
Proceedings of the Seventh SIGHAN Workshop on Chinese Language Processing (SIGHAN-7), pages 2–10,
Nagoya, Japan, 14 October 2013.

Can MDL Improve Unsupervised Chinese Word Segmentation?

Pierre Magistry
Alpage, INRIA & Univ. Paris 7,

75013 Paris, France
pierre.magistry@inria.fr

Benoît Sagot
Alpage, INRIA & Univ. Paris 7,

75013 Paris, France
benoit.sagot@inria.fr

Abstract
It is often assumed that Minimum Descrip-
tion Length (MDL) is a good criterion for
unsupervised word segmentation. In this
paper, we introduce a new approach to
unsupervised word segmentation of Man-
darin Chinese, that leads to segmentations
whose Description Length is lower than
what can be obtained using other algo-
rithms previously proposed in the litera-
ture. Suprisingly, we show that this lower
Description Length does not necessarily
corresponds to better segmentation results.
Finally, we show that we can use very basic
linguistic knowledge to coerce the MDL
towards a linguistically plausible hypoth-
esis and obtain better results than any pre-
viously proposed method for unsupervised
Chinese word segmentation with minimal
human effort.

1 Introduction
In Chinese script, very few symbols can be con-
sidered as word boundary markers. The only
easily identifiable boundaries are sentence begin-
nings and endings, as well as positions before
and after punctuation marks. Although the script
doesn't rely on typography to define (orthographic)
“words”, a word-level segmentation is often re-
quired for further natural language processing.
This level corresponds to minimal syntactic units
that can be POS-tagged or used as input for pars-
ing.

Without word-boundary characters, like whites-
pace in Latin script, there is no trivial tokenization
method that can yield a good enough approxima-
tion for further processing. Therefore, the first step
of many NLP systems for written Chinese is the
Chinese word segmentation task.

A great variety of methods have been proposed
in the literature, mostly in supervised machine

learning settings. Our work addresses the ques-
tion of unsupervised segmentation, i.e., without
any manually segmented training data. Although
supervised learning typically performs better than
unsupervised learning, we believe that unsuper-
vised systems are worth investigating as they re-
quire less human labour and are likely to be more
easily adaptable to various genres, domains and
time periods. They can also provide more valuable
insight for linguistic studies.

Amongst the unsupervised segmentation sys-
tems described in the literature, two paradigms are
often used: Branching Entropy (BE) and Mini-
mum Description Length (MDL). The system we
describe in this paper relies on both. We introduce
a new algorithm which searches in a larger hy-
pothesis space using the MDL criterion, thus lead-
ing to lower Description Lengths than other previ-
ously published systems. Still, this improvement
concerning the Description Length does not come
with better results on the Chinese word segmenta-
tion task, which raises interesting issues. However,
it turns out that it is possible to add very simple
constraints to our algorithm in order to adapt it to
the specificities of Mandarin Chinese in a way that
leads to results better than the state-of-the-art on
the Chinese word segmentation task.

This paper is organized as follows. Section 2
describes the role of Branching Entropy in various
previous works on Chinese word segmentation, in-
cluding the algorithm we use as an initialisation
step in this paper. In Section 3 we explain how
the MDL paradigm is used amongst different Chi-
nese word segmentation systems in the literature.
We describe in Section 4 the way we use MDL for
trying and improving the results of the initialisa-
tion step. A first evaluation and the error analysis
given in Section 5 allow us to refine the algorithm
and achieve our best results, as shown in Section 6.
Finally, we discuss our findings and their implica-
tions for our futur work in Section 7.
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2 Branching Entropy and Word
Segmentation

2.1 The Harrissian hypothesis

Branching Entropy and its discrete counterpart,
Accessor Variety are commonly used indicators of
linguistically relevant boundaries.

Accessors Variety (hereafter AV) is simply the
number of distinct contexts (right or left) in which
a given string occurs in a corpus. Branching En-
tropy (hereafter BE) can be seen as a continuous
version of AV that takes into account the probabil-
ity distribution of cooccurrences. It is the entropy
of the probability distribution of the contexts oc-
curring on the right or on the left of a given string.
Both measure the diversity of the contexts in which
a string can occur.

