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Abstract 

We present a data-driven model for de-

tecting suitable response locations in the 

user’s speech. The model has been 

trained on human–machine dialogue data 

and implemented and tested in a spoken 

dialogue system that can perform the 

Map Task with users. To our knowledge, 

this is the first example of a dialogue sys-

tem that uses automatically extracted 

syntactic, prosodic and contextual fea-

tures for online detection of response lo-

cations. A subjective evaluation of the 

dialogue system suggests that interac-

tions with a system using our trained 

model were perceived significantly better 

than those with a system using a model 

that made decisions at random. 

1 Introduction 

Traditionally, dialogue systems have rested on a 

very simple model for turn-taking, where the sys-

tem uses a fixed silence threshold to detect the 

end of the user’s utterance, after which the sys-

tem responds. However, this model does not cap-

ture human-human dialogue very accurately; 

sometimes a speaker just hesitates and no turn-

change is intended, sometimes the turn changes 

after barely any silence (Sacks et al., 1974). 

Therefore, such models can result in systems that 

interrupt the user or are perceived as unrespon-

sive. Related to the problem of turn-taking is that 

of backchannels (Yngve, 1970).  Backchannel 

feedback – short acknowledgements such as uh-

huh or mm-hm – are used by human interlocutors 

to signal continued attention to the speaker, 

without claiming the floor. If a dialogue system 

should be able to manage smooth turn-taking and 

back-channelling, it must be able to first identify 

suitable locations in the user’s speech to do so.  

Duncan (1972) found that human interlocutors 

continuously monitor several cues, such as con-

tent, syntax, intonation, paralanguage, and body 

motion, in parallel to manage turn-taking. Simi-

lar observations have been made in various other 

studies investigating the turn-taking and back-

channelling phenomena in human conversations. 

Ward (1996) has suggested that a low pitch re-

gion is a good cue that backchannel feedback is 

appropriate. On the other hand, Koiso et al. 

(1998) have argued that both syntactic and pro-

sodic features make significant contributions in 

identifying turn-taking and back-channelling rel-

evant places. Cathcart et al. (2003) have shown 

that syntax in combination with pause duration is 

a strong predictor for backchannel continuers.  

Gravano & Hirschberg (2009) observed that the 

likelihood of occurrence of a backchannel in-

creases with the number of syntactic and prosod-

ic cues conjointly displayed by the speaker. 

However, there is a general lack of studies on 

how such models could be used online in dia-

logue systems and to what extent that would im-

prove the interaction. There are two main prob-

lems in doing so. First, the data used in the stud-

ies mentioned above are from human–human 

dialogue and it is not obvious to what extent the 

models derived from such data transfers to hu-

man–machine dialogue. Second, many of the 

features used were manually extracted. This is 

especially true for the transcription of utterances, 

but several studies also rely on manually anno-

tated prosodic features.  

In this paper, we present a data-driven model 

of what we call Response Location Detection 

(RLD), which is fully online. Thus, it only relies 
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on automatically extractable features—covering 

syntax, prosody and context. The model has been 

trained on human–machine dialogue data and has 

been implemented in a dialogue system that is in 

turn evaluated with users. The setting is that of a 

Map Task, where the user describes the route and 

the system may respond with for example 

acknowledgements and clarification requests.  

2 Background 

Two influential theories that have examined the 

turn-taking mechanism in human conversations 

are the signal-based mechanism of Duncan 

(1972) and the rule-based mechanism proposed 

by Sacks (1974). According to Duncan, “the 

turn-taking mechanism is mediated through sig-

nals composed of clear-cut behavioural cues, 

considered to be perceived as discrete”. Duncan 

identified six discrete behavioural cues that a 

speaker may use to signal the intent to yield the 

turn. These behavioural cues are: (i) any devia-

tion from the sustained intermediate pitch level; 

(ii) drawl on the final syllable of a terminal 

clause; (iii) termination of any hand gesticulation 

or the relaxation of tensed hand position—during 

a turn; (iv) a stereotyped expression with trailing 

off effect; (v) a drop in pitch and/or loudness; 

and (vi) completion of a grammatical clause. Ac-

cording to the rule-based mechanism of Sacks 

(1974) turn-taking is regulated by applying rules 

(e.g. “one party at a time”) at Transition-

Relevance Places (TRPs)—possible completion 

points of basic units of turns, in order to mini-

mize gaps and overlaps. The basic units of turns 

(or turn-constructional units) include sentential, 

clausal, phrasal, and lexical constructions. 

