
The 4th Workshop on South and Southeast Asian NLP (WSSANLP), International Joint Conference on Natural Language Processing, pages 34–42,
Nagoya, Japan, 14-18 October 2013.

On Application of Conditional Random Field in Stemming of Bengali

Natural Language Text

Sandipan Sarkar

IBM

sandipansarkar@gmail.com,

sandipan.sarkar@in.ibm.com

Sivaji Bandyopadhyay

Computer Science & Engineering Department,

Jadavpur University

sbandyopadhyay@cse.jdvu.ac.in,

sivaji_cse_ju@yahoo.com

Abstract

While stochastic route has been explored in

solving the stemming problem, Conditional

Random Field (CRF), a conditional probability

based statistical model, has not been applied

yet. We applied CRF to train a set of stemmers

for Bengali natural language text. Care had

been taken to design it language neutral so that

same approach can be applied for other lan-

guages. The experiments yielded more than

86% accuracy.

1 Introduction

Applications of stochastic methods in solving the

stemming problem is not new. Along the rule-

based approaches, this approach had been used
for since 1994. The obvious advantage of sto-

chastic stemmers is their language neutrality.

Unlike rule-based stemmers, statistical stemmers

usually do not require any language specific

knowledge. Thus this type of stemmers is generic

and can be applied in any language.

Several supervised and unsupervised statistical

methods were applied before to address the prob-

lem of stemming. The methods explored are De-
cision Tree (Schmid, 1994), HMM (Melucci and

Orio, 2003), character n-gram (Mayfield and

McNamee, 2003; Jordan et al., 2005), clustering
(Garain and Datta, 2005; Majumder et al., 2007;

Das and Bandyopadhyay, 2008) and many more

novel techniques (Croft and Xu, 1995; Gold-
smith et al., 2001; Bacchin et al., 2002; Gelbukh

et al., 2004; Bacchin et al., 2005; Dasgupta and

Ng, 2006; Hammarström, 2006; Bhamidipati and

Pal, 2007; Pandey and Siddiqui, 2008; and Patel

et al., 2010). However, we could not find any

work where CRF has been used.
Conditional Random Field (Lafferty et al.,

2001), a probabilistic model that helps in seg-

menting and labelling sequence data, is quite

popular in various applications such as DNA se-

quencing (e.g. Culotta et al., 2005), image analy-

sis (e.g. Wang et al., 2006) etc. In NLP field it is

applied in word sequencing (e.g. Tseng et al.,

2005) and POS tagging (e.g. Ekbal et al., 2007;

Batuer and Sun 2009) extensively. However, we

could not find any publication that applied CRF
in stemming or lemmatisation task in Bengali or

other language.

The problem of stemming can be seen as a la-
belling problem where a surface word needs to

be labelled against its stem. Thus, our hypothesis

was CRF can be a useful tool for stemming task.

The objective of this work was to apply it in

building stemmers and test its performance in

Bengali natural language text.

2 Related Statistical Stemming Works

As part of his decision tree based POS tagger,

Schmid (1994) discovered the co-relation be-

tween POS tags and inflections. With the aid of
that he identified inflections while discovering

POS from the surface words.

Croft and Xu (1995) proposed a statistical

mechanism to improve the result of strong rule-

based stemmers that suffered from overstemming

problem. The proposed mechanism applied co-

occurrence measure of two words. The idea was

to build equivalence classes based on a standard

strong stemmer and then to apply this measure

among all the words in the class. The stemmer
formed new classes by merging existing classes,

if word pairs from those classes were found to

have high co-occurrence.
Goldsmith et al. (2001) reported an automatic

statistical stemmer that would analyse a corpus

of any language and find out a set of suffix and

stem possibilities. Such possibilities are assigned

with empirical probabilities to determine the fi-

nal stem. They developed a system, which was

run on Italian, German and French corpora, and

34

reported average precisions against interpolated
recalls. However, in this publication, it was not

clear how effective this stemmer was against no-

stemming approach. Also they admitted that the
system was at an early stage.

