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Abstract

This paper describes a new approach to
automatic learning of strategies for social
multi-user human-robot interaction. Us-
ing the example of a robot bartender that
tracks multiple customers, takes their or-
ders, and serves drinks, we propose a
model consisting of a Social State Recog-
niser (SSR) which processes audio-visual
input and maintains a model of the social
state, together with a Social Skills Execu-
tor (SSE) which takes social state updates
from the SSR as input and generates robot
responses as output. The SSE is modelled
as two connected Markov Decision Pro-
cesses (MDPs) with action selection poli-
cies that are jointly optimised in interaction
with a Multi-User Simulation Environment
(MUSE). The SSR and SSE have been in-
tegrated in the robot bartender system and
evaluated with human users in hand-coded
and trained SSE policy variants. The re-
sults indicate that the trained policy out-
performed the hand-coded policy in terms
of both subjective (+18%) and objective
(+10.5%) task success.

1 Introduction

As the use of robot technology in the home as well
as in public spaces is increasingly gaining attention,
the need for effective and robust models for natural
and social human robot interaction becomes more
important. Whether it involves robot companions
(Vardoulakis et al., 2012), game-playing robots
(Klotz et al., 2011; Brooks et al., 2012; Cuayéhuitl
and Kruijft-Korbayova, 2012), or robots that help
people with exercising (Fasola and Mataric, 2013),
human users should be able to interact with such
service robots in an effective and natural way, us-
ing speech as well as other modalities of commu-
nication. Furthermore, with the emergence of new
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application domains there is a particular need for
methods that enable rapid development of mod-
els for such new domains. In this respect, data-
driven approaches are appealing for their capability
to automatically exploit empirical data to arrive at
realistic and effective models for interpreting user
behaviour, as well as to learn strategies for effective
system behaviour.

In spoken dialogue systems research, statisti-
cal methods for spoken language understanding,
dialogue management, and natural language gen-
eration have proven to be feasible for effective
and robust interactive systems (Rieser and Lemon,
2011; Lemon and Pietquin, 2012; Young et al.,
2010; Young et al., 2013). Although such methods
have recently also been applied to (multi-modal)
human-robot interaction (Stiefelhagen et al., 2007;
Cuayahuitl et al., 2012), work on multi-user human-
robot interaction has been limited to non-statistical,
hand-coded models (Klotz et al., 2011).

On the other hand, substantial work has been
done in the field of situated multi-party interaction
in general, including data-driven approaches. In
particular, Bohus & Horvitz (2009) have addressed
the task of recognising engagement intentions using
online learning in the setting of a screen-based em-
bodied virtual receptionist, and have also worked
on multi-party turn-taking in this context (Bohus
and Horvitz, 2011).

In this paper we describe a statistical approach
to automatic learning of strategies for selecting ef-
fective as well as socially appropriate robot actions
in a multi-user context. The approach has been de-
veloped using the example of a robot bartender (see
Figure 1) that tracks multiple customers, takes their
orders, and serves drinks. We propose a model con-
sisting of a Social State Recogniser (SSR) which
processes audio-visual input and maintains a model
of the social state, and a Social Skills Executor
(SSE) which takes social state updates from the
SSR as input and generates robot responses as out-
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put. The SSE is modelled as a hierarchy of two con-
nected Markov Decision Processes (MDPs) with
action selection policies that are jointly optimised
in interaction with a Multi-User Simulation Envi-
ronment (MUSE).

Figure 1: The robot bartender with two customers

In the remainder of this paper we will describe
the robot system in more detail (Section 2), fol-
lowed by descriptions of the SSR (Section 3), the
SSE (Section 4), and MUSE (Section 5). In Sec-
tion 6 we then discuss in more detail the MDP
model for the SSE and the process of jointly opti-
mising the policies, and present evaluation results
on simulated data. Next, we present results of the
first evaluation of the integrated SSE-MDP compo-
nent with human users (Section 7). The paper is
concluded in Section 8.