Duncan (1972) also suggested that speakers 

may display behavioural cues either singly or 

together, and when displayed together they may 

occur either simultaneously or in tight sequence. 

In his analysis, he found that the likelihood that a 

listener attempts to take the turn is higher when 

the cues are conjointly displayed across the vari-

ous modalities.  

While these theories have offered a function-

based account of turn-taking, another line of re-

search has delved into corpora-based techniques 

to build models for detecting turn-transition and 

feedback relevant places in speaker utterances.  

Ward (1996) suggested that a 110 millisecond 

(ms) region of low pitch is a fairly good predic-

tor for back-channel feedback in casual conver-

sational interactions. He also argued that more 

obvious factors, such as utterance end, rising in-

tonation, and specific lexical items, account for 

less than they seem to. He contended that proso-

dy alone is sometimes enough to tell you what to 

say and when to say. 

In their analysis of turn-taking and backchan-

nels based on prosodic and syntactic features, in 

Japanese Map Task dialogs, Koiso et al. (1998) 

observed that some part-of-speech (POS) fea-

tures are strong syntactic cues for turn-change, 

and some others are strongly associated with no 

turn-change. Using manually extracted prosodic 

features for their analysis, they observed that 

falling and rising F0 patterns are related to 

changes of turn, and flat, flat-fall and rise-fall 

patterns are indications of the speaker continuing 

to speak. Extending their analysis to backchan-

nels, they asserted that syntactic features, such as 

filled pauses, alone might be sufficient to dis-

criminate when back-channelling is inappropri-

ate, whereas presence of backchannels is always 

preceded by certain prosodic patterns. 

Cathcart et al. (2003) presented a shallow 

model for predicting the location of backchannel 

continuers in the HCRC Map Task Corpus 

(Anderson et al., 1991). They explored features 

such as POS, word count in the preceding speak-

er turn, and silence pause duration in their mod-

els. A model based on silence pause only insert-

ed a backchannel in every speaker pause longer 

than 900 ms and performed better than a word 

model that predicted a backchannel every sev-

enth word. A tri-gram POS model predicted that 

nouns and pronouns before a pause are the two 

most important cues for predicting backchannel 

continuers. The combination of the tri-gram POS 

model and pause duration model offered a five-

fold improvement over the others. 

Gravano & Hirschberg (2009) investigated 

whether backchannel-inviting cues differ from 

turn-yielding cues. They examined a number of 

acoustic features and lexical cues in the speaker 

utterances preceding smooth turn-changes, back-

channels, and holds. They have identified six 

measureable events that are strong predictors of a 

backchannel at the end of an inter-pausal unit: (i) 

a final rising intonation; (ii) a higher intensity 

level; (iii) a higher pitch level; (iv) a final POS 

bi-gram equal to ‘DT NN’, ‘JJ NN’, or ‘NN 

NN’; (v) lower values of noise-to-harmonic rati-

os; and (vi) a longer IPU duration. They also ob-

served that the likelihood of a backchannel in-

creases in quadratic fashion with the number of 

cues conjointly displayed by the speaker. 

When it comes to using these features for 

making turn-taking decisions in dialogue sys-
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tems, there is however, very little related work. 

One notable exception is Raux & Eskenazi 

(2008) who presented an algorithm for dynami-

cally setting endpointing silence thresholds based 

on features from discourse, semantics, prosody, 

timing, and speaker characteristics. The model 

was also applied and evaluated in the Let’s Go 

dialogue system for bus timetable information. 

However, that model only predicted the end-

pointing threshold based on the previous interac-

tion up to the last system utterance, it did not 

base the decision on the current user utterance to 

which the system response is to be made. 