The main idea behind the use of AV for unsu-
pervised word segmentation was first introduced
by Harris (1955) as a procedure from morpheme
segmentation in phonemic transcription of speech.
In 1955, Harris did not use a corpus to estimate the
AV but asked native speakers of various languages
how many phonemes they can think of that can fol-
low or precede a given phoneme sequence. Har-
ris made the hypothesis that linguistic boundaries
relate with the variation of the AV and proposed
algorithms to perform segmentation based on the
data collected from native speakers. The under-
lying idea is the following: when given a prefix
of a morpheme as input, we have a certain knowl-
edge of what may be the next phoneme; the vari-
ety of possible continuations decreases as we add
phonemes to the input string, but when reaching a
linguistic boundary, the variety of what may come
next suddenly increase.

2.2 Variation of Branching Entropy

Kempe (1999) adapted the method proposed by
Harris to corpus linguistics and did the switch from
variation of AV to variation of BE (hereafter VBE)
which is a better estimation of uncertainty.

Branching Entropy (Right and Left) can be
defined as follows: given an n-gram x0..n =
x0..1 x1..2 . . . xn−1..n with a left context χ→, its
Right Branching Entropy (RBE) h→(x0..n) writes
as

h→(x0..n) = H(χ→ | x0..n)

= −
∑

x∈χ→

P (x | x0..n) log P (x | x0..n).

The Left Branching Entropy (LBE) is defined
symetrically: if we call χ← the right context of
x0..n, its LBE is defined as:

h←(x0..n) = H(χ← | x0..n).

From h→(x0..n) and h→(x0..n−1) on the one
hand, and from h←(x0..n) and h←(x1..n) on
the other hand, we can defined the Variation of
Branching Entropy (VBE) in both directions:

δh→(x0..n) = h→(x0..n) − h→(x0..n−1)

δh←(x0..n) = h←(x0..n) − h←(x1..n).

2.3 Previous work on VBE-based
segmentation

Several unsupervised segmentation algorithms and
systems in the literature are based on BE or VBE.

Cohen et al. (2002) use BE as an indicator in
their Voting Experts system. They point the need
for normalisation but use BE directly, not VBE.

Jin and Tanaka-Ishii (2006) propose a system for
unsupervised Chinese word segmentation based on
the VBE and evaluate it against a manually seg-
mented corpus in Mandarin Chinese.

Zhikov et al. (2010) use BE to get an initial
segmentation. They put a boundary at each po-
sition that exceeds a threshold. This threshold is
determined by an unsupervised procedure based
on MDL. They refine this initial segmentation us-
ing two different procedures, also based on BE,
which aim at minimizing the Description Length
(see next section).

Wang et al. (2011) propose ESA (Evaluation,
Selection, and Adjustment), a more complex sys-
tem combining two measures of cohesion and non-
cohesion iteratively. The Branching Entropy is
also at the root of their calculations. They achieve
best published results but rely on a parameter used
to balance the two measures that can be difficult to
set without training data.

In Magistry and Sagot (2012), we use a nor-
malized VBE to define a measure of the auton-
omy of a string (word candidate). The auton-
omy of a word candidate x is defined as a(x) =
δ̃h←(x)+ δ̃h→(x) where δ̃h(x) denotes VBE nor-
malized in order to reduce the bias related to the
variation of word lengths. This autonomy function
is then used in a segmentation algorithm that max-
imize the autonomy of all the words in a sentence.
The segmentation choosen for a given sentence s
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is then chosen among all possible segmentations
w ∈ Seg(s) as being

arg max
W∈Seg(s)

∑
wi∈W

a(wi) · len(wi),

Our results were slightly below ESA, but the
system is simpler to implement and improve on;
moreover, it does not rely on any parameter for
which a value must be chosen.1

The system presented in this paper extends both
the work of Zhikov et al. (2010) and of Magistry
and Sagot (2012): we rely on the notion of au-
tonomy introduced by the latter and use it both for
computing an initial segmentation and for guiding
the MDL in a way inspired by the former.

