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Abstract

Goal-oriented dialog agents are expected
to recognize user-intentions from an utter-
ance and execute appropriate tasks. Typi-
cally, such systems use a semantic parser
to solve this problem. However, semantic
parsers could fail if user utterances contain
out-of-grammar words/phrases or if the se-
mantics of uttered phrases did not match
the parser’s expectations. In this work,
we have explored a more robust method
of task prediction. We define task predic-
tion as a classification problem, rather than
“parsing” and use semantic contexts to im-
prove classification accuracy. Our classi-
fier uses semantic smoothing kernels that
can encode information from knowledge
bases such as Wordnet, NELL and Free-
base.com. Our experiments on two spoken
language corpora show that augmenting
semantic information from these knowl-
edge bases gives about 30% absolute im-
provement in task prediction over a parser-
based method. Our approach thus helps
make a dialog agent more robust to user
input and helps reduce number of turns re-
quired to detected intended tasks.

1 Introduction

Spoken dialog agents are designed with particular
tasks in mind. These agents could provide infor-
mation or make reservations, or other such tasks.
Many dialog agents often can perform multiple
tasks: think of a customer service kiosk system
at a bank. The system has to decide which task it
has to perform by talking to its user. This problem
of identifying what to do based on what a user has
said is called task prediction.

Task prediction is typically framed as a parsing
problem: A grammar is written to semantically

parse the input utterance from users, and these se-
mantic labels in combination are used to decide
what the intended task is. However, this method
is less robust to errors in user-input. A dialog sys-
tem consists of a pipeline of cascaded modules,
such as speech recognition, parsing, dialog man-
agement. Any errors made by these modules pro-
pogate and accumulate through the pipeline. Bo-
hus and Rudnicky (2005) have shown that this
cascade of errors, coupled with users employ-
ing out-of-grammar phrases results in many “non-
understanding” and “misunderstanding” errors.

There have been other approaches to perform
dialog task prediction. Gorin et al. (1997) has pro-
posed a salience-phrase detection technique that
maps phrases to their corresponding tasks. Chu-
Carroll and Carpenter (1999) casted the task de-
tection as an information retrieval — detect tasks
by measuring the distance between the query vec-
tor and representative text for each task. Bui
(2003) and Blaylock and Allen (2006) have cast it
as a hierarchical sequence labeling problem using
Hidden Markov Models (HMM). More recently,
(Bangalore and Stent, 2009) built an incremen-
tal parser that gradually determines the task based
on the incoming dialog utterances. (Chen and
Mooney, 2010) have developed a route instruc-
tions frame parser to determine the task in the con-
text of a mobile dialog robot. These approaches
mainly use local features such as dialog context,
speech features and grammar-based-semantic fea-
tures to determine the task. However grammar-
based-semantic features would be insufficient if
an utterance uses semantically similar phrases that
are not in the system’s domain or semantics. If
the system could explore semantic information be-
yond the scope of its local knowledge and use ex-
ternal knowledge sources then they will help im-
prove the task prediction.

(Cristianini et al., 2002) (Wang and Domeni-
coni, 2008) (Moschitti, 2009) found that open-
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domain semantic knowledge resources are use-
ful for text classification problems. Their success
in limited data scenario is an attractive prospect,
since most dialog agents operate in scarce train-
ing data scenarios. (Bloehdorn et al., 2006) has
proposed a semantic smoothing kernel based ap-
proach for text classification. The intuition be-
hind their approach is that terms (particularly con-
tent words) of two similar sentences or documents
share superconcepts (e.g., hypernyms) in a knowl-
edge base. Semantic Similarity between two terms
can be computed using different metrics (Pedersen
et al., 2004) based on resources like WordNet.

Open domain resources such as world-wide-
web, had been used in the context of speech recog-
nition. (Misu and Kawahara, 2006) and (Creutz
et al., 2009) used web-texts to improve the lan-
guage models for speech recognition in a target
domain. They have used a dialog corpus in or-
der to query relevant web-texts to build the target
domain models. Although (Araki, 2012) did not
conduct empirical experiments, yet they have pre-
sented an interesting architecture that exploits an
open-domain resource like Freebase.com to build
spoken dialog systems.