In this paper, we train a model for online Re-

sponse Location Detection that makes a decision 

whether to respond at every point where a very 

short silence (200 ms) is detected. The model is 

trained on human–machine dialogue data taken 

from a first set of interactions with a system that 

used a very naïve policy for Response Location 

Detection. The trained model is then applied to 

the same system, which has allowed us to evalu-

ate the model online in interaction with users.  

3 A Map Task dialogue system 

In a previous study, we presented a fully auto-

mated spoken dialogue system that can perform 

the Map Task with a user (Skantze, 2012). Map 

Task is a common experimental paradigm for 

studying human-human dialogue, where one sub-

ject (the information giver) is given the task of 

describing a route on a map to another subject 

(the information follower). In our case, the user 

acts as the giver and the system as the follower. 

The choice of Map Task is motivated partly be-

cause the system may allow the user to keep the 

initiative during the whole dialogue, and thus 

only produce responses that are not intended to 

take the initiative, most often some kind of feed-

back. Thus, the system might be described as an 

attentive listener.  

Implementing a Map Task dialogue system 

with full speech understanding would indeed be 

a challenging task, given the state-of-the-art in 

automatic recognition of conversational speech. 

In order to make the task feasible, we have im-

plemented a trick: the user is presented with a 

map on a screen (see Figure 1) and instructed to 

move the mouse cursor along the route as it is 

being described. The user is told that this is for 

logging purposes, but the real reason for this is 

that the system tracks the mouse position and 

thus knows what the user is currently talking 

about. It is thereby possible to produce a coher-

ent system behaviour without any speech recog-

nition at all, only basic speech detection. This 

often results in a very realistic interaction, as 

compared to what users are typically used to 

when interacting with dialogue systems—in our 

experiments, several users first thought that there 

was a hidden operator behind it
1
.  

 

 

Figure 1: The user interface, showing the map. 

The basic components of the system can be 

seen in Figure 2. Dashed lines indicate compo-

nents that were not part of the first iteration of 

the system (used for data collection), but which 

have been used in the model presented and eval-

uated here. The system uses a simple energy-

based speech detector to chunk the user’s speech 

into inter-pausal units (IPUs), that is, periods of 

speech that contain no sequence of silence longer 

than 200 ms. Such a short threshold allows the 

system to give backchannels (seemingly) while 

the user is speaking or take the turn with barely 

any gap. Similar to Gravano & Hirschberg 

(2009) and Koiso et al. (1998), we define the end 

of an IPU as a candidate for the Response Loca-

tion Detection model to identify as a Response 

Location (RL). We use the term turn to refer to a 

sequence of IPUs which do not have any re-

sponses between them. 

 

 

Figure 2: The basic components of the system. 

                                                 
1
 An example video can be seen at 

http://www.youtube.com/watch?v=MzL-B9pVbOE. 
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Each time the RLD model detected a RL, the 

dialogue manager produced a Response, depend-

ing on the current state of the dialogue and the 

position of the mouse cursor. Table 1 shows the 

different types of responses the system could 

produce. The dialogue manager always started 

with an Introduction and ended with an Ending, 

once the mouse cursor had reached the destina-

tion. Between these, it selected from the other 

responses, partly randomly, but also depending 

on the length of the last user turn and the current 

mouse location. Longer turns often led to Restart 

or Repetition Requests, thus discouraging longer 

sequences of speech that did not invite the sys-

tem to respond. If the system detected that the 

mouse had been at the same place over a longer 

time, it pushed the task forward by making a 

Guess response. We also wanted to explore other 

kinds of feedback than just backchannels, and 

therefore added short Reprise Fragments and 

Clarification Requests (see for example Skantze 

(2007) for a discussion on these).  

Table 1: Different responses from the system 

Introduction “Could you help me to find my way to 
the train station?” 

Backchannel “Yeah”, “Mhm”, “Okay”, “Uhu” 

Reprise  
Fragment  

“A station, yeah” 

Clarification  
Request  

“A station?” 

Restart “Eh, I think I lost you at the hotel, how 
should I continue from there?” 

Repetition  
Request  

“Sorry, could you take that again?” 

Guess “Should I continue above the church?” 

