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Abstract. We present a revision of Mac-Morpho, the biggest corpus of Por-
tuguese text containing manually annotated POS tags. Many errors were cor-
rected, yielding a much more reliable resource. We also trained a neural net-
work based classifier for the POS tagging task, following an architecture that
achieves state-of-the-art results in English. Our tagger maps each word to a real
valued vector and uses it as input, thus dealing with abstract features. These
vectors are induced by distributional semantics techniques, and provide the tag-
ger with information for achieving 96.48% accuracy.

1. Introduction

Part-of-Speech (POS) tagging is an important Natural Language Processing (NLP) task,
serving as a first step for many applications. While a rule based approach for an automatic
tagger is possible [Bick 2000], most of the work addressing this task is based on machine
learning techniques, as usual in NLP, since they require significantly less labor. In order
to do so, one must consider two points: the training data and the learning algorithm for
the tagger.

The training data, in the form of an annotated corpus, should be large enough to al-
low the tagger to generalize what it learns to unseen sentences. The two most widespread
corpora with annotated POS tags in Portuguese are Mac-Morpho [Aluisio et al. 2003],
with around one million words, and Bosque [Afonso et al. 2002], with around 185 thou-
sand.

Both corpora cannot be combined to provide a larger resource, since each one
defines a different tagset. For example, while Bosque has different tags for verbs in the
infinitive, gerund, participle and inflected forms, Mac-Morpho only distinguishes partici-
ples from the other three. On the other hand, Mac-Morpho has different tags for auxiliary
and main verbs, which Bosque does not.

The quality of the data is also important: too much noise (such as wrongly as-
signed tags) may affect the learning process. As the annotation is done by humans, mis-
takes are often introduced, and thus a rigourous checking procedure must be carried out.

As for learning algorithms, there are many that have been proposed and suc-
cesfully applied in this task, usually capable of being employed in different languages.
In Portuguese, experiments reported in the literature include Transformation Based
Learning [dos Santos et al. 2008], Hidden Markov Models (HMM) and Variable Length
Markov Chain (VLMC) [Kepler and Finger 2006], HMM with a character language
model [Maia and Xexéo 2011], among others.
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The work reported in this paper aimed at both these points. First, we performed
a thorough error verification and cleaning process on the Mac-Morpho corpus, which we
used as training data for our models. We report the problems found and make our revised
version publicly available. Also, we joined contracted forms (such as do for de + 0),
which appear splitted in the corpus, in order to reflect a real world scenario. Most works
reported in the literature don’t mention this step.

Second, we trained a POS tagger similar to the work found in
[Collobert et al. 2011], based on multilayer perceptron neural networks and vector
space models, and that achieves state-of-the-art performance in English. Our resulting
tagger is also available online. Besides our model, we performed experiments with the
OpenNLP POS tagger! for comparison.

2. Corpus Treatment

We chose to use the Mac-Morpho corpus because it is the biggest one available with POS
tags in Portuguese. Mac-Morpho is composed of 109 files with texts from the Brazilian
newspaper Folha de Sdao Paulo, and is divided in 10 sections, each having a given topic
(such as agriculture, politics, sports, etc.).

We identified some common errors in the corpus, such as missing words and re-
peated sentences. One example of sentence with a missing word is A degradagdo das
terras pelo mau uso dos solos avanga no. (“Land degradation due to inappropriate soil
usage advances in the.”). These are prejudicial for machine learning, as a classifier will get
examples of impossible sequences (caused by missing words) or may be biased towards
repeated examples.

We developed simple heuristic rules to identify sentences with missing words,
listed below. If any of the rules triggered for a given sentence, it was removed from the
corpus, as there was no way to determine the missing word.

1. The sentence ends with a conjunction, preposition or article (including contrac-
tions).

2. An article appears before a verb, except for the case of ao (contraction between a

and o), which is commonly used before infinitives (e.g., ao ver, “upon seeing”).

An article appears before a preposition, conjunction or punctuation sign.