3 MDL and Word Segmentation

The Minimum Description Length was introduced
by Rissanen (1978). It can be considered as an
approximation of the Kolmogorov complexity or
as the formalisation of the principle of least ef-
fort (Zipf, 1949) by a compression model. The
underlying idea behind the use of MDL for Word
Segmentation is the following: once a corpus is
segmented, it can be recoded as a lexicon and a
sequence of references to the lexicon. A good seg-
mentation should result in a more compact rep-
resentation of the data. Probability distributions
of lexical items in the corpus and Shannon en-
tropy are used to determine the theoretically op-
timal compression rate we could achieve with a
given segmentation.

A segmented corpus is therefore considered as
a sequence of words encoded using a lexicon, or
word model, Mw, which represent each word using
a code that depends on its frequency: a frequent
word is to be represented by a shorter code. The
description length L(C) of a corpus C can then
be computed as the length L(Mw) of the lexicon
plus the length L(D|Mw) of the sequence of word
codes:

L(C) = L(D,Mw) = L(Mw) + L(D|Mw).

1With the current impletation of our algorithm presented
in (Magistry and Sagot, 2012), the results are not as good as
those from the previous paper. This is due to a bug in nor-
malisation which used to include values of sentence initial and
final dummy tokens. This was creating a biais in favor of one-
character units and yields better scores. Our latest version of
the system, which is used in this paper sticks to the definitions
and is thus cleaner but does not perform as well.

The content of the lexicon can be further encoded
as a sequence of characters, using a model Mc ac-
counting for characters probability distributions in
the lexicon. As a result,

L(Mw) = L(Dw,Mc) = L(Mc) + L(Dw|Mc).

L(D|M) is given by:

L(D|M) = −
|M |∑
i=1

#wi log
#wi

N

As shown for example by Zhikov et al. (2010), it
is possible to decompose this formula to allow fast
update of the DL value when we change the seg-
mentation and avoid the total computation at each
step of the minimization.

MDL is often used in unsupervised segmenta-
tion systems, where it mostly plays one of the two
following roles: (i) it can help selecting an optimal
parameter value in an unsupervised way (Hewlett
and Cohen, 2011), and (ii) it can drive the search
for a more compact solution in the set of all possi-
ble segmentations.

When an unsupervised segmentation model re-
lies on parameters, one needs a way to assign them
adequate values. In a fully unsupervised setup,
we cannot make use of a manually segmented cor-
pus to compute these values. Hewlett and Cohen
(2011) address this issue by choosing the set of pa-
rameters that yields the segmentation associated
with the smallest DL. They show that the output
corresponding to the smallest DL almost always
corresponds to the best segmentation in terms of
word-based f-score. In the system by Zhikov et al.
(2010), the initial segmentation algorithm requires
to chose a threshold: for a given position in the cor-
pus, they mark the position as a word boundary if
the BE is greater than the threshold. The value of
this threshold is unsupervisingly discovered with a
bisection search algorithm that looks for the small-
est DL.

However, the main issue with MDL is that there
is no tractable search algorithm for the whole hy-
pothesis space. One has to rely on heuristic proce-
dures to generate hypotheses before checking their
DL. (Zhikov et al., 2010) propose two distinct pro-
cedures that they combine sequentially. The first
one operate on the whole corpus. They begin by
ordering all possible word-boundary positions us-
ing BE and then try to add word boundaries check-
ing each position sorted by decreasing BE, and to
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remove word boundaries checking each position by
increasing order of BE. They accept any modifi-
cation that will result in a smaller DL. The ratio-
nale behind this strategy is simple: for a given po-
sition, the higher the BE, the more likely it is to
be a word-boundary. They process the more likely
cases first. The main limitation of this procedure
is that it is unable to change more than one posi-
tion at a time. It will miss any optimisation that
would require to change many occurrences of the
same string, e.g., if the same mistake is repeated
in many similar places, which is likely to happen
given their initial segmentation algorithm.
To overcome this limitation, Zhikov et al. (2010)
propose a second procedure that focuses on the lex-
icon rather than on the corpus. This procedure al-
gorithm tries (i) to split each word of the lexicon
(at each position within each word type) and re-
produce this split on all occurrences of the word,
and (ii) to merge all occurrences of each bi-gram in
the corpus provided the merge results in an already
existing word type. This strategy allows them to
change multiple positions at the same time but their
merging procedure is unable to discover new long
types that are absent from the initial lexicon.

