
Proceedings of the SIGDIAL 2013 Conference, pages 433–441,
Metz, France, 22-24 August 2013. c©2013 Association for Computational Linguistics

Multi-domain learning and generalization in dialog state tracking

Jason D. Williams
Microsoft Research, Redmond, WA, USA

jason.williams@microsoft.com

Abstract

Statistical approaches to dialog state track-
ing synthesize information across multi-
ple turns in the dialog, overcoming some
speech recognition errors. When training
a dialog state tracker, there is typically
only a small corpus of well-matched dia-
log data available. However, often there is
a large corpus of mis-matched but related
data – perhaps pertaining to different se-
mantic concepts, or from a different dialog
system. It would be desirable to use this
related dialog data to supplement the small
corpus of well-matched dialog data. This
paper addresses this task as multi-domain
learning, presenting 3 methods which syn-
thesize data from different slots and differ-
ent dialog systems. Since deploying a new
dialog state tracker often changes the re-
sulting dialogs in ways that are difficult to
predict, we study how well each method
generalizes to unseen distributions of dia-
log data. Our main result is the finding that
a simple method for multi-domain learn-
ing substantially improves performance in
highly mis-matched conditions.

1 Introduction

Spoken dialog systems interact with users via nat-
ural language to help them achieve a goal. As the
interaction progresses, the dialog manager main-
tains a representation of the state of the dialog in a
process called dialog state tracking. For example,
in a bus schedule information system, the dialog
state might indicate the user’s desired bus route,
origin, and destination. Dialog state tracking is
difficult because errors in automatic speech recog-
nition (ASR) and spoken language understanding
(SLU) are common, and can cause the system to
misunderstand the user’s needs. At the same time,

state tracking is crucial because the system relies
on the estimated dialog state to choose actions –
for example, which bus schedule information to
present to the user.

Most commercial systems use hand-crafted
rules for state tracking, selecting the SLU result
with the highest confidence score observed so far,
and discarding alternatives. In contrast, statisti-
cal approaches compute a posterior distribution
over many hypotheses for the dialog state, and
in general these have been shown to be superior
(Horvitz and Paek, 1999; Williams and Young,
2007; Young et al., 2009; Thomson and Young,
2010; Bohus and Rudnicky, 2006; Metallinou et
al., 2013).

Unfortunately, when training a dialog state
tracker, there is rarely a large corpus of matched
data available. For example, a pilot version of the
system may be fielded in a controlled environment
to collect a small initial corpus. Yet there is of-
ten a large quantity of mis-matched dialog data
available. For example, dialog data might be avail-
able from another dialog system – such as an ear-
lier version with a different recognizer, dialog con-
troller, and user population – or from a related task
– such as searching for restaurants instead of ho-
tels.

In this paper, we tackle the general problem of
how to make use of disparate sources of data
when training a dialog state tracker. For exam-
ple, should a tracker for each slot be trained on
small sets of slot-specific data, or should data from
all slots be combined somehow? Can dialog data
from another system be used to build effective
tracker for a new system for which no data (yet)
exists? Once data from the new system is avail-
able, is the old data still useful?

These inter-related questions can be formalized
as multi-domain learning and generalization.
Multi-domain learning (MDL) refers to the task
of building a model – here, a state tracker – for

433

a target domain using training data from both the
target domain and a different but related domain.
Generalization refers to the ability of a model to
perform well in a domain unlike that seen in any
of the training data. Both multi-domain learning
and generalization are active research topics in the
machine learning community, with broad applica-
tions. (Joshi et al., 2012) provides a comparison of
popular methods on several (non-dialog) tasks, in-
cluding sentiment classification in on-line product
reviews.

In dialog state tracking, there are a variety of
properties that could be cast as a “domain”. In this
paper, we explore two obvious domains: different
dialog systems, and different slots, where slots are
informational sub-units of the dialog state, such as
the origin, bus route, and departure time in a bus
timetables spoken dialog system. We apply sev-
eral methods for MDL across varied dialog sys-
tems, slots, and combinations of both. MDL is
attractive for dialog state tracking because the dis-
tribution across slots and systems is related but
not identical. For example, the ranges of speech
recognition confidence scores for two slots such as
bus route and date may be different, or one system
may use confirmations much more often than an-
other. Despite these differences, there are useful
patterns: regardless of the slot or system, higher
confidence scores and responses of “yes” to con-
firmations provide more certainty. The hope is that
MDL can provide a principled way of using all
available data to maximize accuracy.