In this work, we have framed the task prediction
problem as a classification problem. We use the
user’s utterances to extract lexical semantic fea-
tures and classify it into being one of the many
tasks the system was designed to perform. We
harness the power of semantic knowledge bases
by bootstraping an utterance with semantic con-
cepts related to the tokens in the utterance. The se-
mantic distance/similarity between concepts in the
knowledge base is incorporated into the model us-
ing a kernel. We show that our approach improves
the task prediction accuracy over a grammar-based
approach on two spoken corpora (1) Navagati
(Pappu and Rudnicky, 2012): a corpus of spo-
ken route instructions, and (2) Roomline (Bohus,
2003): a corpus of spoken dialog sessions in room-
reservation domain.

This paper is organized as following: Section
2 describes the problem of dialog task predic-
tion and the standard grammar based approach to
predict the dialog task. Then in Section 3, we
describe the open-domain knowledge resources
that were used in our approach and their advan-
tages/disadvantages. We will discuss our semantic
kernel based approach in the Section 4. We report
our experiment results on task prediction in Sec-

tion 5. In Section 6, we will analyze the errors that
occur in our approach, followed by concluding re-
marks and possible directions to this work.

2 Parser based Dialog Task Prediction

In a dialog system, there are two functions of a
semantic grammar — encode linguistic constructs
used during the interactions and represent the do-
main knowledge in-terms of concepts and their in-
stances. Table 1 illustrates the tasks and the con-
cepts used in a navigation domain grammar. The
linguistic constructions help the parser to segment
an utterance into meaningful chunks. The domain
knowledge helps in labeling the tokens/phrases
with concepts. The parser uses the labeled tokens
and the chunked form of the utterance, to classify
the utterance into one of the tasks.

Table 1: Tasks and Concepts in Grammar

Tasks Examples
Imperative GoToPlace, Turn, etc
Advisory Instructions You_Will_See_Location
Grounding Instructions You_are_at_Location
Concepts Examples
Locations buildings, other landmarks
Adjectives-of-Locations large, open, black, small etc.
Pathways hallway, corridor, bridge, etc.
LiftingDevice elevator, staircase, etc.
Spatial Relations behind, above, on left, etc.
Numbers turn-angles, distance, etc.
Ordinals first, second, etc. floor numbers

The dialog agent uses the root node of a parser
output as the task. Figure 1 illustrates a semantic
parser output for a fictitious utterance in the nav-
igation domain. The dialog manager would con-
sider the utterance as an “Imperative” for this ex-
ample.

Imperative

go direction

forward

distance

number

five

units

meters

Figure 1: Illustration of Semantic Parse Tree used
in a Dialog System
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2.1 Grammar: A Knowledge Resource

Grammar is a very useful resource for a dialog sys-
tem because it could potentially represent an ex-
pert’s view of the domain. Since knowledge en-
gineering requires time and effort, very few di-
alog systems can afford to have grammars that
are expert-crafted and robust to various artefacts
of spoken language. This becomes a major chal-
lenge for real world dialog systems. If the sys-
tem’s grammar or the domain knowledge does not
conform to its users and their utterances, the parser
will fail to produce a correct parse, if the parse
is incorrect and/or the concept labeling is incor-
rect. Lack of comprehensive semantic knowledge
is the cause of this problem. An open-domain
knowledge base like Wordnet (Miller, 1995), Free-
base (Bollacker et al., 2008) or NELL (Carlson
et al., 2010) contains comprehensive information
about concepts and their relationships present in
the world. If used appropriately, open-domain
knowledge resources can help compensate for in-
complete semantic knowledge of the system.

3 Open-Domain Semantic Knowledge
Bases

Like grammars, open-domain knowledge re-
sources contain concepts, instances and relations.
The purpose of these resources is to organize
common sense and factoid information known to
the mankind in a machine-understandable form.
These resources, if filtered appropriately, contain
valuable domain-specific information for a dialog
agent. To this end, we propose to use three knowl-
edge resources along with the domain grammar for
the task prediction. A brief overview of each of the
knowledge resources is given below:

3.1 Wordnet: Expert Knowledge Base

Wordnet (Miller, 1995) is an online lexical
database of words and their semantics curated
by language experts. It organizes the words and
their morphological variants in a hierarchical fash-
ion. Every word has at least one synset i.e.,
sense and a synset has definite meaning and a
gloss to illustrate the usage. Synsets are con-
nected through relationships such as hypernyms,
hyponyms, meronyms, antonyms etc. Each synset
can be considered as an instance and their par-
ent synsets as concepts. Although Wordnet con-
tains several ( 120,000) word forms, some of our
domain-specific word forms (e.g., locations in a

navigation domain) will not be present. Therefore,
we would like to use other open-domain knowl-
edge bases to augment the agent’s knowledge.