2 Robot bartender system

The robot system we used for evaluating the models
is equipped with vision and speech input processing
modules, as well as modules controlling two robot
arms and a talking head. Based on observations
about the users in the scene and their behaviour, the
system must maintain a model of the social context,
and decide on effective and socially appropriate
responses in that context. Such a system must be
able to engage in, maintain, and close interactions
with users, take a user’s order by means of a spoken
conversation, and serve their drinks. The overall
aim is to generate interactive behaviour that is both
task- effective and socially appropriate: in addition
to efficiently taking orders and serving drinks, the
system should, e.g., deal with customers on a first-
come, first-served basis, and should manage the
customers’ patience by asking them politely to wait
until the robot is done serving another customer.
As shown in Figure 1, the robot hardware con-
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sists of a pair of manipulator arms with grippers,
mounted to resemble human arms, along with
an animatronic talking head capable of produc-
ing facial expressions, rigid head motion, and lip-
synchronised synthesised speech. The input sen-
sors include a vision system which tracks the loca-
tion, facial expressions, gaze behaviour, and body
language of all people in the scene in real time
(Pateraki et al., 2013), along with a linguistic pro-
cessing system (Petrick et al., 2012) combining a
speech recogniser with a natural-language parser
to create symbolic representations of the speech
produced by all users. More details of the architec-
ture and components are provided in (Foster et al.,
2012). An alternative embodiment of the system is
also available on the NAO platform.

3 Social State Recogniser

The primary role of the Social State Recogniser
(SSR) is to turn the continuous stream of messages
produced by the low-level input and output com-
ponents of the system into a discrete representa-
tion of the world, the robot, and all entities in the
scene, integrating social, interaction-based, and
task-based properties. The state is modelled as a
set of relations such as facePos(A)=(x,y,z) or
closeToBar(A); see (Petrick and Foster, 2013)
for details on the representation used.

In addition to storing all of the low-level sensor
information, the SSR also infers additional rela-
tions that are not directly reported by the sensors.
For example, it fuses information from vision and
speech to determine which user should be assigned
to a recognised spoken contribution. It also pro-
vides a constant estimate of whether each customer
is currently seeking attention from the bartender
(seeksAttention(A)): the initial version of this
estimator used a hand-coded rule based on the ob-
servation of human behaviour in real bars (Huth
et al., 2012), while a later version (Foster, 2013)
makes use of a supervised learning classifier trained
on labelled recordings of humans interacting with
the first version of the robot bartender.

The SSR provides a query interface to allow
other system components access to the relations
stored in the state, and also publishes an updated
state to the SSE every time there is a change which
might require a system action in response (e.g.,
a customer appears, begins seeking attention, or
makes a drink order).



4 Social Skills Executor

The Social Skills Executor (SSE) controls the be-
haviour of the robot system, based on the social
state updates it receives from the SSR. The out-
put of the SSE consists of a combination of non-
communicative robot actions and/or communica-
tive actions with descriptions of their multi-modal
realisations. In the bartender domain, the non-
communicative actions typically involve serving
a specific drink to a specific user, whereas the com-
municative actions have the form of dialogue acts
(Bunt et al., 2010), directed at a specific user, e.g.
setQuestion(drink) (“What would you like to
drink?”) or initialGreeting() (“Hello”).

In our design of the SSE, the decision making
process resulting in such outputs (including the ‘no
action’ output) consists of three stages: 1) social
multi-user coordination: managing the system’s
engagement with the users present in the scene (e.g.,
accept a user’s bid for attention, or proceed with an
engaged user), 2) single-user interaction: if pro-
ceeding with an engaged user, generating a high-
level response to that user, in the form of a com-
municative act or physical action (e.g., greeting the
user or serving him a drink), and 3) multi-modal
fission: selecting a combination of modalities for
realising a chosen response (e.g., a greeting can be
realised through speech and/or a nodding gesture).
One advantage of such a hierarchical design is that
strategies for the different stages can be developed
independently. Another is that it makes automatic
policy optimisation more scalable.