An important problem in dialog state tracking is
that deploying a new tracker into production will
produce a new distribution of dialog data that may
be unlike data observed at training time in ways
that are difficult to predict. As a result, it is impor-
tant to test the generalization of dialog state track-
ing models on data that differs from the training
distribution. In this paper, we evaluate each of the
MDL approaches on multiple held-out datasets,
ranging from well-matched to very mis-matched
– i.e., dialog data from the same dialog system, a
modified version of the dialog system, and a com-
pletely different dialog system.

We show that dialog data from multiple existing
systems can be used to build good state trackers
for a completely new system, and that a simple
form of MDL improves generalization substan-
tially. We also find that, if well-matched data from
that new system is available, the effect (positive or

negative) of MDL is slight. Since in practice the
level of mis-match can be difficult to predict, this
suggests that training with (a particular form of)
MDL is the safest approach.

This paper is organized as follows. Section 2
describes the algorithm used for state tracking and
the dialog data employed. Section 3 then intro-
duces methods for multi-domain learning. Section
4 presents results and Section 5 briefly concludes.

2 Preliminaries

We begin by describing the core model used for
dialog state tracking, and the source data. Both of
these will be important for the development of the
multi-domain learning methods in Section 3.

2.1 Dialog state tracking model

There are two dominant approaches to statisti-
cal methods for dialog state tracking. Genera-
tive approaches use generative models that capture
how the SLU results are generated from hidden
dialog states (Horvitz and Paek, 1999; Williams
and Young, 2007; Young et al., 2009; Thomson
and Young, 2010). In contrast, discriminative ap-
proaches use conditional models, trained in a dis-
criminative fashion to directly estimate the distri-
bution over a set of state hypotheses based on a
large set of informative features (Bohus and Rud-
nicky, 2006). Previous work has found that dis-
criminative approaches yield better performance
(Metallinou et al., 2013), so we base our experi-
ments on a discriminative model.

We will assume that each dialog state hypothe-
sis is described by a feature vector x, consisting of
|x| = X features. For example, a feature might be
the confidence score of the most recent recognition
result corresponding to the hypothesis. Features
can also be included which describe the current
dialog context, such as how many times the target
slot has been requested or confirmed. At a turn in
a dialog with index i, there are N(i) dialog state
hypotheses, each described by X features. We de-
note the concatenation of all N(i) feature vectors
as X(i), which has size XN(i).

The dialog state tracking task is to take as in-
put the complete feature vector X(i), and output a
distribution over the N(i) hypotheses, plus an ad-
ditional meta-hypothesis REST that indicates that
none of the hypotheses is correct. For training, la-
bels y(i) indicate which of the N(i) hypotheses is
correct, or else if none of them is correct. By con-

434

Feats/hyp
Group |X| |X∗| Corpus Dialogs Mismatch to training data

A 90 54
643 TRAIN2 None – same distribution
715 TEST1 Low
750 TEST2 Medium

B
90 316

1020 TRAIN3 None – same distribution
438 TEST3 Low

C 90 0 TEST4 High

Table 1: Corpora used in this paper. |X| denotes the number of common features, and |X∗| denotes the
number of system-specific features. The data in systems TEST1 and TEST3 has low mis-match to the
training data because they use very similar dialog managers as in TRAIN2 and TRAIN3, respectively.
The system in corpus TEST2 used a different dialog manager from TRAIN2, but the same set of system
actions, speech recognizer, and TTS, resulting in a medium level of mis-match. The system in corpus
TEST4 was completely different from any system in the training data. On average there were approxi-
mately 13 system turns and 13 user turns per dialog across all corpora. The TRAIN* corpora are used
for training, and the TEST* corpora are used for testing. Complete details of the corpora are given in
(Williams et al., 2013).

struction the hypotheses are disjoint; with the ad-
dition of the REST meta-hypothesis, exactly one
hypothesis is correct by construction. After the di-
alog state tracker has output its distribution, this
distribution is passed to a separate, downstream
process that chooses what action to take next (e.g.,
how to respond to the user).

