
Proceedings of the Seventh SIGHAN Workshop on Chinese Language Processing (SIGHAN-7), pages 79–83,
Nagoya, Japan, 14 October 2013.

A Study of Language Modeling for Chinese Spelling Check

Kuan-Yu Chen
†＊

, Hung-Shin Lee,

Chung-Han Lee, Hsin-Min Wang
†
Academia Sinica, Taiwan

{kychen, hslee, chlee012, whm}@iis.sinica.edu.tw

Hsin-Hsi Chen

＊
National Taiwan University, Taiwan

hhchen@ntu.edu.tw

Abstract

Chinese spelling check (CSC) is still an open

problem today. To the best of our knowledge,

language modeling is widely used in CSC

because of its simplicity and fair predictive

power, but most systems only use the

conventional n-gram models. Our work in this

paper continues this general line of research by

further exploring different ways to glean extra

semantic clues and Web resources to enhance the

CSC performance in an unsupervised fashion.

Empirical results demonstrate the utility of our

CSC system.

1 Introduction

Chinese is a tonal syllabic and character (symbol)

language, in which each character is pronounced as a

tonal syllable. A Chinese “word” usually comprises two

or more characters. The difficulty of Chinese processing

is that many Chinese characters have similar shapes or

similar (or same) pronunciations. Some characters are

even similar in both shape and pronunciation (Wu et al.,

2010; Liu et al., 2011). However, the meanings of these

characters (or words composed of the characters) may be

widely divergent. Due to this reason, all the students in

elementary school in Taiwan or the foreign Chinese

learners need to practice to identify and correct

“erroneous words” in a Chinese sentence, which is called

the Incorrect Character Correction (ICC) test. In fact, the

ICC test is not a simple task even for some adult native

speakers in Taiwan.

Since most Chinese characters have other characters

similar to them in either shape or pronunciation, an

intuitive idea for CSC is to construct a confusion set for

each character. Currently, many CSC systems use the

confusion sets (Zhang et al., 2000; Wu et al., 2010; Liu

et al., 2011) to recursively substitute characters and find

an optimal result to detect and correct erroneous words.

Moreover, many researches have been focusing on

automatically constructing the confusion sets from

various knowledge sources, such as the Cangjie code

(Liu et al., 2011), psycholinguistic experimental results

(Kuo et al., 2004; Lee et al., 2006; Tsai et al., 2006), and

templates generated from a large corpus (Chen et al.,

2009). Language modeling can be used to quantify the

quality of a given word string, and most previous

researches have adopted it as a method to predict which

word might be a correct word to replace the possible

erroneous word.

Although language modeling has been widely used in

CSC, most researches only use the conventional n-gram

models. To the best of our knowledge, the n-gram

language models, aiming at capturing the local

contextual information or the lexical regularity of a

language, are inevitably faced with two fundamental

problems. On one hand, it is brittle across domains, and

the performance of the model is sensitive to changes in

the genre or topic of the text on which it is trained. On

the other hand, it fails to capture the information (either

semantic or syntactic information) conveyed beyond the

n-1 immediately preceding words. In view of these

problems, this paper focuses on exploring the long-span

semantic information for language modeling for CSC.

Moreover, we make a step forward to incorporate a

search engine to provide extra information from the Web

resources to make a more robust system.

The rest of this paper is organized as follows. In Sec-

tion 2, we briefly review the n-gram and topic language

models. Section 3 details our proposed CSC system. A

series of experiments are presented in Section 4. Finally,

conclusions and future work are given in Section 5.

