generally smaller
than in the dependency framework: on average, the
loss across languages is 2.74 for dependencies and
1.48 for constituents. A possible explanation can be
found in the two-dimensional structure of the con-
stituent trees, where only a subset of all nodes is
affected by the quality of morphology and POS tags.
The exception to this trend is Basque, for which the
loss in constituents is a full point higher than for de-
pendencies. Another possible explanation is that all
of our constituent parsers select their own POS tags
in one way or another. Most dependency parsers ac-
cept predicted tags from an external resource, which
puts an upper-bound on their potential performance.

5k Training Set The results for the predicted set-
ting given the 5k training set are shown in the bottom

38Unofficial updated results are to to be found in (Cirik and
Şensoy, 2013)

block of table 5. They show the same trends as the
dependency ones: The results are slightly lower than
the results obtained in gold setting and the ones uti-
lizing the full training set.

6.2.4 Leaf Ancestor Metrics
Full Training Set The results for the predicted sce-
nario with a full training set are shown in the third
block of table 6. In the LA evaluation, the loss
in moving from gold morphology are considerably
smaller than in F-scores. For most languages, the
loss is less than 0.5 points. Exceptions are French
with a loss of 0.72, Hebrew with 0.89, and Korean
with 1.17. Basque, which had the highest loss in
F-scores, only shows a minor loss of 0.4 points. Also,
the average loss of 0.41 points is much smaller than
the one in the ParsEval score, 1.48.

5k Training Set The results for the predicted set-
ting given the 5k training set are shown in the last
block of table 6. These results, though considerably
lower (around 3 points), exhibit the exact same trends
as observed in the gold setting.

6.3 Realistic Raw Scenarios
The previous scenarios assume that input surface to-
kens are identical to tree terminals. For languages
such as Arabic and Hebrew, this is not always the
case. In this scenario, we evaluate the capacity of a
system to predict both morphological segmentation
and syntactic parse trees given raw, unsegmented
input tokens. This may be done via a pipeline as-
suming a 1-st best morphological analysis, or jointly
with parsing, assuming an ambiguous morpholog-
ical analysis lattice as input. In this task, both of
these scenarios are possible (see section 3). Thus,
this section presents a realistic evaluation of the par-
ticipating systems, using TedEval, which takes into
account complete morpho-syntactic parses.

Tables 7 and 8 present labeled and unlabeled
TedEval results for both constituency and depen-
dency parsers, calculated only for sentence of length
<= 70.39 We firstly observe that labeled TedEval
scores are considerably lower than unlabeled Ted-
Eval scores, as expected, since unlabeled scores eval-
uate only structural differences. In the labeled setup,

39TedEval builds on algorithms for calculating edit distance
on complete trees (Bille, 2005). In these algorithms, longer
sentences take considerably longer to evaluate.

169

Arabic Arabic Hebrew All
full training set 5k training set

Acc (x100) Ex (%) Acc (x100) Ex (%) Acc (x100) Ex (%) Avg. Soft Avg.
IMS:SZEGED:CIS (Bky) 83.34 1.63 82.54 0.67 56.47 0.67 69.51 69.51
IMS:SZEGED:CIS 89.12 8.37 87.82 5.56 86.08 8.27 86.95 86.95
CADIM 87.81 6.63 86.43 4.21 - - 43.22 86.43
MALTOPTIMIZER 86.74 5.39 85.63 3.03 83.05 5.33 84.34 84.34
ALPAGE:DYALOG 86.60 5.34 85.71 3.54 82.96 6.17 41.48 82.96
ALPAGE:DYALOG (RAW) - - - - 82.82 4.35 41.41 82.82
AI:KU - - - - 78.57 3.37 39.29 78.57

Table 7: Realistic Scenario: Tedeval Labeled Accuracy and Exact Match for the Raw scenario.
The upper part refers to constituency results, the lower part refers to dependency results

Arabic Arabic Hebrew All
full training set 5k training set

Acc (x100) Ex (%) Acc (x100) Ex (%) Acc (x100) Ex (%) Avg. Soft Avg.
IMS:SZEGED:CIS (Bky) 92.06 9.49 91.29 7.13 89.30 13.60 90.30 90.30
IMS:SZEGED:CIS 91.74 9.83 90.85 7.30 89.47 16.97 90.16 90.16
ALPAGE:DYALOG 89.99 7.98 89.46 5.67 88.33 12.20 88.90 88.90
MALTOPTIMIZER 90.09 7.08 89.47 5.56 87.99 11.64 88.73 88.73
CADIM 90.75 8.48 89.89 5.67 - - 44.95 89.89
ALPAGE:DYALOG (RAW) - - - - 87.61 10.24 43.81 87.61
AI:KU - - - - 86.70 8.98 43.35 86.70

Table 8: Realistic Scenario: Tedeval Unlabeled Accuracy and Exact Match for the Raw scenario.
Top upper part refers to constituency results, the lower part refers to dependency results.

the IMS:SZEGED:CIS dependency parser are the
best for both languages and data set sizes. Table 8
shows that their unlabeled constituency results reach
a higher accuracy than the next best system, their
own dependency results. However, a quick look at
the exact match metric reveals lower scores than for
its dependency counterparts.

For the dependency-based joint scenarios, there
is obviously an upper bound on parser performance
given inaccurate segmentation. The transition-based
systems, ALPAGE:DYALOG & MALTOPTIMIZER,
perform comparably on Arabic and Hebrew, with
ALPAGE:DYALOG being slightly better on both lan-
guages. Note that ALPAGE:DYALOG reaches close
results on the 1-best and the lattice-based input set-
tings, with a slight advantage for the former. This is
partly due to the insufficient coverage of the lexical
resource we use: many lattices do not contain the
gold path, so the joint prediction can only as be high
as the lattice predicted path allows.

7 Towards In-Depth Cross-Treebank
Evaluation

Section 6 reported evaluation scores across systems
for different scenarios. However, as noted, these re-
sults are not comparable across languages, represen-
tation types and parsing scenarios due to differences
in the data size, label set size, length of sentences and
also differences in evaluation metrics.

Our following discussion in the first part of this
section highlights the kind of impact that data set
properties have on the standard metrics (label set size
on LAS, non-terminal nodes per sentence on F-score).
Then, in the second part of this section we use the
TedEval cross-experiment protocols for comparative
evaluation that is less sensitive to representation types
and annotation idiosyncrasies.

7.1 Parsing Across Languages and Treebanks
To quantify the impact of treebank characteristics on
parsing parsing accuracy we looked at correlations
of treebank properties with parsing results. The most
highly correlated combinations we have found are
shown in Figures 2, 3, and 4 for the dependency track
and the constituency track (F-score and LeafAnces-

170

21/09/13 03:00SPMRL charts

Page 3 sur 3http://pauillac.inria.fr/~seddah/updated_official.spmrl_results.html

Correlation between label set size, treebank size, and mean LAS

FrPFrPFrP

FrPFrPFrP

GePGePGeP

GePGePGePHuPHuPHuP

HuPHuPHuP

SwPSwPSwP

ArPArPArP

ArPArPArP

ArGArGArG

ArGArGArG

BaPBaPBaP

BaPBaPBaP

FrGFrGFrG

FrGFrGFrG

GeGGeGGeG

GeGGeGGeG

HePHePHeP

HeGHeGHeG

HuGHuGHuG

HuGHuGHuG

PoPPoPPoP

PoPPoPPoP

PoGPoGPoG

PoGPoGPoG

SwGSwGSwG
BaGBaGBaG

BaGBaGBaG

KoPKoPKoP

KoPKoPKoP

KoGKoGKoG

KoGKoGKoG

10 50 100 500 1 000
72

74

76

78

80

82

84

86

88

90

treebank size / #labels

LA
S

 (%
)

Figure 2: The correlation between treebank size, label set size, and LAS scores. x: treebank size / #labels ; y: LAS (%)

01/10/13 00:43SPMRL charts: all sent.