Note that the dialog state tracker is not predict-
ing the contents of the dialog state hypotheses:
the dialog state hypotheses’ contents and features
are given by some external process – for exam-
ple, simply enumerating all SLU values observed
so far in the dialog. Rather, the task is to pre-
dict a probability distribution over the hypotheses,
where the probability assigned to a hypothesis in-
dicates the probability that it is correct.

In our previous work, we developed a
discriminatively-trained maximum-entropy model
for dialog state tracking (Metallinou et al., 2013).
The model estimates a single weight for each
feature in x; to keep learning tractable, these
weights are shared across all state hypotheses be-
ing scored. The model includes L1 and L2 regu-
larization. This model was found to out-perform
generative models, rule-based approaches typi-
cally used in industry, and competing discrimina-
tive approaches. The complete details are given
in (Metallinou et al., 2013) and are not crucial to
this paper, because the multi-domain learning ap-
proaches used here will not modify the learning
algorithm, but rather modify the features, as de-
scribed below.

2.2 Dialog data

We use dialog data and evaluation methods from
the Dialog State Tracking Challenge (Williams
et al., 2013; Williams et al., 2012). This data
comes from public deployments of dialog systems
which provide bus schedule information for Pitts-
burgh, USA. Three different research groups – de-
noted Groups A, B, and C – provided dialog sys-
tems. Each group used completely different sys-
tems, composed of different speech recognizers,
acoustic and language models, language under-
standing, dialog design, and text-to-speech. The
differences between systems from different groups
was substantial: for example, Group A and C
systems allowed users to provide any information
at any time, whereas Group B systems followed
a highly directed flow, separately collecting each
slot. In addition, Groups A and B fielded several
versions of their systems over a multi-year period
– these versions differed in various ways, such as
acoustic models, confidence scoring model, state
tracking method and parameters, number of sup-
ported bus routes, presence of minor bugs, and
user population. Differences across versions and
groups yielded differences in overall performance
and distributions in the data (Black et al., 2011;
Williams, 2012). Following the dialog state track-
ing challenge, we use these differences to test the
ability of dialog state tracking methods to gener-
alize to new, unseen distributions of dialog data.
Table 1 lists the groups, datasets, and the relative

435

match/mis-match between training and test data.
In this data, there are 9 slots: the bus route, date,

time, and three components each for the origin
and destination, roughly corresponding to streets,
neighborhoods, and points-of-interest like univer-
sities. In this paper we will build trackers that op-
erate on slots independently – i.e., at each turn, a
total of 9 trackers will each output a ranked list of
dialog state hypotheses for its slot.1 The state hy-
potheses consist of all of the values for that slot ob-
served so far in the dialog – either in an SLU result
or output by the system – plus the meta-hypothesis
REST that represents the case that none of the ob-
served values is correct.

Each dialog state hypothesis is described by a
set of features extracted from the dialog data. The
Dialog State Tracking Challenge provides data
from all systems in a standard format, from which
we extracted 90 features per dialog state hypoth-
esis. We refer to these as common features, be-
cause they are available for all systems. We de-
note the concatenation of all common features for
all hypotheses at a given turn as XA, XB , or XC ,
subscripted based on the system from which they
were extracted. In addition, the challenge data
includes system-specific information. From the
Group A and B logs we extracted 54 and 316
system-specific features per hypothesis, respec-
tively. We denote the concatenation of all system-
specific features for all hypotheses at a given turn
as X∗

A or X∗
B , subscripted based on the system

from which they were extracted. Group C logs
provided no additional system-specific informa-
tion. Examples of features are provided in the Ap-
pendix.

3 Multi-domain learning methods

3.1 Models for multi-domain learning
In multi-domain learning (MDL), data instances
are of the form (X(i), y(i), d(i)), where X(i) are
features for instance i, y(i) is the label for instance
i, and d(i) is the domain of instance i, where there
are a total of D domains. The goal is to build a
good model for Pd(y|X) – i.e., to predict the la-
bel of an instance given its features and domain.
A baseline model uses only data from domain d to
train Pd(y|X); MDL tackles the problem of how
to build models that use data from all domains to
improve on this baseline. In this paper, we con-

1For simplicity, in this paper we do not consider joint state
hypotheses, which include more than one slot.

sider the fully-supervised case, where all of the
training data has been labeled.