3.2 Freebase: Community Knowledge Base

Freebase.com (Bollacker et al., 2008) is a col-
laboratively evolving knowledge base with the
effort of volunteers. It organizes the facts
based on types/concepts along with several predi-
cates/properties and their values for each fact. The
types are arranged in a hierarchy and the hierar-
chy is rooted at “domain”. Freebase facts are con-
stantly updated by the volunteers. Therefore, it is a
good resource to help bootstrap the domain knowl-
edge of a dialog agent.

3.3 NELL: Automated Knowledge Base

Never-Ending Language Learner(NELL) (Carlson
et al., 2010) is a program that learns and organizes
the facts from the web in an unsupervised fashion.
NELL is on the other end of the knowledge base
spectrum which is not curated either by experts or
by volunteers. NELL uses a two-step approach to
learn new facts: (1) extract information from the
text using pattern-based, semi-structured relation
extractors (2) improve the learning for next itera-
tion based on the evidence from previous iteration.
Every belief/fact in its knowledge base has con-
cepts, source urls, extraction patterns, predicate,
the surface forms of the facts and a confidence
score for the belief. Although the facts could be
noisy in comparison to ones in other knowledge
bases, NELL continually adds and improves the
facts without much human effort.

4 Semantic Kernel based Dialog Task
Prediction

We would like to use this apriori knowledge about
the world and the domain to help us predict the
dialog task. The task prediction problem can be
treated as a classification problem. Classification
algorithms typically use bag-of-words representa-
tion that converts a document or sentence into a
vector with terms as components of the vector.
This representation produces very good results in
scenarios with sufficient training data. However
in a limited training data or extreme sparseness
scenario such as ours, (Siolas and d’Alché Buc,
2000) has shown that Semantic Smoothing Ker-
nel technique is a promising approach. The major
advantage of this approach is that they can incor-
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porate apriori knowledge from existing knowledge
bases. The semantic dependencies between terms,
dependencies between concepts and instances, can
be encoded in these kernels. The semantic kernels
can be easily plugged into a kernel based classi-
fier help us predict the task from the goal-oriented
dialog utterances.

In our experiments, we used an implementation
of Semantic Kernel from (Bloehdorn et al., 2006)
and plugged it into a Support Vector Machine
(SVM) classifier (SVMlight) (Joachims, 1999). As
a part of experimental setup, we will describe the
details of how did we extract the semantic depen-
dencies from each knowledge base and encoded
them into the kernel.

5 Experiments

Our goal is to improve the task prediction for a
given spoken dialog utterance by providing addi-
tional semantic context to the utterance with the
help of relevant semantic concepts from the se-
mantic knowledge bases. The baseline approach
would use the Phoenix parser’s output to deter-
mine the intended task for an utterance. From our
experiments, we show that our knowledge-driven
approach will improve upon the baseline perfor-
mance on two corpora (1) Navagati Corpus: a nav-
igation directions corpus (2) Roomline Corpus: a
room reservation dialog corpus.

5.1 Setup

We have divided each corpus into training and test-
ing datasets. We train our task classification mod-
els on the manual transcriptions of the training
data and evaluated the models on the ASR output
of the testing data. Both Navagati and Roomline
corpora came with manually annotated task labels
and manual transcriptions for the utterances. We
filtered out the non-task utterances such as “yes”,
“no” and other clarifications from the Roomline
corpus. We obtained the ASR output for the Nava-
gati corpus by running the test utterances through
PocketSphinx (Huggins-Daines et al., 2006). The
Roomline corpus already had the ASR output for
the utterances. Table 2 illustrates some of the
statistics for each corpus.

Our baseline model for the task detection is the
Phoenix (Ward, 1991) parser output, which is the
default method used in the Ravenclaw/Olympus
dialog systems (Bohus et al., 2007). For the Nava-
gati Corpus we have obtained the parser output us-

ing the grammar and method described in (Pappu
and Rudnicky, 2012). For the Roomline corpus,
we extracted the parser output from the session
logs from the the corpus distribution.