Page 1 sur 5file:///Users/djame2/=Boulot/=PARSING-FTB/statgram/corpus/SPMRL-S…/SPMRL_FINAL/RESULTS/OFFICIAL/official_ptb-all.spmrl_results.html

SPMRL Results charts (Parseval): Const. Parsing Track (gold tokens, all sent.)
(13/10/01 00:34:34

Arabic Basque French German Hebrew Hungarian Korean Polish Swedish Synthesis

pred/full pred/5k gold/full gold/5k Correlation charts

Correlation between treebank size (#Non terminal), number of sentences (#sent) and mean F1

Arabic

Basque

French

German

Hebrew

Hungarian

Korean

Polish

Swedish

ArPArPArP

ArGArGArG BaPBaPBaP

BaGBaGBaG

FrPFrPFrP

FrGFrGFrG

GePGePGeP

GeGGeGGeG

HePHePHeP

HeGHeGHeG

HuPHuPHuP

HuGHuGHuG

KoPKoPKoP

KoGKoGKoG

PoPPoPPoP

PoGPoGPoG

SwPSwPSwP

SwGSwGSwG

8 9 10
72

74

76

78

80

82

84

86

88

90

92

treebank size (#Non terminal) / #sent

F1
 (%

)

Figure 3: The correlation between the non terminals per sentence ratio and F-scores. x: #non terminal/ #sentence ; y:
F1 (%)

171

tor) respectively.
Figure 2 presents the LAS against the average num-

ber of tokens relative to the number of labels. The
numbers are averaged per language over all partici-
pating systems, and the size of the “bubbles” is pro-
portional to the number of participants for a given
language setting. We provide “bubbles” for all lan-
guages in the predicted (-P) and gold (-G) setting,
for both training set sizes. The lower dot in terms
of parsing scores always corresponds to the reduced
training set size.

Figure 2 shows a clear correlation between data-
set complexity and parsing accuracy. The simpler
the data set is (where “simple" here translates into
large data size with a small set of labels), the higher
the results of the participating systems. The bubbles
reflects a diagonal that indicates correlation between
these dimensions. Beyond that, we see two interest-
ing points off of the diagonal. The Korean treebank
(pink) in the gold setting and full training set can be
parsed with a high LAS relative to its size and label
set. It is also clear that the Hebrew treebank (purple)
in the predicted version is the most difficult one to
parse, relative to our expectation about its complexity.
Since the Hebrew gold scenario is a lot closer to the
diagonal again, it may be that this outlier is due to the
coverage and quality of the predicted morphology.

Figure 340 shows the correlation of data complex-
ity in terms of the average number of non-terminals
per sentence, and parsing accuracy (ParsEval F-
score). Parsing accuracy is again averaged over all
participating systems for a given language. In this
figure, we see a diagonal similar to the one in figure 2,
where Arabic (dark blue) has high complexity of the
data (here interpreted as flat trees, low number of
non terminals per sentence) and low F-scores accord-
ingly. Korean (pink), Swedish (burgundy), Polish
(light green), and Hungarian (light blue) follow, and
then Hebrew (purple) is a positive outlier, possibly
due to an additional layer of “easy" syntactic POS
nodes which increases tree size and inflates F-scores.
French (orange), Basque (red), and German (dark
green) are negative outliers, falling off the diago-
nal. German has the lowest F-score with respect to

40This figure was created from the IMS:SZEGED:CIS
(Const.) and our own PCFG-LA baseline in POS Tagged mode
(BASE:BKY+POS) so as to avoid the noise introduced by the
parser’s own tagging step (BASE:BKY+RAW).

what would be expected for the non-terminals per
sentence ratio, which is in contrast to the LAS fig-
ure where German occurs among the less complex
data set to parse. A possible explanation may be
the crossing branches in the original treebank which
were re-attached. This creates flat and variable edges
which might be hard predict accurately.

Figure 441 presents the correlation between parsing
accuracy in terms the LeafAncestor metrics (macro
averaged) and treebank complexity in terms of the
average number of non-terminals per sentence. As
in the correlation figures, the parsing accuracy is
averaged over the participanting systems for any lan-
guage. The LeafAncestor accuracy is calculated over
phrase structure trees, and we see a similar diago-
nal to the one in Figure 3 showing that flatter tree-
banks are harder (that is, are correlated with lower
averaged scores) But, its slope is less steep than for
the F-score, which confirms the observation that the
LeafAncestor metric is less sensitive than F-score to
the non-terminals-per-sentence ratio.

Similarly to Figure 3, German is a negative outlier,
which means that this treebank is harder to parse – it
obtains lower scores on average than we would ex-
pect. As for Hebrew, it is much closer to the diagonal.
As it turns out, the "easy" POS layer that inflates the
scores does not affect the LA ratings as much.

7.2 Evaluation Across Scenarios, Languages
and Treebanks

In this section we analyze the results in cross-
scenario, cross-annotation, and cross-framework set-
tings using the evaluation protocols discussed in
(Tsarfaty et al., 2012b; Tsarfaty et al., 2011; Tsarfaty
et al., 2012a).

As a starting point, we select comparable sections
of the parsed data, based on system runs trained on
the small train set (train5k). For those, we selected
subsets containing the first 5,000 tree terminals (re-
specting sentence boundaries) of the test set. We only
used TedEval on sentences up to 70 terminals long,
and projectivized non-projective sentences in all sets.
We use the TedEval metrics to calculate scores on
both constituency and dependency structures in all
languages and all scenarios. Since the metric de-
fines one scale for all of these different cases, we can

41This figure was created under the same condition as the
F-score correlation in figure (Figure 3).

172

04/10/13 23:05SPMRL charts:

Page 1 sur 6file:///Users/djame2/=Boulot/=PARSING-FTB/statgram/corpus/SPMRL-SHAREDTASK/SPMRL_FINAL/RESULTS/TESTLEAF.spmrl_results.html

SPMRL Results charts (Parseval): Const. Parsing Track (gold tokens,)
(13/10/04 23:05:31

Arabic Basque French German Hebrew Hungarian Korean Polish Swedish

Synthesis

pred/full pred/5k gold/full gold/5k Correlation charts

Correlation between treebank size (#Non terminal), number of sentences (#sent) and mean Leaf Accuracy

ArPArPArP

ArGArGArG

BaPBaPBaP

BaGBaGBaG

FrPFrPFrP

FrGFrGFrG

GePGePGeP

HePHePHeP

HeGHeGHeG

HuPHuPHuP

HuGHuGHuG

KoPKoPKoP

KoGKoGKoG

PoPPoPPoP
PoGPoGPoG

SwPSwPSwP

SwGSwGSwG

GeGGeGGeG

8 9 10
74

76

78

80

82

84

86

88

90

92

94

treebank size (#Non terminal) / #sent

F1
 (%

)

Figure 4: The correlation between the non terminals per sentence ratio and Leaf Accuracy (macro) scores. x: #non
terminal/ #sentence ; y: Acc.(%)

compare the performance across annotation schemes,
assuming that those subsets are representative of their
original source.42

Ideally, we would be using labeled TedEval scores,
as the labeled parsing task is more difficult, and la-
beled parses are far more informative than unlabeled
ones. However, most constituency-based parsers do
not provide function labels as part of the output, to
be compared with the dependency arcs. Furthermore,
as mentioned earlier, we observed a huge difference
between label set sizes for the dependency runs. Con-
sequently, labeled scores will not be as informative
across treebanks and representation types. We will
therefore only use labels across scenarios for the
same language and representation type.

42We choose this sample scheme for replicability. We first
tried sampling sentences, aiming at the same average sentence
length (20), but that seemed to create artificially difficult test sets
for languages as Polish and overly simplistic ones for French or
Arabic.

7.2.1 Cross-Scenario Evaluation: raw vs. gold
One novel aspect of this shared task is the evalu-

ation on non-gold segmentation in addition to gold
morphology. One drawback is that the scenarios are
currently not using the same metrics — the metrics
generally applied for gold and predicted scenrios can-
not apply for raw. To assess how well state of the art
parsers perform in raw scenarios compared to gold
scenarios, we present here TedEval results comparing
raw and gold systems using the evaluation protocol
of Tsarfaty et al. (2012b).

Table 9 presents the labeled and unlabeled results
for Arabic and Hebrew (in Full and 5k training set-
tings), and Table 10 presents unlabeled TedEval re-
sults (for all languages) in the gold settings. The
unlabeled TedEval results for the raw settings are
substantially lower then TedEval results on the gold
settings for both languages.