Ending “Okay, thanks a lot.” 

 

A naïve version of the system was used to col-

lect data. Since we initially did not have any so-

phisticated model of RLD, it was simply set to 

wait for a random period between 0 and 800 ms 

after an IPU ended. If no new IPUs were initiated 

during this period, a RL was detected, resulting 

in random response delays between 200 and 

1000 ms. Ten subjects participated in the data 

collection. Each subject did 5 consecutive tasks 

on 5 different maps, resulting in a total of 50 dia-

logues. 

Each IPU in the corpus was manually annotat-

ed into three categories: Hold (a response would 

be inappropriate), Respond (a response is ex-

pected) and Optional (a response would not be 

inappropriate, but it is perfectly fine not to re-

spond). Two human-annotators labelled the cor-

pus separately. For all the three categories the 

kappa score was 0.68, which is substantial 

agreement (Landis & Koch, 1977). Since only 

2.1% of all the IPUs in the corpus were identified 

for category Optional, we excluded them from 

the corpus and focused on the Respond and Hold 

categories only. The data-set contains 2272 IPUs 

in total; the majority of which belong to the class 

Respond (50.79%), which we take as our majori-

ty class baseline. Since the two annotators agreed 

on 87.20% of the cases, this can be regarded as 

an approximate upper limit for the performance 

expected from a model trained on this data. 

In (Skantze, 2012), we used this collected data 

to build an offline model of RLD that was 

trained on prosodic and contextual features. In 

this paper, we extend this work in three ways. 

First, we bring in Automatic Speech Recognition 

(ASR) for adding syntactic features to the model. 

Second, the model is implemented as a module 

in the dialogue system so that it can extract the 

prosodic features online. Third, we evaluate the 

performance of our RLD model against a base-

line system that makes a random choice, in a dia-

logue system interacting with users.  

In contrast to some related work (e.g. Koiso et 

al., 1998), we do not discriminate between loca-

tions for backchannels and turn-changes. Instead, 

we propose a general model for response loca-

tion detection. The reason for this is that the sys-

tem mostly plays the role of an attentive listener 

that produces utterances that are not intended to 

take the initiative or claim the floor, but only to 

provide different types of feedback (cf. Table 1). 

Thus, suitable response locations will be where 

the user invites the system to give feedback, re-

gardless of whether the feedback is simply an 

acknowledgement that encourages the system to 

continue, or a clarification request. Moreover, it 

is not clear whether the acknowledgements the 

system produces in this domain should really be 

classified as backchannels, since they do not only 

signal continued attention, but also that some 

action has been performed (cf. Clark, 1996). In-

deed, none of the annotators felt the need to mark 

relevant response locations within IPUs.  

4 A data-driven model for response lo-

cation detection 

The human–machine Map Task corpus described 

in the previous section was used for training a 

new model of RLD. We describe below how we 

extracted prosodic, syntactic and contextual fea-

tures from the IPUs. We test the contribution of 

these feature categories—individually as well as 
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in combination, in classifying a given IPU as 

either Respond or Hold type. For this we explore 

the Naïve Bayes (NB) and Support Vector Ma-

chine (SVM) algorithms in the WEKA toolkit 

(Hall et al., 2009). All results presented here are 

based on 10-fold cross-validation. 

4.1 Prosodic features 

Pitch and intensity (sampled at 10 ms) for each 

IPU were extracted using ESPS in 

Wavesurfer/Snack (Sjölander & Beskow, 2000). 

The values were transformed to log scale and z-

normalized for each user. The final 200 ms 

voiced region was then identified for each IPU. 

For this region, the mean pitch, slope of the 

pitch (using linear regression)—in combination 

with the correlation coefficient r for the regres-

sion line, were used as features. In addition to 

these, we also used the duration of the voiced 

region as a feature. The last 500 ms of each IPU 

were used to obtain the mean intensity (also z-

normalised). Table 2 illustrates the power of pro-

sodic features, individually as well as collective-

ly (last row), in classifying an IPU as either Re-

spond or Hold type. Except for mean intensity all 

other features individually provide an improve-

ment over the baseline. The best accuracy, 

64.5%, was obtained by the SVM algorithm us-

ing all the prosodic features. This should be 

compared against the baseline of 50.79%. 