Next significant statistical stemmer was re-

ported by Bacchin et al. (2002). The approach

was to search the community of substrings,

which were formed by interlinked prefixes and

suffixes, for the best word splits. They compared
the language independent statistical stemmer

(SPLIT) with no-stemming approach and a Por-

ter-like rule based stemmer (Porter, 1980). How-
ever, the reported results show that the SPLIT

performed worse than the rule based stemmer

and the performance improvement against no-
stemming approach was 5% at best.

Mayfield and McNamee (2003) reported a

language independent, character n-gram based

approach to identify pseudo-stems. They com-

pared the retrieval accuracy for pseudo-stems

against unstemmed words and stems, which are

obtained from Porter-like (Porter, 1980) stem-

mers, for Swedish, Dutch, Italian, French, Fin-

nish, Spanish, English and German. For most of
the cases, n-gram approach performed better than

unstemmed words but underperformed for

stemmed words.

Melucci and Orio (2003) reported another lan-

guage independent statistical stemmer based on

HMM. They ran a similar comparison exercise as

reported in Mayfield and McNamee (2003) for

German, English, Italian, French and Spanish.

The relative performances were same as May-

field and McNamee (2003).
Gelbukh et al. (2004) proposed a language-

agnostic unsupervised statistical approach to dis-

cover simple stemming rules from a corpus. The
approach was to identify the set of stems and

inflections from a corpus, where every word of

the corpus can be obtained by a concatenation of

one member from stem and infection set respec-

tively. Genetic algorithm was applied to keep the

size of the stem and inflection sets minimal.

Though Porter (1980) performed better than the

proposed stemmer, it promised to be an accept-

able approach for quick stemming tasks.
Bacchin et al. (2005) proposed a probabilistic

mutual reinforcement enhancement on their pre-

vious work SPLIT (Bacchin et al., 2002). The
hypothesis was that a valid stem-inflection pair

would have more probability of occurrence than

an invalid stem-inflection pair. They applied this
model against an Italian corpus and compared

that again with no-stemming approach and a Por-

ter-like stemmer. The reported results showed
that it performed better than no-stemming ap-

proach consistently. However, the comparison

against Porter-like stemmer did not produce any
consistent result.

Garain and Datta (2005) applied stemming in

the context of Bengali image document retrieval

system. The proposed approach was unsuper-

vised clustering based on edit distance (Leven-

shtein, 1966) of two words. Once clusters are
formed, stem of the cluster was identified as the

longest substring common to all words in the

cluster. The experiment was run on images of
newspaper articles and achieved the stemming

accuracy of 88.77%.

Jordan et al. (2005) proposed a character n-
gram based unsupervised algorithm to find the

morphemes from a corpus. The n-grams with

highest probabilities of occurrence in a corpus

became candidate morphemes. The test words

were recursively split to compare with these can-

didate morphemes to identify the resultant mor-

pheme composition of the word. It was run on

English, Finnish and Turkish word lists. It was

found that the IR retrieval performance improved
in comparison to the no-stemming approach for

English and Finnish, whereas, in case of Turkish,

the performance was worse than no-stemming.

Dasgupta and Ng (2006) devised an unsuper-

vised algorithm for any natural language text to

induce the prefix, suffix and stems from an un-

annotated corpus without any prior morphotac-

tics and morpho-phonological rules. The same

algorithm was extended to detect composite suf-

fixes. They reported an accuracy of 64.62%
while the algorithm was run on Bengali text cor-

pus.

Hammarström (2006) proposed an unsuper-
vised algorithm for detecting suffixes and stems

from any unannotated natural language corpus.

The work suggested a ranking mechanism of po-

tential suffixes using three measures – Frequency

(how many times the suffix appeared), Curve

Drop (whether the suffix is well segmented to the

left), Random Adjustment (discriminates a ran-

dom segment from a true suffix). It argued in

favour of gold standard based accuracy meas-
urement of stemmer rather than IR application

based measurements. The algorithm was applied

on Maori, English, Swedish and Kuku Yalanji
and reported accuracy of more than 90% on a

relatively small set of test data (200 words each).