4. A comma appears before a period, colon, semicolon, exclamation or question
mark.

5. The same punctuation sign appears twice in a row, except for exclamation and
question marks.

e

We are aware that these rules might trigger for false positives, but they are very
rare in comparison with the actual mistakes. Using them, we removed 1,232 sentences.
We also checked repeated sentences, discarding 2,947. Adding up, we removed 4,179
sentences from a total of 54,169 in the corpus (7.7%).

Another problem was that half of the files in the corpus don’t indicate sentence
boundaries; instead, these files have one token per line. Examining sentences separately
is important since most taggers require that they be provided one at a time, so we used the
Punkt sentence tokenizer from NLTK? [Bird et al. 2009] to split the text into sentences.

! Available at http://opennlp.apache.org/
2 Available at http: //www.nltk.org
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This tool works by classifying periods as sentence delimiters or not (as in the case of
abbreviations), and also tries to correctly handle quotation marks and parentheses in the
end of a sentence.

The other half of the files contained XML-like tags to indicate paragraph and
sentence boundaries. Due to tag mismatches we couldn’t feasibly correct, we had to put
off six of these files. With the remaining, we could easily split the sentences.

After searching for characters not used in Portuguese, we found a few typographi-
cal errors such as the use of a diaresis instead of the proper accent, e.g., contrdrio instead
of contrdrio. We also found mistyped tags (identifiable as tags not in the defined tagset)
and a spurious $ symbol before some punctuation signs. All of these could be manually
corrected.

As for tokenization, important decisions in Portuguese concern how to treat prepo-
sition contractions and clitic pronouns. Mac-Morpho presents all components of these
structures separately, but indicates that they were originally joined. In our experiments,
we chose to redo all contractions appearing in the text, aiming at simulating a real world
scenario. The tags for the contractions were obtained as a concatenation of the compo-
nent tags and a plus sign, e.g. PREP+ART for the contraction of a preposition (tagged as
PREP) and an article (ART).

However, we chose to keep clitic pronouns separated from verbs. This decision
was motivated by two factors: first, it is trivial to identify clitics by simple pattern match-
ing. Second, if we consider other NLP tasks such as semantic role labeling, separating
pronouns from verbs is much more important than splitting preposition contractions.

We set aside every tenth sentence in the corpus for testing, leaving the rest for
training. This resulted in 4,999 and 44,991 sentences, respectively. Table 1 shows the
number of occurrences for each of the 30 tags®>. We can see that some tags, especially
those involving contractions, are very rare.

Tag Train  Test Total | Tag Train Test Total
ADJ 39,009 4,264 43,273 | ADV 22,306 2,509 24,815
ADV-KS 289 31 320 | ADV-KS-REL 648 69 717
ART 61,905 6,804 68,709 | CUR 2,235 239 2,474
IN 267 17 284 | KC 21,034 2,333 23,367
KS 10,816 1,275 12,091 | N 180,835 20,181 201,016
NPROP 82,541 9,237 91,778 | NUM 14,506 1,692 16,198
PCP 17,623 1,927 19,550 | PDEN 5,120 546 5,666
PREP 82,103 9,296 91,399 | PREP+ADV 72 13 85
PREP+ART 52,579 5,680 58,259 | PREP+PROADJ 1,549 166 1,715
PREP+PRO-KS 28 4 32 | PREP+PRO-KS-REL 168 19 187
PREP+PROPESS 479 54 533 | PREP+PROSUB 638 72 710
PROADJ 13,767 1,647 15,414 | PRO-KS 1,594 165 1,759
PRO-KS-REL 8,298 863 9,161 | PROPESS 10,308 1,228 11,536
PROSUB 5,710 672 6,382 | PU 124,881 14,025 138,906
v 75,686 8,415 84,101 | VAUX 13,969 1,552 15,521

Table 1. Distribution of tags in the corpus

3The description of the tags used in Mac-Morpho can be found at http: //www.nilc.icmc.usp.
br/lacioweb/english/manuais.htm
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3. The Tagger