Corpus-Stats Navagati RoomLine
Tasks 4 7
Words 503 498
Word-Error-rate 46.3% 25.6%
Task Utts 934 18911

Task Training-Utts 654 1324
Task Testing-Utts 280 567
Tasks

N1. Meta R1. NeedRoom
N2. Advisory R2. ChooseRoom
N3. Imperative R3. QueryFeatures
N4. Grounding R4. ListRooms

R5. Identification
R6. CancelReservation
R7. RejectRooms

Table 2: Corpus Statistics

5.1.1 Semantic Facts to Semantic Kernel
The semantic kernel takes a term proximity ma-
trix as an input, then produces a positive semidef-
inite matrix which can be used inside the kernel
function. In our case, we build a term proxim-
ity matrix for the words in the recognition vocabu-
lary. (Bloehdorn et al., 2006) found that using the
term-concept pairs in the proximity matrix is more
meaningful following the intuition that terms that
share more number of concepts are similar as op-
posed to terms that share fewer concepts. We have
used following measures to compute the proximity
value P and some of them are specific to respec-
tive knowledge bases:

• gra: No weighting for term-concept pairs in
the Grammar, i.e.,
P = 1, for all concepts ci of t, P = 0 other-
wise.

• fb: Weighting using normalized Free-
base.com relevance score, i.e.,

P =
fbscore(t, ci)− fbscore(t, cmin)

fbscore(t, cmax)− fbscore(t, cmin)
(1)

• nell: Weighting for the NELL term-concept
pairs using the probability for a belief i.e.,

P = nellprob(t, ci) (2)

, for all concepts ci of t, P = 0 otherwise.
1Originally has 10356 utts; filtered out non-task utts.
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• wnpath: Weighting for the term-concept
pairs in the Wordnet based on the shortest
path, i.e.,

P = wnPATH(t, ci) (3)

for all concepts ci of t, P = 0 otherwise.

• wnlch: Weighting for the term-concept
pairs in the Wordnet based on the Leacock-
Chodorow Similiarity, i.e.,

P = wnLCH(t, ci) (4)

for all concepts ci of t, P = 0 otherwise.

• wnwup: Weighting for the term-concept
pairs in the Wordnet based on the Wu-Palmer
Similarity, i.e.,

P = wnWUP (t, ci) (5)

for all concepts ci of t, P = 0 otherwise.

• wnres: Weighting for the term-concept
pairs in the Wordnet based on the Resnik
Similarity using Information Content, i.e.,

P = wnRES(t, ci) (6)

for all concepts ci of t, P = 0 otherwise.

To create a grammar-based proximity matrix,
we extracted the concept-token pairs from the
parser output on the reference transcriptions in
both corpora. In order to create a wordnet-based
proximity matrix, we retrieve the hypernyms for
the corresponding from Wordnet using the Word-
net 3.0 database 2. For the freebase concept-token
pairs, we query tokens for a list of types with the
help of the MQL query interface3 to the freebase.
To retrieve beliefs from NELL we downloaded a
tsv formatted database called every-belief-in-the-
KB4 and then queried for facts using unix grep
command.

5.2 Results
Our objective is to evalute the effect of augmented
semantic features on the task detection. As noted
earlier, we divided both corpora into training and
testing datasets. We build our models on the man-
ual transcriptions from the training data and eval-
uate on the ASR hypotheses of the testing data.

2http://www.princeton.edu/wordnet/download/
3https://www.googleapis.com/freebase/v1/search
4http://rtw.ml.cmu.edu/rtw/resources

For the Navagati corpus, we use the same training-
testing split that we used in our previous work be-
cause the grammar was developed based on the
training data. For the Roomline corpus, we ran-
domly sample 30% of the testing data from the
entire corpus.

Our first semantic-kernel based model SEM-
GRA uses the domain grammar as a “knowledge
base”. This is a two step process: (1) we extract
the concept-token pairs from the parse output of
the training data. (2) Then, assign a uniform prox-
imity score (1.0) for all pairs of words that ap-
pear under a particular concept otherwise 0.0 (gra
as mentioned in the previous section). We aug-
ment the grammar concepts to the utterances in
the datasets, learn SEM-GRA model and classify
the test-hypotheses. For all our models we use
a fixed C = 0.07 value (soft-margin parameter)
for the SVM classifiers. This model achieved high-
est performance at this value during a parameter-
sweep. SEM-GRA model outperformed the parser-
baseline on both datasets (see Table 3). It clearly
takes advantage of the domain knowledge encoded
in the form of semantic-relatedness between con-
cepts and token pairs.