Table 2: Percentage accuracy of prosodic features 

in detecting response locations 

 Algorithm 

Feature(s) NB  SVM  

Mean pitch 60.3 62.7 

Pitch slope 59.0 57.8 

Duration 58.1 55.6 

Mean intensity 50.3 52.2 

Prosody (all combined) 63.3 64.5 

4.2 Syntactic features 

As lexico-syntactic features, we use the word 

form and part-of-speech tag of the last two 

words in an IPU. All the IPUs in the Map Task 

corpus were manually transcribed. To obtain the 

part-of-speech tag we used the LBJ toolkit 

(Rizzolo & Roth, 2010). Column three in Table 3 

illustrates the discriminatory power of syntactic 

features—extracted from the manual transcrip-

tion of the IPUs. Using the last two words and 

their POS tags, the Naïve Bayes learner achieves 

the best accuracy of 83.6% (cf. row 7). While 

POS tag is a generic feature that would enable 

the model to generalize, using word form as a 

feature has the advantage that some words, such 

as yeah, are strong cues for predicting the Re-

spond class, whereas pause fillers, such as ehm, 

are strong predictors of the Hold class. 

Table 3: Percentage accuracy of syntactic features 

in detecting response locations 

  
Manual  

transcriptions 

ASR  

results 

# Feature(s) NB SVM NB SVM  

1 Last word (Lw) 82.5 83.9 80.8 80.9 

2 
Last word part-of-

speech (Lw-POS)  
79.4 79.5 74.5 74.6 

3 
Second last word 

(2ndLw) 
68.1 67.7 67.1 67.0 

4 

Second last word 

Part-of-speech 

(2ndLw-POS) 

66.9 66.5 65.8 66.1 

5 Lw + 2ndLw 82.3 81.5 80.8 80.6 

6 
Lw-POS 

+ 2ndLw-POS 
80.3 80.5 75.4 74.87 

7 

Lw + 2ndLw 

+ Lw-POS 

+ 2ndLw-POS 
83.6 81.7 79.7 79.7 

8 
Last word diction-

ary (Lw-Dict) 
83.4 83.4 78.0 78.0 

9 
Lw-Dict 

+ 2ndLw-Dict 
81.2 82.6 76.1 77.7 

10 

Lw + 2ndLw 

+ Lw-Conf 

+ 2ndLw-Conf  

82.3 81.5 81.1 80.5 

 

An RLD model for online predictions requires 

that the syntactic features are extracted from the 

output of a speech recogniser. Since speech 

recognition is prone to errors, an RLD model 

trained on manual transcriptions alone would not 

be robust when making predictions in noisy data. 

Therefore we train our RLD model on actual 

speech recognised results. To achieve this, we 

did an 80-20 split of the Map Task corpus into 

training and test sets respectively. The transcrip-

tions of IPUs in the training set were used to 

train the language model of the Nuance 9 ASR 

system. The audio recordings of the IPUs in the 

test set were then recognised by the trained ASR 

system. After performing five iterations of split-

ting, training and testing, we had obtained the 

speech recognised results for all the IPUs in the 

Map Task corpus. The mean word error rate for 

the five iterations was 17.22% (SD = 3.8%).  

Column four in Table 3 illustrates the corre-

sponding performances of the RLD model 

trained on syntactic features extracted from the 

best speech recognized hypotheses for the IPUs. 

With the introduction of a word error rate of 

17.22%, the performances of all the models us-
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ing only POS tag feature decline. The perfor-

mances are bound to decline further with in-

crease in ASR errors. This is because the POS 

tagger itself uses the left context to make POS 

tag predictions. With the introduction of errors in 

the left context, the tagger’s accuracy is affected, 

which in turn affects the accuracy of the RLD 

models. However, this decline is not significant 

for models that use word form as a feature. This 

suggests that using context independent lexico-

syntactic features would still offer better perfor-

mance for an online model of RLD. We therefore 

also created a word class dictionary, which gen-

eralises the words into domain-specific classes in 

a simple way (much like a class-based n-gram 

model). Row 9 in Table 3 illustrates that using a 

dictionary instead of POS tag (cf. row 6) im-

proves the performance of the online model. We 

have also explored the use of word-level confi-

dence scores (Conf) from the ASR as another 

feature that could be used to reinforce a learning 

algorithm’s confidence in trusting the recognised 

words (cf. row 10 in Table 3).  