We explore four ways of constructing models.
First, in the IND baseline model, we build D sep-
arate models using only data from a single do-
main. Next, in the POOL model, the data from all
domains is simply pooled together into one large
corpus; the single model trained on this corpus is
used in all domains. Each feature vector is aug-
mented to include an indicator of the domain d(i)
from which it originated, as this has been found to
confer much of the benefit of more complex MDL
algorithms (Joshi et al., 2012). The POOL model
can be viewed as the simplest form of MDL.

Next, the MDL1 model employs a simple
but powerful method for MDL developed by
(Daume III, 2007). For each data instance, a syn-
thetic feature vector is formed with D + 1 blocks
of size |X|. Each block is set to all zeros, except
for block d(i) and block D + 1 which are both set
to X(i). For example, with D = 3 domains, the
synthetic feature vector for X(i) from domain 1
would be 〈X(i),0,0,X(i)〉, and for X(j) from do-
main 2 would be 〈0,X(j),0,X(j)〉, where 0 is a
vector of zeros of size |X|. This synthetic corpus
is then used to train a single model which is used
in any domain.

This approach has been found to be successful
on a variety of machine learning tasks, including
several NLP tasks (Daume III, 2007). To explain
the intuition, consider a single feature component
of X, X[k], which appears D + 1 times in the
synthetic feature vectors. For model estimation,
assume a standard loss function with a term that
penalizes classification errors, and a regularization
term that penalizes non-zero feature weights. Intu-
itively, if an individual scalar feature X[k] behaves
differently in the domains, the classifier will prefer
the per-domain copies, and assign a zero weight to
the final copy, reducing the error term of the loss
function, at the expense of a small increase in the
regularization term. On the other hand, if an indi-
vidual scalar feature X[k] behaves similarly across
domains, the model will prefer to assign a single
non-zero weight to the final copy and zeros to the
per-domain copies, as this will reduce the regular-
ization term in the loss function. In other words,
the classifier will prefer the shared copy when do-
ing so has little impact to accuracy – i.e., the clas-
sifier chooses on a feature-by-feature basis when
to keep domains separate, and when to pool do-

436

Synthetic feature vector encoding for data from:
Method Target Slot Slot 1 Slot 2 · · · Slot 9

SLOTIND

1 X1 not used · · · not used
2 not used X2 · · · not used
· · · · · · · · · · · · · · ·
9 not used not used · · · X9

SLOTPOOL all X1 X2 · · · X3

SLOTMDL1 all X1,0, . . . ,0,X1 0,X2, . . . ,0,X2 · · · 0,0, . . . ,X9,X9

SLOTMDL2

1 X1,0,X1 0,X2,X2 · · · 0,X9,X9

2 0,X1,X1 X2,0,X2 · · · 0,X9,X9

· · · · · · · · · · · · · · ·
9 0,X1,X1 0,X2,X2 · · · X9,0,X9

Table 2: Synthetic features constructed for each multi-domain learning method applied to slots. Here,
the subscript on X indicates the slot it describes.

mains.
When the number of domains D is large,

MDL1 can produce large, sparse synthetic feature
vectors, confounding training. MDL2 addresses
this by constructing D separate models; in model
d, data from all domains except d is pooled into
one meta-domain. Then the procedure in MDL1
is followed. For example, for model d = 1, in-
stances X(i) from domain d(i) = 1 is represented
as 〈X(i),0,X(i)〉; data from all other domains
d(i) 6= 1 is represented as 〈0,X(i),X(i)〉. This
synthetic data is then used to train a model for do-
main 1.

3.2 Application to dialog state tracking

In this study, we consider two orthogonal dimen-
sions of domain – systems and slots – and combi-
nations of the two.

Multi-domain learning across slots means
building a tracker for one slot using dialog data
pertaining to that slot, plus data pertaining to other
slots. In the experiments below, this is done by
treating each of the 9 slots as a domain and apply-
ing each of the four MDL methods above. Table 2
specifies the precise form of the synthetic feature
vectors for each method.