It compared the result with Porter stemmer (Por-
ter, 1980) for English and the performance was

found to be same.

35

Bhamidipati and Pal (2007) proposed a statis-
tical approach to improve a given stemmer’s

(rule-based or statistical etc.) performance. The

approach was to compute the distance between
the multinomial distribution function of a word

and that of a candidate stem. The words were

sorted in descending order based on frequency. If

the distance was small, then the word was put

into the same class of the stem otherwise, the

word was treated as a new stem class. When this
approach was applied on top of Porter (1980) and

Truncate(n) stemmers, it was observed that the

stemming accuracies consistently improved.
Majumder et al. (2007) took a clustering ap-

proach to solve the stemming problem. The clus-

ters were formed from the corpus based on the
distance between two words. They argued that

Levenshtein edit distance (Levenshtein, 1966)

may not be appropriate for this purpose and thus

proposed four different distance functions, which

put weights on mismatches based on the charac-

ter position in a decreasing manner. The nucleus

of the cluster became the stem. For French this

approach produced comparable results with re-

spect to Porter-like (Porter, 1980) stemmer. For
Bengali, in absence of a Porter-like stemmer,

they showed that it significantly improved over

no-stemming approach.

Pandey and Siddiqui (2008) proposed an un-

supervised approach to identify the stem based

on Goldsmith’s model (Goldsmith et al., 2001).

It calculated the probability of the split of the

word based on all combinations of possible stem

and inflection combination. It iterated the split

probability based on a naïve Bayesian model.
The split with maximum probability identified

the stem. The accuracy for Hindi language was

reported between 85% - 89%, which outper-
formed both Ramanathan and Rao (2003) (67% -

70%) and Larkey et al. (2003) (72%-78%).

Groenewald (2009) developed a stemmer for

Setswana based on k-Nearest Neighbour algo-

rithm using a relatively small training data set.

The stemmer achieved 64.06% accuracy which

was slightly better than that of Brits (2006),

which was a rule based stemmer.

Like in Garain and Datta (2005), Das and
Bandyopadhyay (2010) presented a clustering

based stemming technique for Bengali. However,

they applied this technique on text instead of im-
age. The clusters were formed based on mini-

mum edit distance (Levenshtein, 1966) based K-

means clustering. The accuracy of the stemmer
was reported to be 74.06%.

Patel et al. (2010) followed a hybrid approach
to come up with a stemmer for Gujarati. The sta-

tistical unsupervised approach proposed by

Goldsmith et al. (2001) was adopted, however, a
hand-crafted suffix list was used to better under-

stand the stem and inflection split probabilities.

The accuracy of the stemmer was reported to be

67.86%, which received a 17% accuracy boost

because of hand-crafted suffix.

3 Conditional Random Field

Among statistical models, Hidden Markov

Model (HMM) is very popular for labelling and

sequencing tasks. However, HMM is a genera-

tive model that defines a join probability distri-
bution P(X, Y) where X and Y are random vari-

ables respectively ranging over the observation

sequence X and state sequence Y. To define this

joint probability, the generative model requires

the enumeration of all possible observation se-

quences. Building such an extensive training set

in a low privileged language like Bengali, is im-
practical.

Moreover, HMM assumes that the observation

sequence is a set of isolated and independent ob-
servation units. In most applications such as-

sumption is intractable as the observation units

often are dependent based on several different
features.

Maximum Entropy Markov Model (MEMM)

addresses all the above problems. It defines the

conditional probability P(Y | X) instead of joint

probability. Moreover, for each source state it

takes observation features as input and outputs a

distribution over next possible states. However, it

suffers from a problem called label bias. MEMM

transitions leaving a particular state only com-
pete against each other instead of competing

globally across all the transitions. As a result, it

creates a bias towards state with fewer outgoing
transitions.

CRF, resolves both of the above problems. It

works on the conditional probability P(Y | X).

