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Abstract

We describe our experience with engineer-

ing the dialog state tracker for the first

Dialog State Tracking Challenge (DSTC).

Dialog trackers are one of the essential

components of dialog systems which are

used to infer the true user goal from the

speech processing results. We explain the

main parts of our tracker: the observation

model, the belief refinement model, and

the belief transformation model. We also

report experimental results on a number

of approaches to the models, and compare

the overall performance of our tracker to

other submitted trackers. An extended ver-

sion of this paper is available as a technical

report (Kim et al., 2013).

1 Introduction

In spoken dialog systems (SDSs), one of the main

challenges is to identify the user goal from her ut-

terances. The significance of accurately identify-

ing the user goal, referred to as dialog state track-

ing, has emerged from the need for SDSs to be

robust to inevitable errors in the spoken language

understanding (SLU).

A number of studies have been conducted to

track the dialog state through multiple dialog turns

using a probabilistic framework, treating SLU re-

sults as noisy observations and maintaining prob-

ability distribution (i.e., belief) on user goals (Bo-

hus and Rudnicky, 2006; Mehta et al., 2010; Roy

et al., 2000; Williams and Young, 2007; Thomson

and Young, 2010; Kim et al., 2011).

In this paper, we share our experience and

lessons learned from developing the dialog state

tracker that participated in the first Dialog State

Tracking Challenge (DSTC) (Williams et al.,

2013). Our tracker is based on the belief up-

date in the POMDP framework (Kaelbling et al.,

1998), particularly the hidden information state

(HIS) model (Young et al., 2010) and the partition

recombination method (Williams, 2010).

2 Dialog State Tracking

Our tracker mainly follows the belief update in

HIS-POMDP (Young et al., 2010). The SDS ex-

ecutes system action a, and the user with goal

g responds to the system with utterance u. The

SLU processes the utterance and generates the re-

sult as anN -best list o = [〈ũ1, f1〉, . . . , 〈ũN , fN 〉]
of the hypothesized user utterance ũi and its as-

sociated confidence score fi. Because the SLU

is not perfect, the system maintains a probability

distribution over user goals, called a belief. In ad-

dition, the system groups user goals into equiva-

lence classes and assigns a single probability for

each equivalence class since the number of user

goals is often too large to perform individual be-

lief updates for all possible user goals. The equiv-

alence classes are called partitions and denoted as

ψ. Hence, given the current belief b, system action

a, and recognized N -best list o, the dialog state

tracker updates the belief b′ over partitions as fol-

lows:

b′(ψ′) ∝
∑

u

Pr(o|u) Pr(u|ψ′, a) Pr(ψ′|ψ)b(ψ)

(1)

where Pr(o|u) is the observation model,

Pr(u|ψ, a) is the user utterance model, Pr(ψ′|ψ)
is the belief refinement model.

2.1 Observation Model

The observation model Pr(o|u) is the probability

that the SLU produces the N -best list o when the

user utterance is u. We experimented with the fol-

lowing three models for the observation model.

Confidence score model: as in HIS-POMDP,

this model assumes that the confidence score fi
obtained from the SLU is exactly the probability
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of generating the hypothesized user utterance ũi.
Hence, fi = Pr(ũi, fi|u).

Histogram model: this model estimates a func-

tion that maps the confidence score to the proba-

bility of correctness. We constructed a histogram

of confidence scores from the training datasets

to obtain the empirical probability Pr(cor(fi)) of

whether the entry associated with confidence score

fi is a correct hypothesis or not.

Generative model: this model is a simplified

version of a generative model in (Williams, 2008)

that only uses confidence score: Pr(ũi, fi|u) =
Pr(cor(i)) Pr(fi|cor(i)) where Pr(cor(i)) is the

probability of the i-th entry being a correct hy-

pothesis and Pr(fi|cor(i)) is the probability of the

i-th entry having confidence score fi when it is a

correct hypothesis.

2.2 User Utterance Model

The user utterance model Pr(u|ψ, a) indicates

how the user responds to the system action a
when the user goal is in ψ. We adopted the HIS-

POMDP user utterance model, consisting of a bi-

gram model and an item model. The details are

described in (Kim et al., 2013).