4 A new segmentation Algorithm based
on MDL and nVBE

We propose a new strategy to reduce the DL.
We use the algorithm introduced in Magistry and
Sagot (2012) as an initialisation procedure fol-
lowed by a DL reduction step. This step relies
on an autonomy-driven algorithm that explores a
larger part of the hypothesis space, which we shall
now describe.

Given an initial segmentation of the corpus, we
define a scoring function for boundary positions.
As our initial procedure is based on the maxi-
mization of autonomy, any change at any position
will result in a lower autonomy of the sequence.
Our scoring function evaluates this loss of auton-
omy whenever a segmentation decision is changed.
This can be viewed as similar to the ordered n-best
solutions from Magistry's procedure.

The context of a boundary position is defined as
a triple containing:

a position state between two characters, i.e., a
boolean set to true if the position is a word
boundary,

a prefix which is the sequence of characters run-

ning from the previous word boundary to the
position,

a suffix which is the sequence of characters run-
ning from the position to the next word
boundary.

When scoring a position, there are two possibili-
ties:

• the position is currently a word boundary (we
evaluate a merge),

• the position is currently not a word boundary
(we evaluate a split).

In order to compute the difference in autonomy
scores between the current segmentation and the
one which is obtained only by performing a merge
at one particular position, we simply have to sub-
tract the autonomy of the prefix and suffix and to
add the autonomy of the concatenation of the two
strings.

Similarly, to evaluate a splitting decision we
have to add the autonomy of the prefix and suffix
and to subtract the autonomy of the concatenation
of the two strings.

Note that with this scoring method and this def-
inition of a context as a tuple, all occurrences of
a context type will have the same score, and can
therefore be grouped. We can thus evaluate the ef-
fect of changing the segmentation decision for a set
of identical positions in the corpus in just one step.

Like the lexicon cleaning procedure by Zhikov
et al. (2010), we can evaluate the effect of a large
number of changes at the same time. But contra-
trily to Zhikov et al. (2010), because we process
the whole corpus and not the lexicon, we have a
broader search space which allows for the creation
of large words even if they were previously absent
from the lexicon.

A remaining issue is that changing a segmenta-
tion decision at a particular position should result
in a change of the scores of all the neighbouring
positions inside its prefix and its suffix and require
to rebuild the whole agenda, which is a costly oper-
ation. To make our algorithm faster, we use a sim-
plified treatment that freezes the affected positions
and prevent further modification (they are simply
removed from the agenda). As the agenda is sorted
to test the more promising positions first (in terms
of autonomy), this trade-off between exhaustive-
ness for speed is acceptable. Indeed, it turns out
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Algorithm 4.1: algorithm1(Corpus)

seg ← MagistrySagot2012(Corpus)
DL← DescriptionLength(seg)
MinDL←∞
Agenda← SortBoundaries(Corpus, seg)
while DL < MinDL

do



MinDL← DL
for each changes ∈ Agenda

do



changes← removeFrozen(changes)
newDL = Score(changes)
if newDL < MinDL
then

do


seg ← ApplyChange(changes)
freeze(changes)
DL← newDL
break

Figure 1: DL minimization

that we still reach lower description length than
Zhikov et al. (2010).

The details of our minimization of DL algorithm
using this scoring method are presented in figure 4.
As we shall see, this system can be further im-
proved. We shall therefore refer to it as the base
system.