What if a dialog system does not have gram-
mar to begin with? We use the same two step pro-
cess to build semantic-kernel based models using
one open-domain knowledge base at a time. We
built Wordnet based models (SEM-WNWUP, SEM-
WNPATH, SEM-WNLCH, SEM-WNRES) using dif-
ferent proximity measures described in the previ-
ous section. From Table 3 SEM-WNRES model,
one that uses information content performs the
best among all wordnet based models. In order
to compute the information content we used the
pair-wise mutual information scores available for
brown-corpus.dat in the NLTK (Bird et al., 2009)
distribution. Other path based scores were also
computed using NLTK API for Wordnet.

We observed that our wordnet-based models
capture relatedness between most-common nouns
(e.g., room numbers) and their concepts but not
for some of the less-common ones (e.g., loca-
tion names). To compensate this imbalance, we
use larger knowledge resources freebase.com and
NELL. First we searched for the facts in each of
these knowledge bases using every token in the vo-
cabulary of both corpora. We pick the top concept
for each token based on the score provided by the
respective search interfaces. In freebase we have
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Table 3: F1 (in %) comparison of parse baseline against semantic-kernel models with their corresponding
similarity metrics

Corpus baseline SEMGRA SEMWNWUP SEMWNPATH SEMWNLCH SEMWNRES SEMFBASE SEMNELL
Navagati 40.1 65.8 67.1 67.7 66.4 69 68.7 66.2
Roomline 54.3 79.7 77.3 79.5 79.6 80.6 83.3 81.1

about 100 concepts that are relevant to the vocab-
ulary and in the NELL model we have about 250
concepts that are relevant to the vocabulary in each
of the corpora. The models based on NELL (SEM-
NELL) and Freebase (SEM-FBASE) capture relat-
edness between less-common nouns and their con-
cepts. We can see that both of these models per-
form comparable to the domain grammar model
SEM-GRA which also captures the relatedness be-
tween less-common nouns and their concepts. We
believe that both freebase and NELL has a supe-
rior performance because of wider-range of con-
cept coverage and non-uniform proximity mea-
sures used in the semantic kernel, which gives
a better judgement of relatedness than a uniform
measure used in the SEM-GRA model.

Since we observed that an individual model is
good at capturing a particular aspect of an utter-
ance, we extended the individual semantic models
by combining the proximity matrices from each
of them and augmenting their semantic concepts
to the training and testing datasets. We built four
combined models as shown in Table 4 by varying
the wordnet’s proximity metric to identify which
one of them works best in combination with other
semantic metrics. The wnresmetric performs the
best both in standalone and combination settings.
(Bloehdorn et al., 2006) also found that wnres
particularly performs well for lower values of the
soft-margin parameter in their experiments.

Table 4: F1-Score (in %): Models with semantics
combined from different KBs (ALL-KB)

Model Navagati Roomline
GRA+WNWUP+FBASE+NELL 70.8 82.2
GRA+WNPATH+FBASE+NELL 70.1 81.4
GRA+WNLCH+FBASE+NELL 70.8 81.3
GRA+WNRES+FBASE+NELL 73.4 83.7

6 Discussion

We have built a model that exploits different se-
mantic knowledge bases and predicts the task on
both corpora with high accuracy. But how is it af-

fected by factors like misrecognition and context
ambiguity?

6.1 Influence of Recognition Errors
When the recognition is bad, it is obvious that the
accuracy would go down. We would like to know
which of these knowledge resources can augment
useful semantics despite misrecognitions. Table 2
shows that WER on the Navagati corpus is about
46% and the Roomline corpus is about 25%. We
compared the F1-score of different models on ut-
terances for different ranges of WER as shown in
the Figure 2 on the Navagati Corpus. We notice
that the model built using all knowledge bases is
more robust even at higher WER. We did similar
analysis on the Roomline corpus and did not no-
tice any differences across models due to relatively
lower WER (25.6%).
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Figure 2: Word Error Rate vs F1-Score for KB-
based Models on Navagati Corpus