We implemented the model presented in [Collobert et al. 2011] for training a POS tagger.
It receives a window of tokens as input and maps them to feature vectors, which are then
concatenated and fed to a multilayer perceptron neural network. Figure 1 shows a window
of three tokens being converted into vectors. There must be one neuron in the network
input layer for each of these values.

| dados | serdo | apurados | —)l 0.82]0.45] ... | | 0.65]0.18] ... | | 0.13]-0.77 | ... |

Figure 1. Example of a window of size 3 being converted into feature vectors

3.1. Word Representations

In this architecture, each word has a corresponding real valued vector*. The represen-

tations used by [Collobert et al. 2011] were obtained in semi-supervised fashion through
a neural language model, which was trained to distinguish positive examples of word
sequences (extracted from a corpus) from negative ones (random perturbations of the
positive example).

In their training process, the authors sampled word sequences from a huge corpus
and corrupted them by randomly replacing the middle word. Then, the neural model was
fed both sequences and had to output a score for the original one higher by a given margin
than for the corrupted one. The corrections in the network parameters were backpropa-
gated to the word representations. As a result, words with similar meaning and usage had
vectors with a small euclidian distance.

Using such representations brings a couple of advantages: the automatic classifier
can easily detect words that should be treated similarly, and words not seen in the training
data for a tagging task are not completely unknown, as long as they have a feature vector.
Thus, out-of-vocabulary (OOV) impact is expected to be lesser.

The unsupervised training for generating word representations, however, is ex-
tremely slow: the authors report weeks of training time. Motivated by the observations
from [Turian et al. 2010] that representations obtained in different ways may be used
by a classifier to obtain good results in NLP tasks, we turned our attention to methods
based on distributional semantics [Turney and Pantel 2010], which are much faster. In
[Huang and Yates 2009], word representations generated with such methods are also em-
ployed for POS tagging in English; however, the system architecture in that work is very
different from the one explored here.

We used the software package Semantic Vectors® [Widdows and Ferraro 2008] to
induce representations from a collection of texts composed of the Portuguese Wikipedia®
and the PLN-BR corpus [Bruckschen et al. 2008]. We used the method known as Hyper-
space Analogue to Language (HAL) [Lund and Burgess 1996], which consists in creating
a table counting the occurrences of each word in the vocabulary next to each other word.

4 Actually, not only words, but rather all types, including punctuation, numbers, etc. can have a feature
vector. We use the term word here because it is commonly found in the literature.

3Available at https://code.google.com/p/semanticvectors/

Available at http://dumps.wikimedia.org/ptwiki
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We induced vectors for all 89,075 word types that occurred at least 40 times in
the corpus. Other words are mapped to a special vector generated randomly. Two other
vectors were also generated randomly for the padding before after the limits of a sentence.
We experimented with vectors having from 50 to 300 dimensions, and after examining
the results, we concluded that the overall quality was about the same for all numbers of
dimensions. We chose to keep the 50-dimension vectors for computational efficiency.

Besides encoding word types, feature vectors can also represent discrete attributes
such as presence of capitalization. To this end, each possible value of the attribute must
have a corresponding vector; in the case of capitalization, values could be: all lowercase
letters, initial uppercase letter, other combinations and a N/A value for punctuation and
numbers. Thus, when the network is given a token, its type vector is concatenated with
all other feature vectors. Figure 2 exemplifies this process.

Type Vector Value Vector
nao 0,97 -0,34 0,16 All lowercase 0,04 0,72
sei  -0,81 0,09 -021 Uppercase initial -0,59 0,18

049 0,82 0,63 Other case combinations -0,12  -0,65
: N/A 0,94 0,51
Token Resulting Vector
Nao 097 -0,34 0,16 -0,59 0,18
sei -0,81 0,09 -0,21 0,04 0,72

0,49 0,82 0,63 094 0,51

Figure 2. Representations including a discrete attribute

3.2. Simple Word Window Approach

In the most basic setup, the simple word window approach, the network has one hidden
layer and performs usual operations (weighted sum followed by a sigmoid function). It
outputs a score f; for the token in the middle of the input window having each tag j; so,
in order to tag all tokens in a given sentence, the network must examine each window
at a time. In the case of tokens near the beginning or the end of a sentence, the input
window is complemented with pseudo-tokens serving as padding. These pseudo-tokens
also have their own corresponding feature vectors. Figure 3 shows an example of all
possible windows obtained from a sentence.