5 Evaluation of the base system

5.1 Reference corpora
The evaluation presented here uses the corpora
from the 2005 Chinese Word Segmentation Bake-
off (Emerson, 2005). These corpora are available
from the bakeoff website and many previous works
use them for evaluation, results are therefore eas-
ily comparable. This dataset also has the advan-
tage of providing corpora that are segmented man-
ually following four different guidelines. Given
the lack of consensus on the definition of the min-
imal segmentation unit, it is interesting to evalu-
ate unsupervised systems against multiple guide-
lines and data sources: since an unsupervised sys-
tem is not trained to mimic a specific guideline,
its output may be closer to one or another. The
dataset includes data from the Peking University
Corpus (PKU), from the LIVAC Corpus by Hong-
Kong City-University (City-U), from Microsoft
Research (MSR) and from the Balanced Corpus of
the Academia Sinica (AS). It was initially intended
for supervised segmentation so each corpus is di-
vided between a training and a test set, the latter be-
ing smaller. We retain these splits in order to pro-
vide results comparable with other studies and to

Corpus Words Characters
Tokens Types Tokens Types

AS 5 449 698 141 340 8 368 050 6 117

CITYU 1 455 629 69 085 2 403 355 4 923

PKU 1 109 947 55 303 1 826 448 4 698

MSR 2 368 391 88 119 4 050 469 5 167

Table 1: Size of the different corpora

have an idea of the effect of the size of the training
data. All the scores we provide are computed on
the test set of each corpus. As our task is unsuper-
vised segmentation, all whitespaces were of course
removed from the training sets. Details about the
size of the various corpora are given in Table 1.

5.2 Evaluation Metrics
The metric used for all following evaluations is a
standard f-score on words. It is the harmonic mean
of the word recall

Rw =
#correct words in the results
#words in the gold corpus

and the word precision

Pw =
#correct words in the result

#words in the result
,

which leads to the following:

Fw =
2 × Rw × Pw

Rw + Pw

For each corpus and method, we also present the
Description Length of each segmentation.

Note that, as mentioned by several studies
(Huang and Zhao, 2007; Magistry and Sagot,
2012; Sproat and Shih, 1990), the agreement be-
tween the different guidelines and even between
untrained native speakers is not high. Using cross-
trained supervized systems or inter-human agree-
ment, these studies suggest that the topline for
unsupervised segmentation is beetween 0.76 and
0.85. As a result, not only the output of an un-
supervised system cannot be expected to perfectly
mimic a given “gold” segmented corpus, but per-
formances around 0.80 against multiple “gold”
segmented corpora using different guidelines can
be regarded as satisfying.

5.3 Results
The results of our base system, without and with
our MDL step, are presented in Table 2. We also
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Figure 2: f-score on words as a function of description length for the three algorithms

provide results for our re-implementation of the al-
gorithm by Zhikov et al. (2010), without and with
their own MDL step. Our initialisation (without
our MDL step) obtains very good results; on the
MSR corpus, they are even as high as the results of
Zhikov et al.'s full algorithm, including their MDL
step. However, at a first sight, the results we get
when using our MDL procedure are disappointing:
it sometimes worsen the results of the initisalisa-
tion step. However, we observe that our MDL step
succesfully decreases the Description Lengths ob-
tained after the initialisation step, and leads to De-
scription Lengths lower than Zhikov et al.'s sys-
tem although with lower f-scores. This tackles the
common idea that lower Description Length yields
better segmentation, and calls for further analysis.

5.4 Step-by-step MDL results

In both systems, ours and Zhikov et al.'s, the MDL
algorithm is iterative. We therefore decided to
dump intermediary results at each iteration to ob-
serve the evolution of the segmentation quality as
the DL gets smaller. Figure 5.3 shows the resulting
f-scores as a function of the DL at different stages,
on the PKU corpus (results on other corpora be-
have similarly). Each iteration of one MDL algo-
rithm or the other reduces the DL, which means

that a given curve on this graphic are followed by
the corresponding system step after step from right
to left. The leftmost dot on each curve corresponds
to the point when the corresponding system de-
cides to stop and produce its final output.