Multi-domain learning across systems means
building a tracker for one dialog system using dia-
log data collected with that system, plus data from
other dialog systems. Each of the two corpora in
the training data – TRAIN2 from Group A and
TRAIN3 from Group B – is treated as a domain.
Since only the common features are shared across
domains (i.e., systems), model complexity can be
reduced by building different models depending

on the target group – the group the model will
be tested on – and including system-specific fea-
tures only for the target group. For example, when
a model will be trained on data from Groups A
and B, then tested on data from Group A, we in-
clude common features from A and B but system-
specific features from only A. Table 3 specifies the
precise form of the synthetic feature vectors for
each method. Also, when MDL is applied across
systems, there are only 2 sources of training data,
so MDL2 is identical to MDL1 (and thus isn’t
shown in the results).

Applying multi-domain learning to both sys-
tems and slots is done by composing the two fea-
ture synthesis steps. This process is simple but can
increase the size of synthetic feature vectors by up
to an order of magnitude.

3.3 Evaluation method

In the experiments below, we train dialog state
trackers that output a scored list of dialog state
hypotheses for each slot at each turn in the dia-
log. For evaluation, we measure the fraction of
output lists where the top dialog state hypothesis
is correct. A dialog state hypothesis is correct if
it corresponds to a slot value which has been rec-
ognized correctly. The dialog state tracker may
include the meta-hypothesis REST among its hy-
potheses – this meta-hypothesis is labeled as cor-
rect if no correct values have yet been recognized
for this slot.

Since most turns contain no information about
most slots, we limit evaluation to turns where new
information for a slot appears either in the speech
recognition output, or in the system output. For

437

Synthetic feature vector
encoding for data from:

Method Target group Group A Group B

SYSTEMIND
A XA,X

∗
A not used

B not used XB,X
∗
B

SYSTEMIND-A C XA not used
SYSTEMIND-B C not used XB

SYSTEMPOOL

A XA,X
∗
A XB,0

B XA,0 XB,X
∗
B

C XA XB

SYSTEMMDL
A XA,X

∗
A,0,XA 0,0,XB,XB

B 0,0,XA,XA XB,X
∗
B,0,XB

Table 3: Synthetic features constructed for each multi-domain learning method applied to systems. Here,
the subscript on X indicates the system it originated from. Asterisk super-scripts indicate system-specific
features, which are only included for the group the tracker will be tested on (i.e., the target group).

example, in turn i, if a system confirms a bus route,
and a date appears in the speech recognition out-
put, both of these slots in turn i will be included
when computing average accuracy. If the time slot
appears in neither the system output nor anywhere
in the speech recognition output of turn i, then the
time slot in turn i is excluded when computing av-
erage accuracy. The accuracy computation itself
was done by the scoring tool from the Dialog State
Tracking Challenge, using the schedule2 accuracy
metric for all slots (Williams et al., 2013; Williams
et al., 2012).

For comparison, we also report performance of
a simple rule-based tracker. For each slot, this
tracker scans over all values recognized so far in
the dialog, and returns the value which has been
recognized with the highest local SLU confidence
score.

4 Results

We first evaluated performance of multi-domain
learning in isolation, excluding the effects of gen-
eralization. To do this, we divided TRAIN2 and
TRAIN3 in half, using the first halves for train-
ing and the second halves for testing. This ex-
periment gives an indication of the performance of
multi-domain learning if conditions in deployment
match the training data.

Results are shown in Figure 1a-1b. Here, the
effects of multi-domain learning across systems
and slots is rather small, and inconsistent. For ex-
ample, pooling slot data yields best performance
on TRAIN3, and worst performance in TRAIN2.

Applying MDL across systems yields best perfor-
mance for TRAIN3, but not for TRAIN2. Overall,
when training and test data are very well-matched,
MDL has little effect.

Of course, in practice, training and test data will
not be well-matched, so we next evaluated per-
formance of multi-domain learning including the
effects of generalization. Here we trained using
the complete TRAIN2 and TRAIN3 corpora, and
tested on TEST1, TEST2, TEST3, and TEST4.

Results are shown in Figures 1c-1f. The dom-
inant trend is that, at high levels of mis-match as
in TEST3 and TEST4, simply pooling together all
available data yields a large increase in accuracy
compared to all other methods. The majority of
the increase is due to pooling across slots, though
pooling across systems yields a small additional
gain. This result echos past work, where pooling
data is often competitive with more sophisticated
methods for multi-domain learning (Joshi et al.,
2012).