When comparing the unlabeled TedEval results for
Arabic and Hebrew on the participating systems, we
see a loss of 3-4 points between Table 9 (raw) and Ta-
ble 10 (gold). In particular we see that for the best per-

173

forming systems on Arabic (IMS:SZEGED:CIS for
both constituency and dependency), the gap between
gold and realistic scenarios is 3.4 and 4.3 points,
for the constituency and the dependency parser re-
spectively. These results are on a par with results
by Tsarfaty et al. (2012b), who showed for different
settings, constituency and dependency based, that
raw scenarios are considerably more difficult to parse
than gold ones on the standard split of the Modern
Hebrew treebank.

For Hebrew, the performance gap between unla-
beled TedEval in raw (Table 9) and gold (Table 10)
is even more salient, with around 7 and 8 points of
difference between the scenarios. We can only specu-
late that such a difference may be due to the difficulty
of resolving Hebrew morpho-syntactic ambiguities
without sufficient syntactic information. Since He-
brew and Arabic now have standardized morpholog-
ically and syntactically analyzed data sets available
through this task, it will be possible to investigate
further how cross-linguistic differences in morpho-
logical ambiguity affect full-parsing accuracy in raw
scenarios.

This section compared the raw and gold parsing
results only on unlabeled TedEval metrics. Accord-
ing to what we have seen so far is expected that
for labeled TedEval metrics using the same protocol,
the gap between gold and raw scenario will be even
greater.

7.2.2 Cross-Framework Evaluation:
Dependency vs. Constituency

In this section, our focus is on comparing parsing
results across constituency and dependency parsers
based on the protocol of Tsarfaty et al. (2012a) We
have only one submission from IMS:SZEGED:CIS
in the constituency track, and. from the same group,
a submission on the dependency track. We only com-
pare the IMS:SZEGED:CIS results on constituency
and dependency parsing with the two baselines we
provided. The results of the cross-framework evalua-
tion protocol are shown in Table 11.

The results comparing the two variants of the
IMS:SZEGED:CIS systems show that they are very
close for all languages, with differences ranging from
0.03 for German to 0.8 for Polish in the gold setting.

It has often been argued that dependency parsers
perform better than a constituency parser, but we

notice that when using a cross framework protocol,
such as TedEval, and assuming that our test set sam-
ple is representative, the difference between the in-
terpretation of both representation’s performance is
alleviated. Of course, here the metric is unlabeled, so
it simply tells us that both kind of parsing models are
equally able to provide similar tree structures. Said
differently, the gaps in the quality of predicting the
same underlying structure across representations for
MRLs is not as large as is sometimes assumed.

For most languages, the baseline constituency
parser performs better than the dependency base-
line one, with Basque and Korean as an exception,
and at the same time, the dependency version of
IMS:SZEGED:CIS performs slightly better than their
constituent parser for most languages, with the excep-
tion of Hebrew and Hungarian. It goes to show that,
as far as these present MRL results go, there is no
clear preference for a dependency over a constituency
parsing representation, just preferences among par-
ticular models.

More generally, we can say that even if the linguis-
tic coverage of one theory is shown to be better than
another one, it does not necessarily mean that the
statistical version of the formal theory will perform
better for structure prediction. System performance
is more tightly related to the efficacy of the learning
and search algorithms, and feature engineering on
top of the selected formalism.

7.2.3 Cross-Language Evaluation: All
Languages

We conclude with an overall outlook of the Ted-
Eval scores across all languages. The results on the
gold scenario, for the small training set and the 5k
test set are presented in Table 10. We concentrate
on gold scenarios (to avoid the variation in cover-
age of external morphological analyzers) and choose
unlabeled metrics as they are not sensitive to label
set sizes. We emphasize in bold, for each parsing
system (row in the table), the top two languages that
most accurately parsed by it (boldface) and the two
languages it performed the worse on (italics).

We see that the European languages German
and Hungarian are parsed most accurately in the
constituency-based setup, with Polish and Swedish
having an advantage in dependency parsing. Across
all systems, Korean is the hardest to parse, with Ara-

174

Arabic Hebrew AVG1 SOFT AVG Arabic Hebrew AVG2 SOFT AVG2

1) Constituency Evaluation
Labeled TedEval Unabeled TedEval

IMS:SZEGED:CIS (Bky) 83.59 56.43 70.01 70.01 92.18 88.02 90.1 90.1
2) Dependency Evaluation

Labeled TedEval Unabeled TedEval
IMS:SZEGED:CIS 88.61 84.74 86.68 86.68 91.41 88.58 90 90
ALPAGE:DYALOG 87.20 81.65 40.83 81.65 90.74 87.44 89.09 89.09

CADIM 87.99 - 44 87.99 91.22 - 45.61 91.22
MALTOPTIMIZER 86.62 81.74 43.31 86.62 90.26 87.00 45.13 90.26

ALPAGE:DYALOG (RAW) - 82.82 41.41 82.82 - 87.43 43.72 87.43
AI:KU - 77.8 38.9 77.8 - 85.87 42.94 85.87

Table 9: Labeled and Unlabeled TedEval Results for raw Scenarios, Trained on 5k sentences and tested on 5k terminals.
The upper part refers to constituency parsing and the lower part refers to dependency parsing.

Arabic Basque French German Hebrew Hungarian Korean Polish Swedish

1) Constituency Evaluation
IMS:SZEGED:CIS (Bky) 95.35 96.91 95.98 97.12 96.22 97.92 92.91 97.19 96.65
BASE:BKY+POS 95.11 94.69 95.08 97.01 95.85 97.08 90.55 96.99 96.38
BASE:BKY+RAW 94.58 94.32 94.72 96.74 95.64 96.15 87.08 95.93 95.90

2) Dependency Evaluation
IMS:SZEGED:CIS 95.76 97.63 96.59 96.88 96.29 97.56 94.62 98.01 97.22
ALPAGE:DYALOG 93.76 95.72 95.75 96.4 95.34 95.63 94.56 96.80 96.55
BASE:MALT 94.16 95.08 94.21 94.55 94.98 95.25 94.27 95.83 95.33
AI:KU - - 95.46 96.34 95.07 96.53 - 96.88 95.87
MALTOPTIMIZER 94.91 96.82 95.23 96.32 95.46 96.30 94.69 96.06 95.90
CADIM 94.66 - - - - - - - -

Table 10: Cross-Language Evaluation: Unlabeled TedEval Results in gold input scenario, On a 5k-sentences set set and
a 5k-terminals test set. The upper part refers to constituency parsing and the lower part refers to dependency parsing.
For each system we mark the two top scoring languages in bold and the two lowest scoring languages in italics.

team Arabic Basque French German Hebrew Hungarian Korean Polish Swedish

1) gold setting
IMS:SZEGED:CIS (Bky) 95.82 97.30 96.15 97.43 96.37 98.25 94.07 97.22 96.89
IMS:SZEGED:CIS 95.87 98.06 96.61 97.46 96.31 97.93 94.62 98.04 97.24
BASE:BKY+POS 95.61 95.25 95.48 97.31 96.03 97.53 92.15 96.97 96.66
BASE:MALT 94.26 95.76 94.23 95.53 95.00 96.09 94.27 95.90 95.35

2) predicted setting
IMS:SZEGED:CIS (Bky) 95.74 97.07 96.21 97.31 96.10 98.03 94.05 96.92 96.90
IMS:SZEGED:CIS 95.18 97.67 96.15 97.09 96.22 97.63 94.43 97.50 97.02
BASE:BKY+POS 95.03 95.35 97.12 95.36 97.20 91.34 96.92 96.25
BASE:MALT 95.49 93.84 95.39 94.41 95.72 93.74 96.04 95.09

Table 11: Cross Framework Evaluation: Unlabeled TedEval on generalized gold trees in gold scenario, trained on 5k
sentences and tested on 5k terminals.

bic, Hebrew and to some extent French following. It
appears that on a typological scale, Semitic and Asian
languages are still harder to parse than a range of Eu-
ropean languages in terms of structural difficulty and
complex morpho-syntactic interaction. That said,
note that we cannot tell why certain treebanks appear

more challenging to parse then others, and it is still
unclear whether the difficulty is inherent on the lan-
guage, in the currently available models, or because
of the annotation scheme and treebank consistency.43

43The latter was shown to be an important factor orthogonal
to the morphologically-rich nature of the treebank’s language

175

8 Conclusion

This paper presents an overview of the first shared
task on parsing morphologically rich languages. The
task features nine languages, exhibiting different lin-
guistic phenomena and varied morphological com-
plexity. The shared task saw submissions from seven
teams, and results produced by more than 14 different
systems. The parsing results were obtained in dif-
ferent input scenarios (gold, predicted, and raw) and
evaluated using different protocols (cross-framework,
cross-scenario, and cross-language). In particular,
this is the first time an evaluation campaign reports
on the execution of parsers in realistic, morphologi-
cally ambiguous, setting.