5 Multi-User Simulated Environment

In order to test and evaluate the SSE, as well as to
train SSE action selection policies, we developed
a Multi-User Simulated Environment (MUSE).
MUSE allows for rapidly exploring the large space
of possible states in which the SSE must select
actions. A reward function that incorporates in-
dividual rewards from all simulated users in the
environment is used to encode preferred system
behaviour in a principled way. A simulated user
assigns a reward if they are served the correct drink,
and gives penalties associated with their waiting
time and various other forms of undesired system
responses (see Section 6.1 for more details about
the reward function). All of this provides a practi-
cal platform for evaluating different strategies for
effective and socially appropriate behaviour. It also
paves the way for automatic optimisation of poli-

225

cies, for example by using reinforcement learning
techniques, as we will discuss in Section 6.1.

The simulated environment replaces the vision
and speech processing modules in the actual robot
bartender system, which means that it generates 1)
vision signals in every time-frame, and 2) speech
processing results, corresponding to sequences of
time-frames where a user spoke. The vision obser-
vations contain information about users that have
been detected, where they are in the scene, whether
they are speaking, and where their attention is di-
rected to. Speech processing results are represented
semantically, in the form of dialogue acts (e.g.,
inform(drink=coke), “I would like a coke™). As
described in Section 3, the SSR fuses the vision and
speech input, for example to associate an incoming
dialogue act with a particular user.

The simulated signals are the result of combin-
ing the output from the simulated users in the en-
vironment. Each simulated user is initialised with
arandom goal (in our domain a type of drink they
want to order), enters the scene at some point, and
starts bidding for attention at some point. Each
simulated user also maintains a state and gener-
ates responses given that state. These responses
include communicative actions directed at the bar-
tender, which are translated into a multi-channel
vision input stream processed by the SSR, and, in
case the user realises the action through speech,
a speech processing event after the user has fin-
ished speaking. Additionally, the simulated users
start with a given patience level, which is reduced
in every frame that the user is bidding for atten-
tion or being served by the system. If a user’s pa-
tience has reduced to zero, s/he gives up and leaves
the bar. However, it is increased by a given fixed
amount when the system politely asks the user to
wait, encoded as a pausing dialogue act. The be-
haviour of the simulated users is partly controlled
by a set of probability distributions that allow for
a certain degree of variation. These distributions
have been informed by statistics derived from a
corpus of human-human customer-bartender inter-
actions (Huth et al., 2012).

In addition to information about the simulated
users, MUSE also provides feedback about the
execution of robot actions to the SSR, in partic-
ular the start and end of all robot speech and non-
communicative robot actions. This type of informa-
tion simulates the feedback that is also provided in
the actual bartender system by the components that
directly control the robot head and arms. Figure 2
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Figure 2: Social state recognition and social skills execution in a multi-user simulated environment.

shows the architecture of the system interacting
with the simulated environment.

6 MDP model for multi-user interaction

To enable automatic optimisation of strategies for
multi-user social interaction, the SSE model as de-
scribed in Section 4 was cast as a hierarchy of two
Markov Decision Processes (MDPs), correspond-
ing to the social multi-user coordination and single-
user interaction stages of decision making. Both
MDPs have their own state spaces S; and Sy, each
defined by a set of state features, extracted from
the estimated social state made available by the
SSR—see Tables 1 and 3. They also have their own
action sets A; and Ay, corresponding to the range
of decisions that can be made at the two stages (Ta-
bles 2 and 4), and two policies 71 : S| — A; and
m 1 Sy — Ay, mapping states to actions.

6.1 Policy optimisation

Using the MDP model as described above, we
jointly optimise the two policies, based on the re-
wards received through the SSR from the simulated
environment MUSE. Since MUSE gives rewards
on a frame-by-frame basis, they are accumulated
in the social state until the SSR publishes a state
update. The SSE stores the accumulated reward
together with the last state encountered and action
taken in that state, after which that reward is reset
in the social state. After each session (involving
interactions with two users in our case), the set
of encountered state-action pairs and associated

rewards is used to update the policies.