2 Language Modeling

2.1 N-gram Language Modeling

From the early 20th century, statistical language

modeling has been successfully applied to various

applications related to natural language processing

(NLP), such as speech recognition (Chen and Goodman,

1999; Chen and Chen, 2011), information retrieval

(Ponte and Croft, 1998; Lavrenko and Croft, 2001;

Lavrenko, 2009), document summarization (Lin and

Chen, 2010), and spelling correction (Chen et al., 2009;

Liu et al., 2011; Wu et al., 2010). The most widely-used

and well-practiced language model, by far, is the n-gram

language model (Jelinek, 1999), because of its simplicity

and fair predictive power. Quantifying the quality of a

word string in a natural language is the most commonly

executed task. Take the tri-gram model for example,

when given a word string
L

L wwwW ,,, 211  , the

probability of the word string is approximated by the

79

product of a series of conditional probabilities as follows

(Jelinek, 1999),

.),|()|()(

)|()()(

3
12121

2

1
111















L

l
lll

L

l

l
l

L

wwwPwwPwP

WwPw PWP
(1)

In the tri-gram model, we make the approximation (or

assumption) that the probability of a word depends only

on the two immediately preceding words.

The easiest way to estimate the conditional

probability in Eq. (1) is to use the maximum likelihood

(ML) estimation as follows,

,
),(

),,(
),|(

12

12
12




 

ll

lll
lll

wwc

wwwc
wwwP (2)

where),,(12 lll wwwc 
 and),(12  ll wwc denote the

number of times the word strings “
lll www ,, 12 
” and

“
12,  ll ww ” occur in a given training corpus,

respectively. Without loss of generality, the tri-gram

model can be extended to higher order models, such as

the four-gram model and the five-gram model, but the

high-order n-gram models usually suffer from the data

sparseness problem, which leads to some zero

conditional probabilities. Various language model

smoothing techniques have been proposed to deal with

the zero probability problem. For example, Good-Turing

(Chen and Goodman, 1999), Kneser-Ney (Chen and

Goodman, 1999), and Pitman-Yor (Huang and Renals,

2007) are well-known state-of-the-art smoothing

approaches. The general formulation of these approaches

is (Chen and Goodman, 1999):
















0),,()),,,((),,(

0),,(,)),,((

),,|(

1111

11

11

lnllnllnl

lnllnl

lnll

wwcifwwcfww

wwcifwwcf

wwwP









(3)

where)(f denotes a discounting probability function

and)( denotes a back-off weighting factor that makes

the distribution sum to 1.

2.2 Topic Modeling

The n-gram language model, aiming at capturing only

the local contextual information or the lexical regularity

of a language, is inevitably faced with the problem of

missing the information (either semantic or syntactic

information) conveyed by the words before the n-1

immediately preceding words. To mitigate the weakness

of the n-gram model, various topic models have been

proposed and widely used in many NLP tasks. We can

roughly organize these topic models into two categories

(Chen et al., 2010): document topic models and word

topic models.

2.2.1 Document Topic Modeling (DTM)

DTM introduces a set of latent topic variables to describe

the “word-document” co-occurrence characteristics. The

dependence between a word and its preceding words

(regarded as a document) is not computed directly based

on the frequency counts as in the conventional n-gram

model, but instead based on the frequency of the word in

the latent topics as well as the likelihood that the

preceding words together generate the respective topics.

Probabilistic latent semantic analysis (PLSA) (Hofmann,

1999) and latent Dirichlet allocation (LDA) (Blei et al.,

2003; Griffiths and Steyvers, 2004) are two

representatives of this category. Take PLSA for example,

we can interpret the preceding words,

121
1

1 ,,, 
  L

L wwwW  , as a document topic model used

for predicting the occurrence probability of
Lw :

,)|()|(

)|(

1
1

1

1
1PLSA

 




 K
k

L
kkL

L
L

WTPTwP

WwP (4)

where
kT is the k-th latent topic;)|(kL TwP and

)|(1
1
L

k WTP are respectively the probability that the

word
Lw occurs in

kT and the probability of
kT

conditioned on the preceding word string 1
1
LW . The

latent topic distribution)|(kL TwP can be estimated

beforehand by maximizing the total log-likelihood of the

training corpus. However, the preceding word string

varies with context, and thus the corresponding topic

mixture weight)|(1
1
L

k WTP has to be estimated on the

fly using inference algorithms like the expectation-

maximization (EM) algorithm.