Therefore, it does not require any modelling ef-

fort on observation sequence. Moreover, unlike

MEMM, which uses a per-state exponential

model, CRF has a single exponential model for

the joint probability of entire sequence of states

for the given observation sequence. Hence it
does not suffer from label bias problem.

CRF can be represented as an undirected

graph that represent the conditional probability
of the state sequence Y = {y1, y2, …, yT}, for a

36

given observation sequence X = {x1, x2, …, xT},
as depicted below:

Figure 1: Graphical Structure of CRF

CRF makes a first-order Markov assumption

on the state sequence – as the adjacent pair of

state nodes (yt-1, yt) are linked by an undirected
edge of the graph. However, it makes no assump-

tion on the observation nodes, which is repre-

sented as a single node above.

3.1 Definition

We adopted the definition of CRF provided by

Vail et al. (2007). The conditional probability

P(Y | X) can be defined as the normalized prod-

uct of strictly positive real-valued potential func-

tions. The potential functions are computed over

the cliques of CRF graph. As depicted in Figure
1, the cliques consist of the adjacent pairs of

states and the entire observation sequence. Thus

a potential function can be defined as

1(, , ,)t tt y y Xψ − , where t is an index in the

state sequence. Since CRF is log-linear model

(Wallach, 2004), the potential functions can be

defined as follows:

1 1(, , ,) exp(, (, , ,))T

t t t tt y y X w f t y y Xψ − −=

Expression 1: Potential Function

where w presents a vector of weights and f is the

vector of feature functions. The weight vector is
estimated during training.

We define feature functions based on real-

valued features. An example of a feature b from

our area of application can be:

t1, if x = a particular surface word
(,)

0, otherwise
b t X


= 


Expression 2: Feature

Thus we can define a feature function as fol-

lowing:

t-1 1 t 2

1

(,), if y = S and y = S
(, , ,)

0,otherwise
t t

b t X
f t y y X−


= 


Expression 3: Feature Function

where S1 and S2 are two example stems.
Going by the previous definition of the condi-

tional probability,

()P Y X =

1

1

1
exp(, (, , ,))

T
T

t t

t

w f t y y X
Z

−
=
∏

Expression 4: CRF Conditional Probability

where Z is the normalization constant. The

strictly positive real-valued potential functions

are not guaranteed to satisfy the axioms of prob-

ability. Thus Z is used to ensure that the summa-

tion of all the probability is equal to 1. Z is de-

fined as below:

1

1

exp(, (, , ,))
T

T

t t

Y t

Z w f t y y X−
=

= ∑∏
 Expression 5: CRF Normalisation Factor

3.2 Training

CRF training is actually about estimation of the

weight vector w, where the conditional likeli-

hood of the training corpus, which is labelled

with states. Maximizing the conditional likeli-

hood can be approximately equated to maximiza-

tion of the log-likelihood, which is more conven-
ient to achieve. Thus we define the log-

likelihood as:

(;)L Y X w =

1

1

(, , ,) log()
T

T

t t

t

w f t y y X Z−
=

−∑

Expression 6: CRF Objective Function

The gradient of the above function is:

1

1

(, , ,)
T

i t t

ti

dL
f t y y X

dw
−

=

= −∑

1() (, , ,)i t t

Y

P Y X f t y y X−∑

Expression 7: CRF Objective Function Gradient

Expression 6 is called the objective function.
Optimization techniques (e.g. conjugate gradient,

BFGS etc.) can be applied on the objective func-

tion to calculate the maximum log-likelihood.

3.3 Regularisation

Regularization norms can be applied on the

above maximum likelihood calculation. Usually
in CRF two different regularization norms are

applied – L1 and L2.

In L1 norm, instead of maximizing the log-

likelihood alone a penalty term for each weight

proportionate to |wi| are deducted from it. Thus

37

the penalized objective function can be defined
as below:

max (;) i
w

i

L Y X w wµ− ∑

Expression 8: L1 Norm

where µ a parameter that controls the degree of

smoothing.