2.3 Belief Refinement Model

Given the SLU result ũi and the system action

a, the partition ψ is split into ψ′
i with probabil-

ity Pr(ψ′
i|ψ) and ψ − ψ′

i with probability Pr(ψ −
ψ′
i|ψ). The belief refinement model Pr(ψ′

i|ψ) can

be seen as the proportion of the belief that is car-

ried from ψ to ψ′
i. This probability can be defined

by the following models:

Empirical model: we count n(ψ) from the

training datasets, which is the number of user

goals that are consistent with partition ψ. The

probability is then modeled as Pr(ψ′
i|ψ) =

n(ψ′
i)

n(ψ)

if n(ψ) > 0 and Pr(ψ′
i|ψ) = 0 otherwise.

Word-match model: this model extends the

empirical model by using the domain knowledge

when the SLU result ũi does not appear in the

training datasets. We calculated how many words

w ∈ W in the user utterance ũi were included in

a bus timetable D. The model is thus defined as

Pr(ψ′
i|ψ) =

n(ψ′
i)

n(ψ) if n(ψ′
i) > 0 and Pr(ψ′

i|ψ) =
α

|W |
∑

w∈W δ(w ∈ D) otherwise. δ is the indica-

tor function (δ(x) = 1 if x holds and δ(x) = 0
otherwise) and α is the parameter estimated via

cross-validation.

Mixture model: this model mixes the empiri-

cal model with a uniform probability, defined as

Pr(ψ′
i|ψ) = ǫ 1

nG
+ (1 − ǫ)

n(ψ′
i)

n(ψ) if n(ψ′
i) > 0 and

Pr(ψ′
i|ψ) = 1

nG
otherwise. nG is the number of all

possible user goals which is treated as the param-

eter of the model and found via cross-validation,

together with the mixing parameter ǫ ∈ [0, 1].

2.4 Belief Transformation Model

The belief update described above pro-

duces the M -best hypotheses of user goals

[〈g̃1, b(g̃1)〉, . . . , 〈g̃M , b(g̃M )〉] in each dialog turn,

which consists of M most likely user goal hy-

potheses g̃i and their associated beliefs b(g̃i). The

last hypothesis g̃M is reserved as the null hypoth-

esis ∅ with the belief b(∅) = 1 − ∑M−1
i=1 b(g̃i),

which represents that the user goal is not known

up to the current dialog turn.

One of the problems with the belief update is

that the null hypothesis often remains as the most

probable hypothesis even when the SLU result

contains the correct user utterance with a high con-

fidence score. This is because an atomic hypothe-

sis has a very small prior probability.

To overcome this problem, we added a post-

processing step which transforms each belief b(hi)
to the final confidence score si.

Threshold model: this model ensures that the

top hypothesis has confidence score θ when a be-

lief of the hypothesis is greater than a threshold δ.

The final output list is [〈h∗, s∗〉, 〈∅, 1−s∗〉] where

h∗ = argmaxh∈{g̃1,...,g̃M−1} b(h) and

s∗ =

{
θ, if b(h∗) > δ

b(h∗), otherwise.
(2)

Full-list regression model: this model esti-

mates the probability that each hypothesis is cor-

rect via casting the task as regression. The

model uses two logistic regression functions F∅
and Fh. F∅ predicts the probability of correct-

ness for the null hypothesis ∅ using the sin-

gle input feature φ∅ = b(∅). Likewise, Fh
predicts the probability of correctness for non-

null hypotheses hi using the input feature φi =
b(hi). The model generates the final output

list [〈h1, s1〉, . . . , 〈hM−1, sM−1〉, 〈∅, sM 〉] where

hi = g̃i and

si =





F∅(φi)
PM−1

j=1 Fh(φj)+F∅(φ∅)
, if i = M

Fh(φi)
PM−1

j=1 Fh(φj)+F∅(φ∅)
, otherwise.