On the other hand, LDA, having a formula analogous

to PLSA, is regarded as an extension to PLSA and has

enjoyed much success for various NLP tasks. LDA

differs from PLSA mainly in the inference of model

parameters (Chen et al., 2010). PLSA assumes that the

model parameters are fixed and unknown while LDA

places additional a priori constraints on the model

parameters by thinking of them as random variables that

follow some Dirichlet distributions. Since LDA has a

more complex form for model optimization, which is

hardly to be solved by exact inference, several

approximate inference algorithms, such as the variational

approximation algorithm, the expectation propagation

method (Blei et al., 2003), and the Gibbs sampling

algorithm (Griffiths and Steyvers, 2004), have been

proposed for estimating the parameters of LDA.

2.2.2 Word Topic Modeling (WTM)

Instead of treating the preceding word string as a

document topic model, we can regard each word
lw of

the language as a word topic model (WTM) (Chen, 2009;

Chen et al., 2010). To crystalize this idea, all words are

assumed to share the same set of latent topic

distributions but have different weights over the topics.

The WTM model of each word
lw in 1

1
LW for

predicting the occurrence of a particular word
Lw can be

expressed by:

.)M|()|(

)M|(

1

WTM

 
 K

k wkkL

wL

l

l

TPTwP

wP
 (5)

80

Each WTM model
lwM can be trained in a data-driven

manner by concatenating those words occurring within

the vicinity of each occurrence of
lw in a training corpus,

which are postulated to be relevant to
lw . To this end, a

sliding window with a size of S words is placed on each

occurrence of
lw , and a pseudo-document associated

with such vicinity information of
lw is aggregated

consequently. The WTM model of each word can be

estimated by maximizing the total log-likelihood of

words occurring in their associated “vicinity documents”

using the EM algorithm. Notice that the words in such a

document are assumed to be independent of each other

(the so-called “bag-of-words” assumption). When we

calculate the conditional probability)|(1
1
L

L WwP , we

can linearly combine the associated WTM models of the

words occurring in 1
1
LW to form a composite WTM

model for predicting
Lw :

,)M|(

)|(

1
1 WTM

1
1WTM

 




 L
l wLl

L
L

l
wP

WwP



 (6)

where the values of the nonnegative weighting

coefficients
l are empirically set to decay

exponentially with L-l and sum to one (Chen, 2009).

Word vicinity model (WVM) (Chen et al., 2010)

bears a certain similarity to WTM in its motivation of

modeling the “word-word” co-occurrences, but has a

more concise parameterization. WVM explores the word

vicinity information by directly modeling the joint

probability of any word pair in the language, rather than

modeling the conditional probability of one word given

the other word as in WTM. In this regard, the joint

probability of any word pair that describes the associated

word vicinity information can be expressed by the

following equation, using a set of latent topics:

,)|()()|(

),(

1

WVM

 
 K

k kjkki

ji

TwPTPTwP

wwP
 (7)

where)(kTP is the prior probability of a given topic
kT .

Notice that the relationship between words, originally

expressed in a high-dimensional probability space, are

now projected into a low-dimensional probability space

characterized by the shared set of topic distributions.

Along a similar vein, WVM is trained by maximizing the

probabilities of all word pairs, respectively, co-occurring

within a sliding window of S words in the training

corpus, using the EM algorithm. To calculate the

conditional probability)|(1
1
L

L WwP , we first obtain

the conditional probability)|(lL wwP from the joint

probability),(lL wwP by,

.
)()|(

)|()()|(

)(

1

1

WVM

 

 
K
k kkl

K
k klkkL

lL

TPTwP

TwPTPTwP

|wwP
 (8)

Then, a composite WVM model)|(1
1WVM
L

L WwP is

obtained by linearly combining)|(WVM lL wwP , as in

WTM.

2.3 Other Language Models

In addition to topic models, many other language

modeling techniques have been proposed to complement

the n-gram model in different ways, such as recurrent

neural network language modeling (RNNLM) (Tomáš et

al., 2010), discriminative language modeling (DLM)

(Roark et al., 2007; Lai et al., 2011; Chen et al., 2012),

and relevance modeling (RM) (Lavrenko and Croft,

2001; Chen and Chen, 2011; Chen and Chen, 2013).