In L2 norm, the penalty term is proportionate

to wi
2
. The penalized objective function can be

defined as below:

max (;) T

w
L Y X w w wµ−

Expression 9: L2 Norm

4 Experiment

4.1 Corpora

We used two corpora for the experiment:

1. Classic Literature Corpus (CLC). This

corpus comprised of first five short stories

(����� ��� [ghaaTer kathaa], ���	��� ���
[raajapather kathaa],
��� [mukuT],

���	���� [denaapaaonaa], and
	��
����
[posTamaasTaar]) by Rabindranath Tagore

[Tagore 1960]. It was written in traditional

and colloquial dialects. It contained 15,347

tokens. We ourselves hand-tagged the corpus

with POS.

2. Contemporary Travelogue Corpus (CTC).
This corpus comprised of four travelogues

(�
����� ������� [aamaajaner gaach-

habaarhi], ���-���� [baksaa-jayantee],

������ [banasundar] and ����� [baagaan])
from contemporary travel magazines. It was

written in colloquial dialects. It contained

11,561 tokens. The corpus is POS tagged by

Indian Languages to Indian Languages Ma-
chine Translation System (IL-ILMT) devel-

oped by Jadavpur University as part of a DIT

funded project. The corpus is also POS
tagged by us again manually.

4.2 Strategy

 We devised the following experiment strategy:

• The biggest benefit of statistical approach is

language independence. Hence the CRF

must not be training with any linguistic de-

tails, to avoid infusing language dependency.

• Train a CRF system so that it can discover

the sequence of stems (Y) from the test cor-

pus based on the following observation se-
quence (X)

o UNI: Surface word only
o POS: A combination of surface word

and POS of the surface word

• Run the CRF system on both CLC and CTC

corpora to observe the performance on dif-

ferent domains.

• Test the domain affinity, if any, of the CRF

system. For that we decided to test CTC cor-
pus using CRF trained using CLC and vice

versa.

4.3 Experiment Setup

Since CRF is a supervised learning technique, we

crafted two sets of corpora – for training (CLCL

and CTCL) and test (CLCT and CTCT) purpose
respectively. The details about these corpora are

provided in the table below:
Table 1: Corpora Used in CRF Experiment

Detail Value

Surface Words in CLCL 8953

Surface Words in CTCL 7493

Inflections in CLCL 192

Inflections in CTCL 131

Stems in CLCL 1650

Stems in CTCL 1856

Surface Words in CLCT 9607

Surface Words in CTCT 4410

Additionally, we also created combined cor-

pora – CombinedL and CombinedT respectively

by joining the two corpora from respective sets.

We chose CRF++ (Taku-ku, 2003), an open

source implementation of CRF developed using

C++ language. CRF++ takes few parameters, of
which we used a couple, which are described

below:

• Regularization Norm: We chose L2.

• Regularization Parameter (µ): We chose

1.0 as value.

CRF++ requires an input file for both training

and testing. The format of this file is like a table
where each record is a set of fields, which carry

individual semantics. It can have multiple input

fields followed by a single output field. The us-
age of input fields depend on the features used in

the model – potentially some input fields may

remain unused. We defined two input fields: sur-
face word (F1), and POS of the surface word (F2).

We had two options for the output column –

stem or inflection. The natural output of a stem-

mer is stem. Thus initially we went for it. How-

ever, when we tried to train it on a 4 GB i5 quad-

core Windows 7 64-bit laptop, the CRF++ tool

crashed. We did an analysis to discover the rea-

son behind it as explained below.

38

As explained earlier, CRF++ generates feature

functions (1(, , ,)t tf t y y X−) based on the

training records and the features defined. The

feature functions are a combination of features,

records and output classes. Hence the number of

feature functions generated by the tool can be
estimated as N*M*K, where N = number of fea-

tures, M = number of records in training file and

K = number of output classes. We defined one
feature (N) and used CLCL as training corpus,

which contained 8953 surface words (M) and

1650 stems (K). Hence it generated more than 14
million feature functions (1 * 8953 * 1650 =

14,772,450). Obviously, the configuration of the

laptop used was not powerful enough to handle

it. Soon, as the performance monitoring revealed,

the training task consumed all 4 GB of available

primary memory, and resulted in a crash of
CRF++.