(3)
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Rank regression model: this model works in

a similar way as in the full-link regression model,

except that it uses a single logistic regression func-

tion Fr for both the non-null and null hypothe-

ses, and takes the rank value of the hypotheses

as an additional input feature. The final out-

put list is [〈h1, s1〉, . . . , 〈hM−1, sM−1〉, 〈∅, sM 〉]
where hi = g̃i and

si = Fr(φi)
PM

j=1 Fr(φj)
. (4)

3 Experimental Setup

In the experiments, we used three labeled train-

ing datasets (train1a, train2, train3) and three test

datasets (test1, test2, test3) used in DSTC. There

was an additional test dataset (test4), which we

decided not to include in the experiments since

we found that a significant number of labels were

missing or incorrect.

We measured the tracker performance accord-

ing to the following evaluation metrics used in

DSTC1: accuracy (acc) measures the rate of the

most likely hypothesis h1 being correct, average

score (avgp) measures the average of scores as-

signed to the correct hypotheses, l2 norm mea-

sures the Euclidean distance between the vector

of scores from the tracker and the binary vector

with 1 in the position of the correct hypotheses,

and 0 elsewhere, mean reciprocal rank (mrr)

measures the average of 1/R, where R is the

minimum rank of the correct hypothesis, ROC

equal error rate (eer) is the sum of false accept

(FA) and false reject (FR) rates when FA rate=FR

rate, and ROC.{v1,v2}.P measures correct accept

(CA) rate when there are at most P% false accept

(FA) rate2.

4 Results and Analyses

Since there are multiple slots to track in the dialog

domain, we report the average performance over

the “marginal” slots including the “joint” slot that

assigns the values to all slots.

4.1 Observation Model

Tbl. 1 shows the cross-validation results of the

three observation models. In train1a and train2, no

model had a clear advantage to others, whereas in

1http://research.microsoft.com/apps/pubs/?id=169024
2There are two types of ROC measured in DSTC depend-

ing on how CA and FA rates are calculated. The detailed dis-
cussion is provided in the longer version of the paper (Kim et
al., 2013).

Table 1: Evaluation of observation models.
Train1a Train2 Train3

Conf Hist Gen Conf Hist Gen Conf Hist Gen

accuracy 0.81 0.82 0.82 0.84 0.86 0.85 0.90 0.89 0.88
avgp 0.77 0.78 0.78 0.81 0.82 0.82 0.81 0.79 0.77
l2 0.31 0.30 0.30 0.26 0.25 0.25 0.25 0.27 0.30
mrr 0.87 0.87 0.88 0.89 0.89 0.89 0.94 0.93 0.92
roc.v1.05 0.69 0.70 0.70 0.73 0.74 0.74 0.82 0.80 0.79
roc.v1.10 0.74 0.75 0.75 0.78 0.80 0.80 0.87 0.85 0.83
roc.v1.20 0.78 0.79 0.79 0.83 0.84 0.84 0.89 0.87 0.85
roc.v1.eer 0.14 0.14 0.14 0.12 0.13 0.13 0.10 0.11 0.12
roc.v2.05 0.34 0.34 0.34 0.24 0.15 0.23 0.52 0.54 0.52
roc.v2.10 0.54 0.46 0.46 0.33 0.26 0.25 0.71 0.67 0.70
roc.v2.20 0.70 0.70 0.69 0.43 0.41 0.41 0.83 0.78 0.80

Table 2: Evaluation of belief refinement models.
Train1a Train2 Train3

Emp WordMix Emp WordMix Emp WordMix

accuracy 0.75 0.77 0.81 0.80 0.84 0.84 0.71 0.88 0.90
avgp 0.75 0.76 0.77 0.78 0.80 0.81 0.68 0.80 0.81
l2 0.34 0.34 0.31 0.31 0.27 0.26 0.42 0.26 0.25
mrr 0.83 0.85 0.87 0.86 0.89 0.89 0.82 0.93 0.94
roc.v1.05 0.66 0.68 0.69 0.64 0.68 0.73 0.58 0.78 0.82
roc.v1.10 0.69 0.71 0.74 0.73 0.78 0.78 0.65 0.83 0.87
roc.v1.20 0.73 0.74 0.78 0.77 0.82 0.83 0.68 0.86 0.89
roc.v1.eer 0.22 0.13 0.14 0.13 0.13 0.12 0.13 0.11 0.10
roc.v2.05 0.34 0.24 0.34 0.30 0.24 0.24 0.61 0.51 0.52
roc.v2.10 0.47 0.38 0.54 0.42 0.26 0.33 0.64 0.67 0.71
roc.v2.20 0.72 0.60 0.70 0.56 0.37 0.43 0.72 0.77 0.83