6.2 Confusion among Tasks
We found that a particular pair of tasks are more
confusing than others. Here we present an analysis
of such confusion pairs for both corpora for dif-
ferent classification models. Table 5 and Table 6
show the pairs of tasks that are most confused in
the experiments. The ALL-KB model (a combina-
tion of all knowledge bases) has least number of
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Table 5: Most confusable pairs of tasks in Navagati Corpus for KB based classification models
(See Table 2 for task labels)

KBType ALL-KB SEM-WNRES SEM-NELL SEM-FBASE
ActualTask N2 N4 N2 N4 N2 N4 N1 N2 N4
Predicted N3 N1 N3 N3 N3 N3 N3 N3 N3
ConfusionPerTask 10.5% 27.7% 26.3% 33.3% 26.3% 38.8% 22.2% 28.9% 44.4%

Table 6: Most confusable pairs of tasks in Roomline Corpus for KB based classification models
(See Table 2 for task labels)

KBType ALL-KB SEM-WNRES SEM-NELL SEM-FBASE
ActualTask R4 R4 R6 R4 R6 R3 R4 R5 R6
Predicted R3 R5 R5 R1 R1 R1 R3 R1 R1
ConfusionPerTask 36.6% 48.7% 44.4% 25.6% 44.5% 32.5% 23% 53.4% 55.5%

confusion pairs among all the models. This is due
to more relevant concepts are augmented to an ut-
terance compared to fewer relevant concepts that
augmented while using individual models.

We inspected the confused tasks by examin-
ing the feature vectors of misclassified examples.
While using the ALL-KB model 10% of the utter-
ances from N2 (Advisory) were confused for N3
(Imperative) because of phrases like “your left”,
“your right”. These phrases were often associated
with N3 utterances. To recovery from such ambi-
guities, the agent could ask a clarification question
e.g., “are we talking about going there or find it
on the way?” to resolve the differences between
these tasks. The system could not only get clar-
ification but also bootstrap the original utterance
of the user with the clarification to gather addi-
tional context to retrain the task detection models.
The individual models were also confused about
N2 and N3 tasks, where we could use similar clar-
ification strategies to improve the task prediction.
27% of the N4 (grounding about current robot’s
position) utterances were confused for N1 (meta
comments about the robot’s rounavigation route)
because these utterances shared more number of
freebase concepts with the N1 model. The system
could resolve such utterances by asking a clarifi-
cation question “are we talking about the current
position?”. Individual models i.e., SEM-WNRES,
SEM-FBASE and SEM-NELL suffered mostly from
the lack of concepts capturing semantics related
to all types of entities (e.g., most common nouns,
less common entities etc.,) found in an utterance.

We examined the confusion pairs in the Room-
line corpus and observed that R4 (ListRooms) and
R3 (Queries) tasks were most confused in the

ALL-KB model. On closer inspection, we found
that R4 utterances are about listing the rooms that
are retrieved by the system. Whereas, R3 utter-
ances are about asking whether a room has a facil-
ity (e.g., projector availability). In the ambiguous
utterances, often the R4 utterances were about fil-
tering the list of rooms by a facility type.

7 Conclusion

We proposed framing the dialog task prediction
problem as a classification problem. We used an
SVM classifier with semantic smoothing kernels
that incorporate information from external knowl-
edge bases such as Wordnet, NELL, Freebase. Our
method shows good improvements over a parser-
based baseline. Our analysis also shows that our
proposed method makes task prediction be more
robust to moderate recognition errors.

We presented an analysis on task ambiguity and
found that these models can confuse one task for
another. We believe that this analysis highlights
the need for dialog based clarification strategies
that cannot only help the system for that instance
but also help the system improve its task predic-
tion accuracy in future dialog sessions.

8 Future Work

This work stands as a platform to make a spoken
dialog system learn relevant semantic information
from external knowledge sources. We would like
to extend this paradigm to let the system acquire
more information through dialog with a user. The
system could elicit new references to a known se-
mantic concept. For example, a navigation agent
knows a task called “GoToRestaurant” but the
user-utterance had the word “diner” and it was
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not seen in the context of “restaurant”. The agent
somewhat predicts this utterance is related to “Go-
ToRestaurant” using the approach described in this
paper. It could ask the user an elicitation question:
“You used diner in the context of a restaurant, is
diner really a restaurant?”. The answer to this
question will help the system gradually understand
what parts of an open-domain knowledge base can
be added into its own domain knowledge base. We
believe that the holistic approach of learning from
automated processes and learning through dialog,
will help the dialog systems get better interaction
by interaction.
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