The reward provided by MUSE in each frame
is the sum of rewards R; given by each individual
simulated user 7, and a number of general penalties
arising from the environment as a whole. User
rewards consist of a fixed reward in case their goal
is satisfied (i.e., when they have been served the
drink they wanted and ordered), a penalty in case
they are still waiting to be served, a penalty in case
they are engaged with the system but have not been
served their drink yet, and additional penalties, for
example when the system turns his attention to
another user when the user is still talking to it, or
when the system serves a drink before the user has
ordered, or when the system serves another drink
when the user already has been served their drink.
General penalties are given for example when the
system is talking while no users are present.

The policies are encoded as functions that assign
a value to each state-action pair; these so-called
Q-values are estimates of the long-term discounted
cumulative reward. Given the current state, the
policy selects the action with the highest Q-value:

n(s) = argmax Q(s,a) (D)

Using a Monte-Carlo Control algorithm (Sutton
and Barto, 1998), the policies are optimised by
running the SSR and SSE against MUSE and using
the received reward signal to update the Q-values
after each interaction sequence. During training,
the SSE uses an e-greedy policy, i.e., it takes a
random exploration action with probability € = 0.2.
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Values

Index Feature

4-i Interaction status for user i + 1
4-i+1 | Location of useri + 1

4.-i+2 | Useri+ 1 was served a drink
4.i+3 | Useri+ 1 asked to wait

nonEngaged/seeksAttention/engaged
notPresent/!closeToBar/closeToBar
no/yes

no/yes

Table 1: State features for the social multi-user coordination policy. For each user, 4 features are included
in the state space, resulting in 32 - 22 = 36 states for interactions with up to 1 user, increasing to 1296
states for interactions with up to 2 users and 46, 656 states for up to 3 users.

Index Action

0 No action

3-i+1 | Askuseri+ 1 to wait

3-i+2 | Accept bid for attention from user i + 1
3-i+ 3 | Proceed interaction with (engaged) user i + 1

Table 2: Actions for the social multi-user coordination policy.

In the policy update step, a discount factor y = 0.95
is used, which controls the impact that rewards
received later in a session have on the value of state-
action pairs encountered earlier in that session.

Figure 3 shows the learning curve of a joint
policy optimisation, showing average rewards ob-
tained after running the SSE with trained policies
for 500 runs, at several stages of the optimisation
process (after every 2500 sessions/runs/iterations,
the trained policy was saved for evaluation). In this
particular setup, simulated users gave a reward of
550 upon goal completion but in the total score this
is reduced considerably due to waiting time (-2 per
frame), task completion time (-1 per frame) and
various other potential penalties. Also indicated
are the performance levels of two hand-coded SSE
policies, one of which uses a strategy of asking a
user to wait when already engaged with another
user (labelled HDC), and one in which that second
user is ignored until it is done with the engaged user
(labelled HDCnp). The settings for user patience
as discussed in Section 5 determine which of these
policies works best; ideally these settings should be
derived from data if available. Nevertheless, even
with the hand-coded patience settings, the learning
curve indicates that both policies are outperformed
in simulation after 10k iterations, suggesting that
the best strategy for managing user patience can be
found automatically.

7 Human user evaluation

The SSE described above has been integrated in
the full robot bartender system and evaluated for
the first time with human users. In the experiment,
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both a hand-coded version and a trained version
of the SSE component were tested; see Table 6 in
Appendix A for the trajectory of state-action pairs
of an example session. The hand-coded version
uses the policy labelled HDC, not HDCnp (see
Section 6.1). In each of the sessions carried out, one
recruited subject and one confederate (one of the
experimenters) approached the bartender together
as clients and both tried to order a drink (coke or
lemonade). After each interaction, the subject filled
out the short questionnaire shown in Figure 4.

QI1: Did you successfully order a drink from the bartender?
[Y/N]

Please state your opinion on the following statements:
[ 1:strongly disagree; 2:disagree; 3:slightly disagree;
4:slightly agree; 5:agree; 6:strongly agree |

Q2: It was easy to attract the bartender’s attention [1-6]
Q3: The bartender understood me well [1-6]

Q4: The interaction with the bartender felt natural [1-6]
Q5: Overall, I was happy about the interaction [1-6]

Figure 4: Questionnaire from the user study.