The best performing systems were mostly ensem-
ble systems combining multiple parser outputs from
different frameworks or training runs, or integrat-
ing a state-of-the-art morphological analyzer on top
of a carefully designed feature set. This is con-
sistent with previous shared tasks such as ConLL
2007 or SANCL’2012. However, dealing with am-
biguous morphology is still difficult for all systems,
and a promising approach, as demonstrated by AL-
PAGE:DYALOG, is to deal with parsing and morphol-
ogy jointly by allowing lattice input to the parser. A
promising generalization of this approach would be
the full integration of all levels of analysis that are
mutually informative into a joint model.

The information to be gathered from the results of
this shared task is vast, and we only scratched the
surface with our preliminary analyses. We uncov-
ered and documented insights of strategies that make
parsing systems successful: parser combination is
empirically proven to reach a robust performance
across languages, though language-specific strategies
are still a sound avenue for obtaining high quality
parsers for that individual language. The integration
of morphological analysis into the parsing needs to
be investigated thoroughly, and new approaches that
are morphologically aware need to be developed.

Our cross-parser, cross-scenario, and cross-
framework evaluation protocols have shown that, as
expected, more data is better, and that performance
on gold morphological input is significantly higher
than that in more realistic scenarios. We have shown
that gold morphological information is more help-

(Schluter and van Genabith, 2007)

ful to some languages and parsers than others, and
that it may also interact with successful identification
of multiword expressions. We have shown that dif-
ferences between dependency and constituency are
smaller than previously assumed and that properties
of the learning model and granularity of the output
labels are more influential. Finally, we observed
that languages which are typologically farthest from
English, such as Semitic and Asian languages, are
still amongst the hardest to parse, regardless of the
parsing method used.

Our cross-treebank, in-depth analysis is still pre-
liminary, owing to the limited time between the end
of the shared task and the deadline for publication
of this overview. but we nonetheless feel that our
findings may benefit researchers who aim to develop
parsers for diverse treebanks.44

A shared task is an inspection of the state of the
art, but it may also accelerate research in an area
by providing a stable data basis as well as a set of
strong baselines. The results produced in this task
give a rich picture of the issues associated with pars-
ing MRLs and initial cues towards their resolution.
This set of results needs to be further analyzed to be
fully understood, which will in turn contribute to new
insights. We hope that this shared task will provide
inspiration for the design and evaluation of future
parsing systems for these languages.

Acknowledgments

We heartily thank Miguel Ballesteros and Corentin
Ribeire for running the dependency and constituency
baselines. We warmly thank the Linguistic Data Con-
sortium: Ilya Ahtaridis, Ann Bies, Denise DiPersio,
Seth Kulick and Mohamed Maamouri for releasing
the Arabic Penn Treebank for this shared task and
for their support all along the process. We thank
Alon Itai and MILA, the knowledge center for pro-
cessing Hebrew, for kindly making the Hebrew tree-
bank and morphological analyzer available for us,
Anne Abeillé for allowing us to use the French tree-
bank, and Key-Sun Choi for the Kaist Korean Tree-
bank. We thank Grzegorz Chrupała for providing
the morphological analyzer Morfette, and Joachim

44The data set will be made available as soon as possible under
the license distribution of the shared-task, with the exception
of the Arabic data, which will continue to be distributed by the
LDC.

176

Wagner for his LeafAncestor implementation. We
finally thank Özlem Çetinoğlu, Yuval Marton, Benoit
Crabbé and Benoit Sagot who have been nothing but
supportive during all that time.

At the end of this shared task (though watch out
for further updates and analyses), what remains to be
mentioned is our deep gratitude to all people involved,
either data providers or participants. Without all of
you, this shared task would not have been possible.

References
Anne Abeillé, Lionel Clément, and François Toussenel.

2003. Building a treebank for French. In Anne Abeillé,
editor, Treebanks. Kluwer, Dordrecht.

Szymon Acedański. 2010. A Morphosyntactic Brill Tag-
ger for Inflectional Languages. In Advances in Natural
Language Processing, volume 6233 of Lecture Notes
in Computer Science, pages 3–14. Springer-Verlag.

Meni Adler and Michael Elhadad. 2006. An unsupervised
morpheme-based HMM for Hebrew morphological dis-
ambiguation. In Proceedings COLING-ACL, pages
665–672, Sydney, Australia.

Meni Adler, Yoav Goldberg, David Gabay, and Michael
Elhadad. 2008. Unsupervised lexicon-based resolution
of unknown words for full morphological analysis. In
Proceedings of ACL-08: HLT, pages 728–736, Colum-
bus, OH.

Meni Adler. 2007. Hebrew Morphological Disambigua-
tion: An Unsupervised Stochastic Word-based Ap-
proach. Ph.D. thesis, Ben-Gurion University of the
Negev.

Itziar Aduriz, José María Arriola, Xabier Artola, A Díaz
de Ilarraza, et al. 1997. Morphosyntactic disambigua-
tion for Basque based on the constraint grammar for-
malism. In Proceedings of RANLP, Tzigov Chark, Bul-
garia.

Itziar Aduriz, Eneko Agirre, Izaskun Aldezabal, Iñaki
Alegria, Xabier Arregi, Jose Maria Arriola, Xabier Ar-
tola, Koldo Gojenola, Aitor Maritxalar, Kepa Sarasola,
et al. 2000. A word-grammar based morphological
analyzer for agglutinative languages. In Proceedings
of COLING, pages 1–7, Saarbrücken, Germany.

Itziar Aduriz, Maria Jesus Aranzabe, Jose Maria Arriola,
Aitziber Atutxa, A Diaz de Ilarraza, Aitzpea Garmen-
dia, and Maite Oronoz. 2003. Construction of a
Basque dependency treebank. In Proceedings of the
2nd Workshop on Treebanks and Linguistic Theories
(TLT), pages 201–204, Växjö, Sweden.

Zeljko Agic, Danijela Merkler, and Dasa Berovic. 2013.
Parsing Croatian and Serbian by using Croatian depen-
dency treebanks. In Proceedings of the Fourth Work-

shop on Statistical Parsing of Morphologically Rich
Languages (SPMRL), Seattle, WA.

I. Aldezabal, M.J. Aranzabe, A. Diaz de Ilarraza, and
K. Fernández. 2008. From dependencies to con-
stituents in the reference corpus for the processing of
Basque. In Procesamiento del Lenguaje Natural, no

41 (2008), pages 147–154. XXIV edición del Congreso
Anual de la Sociedad Española para el Procesamiento
del Lenguaje Natural (SEPLN).

Bharat Ram Ambati, Samar Husain, Joakim Nivre, and
Rajeev Sangal. 2010. On the role of morphosyntactic
features in Hindi dependency parsing. In Proceedings
of the NAACL/HLT Workshop on Statistical Parsing of
Morphologically Rich Languages (SPMRL 2010), Los
Angeles, CA.

Mohammed Attia, Jennifer Foster, Deirdre Hogan,
Joseph Le Roux, Lamia Tounsi, and Josef van Gen-
abith. 2010. Handling unknown words in statistical
latent-variable parsing models for Arabic, English and
French. In Proceedings of the NAACL/HLT Workshop
on Statistical Parsing of Morphologically Rich Lan-
guages (SPMRL), Los Angeles, CA.

Miguel Ballesteros and Joakim Nivre. 2012. MaltOpti-
mizer: An optimization tool for MaltParser. In Pro-
ceedings of EACL, pages 58–62, Avignon, France.

Miguel Ballesteros. 2013. Effective morphological fea-
ture selection with MaltOptimizer at the SPMRL 2013
shared task. In Proceedings of the Fourth Workshop on
Statistical Parsing of Morphologically-Rich Languages,
pages 53–60, Seattle, WA.