The best accuracy, 81.1%, for the online mod-

el of RLD is achieved by the Naïve Bayes algo-

rithm using the features word form and confi-

dence score, for last two words in an IPU. 

4.3 Contextual features 

We have explored three discourse context fea-

tures: turn and IPU length (in words and se-

conds) and last system dialogue act. Dialogue 

act history information have been shown to be 

vital for predicting a listener response when the 

speaker has just responded to the listener’s clari-

fication request (Koiso et al. (1998); Cathcart et 

al. 2003; Gravano & Hirschberg (2009); Skantze, 

2012). To verify if this rule holds in our corpus, 

we extracted turn length and dialogue act labels 

for the IPUs, and trained a J48 decision tree 

learner. The decision tree achieved an accuracy 

of 65.7%. One of the rules learned by the deci-

sion tree is: if the last system dialogue act is 

Clarification or Guess (cf. Table 1), and the turn 

word count is less than equal to 1, then Respond. 

In other words, if the system had previously 

sought a clarification, and the user has responded 

with a yes/no utterance, then a system response 

is expected. A more general rule in the decision 

tree suggests that: if the last system dialogue act 

was a Restart or Repetition Request, and if the 

turn word count is more than 4 then Respond 

otherwise Hold. In other words, the system 

should wait until it gets some amount of infor-

mation from the user.  

Table 4 illustrates the power of these contex-

tual features in discriminating IPUs, using the 

NB and the SVM algorithms. All the features 

individually provide improvement over the base-

line of 50.79%. The best accuracy, 64.8%, is 

achieved by the SVM learner using the features 

last system dialogue act and turn word count. 

Table 4: Percentage accuracy of contextual features 

in detecting response locations 

 
Manual 

transcriptions 

ASR  

results 

Features NB  SVM  NB  SVM  

Last system dialogue act 54.1 54.1 54.1 54.1 

Turn word count 61.8 61.9 61.5 62.9 

Turn length in seconds 58.4 58.8 58.4 58.8 

IPU word count 58.4 58.2 58.1 59.3 

IPU length in seconds 57.3 61.2 57.3 61.2 

Last system dialogue act 

+ Turn word count 
59.9 64.5 60.4 64.8 

 

4.4 Combined model 

Table 5 illustrates the performances of the RLD 

model using various feature category combina-

tions. It could be argued that the discriminatory 

power of prosodic and contextual feature catego-

ries is comparable. A model combining prosodic 

and contextual features offers an improvement 

over their individual performances. Using the 

three feature categories in combination, the Na-

ïve Bayes learner provided the best accuracy: 

84.6% (on transcriptions) and 82.0% (on ASR 

output). These figures are significantly better 

than the majority class baseline of 50.79% and 

approach the expected upper limit of 87.20% on 

the performance.  

Table 5: Percentage accuracy of combined models  

 
Manual  

transcriptions 

ASR  

results 

Feature categories NB SVM NB SVM 

Prosody  63.3 64.5 63.3 64.5 

Context  59.9 64.5 60.4 64.8 

Syntax  82.3 81.5 81.1 80.5 

Prosody + Context 67.7 70.2 67.5 69.1 

Prosody + Context 

+ Syntax 
84.6 77.2 82.0 77.1 

  

Table 6 illustrates that the Naïve Bayes model 

for Response Location Detection trained on 

combined syntactic, prosodic and contextual fea-

tures, offers better precision (fraction of correct 

decisions in all model decisions) and recall (frac-

tion of all relevant decisions correctly made) in 

comparison to the SVM model. 
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Table 6: Precision and Recall scores of the NB and 

the SVM learners trained on combined prosodic, con-

textual and syntactic features. 