37 subjects took part in this study, resulting in a
total of 58 recorded drink-ordering interactions:
29 that used the hand-coded SSE for interaction
management, and 29 that used the trained SSE.
The results from the experiment are summarised
in Table 5. We analysed the results using a linear
mixed model, treating the SSE policy as a fixed fac-
tor and the subject ID as a random factor. Overall,
the pattern of the subjective scores suggests a slight
preference for the trained SSE version, although



Index | Feature Values

0 Reactive pressure | none/thanking/greeting/goodbye/apology

1 Status of user goal | unknown/usrInf/sysExpConf/sysimpConf/
grounded/drinkServed/sysAsked

2 Own proc. state none/badASR

Table 3: State features for the single-user interaction policy. In this case, there are 5 - 7 - 2 = 70 states.

Index | Action Example

0 No action

1 returnGreeting() “Hello”

2 autoPositive() “Okay”

3 acceptThanking() “You’re welcome”

4 autoNegative() “What did you say?”

5 setQuestion(drink) “What drink would you like?”
6 acceptRequest(drink=x) + serveDrink(x) | “Here’s your coke”

Table 4: Actions for the single-user interaction policy, which correspond to possible dialogue acts, except
for ‘no action’ and serving a drink. The specific drink types required for two of the actions are extracted
from the fully specified user goal in the social state maintained by the SSR.

only the difference in perceived success was statis-
tically significant at the p < 0.05 level. The actual
success rate of the trained policy was also some-
what higher, although not significantly so. Also,
the interactions with the trained SSE took slightly
longer than the ones with the hand-coded SSE in
terms of the number of system turns (i.e., the num-
ber of times the SSE receives a state update and
selects a response action, excluding the times when
it selects a non-action); however, this did not have
any overall effect on the users’ subjective ratings.

The higher success rate for the trained SSE could
be partly explained by the fact that fewer ASR prob-
lems were encountered when using this version;
however, since the SSE was not triggered when a
turn was discarded due to low-confidence ASR, this
would not have had an effect on the number of sys-
tem turns. There was another difference between
the hand-coded and trained policies that could have
affected both the success rate and the number of
system turns: for interactions in which a user has
not ordered yet, nor been asked for their order, the
hand-coded strategy randomly chooses between
asking the user for their order and doing nothing,
letting the user take the initiative to place the order,
whereas the trained policy always asks the user for
their order (this action has the highest Q-value, al-
though in fact the value for doing nothing in such
cases is also relatively high).

We also carried out a stepwise multiple linear
regression on the data from the user experiment
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to determine which of the objective measures had
the largest effect, as suggested by the PARADISE
evaluation framework (Walker et al., 2000). The re-
sulting regression functions are shown in Figure 5.
In summary, all of the subjective responses were
significantly affected by the objective task success
(i.e., the number of drinks served); the number of
low-ASR turns also affected most of the responses,
while various measures of dialogue efficiency (such
as the system response time and the time taken to
serve drinks) also had a significant impact. In gen-
eral, these regression functions explain between
15-25% of the variance in the subjective measures.

As an initial analysis of the validity of the sim-
ulated environment, we compared the state distri-
bution of the simulated data accumulated during
policy optimisation with that of the human user
evaluation data. In terms of coverage, we found
that only 46% of all states encountered in the real
data were also encountered during training. How-
ever, many of these states do not occur very often
and many of them do not require any action by
the robot (a trained policy can easily be set to take
no-action for unseen states). If we only include
states that have been encountered at least 20 times,
the coverage increases to over 70%. For states en-
countered at least 58 times, the coverage is 100%,
though admittedly this covers only the 10 most
frequently encountered states. The similarity of
the two distributions can be quantified by comput-
ing the KL-divergence, but since such a number is
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Figure 3: Learning curve for joint optimisation of SSE-MDP policies.
System NS | PSucc* PAtt PUnd PNat POv NDSrvd NST NBAsr
SSE-TRA | 29 97% 4.10 421 3.00 3.83 | 1.97(985%) 7.38 3.14
SSE-HDC | 29 79% 4.14 383 293 3.83 | 1.76 (88.0%) 6.86 3.82
TOTAL 58 8% 4.12 4.02 297 383 | 1.86(93.0%) 7.12 3.48