/ *PADDING_LEFT* | Nao sei
\ sei X *PADDING_RIGHT*

Figure 3. Windows of size 3 produced from a sentence.

The neural network is trained via backpropation, doing a gradient ascent aimed at
maximizing the log likelihood over training data. Due to the paucity of space, we refer the
reader to [Collobert et al. 2011] for a complete demonstration of the differentiation of the
system output. Gradients are backpropagated until the input layer, so word representations
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can be adjusted in the same way as the network connections. The corrections take place
after running the network for each window.

3.3. Sentence Approach

The network score may also be combined with tag transition scores, encoding knowledge
such as “an article is very likely to be followed by a noun”, and thus working similarly
to a Hidden Markov Model. These scores are encoded in a transition matrix A, which
contains in each cell A, ; the score for a token tagged with ¢ being followed by another
one tagged with j. Thus, denoting the neural network parameters with 6 and the network
score for tag j at the ¢-th token with f; ;, the score for a given sentence x of size 7" having
the tag sequence ¥ is:

T
$(2,5,0) = frge + Ay_r (1)
t=1

Note that we need a score Ay ; for starting the sentence with tag j. This is actually
a generalization of the previous setup: we can think of the simple word window approach
as having a transition matrix where all cell values are set to zero.

Instead of assigning the tag with the highest score for each token right after ex-
amining its window, this setup stores all tag scores for each token and then searches for
the tag sequence with the highest score using the Viterbi algorithm. Because of it, when
training a network with this approach, the gradients are only calculated after tagging a
whole sentence.

The transition matrix is also updated via gradient ascent, increasing values for
transitions found in the sentence at the expense of the scores of unseen transitions. The
computation of the gradients in the sentence approach involves both the network output
and the transition values, and is much more complex than for the simple window ap-
proach.

4. Experimental Results

4.1. Tagging Accuracy

We evaluated our models on our revised version of the Mac-Morpho corpus. As additional
attributes, we employed the presence of capitalization (as shown in Section 3.1) and word
endings. Feature vectors for both attributes have 5 dimensions.

In order to determine which endings should have their own vectors, we examined
all word types occurring in the training set and picked all endings of size 3 that occurred in
at least 20 types. This yielded a total of 389 endings, and a vector was randomly generated
for each of them. All words with size 3 or less are mapped to another vector, and those
not ending in any of the listed patterns are mapped to another one. For simplicity, we call
any word ending a suffix, even if it is not linguistically accurate.

We experimented with the following setups:

e Simple window approach with capitalization. (WC)
e Simple window approach with capitalization and suffixes. (WCS)
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e Sentence approach with capitalization. (SC)

e Sentence approach with capitalization, suffixes and randomly initialized word rep-
resentations. (SCSR)

e Sentence approach with capitalization and suffixes. (SCS)

In all setups, we employed a word window of size 5 and 100 neurons in the hidden
layer, except for the SCSR, which had 150 neurons. These values were the smaller ones
that yielded good performance overall. Training neural networks with such a high number
of connections’ is a very delicate process, as they can easily diverge if the learning rate is
too high. On the other hand, if the rate is too low, the learning process can take too much
time or even get stuck in a local minimum.

We found a good balance by starting training for two epochs with the rate set to
1073, then 200 epochs with 10~%, and finally a few more with 10~°. Training further with
lower rates did not result in significant improvements. Still, training times were very long,
usually around 20 hours. Training is clearly the main drawback of this method.