Kepa Bengoetxea and Koldo Gojenola. 2010. Appli-
cation of different techniques to dependency parsing
of Basque. In Proceedings of the NAACL/HLT Work-
shop on Statistical Parsing of Morphologically Rich
Languages (SPMRL 2010), Los Angeles, CA.

Philip Bille. 2005. A survey on tree edit distance and re-
lated problems. Theoretical Computer Science, 337(1–
3):217–239, 6.

Anders Björkelund, Ozlem Cetinoglu, Richárd Farkas,
Thomas Mueller, and Wolfgang Seeker. 2013.
(Re)ranking meets morphosyntax: State-of-the-art re-
sults from the SPMRL 2013 shared task. In Proceed-
ings of the Fourth Workshop on Statistical Parsing
of Morphologically-Rich Languages, pages 134–144,
Seattle, WA.

Ezra Black, Steven Abney, Dan Flickinger, Claudia
Gdaniec, Ralph Grishman, Philip Harrison, Donald
Hindle, Robert Ingria, Frederick Jelinek, Judith Kla-
vans, Mark Liberman, Mitchell Marcus, Salim Roukos,
Beatrice Santorini, and Tomek Strzalkowski. 1991. A
procedure for quantitatively comparing the syntactic
coverage of English grammars. In Proceedings of the
DARPA Speech and Natural Language Workshop 1991,
pages 306–311, Pacific Grove, CA.

177

Bernd Bohnet and Joakim Nivre. 2012. A transition-
based system for joint part-of-speech tagging and la-
beled non-projective dependency parsing. In Proceed-
ings of the EMNLP-CoNLL, pages 1455–1465, Jeju,
Korea.

Bernd Bohnet. 2010. Top accuracy and fast dependency
parsing is not a contradiction. In Proceedings of COL-
ING, pages 89–97, Beijing, China.

Adriane Boyd. 2007. Discontinuity revisited: An im-
proved conversion to context-free representations. In
Proceedings of the Linguistic Annotation Workshop,
Prague, Czech Republic.

Sabine Brants, Stefanie Dipper, Silvia Hansen, Wolfgang
Lezius, and George Smith. 2002. The TIGER treebank.
In Proceedings of the First Workshop on Treebanks
and Linguistic Theories (TLT), pages 24–41, Sozopol,
Bulgaria.

Sabine Buchholz and Erwin Marsi. 2006. CoNLL-X
shared task on multilingual dependency parsing. In
Proceedings of CoNLL, pages 149–164, New York, NY.

Tim Buckwalter. 2002. Arabic morphological analyzer
version 1.0. Linguistic Data Consortium.

Tim Buckwalter. 2004. Arabic morphological analyzer
version 2.0. Linguistic Data Consortium.

Marie Candito and Djamé Seddah. 2010. Parsing word
clusters. In Proceedings of the NAACL/HLT Workshop
on Statistical Parsing of Morphologically Rich Lan-
guages (SPMRL 2010), Los Angeles, CA.

Marie Candito, Benoit Crabbé, and Pascal Denis. 2010.
Statistical French dependency parsing: Treebank con-
version and first results. In Proceedings of LREC, Val-
letta, Malta.

Xavier Carreras, Michael Collins, and Terry Koo. 2008.
TAG, dynamic programming, and the perceptron for ef-
ficient, feature-rich parsing. In Proceedings of CoNLL,
pages 9–16, Manchester, UK.

Eugene Charniak and Mark Johnson. 2005. Course-to-
fine n-best-parsing and maxent discriminative rerank-
ing. In Proceedings of ACL, pages 173–180, Barcelona,
Spain.

Eugene Charniak. 1997. Statistical parsing with a context-
free grammar and word statistics. In AAAI/IAAI, pages
598–603.

Eugene Charniak. 2000. A maximum entropy inspired
parser. In Proceedings of NAACL, pages 132–139, Seat-
tle, WA.

Jinho D. Choi and Martha Palmer. 2011. Statistical de-
pendency parsing in Korean: From corpus generation
to automatic parsing. In Proceedings of Second Work-
shop on Statistical Parsing of Morphologically Rich
Languages, pages 1–11, Dublin, Ireland.

Jinho D. Choi and Martha Palmer. 2012. Guidelines
for the Clear Style Constituent to Dependency Conver-
sion. Technical Report 01-12, University of Colorado
at Boulder.

Key-sun Choi, Young S. Han, Young G. Han, and Oh W.
Kwon. 1994. KAIST Tree Bank Project for Korean:
Present and Future Development. In In Proceedings
of the International Workshop on Sharable Natural
Language Resources, pages 7–14, Nara, Japan.

Jinho D. Choi. 2013. Preparing Korean data for the
shared task on parsing morphologically rich languages.
arXiv:1309.1649.

Grzegorz Chrupała, Georgiana Dinu, and Josef van Gen-
abith. 2008. Learning morphology with Morfette. In
Proceedings of LREC, Marrakech, Morocco.

Tagyoung Chung, Matt Post, and Daniel Gildea. 2010.
Factors affecting the accuracy of Korean parsing. In
Proceedings of the NAACL/HLT Workshop on Sta-
tistical Parsing of Morphologically Rich Languages
(SPMRL 2010), Los Angeles, CA.

Volkan Cirik and Hüsnü Şensoy. 2013. The AI-KU
system at the SPMRL 2013 shared task: Unsuper-
vised features for dependency parsing. In Proceed-
ings of the Fourth Workshop on Statistical Parsing of
Morphologically-Rich Languages, pages 68–75, Seat-
tle, WA.

Michael Collins. 2003. Head-driven statistical models for
natural language parsing. Computational Linguistics,
29(4):589–637.

Matthieu Constant, Marie Candito, and Djamé Seddah.
2013. The LIGM-Alpage architecture for the SPMRL
2013 shared task: Multiword expression analysis and
dependency parsing. In Proceedings of the Fourth
Workshop on Statistical Parsing of Morphologically-
Rich Languages, pages 46–52, Seattle, WA.

Anna Corazza, Alberto Lavelli, Giogio Satta, and Roberto
Zanoli. 2004. Analyzing an Italian treebank with
state-of-the-art statistical parsers. In Proceedings of
the Third Workshop on Treebanks and Linguistic Theo-
ries (TLT), Tübingen, Germany.

Benoit Crabbé and Marie Candito. 2008. Expériences
d’analyse syntaxique statistique du français. In Actes
de la 15ème Conférence sur le Traitement Automatique
des Langues Naturelles (TALN’08), pages 45–54, Avi-
gnon, France.

Dóra Csendes, János Csirik, Tibor Gyimóthy, and András
Kocsor. 2005. The Szeged treebank. In Proceedings of
the 8th International Conference on Text, Speech and
Dialogue (TSD), Lecture Notes in Computer Science,
pages 123–132, Berlin / Heidelberg. Springer.

Eric De La Clergerie. 2013. Exploring beam-based
shift-reduce dependency parsing with DyALog: Re-
sults from the SPMRL 2013 shared task. In Proceed-
ings of the Fourth Workshop on Statistical Parsing of

178

Morphologically-Rich Languages, pages 81–89, Seat-
tle, WA.

Marie-Catherine de Marneffe and Christopher D. Man-
ning. 2008. The stanford typed dependencies repre-
sentation. In Proceedings of the workshop on Cross-
Framework and Cross-Domain Parser Evaluation.

Mona Diab, Nizar Habash, Owen Rambow, and Ryan
Roth. 2013. LDC Arabic treebanks and associated cor-
pora: Data divisions manual. Technical Report CCLS-
13-02, Center for Computational Learning Systems,
Columbia University.

Eva Ejerhed and Gunnel Källgren. 1997. Stockholm
Umeå Corpus. Version 1.0. Department of Linguis-
tics, Umeå University and Department of Linguistics,
Stockholm University.

Eva Ejerhed, Gunnel Källgren, Ola Wennstedt, and Mag-
nus Åström. 1992. The linguistic annotation system
of the Stockholm–Umeå Corpus project. Technical
Report 33, University of Umeå: Department of Linguis-
tics.