In our case, one possible reason for this result
is that simply pooling the data introduces a sort of
regularization: note that the models with SLOT-
POOL and SYSTEMPOOL have the highest ratio
of training data to model parameters. The MDL
methods also use all the data, but via their larger
synthetic feature vectors, they increase the number
of model parameters. The smaller model capacity
of the POOL models limit the ability to completely
fit the training data. This limitation can be a li-
ability for matched conditions – see for example
Figure 1a – but may help the model to generalize

438

72%

74%

76%

78%

80%

82%

84%

SystemInd SystemPool SystemMDL1

SlotInd SlotPool RuleTracker

SlotMDL1 SlotMDL2

(a) Evaluation on TRAIN2 (Group A), in which there is min-
imal mis-match between the training and test data.

66%

68%

70%

72%

74%

76%

78%

SystemInd SystemPool SystemMDL1

(b) Evaluation on TRAIN3 (Group B), in which there is min-
imal mis-match between the training and test data.

70%

72%

74%

76%

78%

80%

82%

SystemInd SystemPool SystemMDL1

(c) Evaluation on TEST1 (Group A), in which there is low
mis-match between the training and test data.

52%

54%

56%

58%

60%

62%

64%

SystemInd SystemPool SystemMDL1

(d) Evaluation on TEST3 (Group B), in which there is low
mis-match between the training and test data.

59%

61%

63%

65%

67%

69%

71%

SystemInd SystemPool SystemMDL1

(e) Evaluation on TEST2 (Group A), in which there is
medium mis-match between the training and test data.

58%

60%

62%

64%

66%

68%

70%

SystemInd-A SystemInd-B SystemPool

(f) Evaluation on TEST4 (Group C), in which there is high
mis-match between all of the training data and test data.

Figure 1: Average accuracy of different approaches to multi-domain learning in dialog state tracking.
Squares show SLOTIND, circles SLOTPOOL, unshaded diamonds SLOTMDL1, and shaded diamonds
SLOTMDL2. The solid line shows performance of a simple rule-based tracker, which is not trained on
data. In all plots, the vertical axis is shown on the same scale for comparability (12% from bottom to top),
and indicates average accuracy of the top dialog state (c.f., Section 3.3). In panels 1a and 1b, training is
done on the first halves of TRAIN2 and TRAIN3, and testing on the second halves. In the other panels,
training uses all of TRAIN2 and TRAIN3. In panel 1f, the categories for TEST4 – for which there is no
in-domain data – are different than the other panels.

439

in mis-matched conditions.

5 Conclusion

This paper has examined multi-domain learning
and generalization in dialog state tracking. Two
dimensions of domain have been studied – learn-
ing across slots and learning across systems – and
three simple methods for multi-domain learning
have been studied. By using corpora of real di-
alogs from the Dialog State Tracking Challenge,
generalization has been studied through varying
levels of mis-match between training and test data.

The results show that simply pooling together
data yields large benefits in highly mis-matched
conditions and has little effect in well-matched
conditions. In practice of course, the level of mis-
match a new tracker will produce is difficult to pre-
dict. So the safest strategy seems to be to always
pool together all available data.

There are a variety of issues to examine in future
work. First, the MDL methods used in this study
were chosen for their simplicity and versatility: by
augmenting features, no changes were required to
the learning method. There exist other methods of
MDL which do modify the learning, and in some
cases yield better performance. It would be inter-
esting to test them next, perhaps including meth-
ods that can construct deeper representations than
the maximum entropy model used here.

More broadly, this study has been limited to su-
pervised multi-domain learning, in which labeled
data from multiple domains is available at training
time. It would clearly be desirable to develop a
method for unsupervised adaptation, in which the
model is adjusted as the unlabeled test data is ex-
perienced.

For now, the contribution of this study is to pro-
vide at least an initial recommendation to prac-
titioners on how to best make use of disparate
sources of dialog data when building a statistical
dialog state tracker.

Acknowledgements

Thanks to Dan Bohus for making his machine
learning software available.