Table 5: Overview of system performance results from the experiment. In the leftmost column SSE-TRA
and SSE-HDC refer to the trained and hand-coded SSE versions; the column NS indicates the number of
sessions; the columns PSucc (perceived success), PAtt (perceived attention recognition), PUnd (perceived
understanding), PNat (perceived naturalness), and POv (perceived overall performance) give average
scores resulting from the 5 respective questionnaire questions; NDSrvd indicates the average number of
drinks served per session (out of 2 maximum — the percentage is given in brackets); NST indicates the
average number of system turns per session; while NBAsr indicates the average number of cases where
the user speech was ignored because the ASR confidence was below a predefined threshold. The marked
column indicates that the difference between the two SSE versions was significant at the p < 0.05 level.

hard to interpret in itself, this will only be useful
if there were a state distribution from an alterna-
tive simulator or an improved version of MUSE for
comparison.

8 Conclusion

In this paper we presented a new approach to au-
tomatic learning of strategies for social multi-user
human-robot interaction, demonstrated using the
example of a robot bartender that tracks multiple
customers, takes their orders, and serves drinks.
We presented a model consisting of a Social State
Recogniser (SSR) which processes audio-visual in-
put and maintains a model of the social state, and
a Social Skills Executor (SSE) which takes social
state updates from the SSR as input and generates
robot responses as output. The main contribution
of this work has been a new MDP-based model
for the SSE, incorporating two connected MDPs

with action selection policies that are jointly op-
timised in interaction with a Multi-User Simula-
tion Environment (MUSE). In addition to showing
promising evaluation results with simulated data,
we also presented results from a first evaluation of
the SSE component with human users. The experi-
ments showed that the integrated SSE component
worked quite well, and that the trained SSE-MDP
achieved higher subjective and objective success
rates (+18% and +10.5% respectively).

Our model currently only utilises two policies,
but in more complex scenarios the task could be
further modularised and extended by introducing
more MDPs, for example for multimodal fission
and natural language generation. The approach of
using a hierarchy of MDPs has some similarity with
the Hierarchical Reinforcement Learning (HRL)
approach which uses a hierarchy of Semi-Markov
Decision Processes (SMDPs). In (Cuaydhuitl et al.,
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PSucc = 0.88 + 0.14 + N(NDSrvd) — 0.07 « N (NBAsr)

PAtt = 4.12 + 0.76 * N(NDSrvd) — 0.46 * A(RTm) — 0.38 + A (FDTm)
PUnd = 4.02 + 0.41 * N(NDSrvd) — 0.36 * N(NBAsr) — 0.40 + N(NST) — 0.41  N(RTm) — 0.39 * N(STm)
PNat = 2.97 + 0.36 * N(NDSrvd) — 0.29 = N(NBAsr) — 0.31  N(NST) — 0.44 + N(RTm)

POV = 3.83 + 0.65 * N(NDSrvd) — 0.38 * N(NBAsr) — 0.52 * N (RTm)

* =0.21)

r* =0.22)
(r* =0.24)
(* =0.16)
(r* =0.24)

Figure 5: PARADISE regression functions from the user study. The labels are the same as those in Table 5,
with the following additions: RTm is the mean system response time per user, STm is the mean serving
time per user, and FDTm is the mean time to serve the first drink; all times are measured in milliseconds.
N represents a Z score normalisation function (Cohen, 1995).

2012) for example, this hierarchy is motivated by
the identification of multiple tasks that the robot
can carry out and for which multiple SMDP agents
are defined. In every step of the interaction, control
lies with a single SMDP agent somewhere in the
hierarchy; once it arrives at its final state it returns
control to its parent SMDP. An additional transi-
tion model is introduced to permit switching from
an incomplete SMDP to another SMDP at the same
level, making interactions more flexible. In our ap-
proach, control always starts at the top level MDP
and lower level MDPs are triggered depending on
the action taken by their parent MDP. For social
interaction with multiple users, flexible switching
between interactions with different users is impor-
tant, so an arguably more sophisticated HRL ap-
proach to multi-user interaction will rely heavily
on the transition model. Another approach to mod-
ularising the task domain through multiple policies
is described in (Lison, 2011), where ‘meta-control’
of the policies relies on an activation vector. As in
the HRL SMDP approach, this approach has not
been applied in the context of multi-user interaction.
In any case, a more thorough and possibly experi-
mental analysis comparing our approach with these
other approaches would be worth investigating.