Next, the second output class option, which

was inflection, was considered. In a stemmer, the
inflection is not the final output. However, for

evaluation purpose of the statistical approach, it

would serve well.
The number of feature functions estimated for

CLCL was around 1.7 million (1 * 8953 * 193 =

1,718,976), which is less than previous estimate

by at least one order of magnitude. CRF++ could

manage to run it successfully with a decent

memory usage, even though the CPU usage hit

the 100% limit with regular valleys. A typical

resource utilization pattern of the machine during

training was shown in Figure 2:

Figure 2: Machine Performance for the Training

with Inflection as Output Class

In CRF++, the features (please refer to Ex-

pression 2) are defined in a template file. As we

strategised, two different features, which do not

have any linguistic details, were defined for two

different experiment runs. They are defined be-

low:

1 t1, if F = surface word of x
(,)

0, otherwise
UNIb t X


= 


Expression 10: Feature UNI

1 t 2 t1, if F = surface word of x and F = POS of x
(,)

0, otherwise
POSb t X


= 

 Expression 11: Feature POS

5 Result

We trained the machine six times using different

training corpora and features as summarized be-

low:
Table 2: CRF Trained Models

Model Training

Corpus

Feature

TAGORE.UNI CLCL UNI

TRAVEL.UNI CTCL UNI

COMBINED.UNI CombinedL UNI

TAGORE.POS CLCL POS

TRAVEL.POS CTCL POS

COMBINED.POS CombinedL POS

We executed a set of test runs using different

combinations of model and test corpus. After-

wards we compared the machine output with the

manually determined gold standard and com-

puted the accuracy. Following table presents the

outcome:

Table 3: Accuracies Achieved in CRF Test Runs

Run Model Corpus Result

CLC.TAGORE.

UNI

TAGORE.UNI CLCT 84.7%

CTC.TAGORE.

UNI

TAGORE.UNI CTCT 69.5%

CTC.TRAVEL.

UNI

TRAVEL.UNI CTCT 79.8%

CLC.COMBIN

ED.UNI

COM-

BINED.UNI

CLCT 86.0%

CTC.COMBIN

ED.UNI

COM-

BINED.UNI

CTCT 81.6%

CLC.TAGORE.

POS

TAGORE.POS CLCT 84.3%

CTC.TAGORE.

POS

TAGORE.POS CTCT 68.2%

CTC.TRAVEL.

POS

TRAVEL.POS CTCT 78.7%

CLC.COMBIN

ED.POS

COM-

BINED.POS

CLCT 85.6%

CTC.COMBIN

ED.POS

COM-

BINED.POS

CTCT 80.9%

Overall, the performance of the CRF stemmer

is encouraging as it more or less consistently

achieved an accuracy of more than 80%. It per-

formed better than two other statistical stemmers

39

(Dasgupta and Ng, 2006; and Das and Bandyop-
adhyay, 2010), which reported 64.62% and

74.06% accuracy respectively for Bengali text.

We further analysed it on three different as-
pects as presented in the subsections below:

5.1 Effect of Features

We plotted different test runs to compare the ef-
fect of different features.

Figure 3: Effect of Features on Accuracy

As evident from above, having an additional

feature in the form of POS, did not help the per-
formance of the CRF stemmer. For all test runs,

both of these features yielded almost similar per-

formance.

5.2 Effect of Domains

We analyzed the effect of domains both on train-

ing and test corpus. We picked up the UNI fea-
ture based results as that was slightly better than

POS based accuracies. The chart below depicts

the result of this analysis:

Figure 4: Effect of Domains on Accuracy

We made the following observation:

• CTC performed worse than CLC. We

found that there were many spelling mis-

takes and malformed words present in this

corpus. The CRF failed to find the right

inflection pattern for such words.

• The performance of CTC against the

model TAGORE.UNI produced worst re-

sult when compared against other runs of

CTC. It shows that the statistical stemmer

shows domain affinity. In this case the

training and test corpus were from differ-
ent domains – and that was the reason for

bad accuracy.