References
Alan W Black, Susanne Burger, Alistair Conkie, He-

len Hastie, Simon Keizer, Oliver Lemon, Nicolas
Merigaud, Gabriel Parent, Gabriel Schubiner, Blaise
Thomson, Jason D. Williams, Kai Yu, Steve Young,

and Maxine Eskenazi. 2011. Spoken dialog chal-
lenge 2010: Comparison of live and control test re-
sults. In Proc SIGdial Workshop on Discourse and
Dialogue, Portland, Oregon.

Dan Bohus and Alex Rudnicky. 2006. A ‘K hypothe-
ses + other’ belief updating model. In Proc Amer-
ican Association for Artificial Intelligence (AAAI)
Workshop on Statistical and Empirical Approaches
for Spoken Dialogue Systems, Boston.

Hal Daume III. 2007. Frustratingly easy domain adap-
tation. In Proceedings of the 45th Annual Meeting of
the Association of Computational Linguistics, pages
256–263, Prague, Czech Republic, June. Associa-
tion for Computational Linguistics.

Eric Horvitz and Tim Paek. 1999. A computational
architecture for conversation. In Proc 7th Interna-
tional Conference on User Modeling (UM), Banff,
Canada, pages 201–210.

Mahesh Joshi, Mark Dredze, William W Cohen, and
Carolyn Rose. 2012. Multi-domain learning: When
do domains matter? In Proc Joint Conference on
Empirical Methods in Natural Language Process-
ing and Computational Natural Language Learning,
Jeju, Korea.

Angeliki Metallinou, Dan Bohus, and Jason D.
Williams. 2013. Discriminative state tracking for
spoken dialog systems. In Proc Association for
Computational Linguistics, Sofia.

Blaise Thomson and Steve Young. 2010. Bayesian
update of dialogue state: A POMDP framework for
spoken dialogue systems. Computer Speech and
Language, 24(4):562–588.

Jason D Williams and Steve Young. 2007. Partially
observable Markov decision processes for spoken
dialog systems. Computer Speech and Language,
21(2):393–422.

Jason D Williams, Antoine Raux, Deepak Ramachan-
dran, and Alan W Black. 2012. Dialog state
tracking challenge handbook. Technical report, Mi-
crosoft Research.

Jason D. Williams, Antoine Raux, Deepak Ramachan-
dran, and Alan Black. 2013. The dialog state track-
ing challenge. In Submitted to SigDial 2013.

Jason D. Williams. 2012. Challenges and oppor-
tunities for state tracking in statistical spoken dia-
log systems: Results from two public deployments.
IEEE Journal of Selected Topics in Signal Process-
ing, Special Issue on Advances in Spoken Dialogue
Systems and Mobile Interface, 6(8):959–970.

Steve Young, Milica Gašić, Simon Keizer, François
Mairesse, Jost Schatzmann, Blaise Thomson, and
Kai Yu. 2009. The hidden information state model:
a practical framework for POMDP-based spoken di-
alogue management. Computer Speech and Lan-
guage, 24(2):150–174.

440

Appendix

Example common features extracted for all systems
Number of times slot value has been observed in any previous speech recognition result

Whether the most recent speech recognition result includes this slot value
The highest rank on the speech recognition N-best list that this slot value has been observed

The number of times this slot has been requested by the system
Whether the system requested this slot in the current turn

The number of items on the current speech recognition N-best list
Whether confirmation for this slot has been attempted

If confirmation for this slot has been attempted, whether the user was recognized as saying “yes”
The fraction of recognitions of this slot value in the training set which were correct
The fraction of dialogs in the training set in which the user requested this slot value

Example system-specific features extracted for Group A systems
Acoustic model score

Average word confidence score
Whether barge-in was triggered

Decoder score
Language model score

Maximum and minimum confidence score of any word
Estimated speaking rate

Estimated speaker gender (male/female)
Example system-specific features extracted for Group B systems

Score of best path through the word confusion network
Lowest score of any word on the best path through the word confusion network

Number of speech frames found
Decoder cost

Garbage model likelihood
Noise model likelihood

Average difference in decoder cost, per frame, between the best path and any path through the lattice
Whether barge-in was triggered

Table 4: Examples of features used for dialog state tracking. Group C logs provided no system-specific
information.

441