Prediction class 
Precision (in %) Recall (in %) 

NB  SVM  NB  SVM  

Respond 81.0  73.0 87.0 84.0 

Hold 85.0 81.0 78.0 68.0 

 

5 User evaluation 

In order to evaluate the usefulness of the com-

bined model, we have performed a user evalua-

tion where we test the trained model in the Map 

Task dialogue system that was used to collect the 

corpus (cf. section 3). A version of the dialogue 

system was created that uses a Random model, 

which makes a random choice between Respond 

and Hold. The Random model thus approximates 

our majority class baseline (50.79% for Re-

spond). Another version of the system used the 

Trained model – our data-driven model – to 

make the decision. For both models, if the deci-

sion was a Hold, the system waited 1.5 seconds 

and then responded anyway if no more speech 

was detected from the user. 

We hypothesize that since the Random model 

makes random choices, it is likely to produce 

false-positive responses (resulting in overlap in 

interaction) as well as false-negative responses 

(resulting in gap/delayed response) in equal pro-

portion. The Trained model on the other hand 

would produce fewer overlaps and gaps.  

In order to evaluate the models, 8 subjects (2 

female, 6 male) were asked to perform the Map 

Task with the two systems. Each subject per-

formed five dialogues (which included 1 trial and 

2 tests) with each version of the system. This 

resulted in 16 test dialogues each for the two sys-

tems. The trial session was used to allow the us-

ers to familiarize themselves with the dialogue 

system. Also, the audio recording of the users’ 

speech from this session was used to normalize 

the user pitch and intensity for the online prosod-

ic extraction. The order in which the systems and 

maps were presented to the subjects was varied 

over the subjects to avoid any ordering effect in 

the analysis.  

The 32 dialogues from the user evaluation 

were, on average, 1.7 min long (SD = 0.5 min). 

The duration of the interactions with the Random 

and the Trained model were not significantly 

different. A total of 557 IPUs were classified by 

the Random model whereas the Trained model 

classified 544 IPUs. While the Trained model 

classified 57.7% of the IPUs as Respond type the 

Random model classified only 48.29% of the 

total IPUs as Respond type, suggesting that the 

Random model was somewhat quieter.  

It turned out that it was very hard for the sub-

jects to perform the Map Task and at the same 

time make a valid subjective comparison be-

tween the two versions of the system, as we had 

initially intended. Therefore, we instead con-

ducted another subjective evaluation to compare 

the two systems. We asked subjects to listen to 

the interactions and press a key whenever a sys-

tem response was either lacking or inappropriate. 

The subjects were asked not to consider how the 

system actually responded, only evaluate the tim-

ing of the response. 

Eight users participated in this subjective 

judgment task. Although five of these were from 

the same set of users who had performed the 

Map Task, none of them got to judge their own 

interactions. The judges listened to the Map Task 

interactions in the same order as the users had 

interacted, including the trial session. Whereas it 

had been hard for the subjects who participated 

in the dialogues to characterize the two versions 

of the system, almost all of the judges could 

clearly tell the two versions apart. They stated 

that the Trained system provided for a smooth 

flow of dialogue. The timing of the IPUs was 

aligned with the timing of the judges’ key-

presses in order to measure the numbers of IPUs 

that had been given inappropriate response deci-

sions. The results show that for the Random 

model, 26.75% of the RLD decisions were per-

ceived as inappropriate, whereas only 11.39% of 

the RLD decisions for the Trained model were 

perceived inappropriate. A two-tailed two-

sample t-test for difference in mean of the frac-

tion of inappropriate instances (key-press count 

divided by IPU count) for Random and Trained 

model show a clear significant difference (t = 

4.66, dF = 30, p < 0.001). 

We have not yet analysed whether judges pe-

nalized false-positives or false-negatives to a 

larger extent, this is left to future work. Howev-

er, some judges informed us that they did not 

penalize delayed response (false-negative), as the 

system eventually responded after a delay. In the 

context of a system trying to follow a route de-

scription, such delays could sometimes be ex-

pected and wouldn’t be unnatural. For other 

types of interactions (such as story-telling), such 

delays may on the other hand be perceived as 

unresponsive. Thus, the balance between false-

positives and false-negatives might need to be 

tuned depending on the topic of the conversation.  
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6 Conclusion  

We have presented a data-driven model for de-

tecting response locations in the user’s speech. 