Nerea Ezeiza, Iñaki Alegria, José María Arriola, Rubén
Urizar, and Itziar Aduriz. 1998. Combining stochastic
and rule-based methods for disambiguation in aggluti-
native languages. In Proceedings of COLING, pages
380–384, Montréal, Canada.

Jenny Rose Finkel, Alex Kleeman, and Christopher D.
Manning. 2008. Efficient, feature-based, conditional
random field parsing. In Proceedings of ACL, pages
959–967, Columbus, OH.

Alexander Fraser, Helmut Schmid, Richárd Farkas, Ren-
jing Wang, and Hinrich Schütze. 2013. Knowledge
sources for constituent parsing of German, a morpho-
logically rich and less-configurational language. Com-
putational Linguistics, 39(1):57–85.

Iakes Goenaga, Koldo Gojenola, and Nerea Ezeiza. 2013.
Exploiting the contribution of morphological informa-
tion to parsing: the BASQUE TEAM system in the
SPRML’2013 shared task. In Proceedings of the Fourth
Workshop on Statistical Parsing of Morphologically-
Rich Languages, pages 61–67, Seattle, WA.

Yoav Goldberg and Michael Elhadad. 2010a. Easy-first
dependency parsing of Modern Hebrew. In Proceed-
ings of the NAACL/HLT Workshop on Statistical Pars-
ing of Morphologically Rich Languages (SPMRL 2010),
Los Angeles, CA.

Yoav Goldberg and Michael Elhadad. 2010b. An ef-
ficient algorithm for easy-first non-directional depen-
dency parsing. In Proceedings of HLT: NAACL, pages
742–750, Los Angeles, CA.

Yoav Goldberg and Reut Tsarfaty. 2008. A single frame-
work for joint morphological segmentation and syntac-
tic parsing. In Proceedings of ACL, Columbus, OH.

Yoav Goldberg, Meni Adler, and Michael Elhadad. 2008.
EM can find pretty good HMM POS-taggers (when
given a good start). In Proc. of ACL, Columbus, OH.

Yoav Goldberg, Reut Tsarfaty, Meni Adler, and Michael
Elhadad. 2009. Enhancing unlexicalized parsing per-
formance using a wide coverage lexicon, fuzzy tag-set
mapping, and EM-HMM-based lexical probabilities. In
Proceedings of EALC, pages 327–335, Athens, Greece.

Yoav Goldberg. 2011. Automatic syntactic processing of
Modern Hebrew. Ph.D. thesis, Ben Gurion University
of the Negev.

David Graff, Mohamed Maamouri, Basma Bouziri, Son-
dos Krouna, Seth Kulick, and Tim Buckwalter. 2009.
Standard Arabic Morphological Analyzer (SAMA) ver-
sion 3.1. Linguistic Data Consortium LDC2009E73.

Spence Green and Christopher D. Manning. 2010. Better
Arabic parsing: Baselines, evaluations, and analysis.
In Proceedings of COLING, pages 394–402, Beijing,
China.

Nathan Green, Loganathan Ramasamy, and Zdenék
Žabokrtský. 2012. Using an SVM ensemble system for
improved Tamil dependency parsing. In Proceedings
of the ACL 2012 Joint Workshop on Statistical Pars-
ing and Semantic Processing of Morphologically Rich
Languages, pages 72–77, Jeju, Korea.

Spence Green, Marie-Catherine de Marneffe, and Christo-
pher D. Manning. 2013. Parsing models for identify-
ing multiword expressions. Computational Linguistics,
39(1):195–227.

Noemie Guthmann, Yuval Krymolowski, Adi Milea, and
Yoad Winter. 2009. Automatic annotation of morpho-
syntactic dependencies in a Modern Hebrew Treebank.
In Proceedings of the Eighth International Workshop on
Treebanks and Linguistic Theories (TLT), Groningen,
The Netherlands.

Nizar Habash and Ryan Roth. 2009. CATiB: The
Columbia Arabic Treebank. In Proceedings of ACL-
IJCNLP, pages 221–224, Suntec, Singapore.

Nizar Habash, Ryan Gabbard, Owen Rambow, Seth
Kulick, and Mitch Marcus. 2007. Determining case in
Arabic: Learning complex linguistic behavior requires
complex linguistic features. In Proceedings of EMNLP-
CoNLL, pages 1084–1092, Prague, Czech Republic.

Nizar Habash, Reem Faraj, and Ryan Roth. 2009a. Syn-
tactic Annotation in the Columbia Arabic Treebank. In
Proceedings of MEDAR International Conference on
Arabic Language Resources and Tools, Cairo, Egypt.

Nizar Habash, Owen Rambow, and Ryan Roth. 2009b.
MADA+TOKAN: A toolkit for Arabic tokenization,
diacritization, morphological disambiguation, POS tag-
ging, stemming and lemmatization. In Proceedings of
the Second International Conference on Arabic Lan-
guage Resources and Tools. Cairo, Egypt.

179

Nizar Habash. 2010. Introduction to Arabic Natural
Language Processing. Morgan & Claypool Publishers.

Jan Hajič, Alena Böhmová, Eva Hajičová, and Barbora
Vidová-Hladká. 2000. The Prague Dependency Tree-
bank: A three-level annotation scenario. In Anne
Abeillé, editor, Treebanks: Building and Using Parsed
Corpora. Kluwer Academic Publishers.

Péter Halácsy, András Kornai, and Csaba Oravecz. 2007.
HunPos – an open source trigram tagger. In Proceed-
ings of ACL, pages 209–212, Prague, Czech Republic.

Johan Hall, Jens Nilsson, Joakim Nivre, Gülşen Eryiǧit,
Beáta Megyesi, Mattias Nilsson, and Markus Saers.
2007. Single malt or blended? A study in multilingual
parser optimization. In Proceedings of the CoNLL
Shared Task Session of EMNLP-CoNLL 2007, pages
933–939, Prague, Czech Republic.

Chung-hye Han, Na-Rae Han, Eon-Suk Ko, Martha
Palmer, and Heejong Yi. 2002. Penn Korean Treebank:
Development and evaluation. In Proceedings of the
16th Pacific Asia Conference on Language, Information
and Computation, Jeju, Korea.

Tilman Höhle. 1986. Der Begriff "Mittelfeld", Anmerkun-
gen über die Theorie der topologischen Felder. In Ak-
ten des Siebten Internationalen Germanistenkongresses
1985, pages 329–340, Göttingen, Germany.

Zhongqiang Huang, Mary Harper, and Slav Petrov. 2010.
Self-training with products of latent variable grammars.
In Proceedings of EMNLP, pages 12–22, Cambridge,
MA.

Liang Huang. 2008. Forest reranking: Discriminative
parsing with non-local features. In Proceedings of ACL,
pages 586–594, Columbus, OH.

Alon Itai and Shuly Wintner. 2008. Language resources
for Hebrew. Language Resources and Evaluation,
42(1):75–98, March.

Mark Johnson. 1998. PCFG models of linguistic tree
representations. Computational Linguistics, 24(4):613–
632.

Laura Kallmeyer and Wolfgang Maier. 2013. Data-driven
parsing using probabilistic linear context-free rewriting
systems. Computational Linguistics, 39(1).

Fred Karlsson, Atro Voutilainen, Juha Heikkilae, and Arto
Anttila. 1995. Constraint Grammar: a language-
independent system for parsing unrestricted text. Wal-
ter de Gruyter.

Dan Klein and Christopher D. Manning. 2003. Accurate
unlexicalized parsing. In Proceedings of ACL, pages
423–430, Sapporo, Japan.

Sandra Kübler, Erhard W. Hinrichs, and Wolfgang Maier.
2006. Is it really that difficult to parse German? In Pro-
ceedings of EMNLP, pages 111–119, Sydney, Australia,
July.

Sandra Kübler, Wolfgang Maier, Ines Rehbein, and Yan-
nick Versley. 2008. How to compare treebanks. In
Proceedings of LREC, pages 2322–2329, Marrakech,
Morocco.

Sandra Kübler. 2008. The PaGe 2008 shared task on
parsing German. In Proceedings of the Workshop on
Parsing German, pages 55–63, Columbus, OH.

Seth Kulick, Ryan Gabbard, and Mitch Marcus. 2006.
Parsing the Arabic Treebank: Analysis and Improve-
ments. In Proceedings of the Treebanks and Linguistic
Theories Conference, pages 31–42, Prague, Czech Re-
public.