This graphic shows that our system produces
better segmentation at some point, outperforming
Zhikov et al.'s system. But it doesn't stop at that
point and the f-score drops as the DL continue to
decrease. This seems to mean that our algorithm,
because it explores a larger search space, manages
to find segmentations that are optimal as far as DL
is concerned, but that do not constitute optimal
word-level segmentation.

In order to better understand what is going on,
we have added a logging functionality to our im-
plementations, so we can check which operations
are made when the f-score decreases. We shall
now discuss several typical examples thereof.

5.5 Error analysis

A sample of the latest modifications made by our
system while the f-score is falling is given in Ta-
ble 3. We show the modification that are applied
to the largest numbers of occurrences. The type
of operation is either a merge (suppression of a
boundary) or a split (adding a boundary). We pro-
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Method f-score DL
(Mb)

PKU corpus

Zhikov et al. (no MDL) 0.719 17.9
Zhikov et al. (with their MDL) 0.808 15.6
This paper (no MDL) 0.786 16.1
This paper (with our base MDL) 0.729 15.2
Gold 1.0 15.0

City-U corpus

Zhikov et al. (no MDL) 0.652 23.2
Zhikov et al. (with their MDL) 0.787 19.8
This paper (no MDL) 0.744 20.3
This paper (with our base MDL) 0.754 19.3
Gold 1.0 19.0

MSR corpus

Zhikov et al. (no MDL) 0.690 37.1
Zhikov et al. (with their MDL) 0.782 31.9
This paper (no MDL) 0.782 33.0
This paper (with our base MDL) 0.690 31.1
Gold 1.0 30.8

AS Corpus

Zhikov et al. (no MDL) 0.614 80.8
Zhikov et al. (with their MDL) 0.762 67.1
This paper (no MDL) 0.758 68.9
This paper (with our base MDL) 0.711 65.7
Gold 1.0 65.3

Table 2: Scores on different Corpora for Zhikov
et al.'s (2010) algorithm (without and with their
MDL-based improvement step) and for our base
system (without MDL and with our base MDL al-
gorithm). Final results are displayed in Table 6

vide the prefix and suffix, whether the merge or
split is an error or not, as well as English glosses.

The first observation we make is that amongst
highly frequent items, our system only performs
merges. Splits are indeed performed on a large
number of rare types for which both the prefix and
the suffix exist in the lexicon. We note that for bi-
grams, such splits are almost always an erroneous
decision.

Merge operations include valid decisions, erro-
neous decisions producing multi-word expression
units (MWE), and erroneous decisions that merge
a grammatical word to one of its collocations.

6 Description and evaluation of our
constrained system

Given this error analysis, there are three main types
of common mistakes that we would like to avoid:

• merging MWEs such as named entities;

• merging function words with content words
when the co-occurrence is frequent;

Operation String Evaluation

merge 的 . 发展 error
DE - development

merge 据 . 新华社 error
According to - Xinhua Agency

merge 新华社 . 北京 error
Xinhua Agency - Peking

merge 经济 . 发展 error (MWE)
economic - growth

merge 进行 . 了 error
conduct - LE (-ed)

merge 和 . 发展 error
AND - development

merge 在 . 北京 error
AT - Peking

merge 邓小平 . 理论 error (MWE)
Deng Xiaoping - Theories

merge 领导 . 干部 error (MWE)
leading - cadre

merge 常 . 委会 error (MWE)
standing - committee

merge 改革 . 开放 error (MWE)
reform and opening

merge 反 . 腐败 correct
anti - corruption

merge 节 . 日 correct
holi-day

merge 党 . 中央 correct
central committee

merge 金融 . 危机 error (MWE)
finance - crisis

merge 新 . 世纪 error
new - century

merge 副 . 总理 correct
vice - premier

merge 国民 . 经济 error (MWE)
national - economy

merge 北京 . 市 no
Peking - city

merge 基础 . 上 error
basis - postposition (=basically)

merge 副 . 主席 correct
vice-chairman

merge 结构 . 调整 error (MWE)
structural adjustment

merge 产业 . 化 correct
industrial - ize

merge 现代化 . 建设 error (MWE)
modernization - drive

merge 人 . 大 correct
Acronym for Renmin University

Table 3: Modification made (sorted by number of
occurrences)