RNNLM tries to project 1
1
LW and

Lw into a

continuous space, and estimate the conditional

probability in a recursive way by incorporating the full

information about 1
1
LW . DLM takes an objective

function corresponding to minimizing the word error rate

for speech recognition or maximizing the ROUGE score

for summarization as a holy grail and updates the

language model parameters to achieve the goal. RM

assumes that each word sequence LW1
 is associated with

a relevance class R, and all the words in LW1
 are samples

drawn from R. It usually employs a local feedback-like

procedure to obtain a set of pseudo-relevant documents

to approximate R in the practical implementation.

3 The Proposed CSC System

3.1 System Overview

Figure 1 shows the flowchart of our CSC system. The

system is mainly composed by three components: text

segmenters, confusion sets, and language models. It

performs CSC in the following steps:

1. Given a test word string, the CSC system treats the

string as a query and posts it to a search engine to

obtain a set of query suggestions.

2. Both the original word string and query suggestions

will be segmented by using the maximum matching

algorithm.

3. After segmentation, we assume that only the single-

character words can be erroneous, so the system will

iteratively substitute these words with possible

characters by referring to the confusion sets.

4. Finally, the system will calculate the probability for

each possible word string (by using the n-gram

model, topic models, or both), and the most likely

word string will be chosen as the final output.

3.2 Word Segmentation

Although the CKIP Chinese word segmentation system

(Ma, 2003) is a famous and widely-used tool for the NLP

community in Taiwan, we are aware that it has

implemented an automatically merging algorithm, which

might merge some error characters to a new word. To

avoid the unexpected result, we have implemented our

own forward and backward word segmentation tools

based on the maximum matching algorithm. Given a

word string, the CSC system will perform both forward

and backward word segmentation, and then both forward

81

and backward language models are applied to calculate

the probabilities of the string.

3.3 Confusion Sets

The confusion sets are constructed from a pre-defined

confusion corpus (Wu et al., 2010; Liu et al., 2011) and

augmented by referring to the basic units of Chinese

characters. We calculate the Levenshtein distance

between any pair of Chinese characters based on their

Cangjie codes. If the distance is smaller than a pre-

defined threshold, the character pair is added to the

confusion sets.

3.4 Language Modeling

Although language modeling has been widely used in the

CSC task, most researches only use the conventional n-

gram models. In this work, we evaluate the tri-gram

language model as well as various topic models in our

CSC system. The n-gram model and topic model are

combined by a simple linear interpolation. Our lexicon

consists of 97 thousand words. The tri-gram language

model was estimated from a background text corpus

consisting of over 170 million Chinese characters

collected from Central News Agency (CNA) in 2001 and

2002 (the Chinese Gigaword Corpus released by LDC)

and Sinica Corpus using the SRI Language Modeling

Toolkit (Stolcke, 2000) with the Good-Turing smoothing

technique. The topic models were also trained by using

the same text corpus with 32 latent topics. Due to the

space limitation, only the results with the PLSA topic

model will be reported in the paper. Our preliminary

experiments show that all the topic models discussed in

Section 2 achieve similar performance.

3.5 Search Engine

In addition to topic models, we have also incorporated

Web information in our CSC system by using a search

engine. Given a test word string, our system treats the

string as a query and posts it to a search engine to obtain

a set of query suggestions. These query suggestions will

also be treated as candidates. We use Baidu

(http://www.baidu.com/) as the search engine.

4 Experimental Results

The experiments include two sub-tasks: error detection

and error correction. All the experimental materials are

collected from students’ written essays. The first sub-

task focuses on the evaluation of error detection. The

input word string might consist of no error to evaluate

the false-alarm rate of a system. The evaluation metrics

include the detection accuracy, detection F-score, error

location F-score, and false-alarm rate. As can be seen

from the left part of Table 1, the tri-gram language

model (denoted as “Tri-gram”) can achieve a certain

level of performance. Incorporating the suggestions from

a search engine (denoted as “Tri-gram+Search Engine”)

in the CSC system yields significant improvements over

Tri-gram in all evaluation metrics. Further incorporating

topic modeling (denoted as “Tri-gram+Search

Engine+PLSA”) can slightly improve the detection F-

score and error location F-score. The results demonstrate

that the Web information is an indispensable reference

for error detection, and the topic models can further

improve the precision and recall rate without increasing

the false alarm rate.