Joseph Le Roux, Benoit Sagot, and Djamé Seddah. 2012.
Statistical parsing of Spanish and data driven lemmati-
zation. In Proceedings of the Joint Workshop on Statis-
tical Parsing and Semantic Processing of Morphologi-
cally Rich Languages, pages 55–61, Jeju, Korea.

Kong Joo Lee, Byung-Gyu Chang, and Gil Chang Kim.
1997. Bracketing Guidelines for Korean Syntactic Tree
Tagged Corpus. Technical Report CS/TR-97-112, De-
partment of Computer Science, KAIST.

Roger Levy and Christopher D. Manning. 2003. Is it
harder to parse Chinese, or the Chinese treebank? In
Proceedings of ACL, Sapporo, Japan.

Mohamed Maamouri, Ann Bies, Tim Buckwalter, and
Hubert Jin. 2004a. Arabic Treebank: Part 2 v 2.0.
LDC catalog number LDC2004T02.

Mohamed Maamouri, Ann Bies, Tim Buckwalter, and
Wigdan Mekki. 2004b. The Penn Arabic Treebank:
Building a large-scale annotated Arabic corpus. In
NEMLAR Conference on Arabic Language Resources
and Tools, pages 102–109, Cairo, Egypt.

Mohamed Maamouri, Ann Bies, Tim Buckwalter, and
Hubert Jin. 2005. Arabic Treebank: Part 1 v 3.0. LDC
catalog number LDC2005T02.

Mohamed Maamouri, Ann Bies, Seth Kulick, Fatma Gad-
deche, Wigdan Mekki, Sondos Krouna, and Basma
Bouziri. 2009. The Penn Arabic Treebank part 3 ver-
sion 3.1. Linguistic Data Consortium LDC2008E22.

Wolfgang Maier, Miriam Kaeshammer, and Laura
Kallmeyer. 2012. Data-driven PLCFRS parsing re-
visited: Restricting the fan-out to two. In Proceedings
of the Eleventh International Conference on Tree Ad-
joining Grammars and Related Formalisms (TAG+11),
Paris, France.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated cor-
pus of English: The Penn TreeBank. Computational
Linguistics, 19(2):313–330.

Andre Martins, Noah Smith, Eric Xing, Pedro Aguiar,
and Mario Figueiredo. 2010. Turbo parsers: Depen-
dency parsing by approximate variational inference. In
Proceedings of EMNLP, pages 34–44, Cambridge, MA.

180

Yuval Marton, Nizar Habash, and Owen Rambow. 2013a.
Dependency parsing of Modern Standard Arabic with
lexical and inflectional features. Computational Lin-
guistics, 39(1):161–194.

Yuval Marton, Nizar Habash, Owen Rambow, and Sarah
Alkhulani. 2013b. SPMRL’13 shared task system:
The CADIM Arabic dependency parser. In Proceed-
ings of the Fourth Workshop on Statistical Parsing of
Morphologically-Rich Languages, pages 76–80, Seat-
tle, WA.

David McClosky, Eugene Charniak, and Mark Johnson.
2006. Effective self-training for parsing. In Proceed-
ings of HLT:NAACL, pages 152–159, New York, NY.

Ryan T. McDonald, Koby Crammer, and Fernando C. N.
Pereira. 2005. Online large-margin training of depen-
dency parsers. In Proceedings of ACL, pages 91–98,
Ann Arbor, MI.

Ryan McDonald, Joakim Nivre, Yvonne Quirmbach-
Brundage, Yoav Goldberg, Dipanjan Das, Kuzman
Ganchev, Keith Hall, Slav Petrov, Hao Zhang, Oscar
Tackstrom, Claudia Bedini, Nuria Bertomeu Castello,
and Jungmee Lee. 2013. Universal dependency anno-
tation for multilingual parsing. In Proceedings of ACL,
Sofia, Bulgaria.

Igor Mel’čuk. 2001. Communicative Organization in Nat-
ural Language: The Semantic-Communicative Struc-
ture of Sentences. J. Benjamins.

Knowledge Center for Processing Hebrew
MILA. 2008. Hebrew morphological analyzer.
http://mila.cs.technion.ac.il.

Antonio Moreno, Ralph Grishman, Susana Lopez, Fer-
nando Sanchez, and Satoshi Sekine. 2000. A treebank
of Spanish and its application to parsing. In Proceed-
ings of LREC, Athens, Greece.

Joakim Nivre and Beáta Megyesi. 2007. Bootstrapping a
Swedish treeebank using cross-corpus harmonization
and annotation projection. In Proceedings of the 6th
International Workshop on Treebanks and Linguistic
Theories, pages 97–102, Bergen, Norway.

Joakim Nivre, Jens Nilsson, and Johan Hall. 2006. Tal-
banken05: A Swedish treebank with phrase structure
and dependency annotation. In Proceedings of LREC,
pages 1392–1395, Genoa, Italy.

Joakim Nivre, Johan Hall, Sandra Kübler, Ryan McDon-
ald, Jens Nilsson, Sebastian Riedel, and Deniz Yuret.
2007a. The CoNLL 2007 shared task on dependency
parsing. In Proceedings of the CoNLL Shared Task Ses-
sion of EMNLP-CoNLL 2007, pages 915–932, Prague,
Czech Republic.

Joakim Nivre, Johan Hall, Jens Nilsson, Atanas Chanev,
Gülşen Eryiǧit, Sandra Kübler, Svetoslav Marinov,
and Erwin Marsi. 2007b. MaltParser: A language-
independent system for data-driven dependency pars-
ing. Natural Language Engineering, 13(2):95–135.

Slav Petrov and Ryan McDonald. 2012. Overview of the
2012 Shared Task on Parsing the Web. In Proceedings
of the First Workshop on Syntactic Analysis of Non-
Canonical Language (SANCL), a NAACL-HLT 2012
workshop, Montreal, Canada.

Slav Petrov, Leon Barrett, Romain Thibaux, and Dan
Klein. 2006. Learning accurate, compact, and inter-
pretable tree annotation. In Proceedings of COLING-
ACL, Sydney, Australia.

Slav Petrov. 2009. Coarse-to-Fine Natural Language
Processing. Ph.D. thesis, University of California at
Bekeley, Berkeley, CA.

Slav Petrov. 2010. Products of random latent variable
grammars. In Proceedings of HLT: NAACL, pages 19–
27, Los Angeles, CA.

Adam Przepiórkowski, Mirosław Bańko, Rafał L. Górski,
and Barbara Lewandowska-Tomaszczyk, editors. 2012.
Narodowy Korpus Jkezyka Polskiego. Wydawnictwo
Naukowe PWN, Warsaw.

Ines Rehbein and Josef van Genabith. 2007a. Eval-
uating Evaluation Measures. In Proceedings of the
16th Nordic Conference of Computational Linguistics
NODALIDA-2007, Tartu, Estonia.

Ines Rehbein and Josef van Genabith. 2007b. Treebank
annotation schemes and parser evaluation for German.
In Proceedings of EMNLP-CoNLL, Prague, Czech Re-
public.

Ines Rehbein. 2011. Data point selection for self-training.
In Proceedings of the Second Workshop on Statistical
Parsing of Morphologically Rich Languages, pages 62–
67, Dublin, Ireland.

Kenji Sagae and Alon Lavie. 2006. Parser combination
by reparsing. In Proceedings of HLT-NAACL, pages
129–132, New York, NY.

Geoffrey Sampson and Anna Babarczy. 2003. A test of
the leaf-ancestor metric for parse accuracy. Natural
Language Engineering, 9(04):365–380.

Natalie Schluter and Josef van Genabith. 2007. Prepar-
ing, restructuring, and augmenting a French Treebank:
Lexicalised parsers or coherent treebanks? In Proc. of
PACLING 07, Melbourne, Australia.

Helmut Schmid, Arne Fitschen, and Ulrich Heid. 2004.
SMOR: A German computational morphology covering
derivation, composition and inflection. In Proceedings
of LREC, Lisbon, Portugal.

Djamé Seddah, Grzegorz Chrupała, Ozlem Cetinoglu,
Josef van Genabith, and Marie Candito. 2010.
Lemmatization and statistical lexicalized parsing of
morphologically-rich languages. In Proceedings of the
First Workshop on Statistical Parsing of Morphologi-
cally Rich Languages (SPMRL), Los Angeles, CA.