8



Method f-score DL
(Mb)

PKU corpus

Zhikov et al. (with their MDL) 0.808 15.6
This paper (with constrained MDL) 0.832 15.6
Gold 1.0 15.0

City-U corpus

Zhikov et al. (with their MDL) 0.787 19.8
This paper (with constrained MDL) 0.801 19.8
Gold 1.0 19.0

MSR corpus

Zhikov et al. (with their MDL) 0.782 31.9
This paper (with constrained MDL) 0.809 32.1
Gold 1.0 30.8

AS Corpus

Zhikov et al. (with their MDL) 0.762 67.1
This paper (with constrained MDL) 0.795 67.3
Gold 1.0 65.3

Table 4: Final results

• splitting bigrams that were correct in the ini-
tial segmentation.

If we give up on having a strictly language-
independent system and focus on Mandarin Chi-
nese segmentation, these three issues are easy to
address with a fairly low amount of human work
to add some basic linguistic knowledge about Chi-
nese to the system.

The first issue can be dealt with by limiting the
length of a merge's output. A MWE will be larger
than a typical Chinese word that very rarely ex-
ceeds 3 characters. With the exception of phonetic
loans for foreign languages, larger units typically
correspond to MWE that are segmented in the var-
ious gold corpora.2 The question whether it is a
good thing to do or not will be raised in the dis-
cussion section, but for a higher f-score on word
segmentation, leaving them segmented does help.

The second issue can be addressed using a
closed list of function words such as aspectual
markers and pre/post-positions. As those are a
closed list of items, listing all of them is an easily
manually tractable task. Here is the list we used in
our experiments:
的、了、上、在、下、中、是、有、和、与、
和、就、多、于、很、才、跟

As for the third issue, since Chinese is known to
favour bigram words, we simply prevent our sys-
tem to split those.

2A noticeable exception are the 4-characters idioms
(chengyu) but they seem less frequent than 2+2 multiword
expressions.

We implemented these three constraints to re-
strict the search space for our minimization of the
Description Length an re-run the experiments. Re-
sults are presented in the next section.

6.1 Evaluation of the constrained system

The scores obtained by our second system are
given in Table 6. They show a large improvement
on our initial segmentation and outperform previ-
ously reported results.

7 Discussion and futur work

The results presented in this paper invite for dis-
cussion. It is well accepted in the literature that
MDL is a good indicator to find better segmen-
tation but our results show that it is possible to
reach a lower description length without improv-
ing the segmentation score. However, this paper
also demonstrates that MDL can still be a relevant
criterion when its application is constrained using
very simple and almost zero-cost linguistic infor-
mation.

The constraints we use reflect two underlying
linguistic phenomena. The first one is related to
what would be called “multi-word expressions”
(MWE) in other scripts. It is unclear whether it is a
limitation of the segmentation system or a problem
with the definition of the task. There is a growing
interest for MWE in the NLP community. Their
detection is still challenging for all languages, but
has already been proven useful for deeper analysis
such as parsing. It is somewhat frustrating to have
to prevent the detection of multi-words expressions
to achieve better segmentation results.

The second restriction concerns the distinction
between content words and grammatical words. It
is not so surprising that open and closed classes
of words show different distributions and deserve
specific treatments. From a practical point of view,
it is worth noting that MDL is useful for open
classes where manual annotation or rule-based
processing are costly if even possible. On the other
hand, rules are helpful for small closed classes and
represent a task that is tractable for human, even
when facing the need to process a large variety of
sources, genres or topics. This division of labour
is acceptable for real-world applications when no
training data is available for supervised systems.
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