The second sub-task focuses on the evaluation of error

correction. Each sentence includes at least one error. The

evaluation metrics are the location accuracy, correction

accuracy, and correction precision. The experimental

results are listed in the right part of Table 1. To our

Table 1. Results of our CSC system.

Sub-task1 Sub-task 2

Detection

Accuracy

Detection

F-score

Error
Location

F-score

False-Alarm

Rate

Location

Accuracy

Correction

Accuracy

Correction

Precision

Tri-gram 0.654 0.607 0.368 0.447 0.507 0.467 0.467

Tri-gram

+ Search Engine
0.835 0.739 0.458 0.141 0.489 0.445 0.445

Tri-gram

+ Search Engine

+ PLSA

0.836 0.741 0.467 0.141 0.494 0.450 0.450

Table 2. The flowchart of the CSC system.

Figure 1. The flowchart of the CSC system.

Search

Engine

Input

Essay

Forward

Segmenter

Backward

Segmenter

Confusion

Sets

Backward

Language Model

Rescoring

Output

Essay

Forward

Language Model

Rescoring

82

surprise, Web information and the PLSA topic model

cannot complement the conventional tri-gram model to

achieve better performance. The reasons could be two-

fold. First, we do not have a sufficient set of

development documents to select a reasonable

interpolation weight between the tri-gram model and the

topic model. Second, the confusion sets should be further

modified by some unsupervised or supervised methods

to separate the wheat from the chaff.

5 Conclusions & Future Work

This paper has proposed a systematic way to render the

semantic clues and Web resources to improve the

performance of Chinese spelling check. The

experimental results have demonstrated that our

proposed system can improve error detection in terms of

detection accuracy, detection F-score, error location F-

score, and false-alarm rate. Our future research

directions include: 1) investigating more elaborate

language models for CSC, 2) seeking the use of

discriminative training algorithms for training language

models to directly optimize the detection and correction

performance, and 3) applying and exploring

unsupervised or supervised methods to construct the

confusion sets.

References

Andreas Stolcke. 2000. SRI Language Modeling Toolkit

(http://www.speech.sri.com/projects/srilm/).

Berlin Chen. 2009. Word Topic Models for Spoken

Document Retrieval and Transcription. ACM

Transactions on Asian Language Information Processing,

Vol. 8, No. 1, pp. 2:1-2:27.

Berlin Chen, and Kuan-Yu Chen. 2013. Leveraging

Relevance Cues for Language Modeling in Speech

Recognition. Information Processing & Management,

Vol. 49, No. 4, pp. 807-816.

Brian Roark, Murat Saraclar, and Michael Collins. 2007.

Discriminative N-gram Language Modeling. Computer

Speech and Language, Vol. 21, No. 2, pp. 373-392.

Chao-Lin Liu, Min-Hua Lai, Kan-Wen Tien, Yi-Hsuan

Chuang, Shih-Hung Wu, and Chia-Ying Lee. 2011.

Visually and Phonologically Similar Characters in

Incorrect Chinese Words: Analyses, Identification, and

Applications. ACM Transactions on Asian Language

Information Processing, Vol. 10, No. 2, pp. 1-39.

Chia-Ying Lee, Jie-Li Tsai, Hsu-Wen Huang, Daisy L.

Hung, and Ovid J.L. Tzeng. 2006. The Temporal

Signatures of Semantic and Phonological Activations for

Chinese Sublexical Processing: An Event-Related

Potential Study. Brain Research, Vol. 1121, No. 1, pp.

150-159.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan. 2003.