train3, the confidence score model outperformed

others. Further analyses revealed that the confi-

dence scores from the SLU results were not suf-

ficiently indicative of the SLU accuracy in train1a

and train2. The histogram and the generative mod-

els are expected to perform at least as well as the

confidence score model in train3, but they didn’t

in the experiments. We suspect that this is due to

the naive binning strategy we used to model the

probability distribution.

4.2 Belief Refinement Model

As shown in Tbl. 2, the mixture model outper-

formed others throughout the metrics. It even

outperforms the word-match model which tries to

leverage the domain knowledge to handle novel

user goals. This implies that, unless the domain

knowledge is used properly, simply taking the

mixture with the uniform distribution yields a suf-

ficient level of performance.

4.3 Belief Transformation Model

Tbl. 3 summarizes the performances of the belief

transformation models. All three models outper-

formed the pure belief update, although not shown
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Table 3: Evaluation of belief transform models.
Train1a Train2 Train3

Thre Full Rank Thre Full Rank Thre Full Rank

accuracy 0.81 0.81 0.81 0.83 0.84 0.85 0.89 0.90 0.90
avgp 0.80 0.77 0.77 0.82 0.81 0.81 0.85 0.81 0.78
l2 0.28 0.31 0.32 0.25 0.26 0.26 0.22 0.25 0.28
mrr 0.84 0.87 0.87 0.86 0.89 0.89 0.91 0.94 0.92
roc.v1.05 0.66 0.69 0.69 0.65 0.73 0.72 0.45 0.82 0.80
roc.v1.10 0.71 0.74 0.75 0.69 0.78 0.79 0.68 0.87 0.86
roc.v1.20 0.71 0.78 0.78 0.74 0.83 0.83 0.79 0.89 0.89
roc.v1.eer 0.18 0.14 0.14 0.21 0.12 0.12 0.49 0.10 0.09
roc.v2.05 0.22 0.34 0.34 0.20 0.24 0.24 0.42 0.52 0.48
roc.v2.10 0.41 0.54 0.52 0.22 0.33 0.33 0.42 0.71 0.56
roc.v2.20 0.64 0.70 0.71 0.30 0.43 0.49 0.43 0.83 0.75

in the table. The full-list and the rank regres-

sion models show a similar level of performance

improvement. This is a naturally expected result

since they use regression to convert the beliefs to

final confidence scores, as an attempt to compen-

sate for the errors incurred by approximations and

assumptions made in the observation and belief re-

finement models.

4.4 DSTC Result

In order to compare our tracker with others par-

ticipated in DSTC, we chose tracker43 as the most

effective one among our 5 submitted trackers since

it achieved the top scores in the largest num-

ber of evaluation metrics. In the same way, we

selected tracker2 for team3, tracker3 for team6,

tracker3 for team8, and tracker1 for the rest of the

teams. The results of each team are presented in

Tbl. 4. The baseline tracker is included as a ref-

erence, which simply outputs the hypothesis with

the largest SLU confidence score in the N -best

list.

Compared to other teams, our tracker showed

strong performance in acc, avgp, l2 and mrr. A

detailed discussion on the results is provided in the

longer version of the paper (Kim et al., 2013).

5 Conclusion

In this paper, we described our experience with

engineering a statistical dialog state tracker while

participating in DSTC. Our engineering effort was

focused on improving three important models in

the tracker: the observation, the belief refine-

ment, and the belief transformation models. Us-

ing standard statistical techniques, we were able

3The tracker4 used the confidence score model, the mix-
ture model and the rank regression model.