• The combined model (COMBINED.UNI)

yielded better performance than the re-

spective trained models of domains. This

observation matches the intuition that

richness of the training data may improve

the stemmer performance.

5.3 Rule-based vs. Statistical

In our survey, we could not find any work that

compared the performances rule-based and sta-
tistical stemmers in the context of Bengali text.

As third analysis step, we attempted the same.

We picked up the rule-based stemmer Mu-
laadhaar3 (M3) proposed by Sarkar and

Bandyopadhyay (2012). M3 performances were

reported on same set of test corpora, thus a fair
comparison was possible. We compared the best

results CRF achieved against the A1 and A2 accu-

racy measures of M3. The analysis result is de-

picted below:

Figure 5: CRF vs. M3

As evident from above, M3 outperformed
CRF on all the domains.

6 Conclusion

We tried a different statistical approach than the

more popular options, in the form of a CRF

based machine learning technique to produce a
statistical stemmer for Bengali. The results found

to be encouraging while comparing against other

published works on Bengali statistical stemmers.
However, we found that the rule-based stemmer

M3 performed far better than the CRF stemmers.

However, the approach presented here is lan-
guage independent. Thus it can be applied to

languages where the deep linguistic rules are not

yet formalised. It would be interesting to see its

application in other Indo-Aryan languages like

Oriya, Assamese etc. where linguistic rule-based

stemmers are yet to arrive.

40

References

M. Bacchin, N. Ferro, and M. Melucci. 2002. Ex-
periments to evaluate a statistical stemming

algorithm. Proceedings of the Conference and

Labs of the Evaluation Forum (CLEF).

M. Bacchin , N. Ferro, and M. Melucci. 2005. A

probabilistic model for stemmer generation.
Information Processing & Management, 41(1):

121-137.

B. Aisha, and M. Sun. 2009. A Uyghur Morpheme

Analysis Method based on Conditional Ran-
dom Fields. International Journal on Asian Lan-
guage Processing, 19(2):69- 77.

N. L. Bhamidipati, and S. K. Pal. 2007. Stemming

via Distribution-Based Word Segregation for

Classification and Retrieva. IEEE Transactions
on Systems, Man, and Cybernatics - Part B: Cy-

bernatics, Vol. 37, No. 2.

J. H. Brits. 2006. Outomatiese Setswana lemma-

identifisering. Master’s Thesis. North-West Uni-

versity, Potchefstroom, South Africa.

W.B. Croft, and J. Xu. 1995. Corpus-Specific Stem-

ming using Word Form Co-occurrences. In
Fourth Annual Symposium on Document Analysis

and Information Retrieval.

A. Culotta, D. Kulp and A. McCallum. 2005. Gene

Prediction with Conditional Random Fields.
Technical Report UM-CS-2005-028, University of

Massachusetts, Amherst.

A. Das, and S. Bandyopadhyay. 2010. Morphologi-

cal Stemming Cluster Identification for

Bangla. Knowledge Sharing Event-1: Task 3:
Morphological Analyzers and Generators.

S. Dasgupta, and V. Ng. 2006. Unsupervised Morpho-

logical Parsing for Bengali. Language Resources

and Evaluation, Volume 40, Numbers 3-4, 311-

330.

U. Garain, and A. K. Datta. 2005. An approach for

stemming in symbolically compressed Indian lan-

guage imaged documents. Proceedings of the

Eighth International Conference on Document

Analysis and Recognition.

A. Gelbukh, M. Alexandrov, and S. Y. Han. 2004.

Detecting Inflection Patterns in Natural Lan-

guage by Minimization of Morphological

Model. Progress in Pattern Recognition, Image

Analysis and Applications: Lecture Notes in Com-

puter Science, Volume 3287/2004, pp. 110-14.

J. A. Goldsmith, D. Higgins, and S. Soglasnova.

2001. Automatic Language-Specific Stemming

in Information Retrieval. Cross-Language In-
formation Retrieval and Evaluation String Process-

ing and Information Retrieval: Lecture Notes in

Computer Science, Volume 2857/2003, pp. 238-

251.