The model has been trained on human–machine 

dialogue data and has been integrated and tested 

in a spoken dialogue system that can perform the 

Map Task with users. To our knowledge, this is 

the first example of a dialogue system that uses 

automatically extracted syntactic, prosodic and 

contextual features for making online detection 

of response locations. The models presented in 

earlier works have used only prosody (Ward, 

1996), or combinations of syntax and prosody 

(Koiso et al., 1998), syntax and context (Cathcart 

et al., 2003), prosody and context (Skantze, 

2012), or prosody, context and semantics (Raux 

& Eskenazi (2008). Furthermore, we have evalu-

ated the usefulness of our model by performing a 

user evaluation of a dialogue system interacting 

with users. None of the earlier models have been 

tested in user evaluations. 

The significant improvement of the model 

gained by adding lexico-syntactic features such 

as word form and part-of-speech tag corroborates 

with earlier observations about the contribution 

of syntax in predicting response location (Koiso 

et al., 1998; Cathcart et al., 2003; Gravano & 

Hirschberg, 2009). While POS tag alone is a 

strong generic feature for making predictions in 

offline models its contribution to decision mak-

ing in online models is reduced due to speech 

recognition errors. This is because the POS tag-

ger itself uses the left context to make predic-

tions, and is not typically trained to handle noisy 

input. We have shown that using only the word 

form or a dictionary offers a better performance 

despite speech recognition errors. However, this 

of course results in a more domain-dependent 

model. 

Koiso et al., (1998), have shown that prosodic 

features contribute almost as strongly to response 

location prediction as the syntactic features. We 

do not find such results with our model. This 

difference could be partly attributed to inter-

speaker variation in the human–machine Map 

Task corpus used for training the models. All the 

users who participated in the corpus collection 

were non-native speakers of English. Also, our 

algorithm for extracting prosodic features is not 

as powerful as the manual extraction scheme 

used in (Koiso et al., 1998). Although prosodic 

and contextual features do not seem to improve 

the performance very much when syntactic fea-

tures are available, they are clearly useful when 

no ASR is available (70.2% as compared to the 

baseline of 50.79%).  

The subjective evaluation indicates that the in-

teractions with a system using our trained model 

were perceived as smoother (more accurate re-

sponses) as compared to a system using a model 

that makes a random choice between Respond 

and Hold. 

7 Future work 

Coordination problems in turn-transition and re-

sponsiveness have been identified as important 

short-comings of turn-taking models in current 

dialogue systems (Ward et al., 2005). In continu-

ation of the current evaluation exercise, we 

would next evaluate our Trained model—on an 

objective scale, in terms of its responsiveness 

and smoothness in turn-taking and back-

channels. An objective measure is the proportion 

of judge key-presses coinciding with false-

positive and false-negative model decisions. We 

argue that in comparison to the Random model 

our Trained model produces (i) fewer instances 

of false-negatives (gap/delayed response) and 

therefore has a faster response time, and (ii) few-

er instances of false-positives (overlap) and thus 

provides for smooth turn-transitions.  

We have so far explored syntactic, prosodic 

and contextual features for predicting response 

location. An immediate extension to our model 

would be to bring semantic features in the model. 

In Meena et al. (2012) we have presented a data-

driven method for semantic interpretation of ver-

bal route descriptions into conceptual route 

graphs—a semantic representation that captures 

the semantics of the way human structure infor-

mation in route descriptions. Another possible 

extension is to situate the interaction in a face-to-

face Map Task between a human and a robot and 

add features from other modalities such as gaze. 

In a future version of the system, we do not 

only want to determine when to give responses 

but also what to respond. In order to do this, the 

system will need to extract the semantic concepts 

of the route directions (as described above) and 

utilize the confidence scores from the spoken 

language understanding component in order to 

select between different forms of clarification 

requests and acknowledgements.  
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