Table 4: Results of the trackers. The bold face

denotes top 3 scores in each evaluation metric. T9

is our tracker.
BaseT1 T2 T3 T4 T5 T6 T7 T8 T9

Test 1
accuracy 0.71 0.83 0.81 0.81 0.74 0.80 0.87 0.78 0.51 0.82
avgp 0.73 0.77 0.77 0.81 0.74 0.79 0.82 0.76 0.49 0.79
l2 0.38 0.32 0.32 0.27 0.37 0.30 0.25 0.34 0.72 0.29
mrr 0.80 0.88 0.86 0.85 0.81 0.85 0.90 0.84 0.59 0.88
roc.v1.05 0.62 0.72 0.67 0.60 0.20 0.71 0.76 0.65 0.20 0.72
roc.v1.10 0.63 0.78 0.75 0.77 0.29 0.75 0.82 0.70 0.33 0.76
roc.v1.20 0.67 0.82 0.79 0.79 0.53 0.78 0.85 0.76 0.35 0.79
roc.v1.eer 0.24 0.13 0.25 0.24 0.74 0.12 0.12 0.15 0.52 0.14
roc.v2.05 0.49 0.64 0.01 0.02 0.00 0.55 0.16 0.19 0.04 0.26
roc.v2.10 0.69 0.71 0.14 0.03 0.00 0.68 0.39 0.35 0.05 0.47
roc.v2.20 0.71 0.80 0.48 0.29 0.00 0.74 0.59 0.58 0.27 0.62

Test 2
accuracy 0.55 0.65 0.71 0.68 0.63 0.62 0.79 0.65 0.34 0.71
avgp 0.57 0.55 0.63 0.68 0.63 0.62 0.71 0.65 0.29 0.65
l2 0.60 0.63 0.50 0.45 0.52 0.54 0.39 0.49 1.00 0.48
mrr 0.65 0.72 0.79 0.76 0.71 0.72 0.84 0.74 0.46 0.80
roc.v1.05 0.43 0.49 0.52 0.45 0.16 0.48 0.66 0.48 0.04 0.49
roc.v1.10 0.45 0.54 0.57 0.63 0.16 0.51 0.71 0.54 0.11 0.57
roc.v1.20 0.48 0.59 0.64 0.64 0.27 0.54 0.76 0.60 0.26 0.63
roc.v1.eer 0.19 0.20 0.39 0.14 0.63 0.21 0.16 0.19 0.36 0.22
roc.v2.05 0.43 0.52 0.24 0.27 0.00 0.40 0.46 0.41 0.05 0.38
roc.v2.10 0.47 0.60 0.40 0.37 0.00 0.62 0.53 0.47 0.17 0.41
roc.v2.20 0.50 0.70 0.48 0.56 0.00 0.70 0.62 0.55 0.44 0.47

Test 3
accuracy 0.79 0.79 0.84 0.82 0.82 0.78 0.84 0.79 0.79 0.85
avgp 0.75 0.72 0.76 0.79 0.78 0.70 0.75 0.75 0.76 0.74
l2 0.35 0.37 0.32 0.29 0.30 0.40 0.33 0.34 0.32 0.34
mrr 0.83 0.85 0.88 0.85 0.85 0.83 0.89 0.84 0.80 0.89
roc.v1.05 0.56 0.65 0.68 0.72 0.70 0.62 0.69 0.70 0.33 0.74
roc.v1.10 0.66 0.70 0.77 0.77 0.76 0.69 0.76 0.74 0.47 0.78
roc.v1.20 0.74 0.76 0.82 0.80 0.80 0.74 0.81 0.77 0.61 0.82
roc.v1.eer 0.19 0.16 0.15 0.27 0.12 0.17 0.15 0.12 0.34 0.13
roc.v2.05 0.56 0.62 0.34 0.28 0.21 0.62 0.61 0.14 0.00 0.56
roc.v2.10 0.59 0.71 0.48 0.37 0.52 0.66 0.66 0.42 0.00 0.67
roc.v2.20 0.66 0.78 0.73 0.52 0.82 0.71 0.78 0.87 0.00 0.79

to produce a tracker that performed competitively

among the participants.

As for the future work, we plan to refine the

user utterance model for improving the perfor-

mance of the tracker since there are a number of

user utterances that are not handled by the cur-

rent model. We also plan to re-evaluate our tracker

with properly handling the joint slot, since the cur-

rent tracker constructs models independently for

each marginal slot and then combines the results

by simply multiplying the predicted scores.
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