H. J. Groenewald. 2009. Using Technology Trans-

fer to Advance Automatic Lemmatisation for

Setswana. Proceedings of the EACL 2009 Work-

shop on Language Technologies for African Lan-

guages – AfLaT 2009, pp. 32–37.

H. Hammarström. 2006. Poor Man’s Stemming:
Unsupervised Recognition of Same-Stem

Words. Information Retrieval Technology: Lecture

Notes in Computer Science, Volume 4182/2006,

323-337.

C. Jordan, J. Healy, and V. Keselj. 2005. Swordfish:

Using Ngrams in an Unsupervised Approach

to Morphological Analysis. Proceedings of Mor-

pho Challenge.

L. S. Larkey, M. E. Connell, and N. Abduljaleel.

2003. Hindi CLIR in Thirty Days. ACM Trans-

action on Asian Language Information Processing,

Vol-2, No. 2, pp. 130-142.

V. Levenshtein. 1966. Binary codes capable of

correcting deletions, insertions, and reversals.
Soviet Physics Doklady, 10: 707–10.

P. Majumder, M. Mitra, S. Parui, G. Kole, P. Mitra

and K. Datta. 2007. YASS: Yet another suffix

stripper. ACM Transactions on Information Sys-

tems (TOIS).

J. Mayfield, and P. McNamee. 2003. Single N-gram

Stemming. Proceedings of the 26th Annual Inter-
national ACM SIGIR Conference on Research and

Development in Information Retrieval (SIGIR '03).

M. Melucci, and N. Orio. 2003. A Novel Method for

Stemmer Generation Based on Hidden Markov

Models. Proceedings of the twelfth international
conference on Information and knowledge man-

agement (CIKM '03).

A. K. Pandey, and T. J. Siddiqui. 2008. An Unsuper-
vised Hindi stemmer with heuristic improve-

ments. Proceedings of the second workshop on
Analytics for noisy unstructured text data

(AND’08).

P. Patel, K. Popat, and P. Bhattacharyya. 2010. Hy-

brid Stemmer for Gujarati. Proceedings of the
1st Workshop on South and Southeast Asian Natu-

ral Language Processing (WSSANLP), The 23rd

International Conference on Computational Lin-

guistics (COLING), pp. 51–55.

41

M. F. Porter. 1980. An algorithm for suffix strip-
ping. Program, 14(3):130-137.

A. Ramanathan, and D. D. Rao. 2003. A Lightweight

Stemmer for Hindi. Proceedings of the 10th Con-
ference of the European Chapter of the Association

for Computational Linguistics.

H. Schmid. 1994. Probabilistic part-of-speech tag-

ging using decision trees. Proceedings of Inter-
national Conference on New Methods in Language

Processing.

H. Tseng, P. Chang, G. Andrew, D. Jurafsky, and C.

Manning . 2005. A Conditional Random Field

Word Segmenter. Proceedings of the Fourth

SIGHAN Workshop on Chinese Language Proc-

essing.

D. L. Vail, J. D. Lafferty, and M. M. Veloso. 2007.

Feature selection in conditional random fields

for activity recognition. Proceedings of the In-
ternational Conference on Intelligent Robots and

Systems (IROS 2007).

Y. Wang, K. F. Loe, and J. K. Wu. 2006. A dynamic

conditional random field model for foreground
and shadow segmentation. IEEE Transactions
on Pattern Analysis and Machine Intelligence,

28(2), pp. 279-189.

S. Sarkar, and S. Bandyopadhyay. 2012. Mulaad-

haar: Towards an Improved Stemmer and Its

Effect on Machine Tagged Travelogue Corpus.
International Journal of Computational Linguistics

and Natural Language Processing, Volume 1, Issue

5.

Taku-ku. 2003. CRF++: Yet Another CRF toolkit.
[Online] Accessed on 11 Jun 2013 at

http://crfpp.googlecode.com/svn/trunk/doc/index.ht

ml

42