It is not possible to compare our results directly with others reported in the lit-
erature, as we use a different tagset than the default from Mac-Morpho (obtained after
collapsing preposition contractions). In order to make comparisons, we trained a Max-
imum Entropy model from Apache OpenNLP, using its default parameters. Results are
reported in Table 2, considering accuracy over all words in the test set and only in those
that did not appear in the training set (OOV).

Model  Overall accuracy OOV accuracy

wC 95.28% 82.84%
WCS 96.01% 87.92%
SCSR 91.38% 85.52%
SC 96.22% 84.31%
SCS 96.48 % 87.34%
MaxEnt 95.92% 91.99 %

Table 2. Experimental results

We can see that most variants of our model performed very well on the testing data,
except for SCSR, as expected. This confirms the representative power of pre-initialized
feature vectors, even using far simpler techniques than [Collobert et al. 2011]. We also
see that our configurations using the simple window approach and/or without suffix fea-
tures achieve good results, while the more complex ones have a small advantage.

When it comes to OOV accuracy, the importance of recognizing suffixes is greater,
as expected. Despite achieving the second best results overall, the SC model performed
poorly with OOV words, probably due to its lack of suffix knowledge. In fact, even the
SCSR setup performed better in this regard than the ones that used HAL representations
but no suffix features.

The MaxEnt classifier outperformed all our models in OOV accuracy. It also
observes word endings, and the combination of features it uses seems to be more efficient
for unknown words. This denies our a priori belief that our word representations would be

"Five tokens with 55 or 60 features each in the input yield 275 — 300 input neurons, meaning 27,500 to
45,000 connections from the input layer to the hidden one
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Reference Word Similar Words

ele esta, também, essa, eles, ela

as jon, joey, visivelmente, jorginho, galina

ontem anteontem, carybé, colbert, extra-oficialmente, larson
reclamacgado engrenagem, simbologia, reagdo, corrente, experiéncia
sera detectou, evitou, cumpre, seria, traz

Table 3. Comparison with word representations produced by HAL

Reference Word Similar Words

ele eu, nos, eles, ela, vocé

as zenon, 3, juno, pubs, aos

ontem amanha, anteontem, agora, ai, aqui

reclamacdo estrutura, semente, simbologia, reacdo, experiéncia
sera demonstra, cumpre, exigia, foi, seria

Table 4. Comparison with word representations after training the SCS model

helpful for OOV classifying. Still, it would be worth investigating if word representations
produced by a neural language model would lead to better performance.

4.2. Effect on Representations

We also examined the effect that training a model for POS tagging had on the word repre-
sentations. We picked some common words from Mac-Morpho and searched for the ones
most similar to them, according to the cosine of their vectors. Table 3 shows the results
with the initial HAL vectors, and Table 4 with the vectors after training the SCS model.

In general, we found that representations for nouns and verbs didn’t improve
much, as shown for reclamagdo and serd. HAL vectors could be enhanced by finer se-
mantic knowledge, but the adjustments made were only related to POS tags.

For other word classes, it seems that better representations have been achieved.
The vector for ele became closer to the ones for other personal pronouns, and the one for
ontem to those of other time and space adverbs.

5. Conclusions

In this contribution, we presented a revised version of the Mac-Morpho corpus, with many
mistakes corrected. We addressed the POS tagging task trying to simulate a real world
scenario, and dealt with preposition contractions as single words. This is contrary to most
works in Portuguese POS tagging, which do not care for this detail. We believe that this
allows for a more robust tagger, capable of working with texts without any preprocessing.

We also experimented with an algorithm that has been shown to provide state-of-
the-art performance for English POS tagging, and achieved good results in Portuguese.
We found that it works well when given word vectors induced by a distributional seman-
tics technique, instead of a neural language model. The latter remains to be explored,
and perhaps could improve performance even further, especially for OOV data. The code
for our implementation and the revised version of Mac-Morpho are available online at
https://github.com/erickrf/nlpnet.
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