In the future, we plan to extend our MDP model
to a POMDP (Partially Observable MDP) model,
taking uncertainty about both speech and visual
input into account in the optimisation of SSE poli-
cies by incorporating alternative hypotheses and
confidence scores provided by the input modules
into the social state. Since hand-coding strategies
becomes more challenging in the face of increased
uncertainty due to noisy input, the appeal of auto-
matic strategy learning in a POMDP framework
becomes even stronger. In a previous offline ver-
sion of our combined SSR and SSE, we have shown
in preliminary simulation experiments that even in
an MDP setting, an automatically trained SSE pol-
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icy outperforms a hand-coded policy when noise is
added to the speech channel (Keizer et al., 2013).

Another direction of research is to annotate the
data collected in the described experiment for fur-
ther analysis and use it to improve the features of
the simulated environment. The improved models
should lead to trained policies that perform better
when evaluated again with human users. We will
also make use of the findings of the PARADISE
regression to fine-tune the reward function used
for policy optimisation: note that two of the main
features indicated by the PARADISE procedure—
task success and dialogue efficiency—are already
those included in the current reward function, and
we will add a feature to account for the effects of
ASR performance. We are also considering using
collected data for direct supervised or off-policy
reinforcement learning of SSE strategies.

Finally, we aim to extend our domain both in
terms of interactive capabilities (e.g., handling com-
munication problems, social obligations manage-
ment, turn-taking) and task domain (e.g., handling
more than the current maximum of 2 users, group
orders, orders with multiple items). In order to
make the (PO)MDP model more scalable and thus
keeping the learning algorithms tractable, we also
aim to incorporate techniques such as value func-
tion approximation into our model.

Acknowledgments

The research leading to these results has received
funding from the European Union’s Seventh Frame-
work Programme (FP7/2007-2013) under grant
agreement no. 270435, JAMES: Joint Action for
Multimodal Embodied Social Systems, http://
james-project.eu/. Thanks to Ingmar Kessler
for help in running the user experiment.



References

Dan Bohus and Eric Horvitz. 2009. Learning to pre-
dict engagement with a spoken dialog system in
open-world settings. In Proceedings SIGdial, Lon-
don, UK.

Dan Bohus and Eric Horvitz. 2011. Multiparty turn
taking in situated dialog: Study, lessons, and direc-
tions. In Proceedings SIGdial, Portland, OR.

A. Brooks, J. Gray, G. Hoffman, A. Lockerd, H. Lee,
and C. Breazeal. 2012. Robot’s play: Interactive
games with sociable machines. Computers in Enter-
tainment, 2(3).

H. Bunt, J. Alexandersson, J. Carletta, J.-W. Choe, A.C.
Fang, K. Hasida, K. Lee, V. Petukhova, A. Popescu-
Belis, L. Romary, C. Soria, and D. Traum. 2010.
Towards an ISO standard for dialogue act annotation.
In Proceedings LREC, Valletta, Malta.

Paul R. Cohen. 1995. Empirical Methods for Artificial
Intelligence. MIT Press, Boston.

Heriberto Cuayéhuitl and Ivana Kruijff-Korbayova.
2012. Aninteractive humanoid robot exhibiting flex-
ible sub-dialogues. In Proceedings NAACL HLT,
Montreal, Canada.

H. Cuayéhuitl, I. Kruijff-Korbayova, and N. Dethlefs.
2012. Hierarchical dialogue policy learning using
flexible state transitions and linear function approxi-
mation. In Proceedings COLING, Mumbai, India.

Juan Fasola and Maja J. Mataric. 2013. A socially as-
sistive robot exercise coach for the elderly. Journal
of Human Robot Interaction, 2(3). To appear.