Wolfgang Seeker and Jonas Kuhn. 2012. Making el-
lipses explicit in dependency conversion for a German

181

treebank. In Proceedings of LREC, pages 3132–3139,
Istanbul, Turkey.

Hiroyuki Shindo, Yusuke Miyao, Akinori Fujino, and
Masaaki Nagata. 2012. Bayesian symbol-refined tree
substitution grammars for syntactic parsing. In Pro-
ceedings of ACL, pages 440–448, Jeju, Korea.

Anthony Sigogne, Matthieu Constant, and Eric Laporte.
2011. French parsing enhanced with a word clustering
method based on a syntactic lexicon. In Proceedings
of the Second Workshop on Statistical Parsing of Mor-
phologically Rich Languages, pages 22–27, Dublin,
Ireland.

Khalil Sima’an, Alon Itai, Yoad Winter, Alon Altmann,
and Noa Nativ. 2001. Building a tree-bank of Modern
Hebrew text. Traitement Automatique des Langues,
42:347–380.

Marek Świdziński and Marcin Woliński. 2010. Towards
a bank of constituent parse trees for Polish. In Pro-
ceedings of Text, Speech and Dialogue, pages 197–204,
Brno, Czech Republic.

Ulf Teleman. 1974. Manual för grammatisk beskrivning
av talad och skriven svenska. Studentlitteratur.

Lucien Tesnière. 1959. Éléments De Syntaxe Structurale.
Klincksieck, Paris.

Reut Tsarfaty and Khalil Sima’an. 2010. Modeling mor-
phosyntactic agreement in constituency-based parsing
of Modern Hebrew. In Proceedings of the First Work-
shop on Statistical Parsing of Morphologically Rich
Languages (SPMRL), Los Angeles, CA.

Reut Tsarfaty, Djame Seddah, Yoav Goldberg, Sandra
Kübler, Marie Candito, Jennifer Foster, Yannick Vers-
ley, Ines Rehbein, and Lamia Tounsi. 2010. Statistical
parsing for morphologically rich language (SPMRL):
What, how and whither. In Proceedings of the First
workshop on Statistical Parsing of Morphologically
Rich Languages (SPMRL), Los Angeles, CA.

Reut Tsarfaty, Joakim Nivre, and Evelina Andersson.
2011. Evaluating dependency parsing: Robust and
heuristics-free cross-framework evaluation. In Pro-
ceedings of EMNLP, Edinburgh, UK.

Reut Tsarfaty, Joakim Nivre, and Evelina Andersson.
2012a. Cross-framework evaluation for statistical pars-
ing. In Proceeding of EACL, Avignon, France.

Reut Tsarfaty, Joakim Nivre, and Evelina Andersson.
2012b. Joint evaluation for segmentation and parsing.
In Proceedings of ACL, Jeju, Korea.

Reut Tsarfaty, Djamé Seddah, Sandra Kübler, and Joakim
Nivre. 2012c. Parsing morphologically rich languages:
Introduction to the special issue. Computational Lin-
guistics, 39(1):15–22.

Reut Tsarfaty. 2010. Relational-Realizational Parsing.
Ph.D. thesis, University of Amsterdam.

Reut Tsarfaty. 2013. A unified morpho-syntactic scheme
of Stanford dependencies. In Proceedings of ACL,
Sofia, Bulgaria.

Veronika Vincze, Dóra Szauter, Attila Almási, György
Móra, Zoltán Alexin, and János Csirik. 2010. Hungar-
ian Dependency Treebank. In Proceedings of LREC,
Valletta, Malta.

Joachim Wagner. 2012. Detecting Grammatical Errors
with Treebank-Induced Probabilistic Parsers. Ph.D.
thesis, Dublin City University.

Marcin Woliński, Katarzyna Głowińska, and Marek
Świdziński. 2011. A preliminary version of
Składnica—a treebank of Polish. In Proceedings of
the 5th Language & Technology Conference, pages
299–303, Poznań, Poland.

Alina Wróblewska. 2012. Polish Dependency Bank. Lin-
guistic Issues in Language Technology, 7(1):1–15.

Yue Zhang and Joakim Nivre. 2011. Transition-based
dependency parsing with rich non-local features. In
Proceedings of ACL:HLT, pages 188–193, Portland,
OR.

János Zsibrita, Veronika Vincze, and Richárd Farkas.
2013. magyarlanc: A toolkit for morphological and
dependency parsing of Hungarian. In Proceedings of
RANLP, pages 763–771, Hissar, Bulgaria.

182

Author Index

Agić, Željko, 22
Alkhulani, Sarah, 86

Ballesteros, Miguel, 63
Berović, Daša, 22
Björkelund, Anders, 135

Candito, Marie, 46, 146
Cetinoglu, Ozlem, 135
Choi, Jinho D., 146
Cirik, Volkan, 78
Constant, Matthieu, 46

De La Clergerie, Eric, 53
Dras, Mark, 1

Eryiğit, Gülşen, 129
Ezeiza, Nerea, 71

Farkas, Richárd, 135, 146
Foster, Jennifer, 1, 146

Goenaga, Iakes, 71, 146
Gojenola Galletebeitia, Koldo, 146
Gojenola, Koldo, 71
Goldberg, Yoav, 146
Green, Spence, 146

Habash, Nizar, 86, 146
Hadian, Ali, 97

Kapociute-Dzikiene, Jurgita, 12
Khallash, Mojtaba, 97
Krupavicius, Algis, 12
Kübler, Sandra, 146
Kuhlmann, Marco, 146
Kukkadapu, Puneeth, 91

Lynn, Teresa, 1

Maier, Wolfgang, 146

Malladi, Deepak Kumar, 119
Mannem, Prashanth, 91, 119
Marton, Yuval, 86, 146
Merkler, Danijela, 22
Minaei-Bidgoli, Behrouz, 97
Mueller, Thomas, 135

NAGATA, Masaaki, 108
Nivre, Joakim, 12, 146

Przepiórkowski, Adam, 146

Rambow, Owen, 86
Roth, Ryan, 146

Seddah, Djamé, 46, 146
Seeker, Wolfgang, 135, 146
Şensoy, Hüsnü, 78
Sulubacak, Umut, 129

Tanaka, Takaaki, 108
Tratz, Stephen, 34
Tsarfaty, Reut, 146

Versley, Yannick, 146
Vincze, Veronika, 146

Woliński, Marcin, 146
Wróblewska, Alina, 146

183

	Program
	Working with a small dataset - semi-supervised dependency parsing for Irish
	Lithuanian Dependency Parsing with Rich Morphological Features
	Parsing Croatian and Serbian by Using Croatian Dependency Treebanks
	A Cross-Task Flexible Transition Model for Arabic Tokenization, Affix Detection, Affix Labeling, POS Tagging, and Dependency Parsing
	The LIGM-Alpage architecture for the SPMRL 2013 Shared Task: Multiword Expression Analysis and Dependency Parsing
	Exploring beam-based shift-reduce dependency parsing with DyALog: Results from the SPMRL 2013 shared task
	Effective Morphological Feature Selection with MaltOptimizer at the SPMRL 2013 Shared Task
	Exploiting the Contribution of Morphological Information to Parsing: the BASQUE TEAM system in the SPRML'2013 Shared Task
	The AI-KU System at the SPMRL 2013 Shared Task : Unsupervised Features for Dependency Parsing
	SPMRL'13 Shared Task System: The CADIM Arabic Dependency Parser
	A Statistical Approach to Prediction of Empty Categories in Hindi Dependency Treebank
	An Empirical Study on the Effect of Morphological and Lexical Features in Persian Dependency Parsing
	Constructing a Practical Constituent Parser from a Japanese Treebank with Function Labels
	Context Based Statistical Morphological Analyzer and its Effect on Hindi Dependency Parsing
	Representation of Morphosyntactic Units and Coordination Structures in the Turkish Dependency Treebank
	(Re)ranking Meets Morphosyntax: State-of-the-art Results from the SPMRL 2013 Shared Task
	Overview of the SPMRL 2013 Shared Task: A Cross-Framework Evaluation of Parsing Morphologically Rich Languages