Latent Dirichlet Allocation. Journal of Machine

Learning Research, Vol. 3, pp. 993-1022.

Frederick Jelinek. 1999. Statistical Methods for Speech

Recognition. The MIT Press.

Jay M. Ponte and W. Bruce Croft. 1998. A Language

Modeling Approach to Information Retrieval. In

Proceedings of SIGIR.

Jie-Li Tsai, Chia-Ying Lee, Ying-Chun Lin, Ovid J. L.

Tzeng, and Daisy L. Hung. 2006. Neighborhood Size

Effects of Chinese Words in Lexical Decision and

Reading. Language & Linguistics, Vol. 7, No. 3, pp. 659-

675.

Kuan-Yu Chen, Hsin-Min Wang, and Berlin Chen. 2012.

Spoken Document Retrieval Leveraging Unsupervised

and Supervised Topic Modeling Techniques. IEICE

Transactions on Information and Systems, Vol. E95-D,

No. 5, pp. 1195-1205.

Kuan-Yu Chen, and Berlin Chen. 2011. Relevance

Language Modeling for Speech Recognition. In

Proceedings of ICASSP.

Kuan-Yu Chen, Hsuan-Sheng Chiu, and Berlin Chen. 2010.

Latent Topic Modeling of Word Vicinity Information for

Speech Recognition. In Proceedings of ICASSP.

Min-Hsuan Lai, Bang-Xuan Huang, Kuan-Yu Chen, and

Berlin Chen. 2011. Empirical Comparisons of Various

Discriminative Language Models for Speech Recognition.

In Proceedings of ROCLING.

Lei Zhang, Ming Zhou, Changning Huang, and Mingyu Lu.

2000. Approach in Automatic Detection and Correction

of Errors in Chinese Text based on Feature and Learning.

In Proceedings of WCICA.

Mikolov Tomáš, Karafiát Martin, Burget Lukáš, Černocký

Jan and Khudanpur Sanjeev. 2010. Recurrent Neural

Network based Language Model. In Proceedings of

INTERSPEECH.

Shih-Hsiang Lin and Berlin Chen. 2010. A Risk

Minimization Framework for Extractive Speech

Summarization. In Proceedings of ACL.

Shih-Hung Wu, Yong-Zhi Chen, Ping-che Yang, Tsun Ku,

and Chao-Lin Liu. 2010. Reducing the False Alarm Rate

of Chinese Character Error Detection and Correction. In

Proceedings of SIGHAN.

Song-Fang Huang and Steve Renals. 2007. Hierarchical

Pitman-Yor Language Models for ASR in Meetings. In

Proceedings of ASRU.

Stanley F. Chen and Joshua Goodman. 1999. An Empirical

Study of Smoothing Techniques for Language Modeling.

Computer Speech and Language, Vol. 13, No. 4, pp.

359-393.

Thomas L. Griffiths and Mark Steyvers. 2004. Finding

Scientific Topics. In Proceedings of PNAS.

Thomas Hofmann. 1999. Probabilistic Latent Semantic

Analysis. In Proceedings of UAI.

Victor Lavrenko and W. Bruce Croft. 2001. Relevance-

based Language Models. In Proceedings of SIGIR.

Wei-Yun Ma and Keh-Jiann Chen. 2003. Introduction to

CKIP Chinese Word Segmentation System for the First

International Chinese Word Segmentation Bakeoff. In

Proceedings of SIGHAN.

W.-J. Kuo, T.-C. Yeh, J.-R. Lee, L.-F. Chen, P.-L. Lee, S.-S.

Chen, L.-T. Ho, D.-L. Hung, O.J.-L. Tzeng, and J.-C.

Hsieh. 2004. Orthographic and Phonological Processing

of Chinese Characters: An fMRI Study. In Proceedings

of NeuroImage.

Yong-Zhi Chen, Shih-Hung Wu, Chia-Ching Lu, and Tsun

Ku. 2009. Chinese Confusion Word Set for Automatic

Generation of Spelling Error Detecting Template. In

Proceedings of ROCLING.

83