Mary Ellen Foster, Andre Gaschler, Manuel Giuliani,
Amy Isard, Maria Pateraki, and Ronald P. A. Pet-
rick. 2012. Two people walk into a bar: Dynamic
multi-party social interaction with a robot agent. In
Proceedings ICMI, Santa Monica, CA.

Mary Ellen Foster. 2013. How can I help you?
Comparing engagement classification strategies for
a robot bartender. Submitted.

K. Huth, S. Loth, and J.P. De Ruiter. 2012. Insights
from the bar: A model of interaction. In Proceedings
of Formal and Computational Approaches to Multi-
modal Communication.

Simon Keizer, Mary Ellen Foster, Zhuoran Wang, and
Oliver Lemon. 2013. Machine learning of social
states and skills for multi-party human-robot inter-
action. Submitted.

David Klotz, Johannes Wienke, Julia Peltason, Britta
Wrede, Sebastian Wrede, Vasil Khalidov, and Jean-
Marc Odobez. 2011. Engagement-based multi-
party dialog with a humanoid robot. In Proceedings
SIGdial, Portland, OR.

231

Oliver Lemon and Olivier Pietquin, editors. 2012.
Data-driven Methods for Adaptive Spoken Dialogue
Systems: Computational Learning for Conversa-
tional Interfaces. Springer.

Pierre Lison. 2011. Multi-policy dialogue manage-
ment. In Proceedings SIGdial, Portland, OR.

Maria Pateraki, Markos Sigalas, Georgios Chliveros,
and Panos Trahanias. 2013. Visual human-robot
communication in social settings. In the Work-
shop on Semantics, Ildentification and Control of
Robot-Human-Environment Interaction, held within
the IEEE International Conference on Robotics and
Automation (ICRA).

Ronald P. A. Petrick and Mary Ellen Foster. 2013.
Planning for social interaction in a robot bartender
domain. In Proceedings ICAPS, Rome, Italy.

Ronald P. A. Petrick, Mary Ellen Foster, and Amy Isard.
2012. Social state recognition and knowledge-level
planning for human-robot interaction in a bartender
domain. In AAAI 2012 Workshop on Grounding Lan-
guage for Physical Systems, Toronto, ON, Canada,
July.

Verena Rieser and Oliver Lemon. 2011. Rein-
forcement Learning for Adaptive Dialogue Systems.
Springer.

R. Stiefelhagen, H. Ekenel, C. Fiigen, P. Gieselmann,
H. Holzapfel, F. Kraft, K. Nickel, M. Voit, and
A. Waibel. 2007. Enabling multimodal human-
robot interaction for the Karlsruhe humanoid robot.
IEEE Transactions on Robotics, 23(5):840-851.

Richard S. Sutton and Andrew G. Barto. 1998. Rein-
forcement Learning: An Introduction. MIT Press.

L. Pfeifer Vardoulakis, L. Ring, B. Barry, C. Sidner,
and T. Bickmore. 2012. Designing relational agents
as long term social companions for older adults. In
Proceedings IVA, Santa Cruz, CA.

Marilyn Walker, Candace Kamm, and Diane Litman.
2000. Towards developing general models of usabil-
ity with PARADISE. Natural Language Engineer-
ing, 6(3—4):363-377.

Steve Young, Milica Gasi¢, Simon Keizer, Francois
Mairesse, Blaise Thomson, and Kai Yu. 2010. The
Hidden Information State model: a practical frame-
work for POMDP based spoken dialogue manage-
ment. Computer Speech and Language, 24(2):150—
174.

Steve Young, M. Gasi¢, B. Thomson, and J. Williams.
2013. POMDP-based statistical spoken dialogue
systems: a review. Proceedings of the IEEE. To
appear.



Appendix A: Example session with two guests ordering a drink

. Level 1 MDP Level 2 MDP L.
Timestamp Description
State features Action | State features Action

13:28:45:966 | 01000000 O - - Al visible, but not close to bar; no response
generated yet.

13:28:48:029 | 12000000 2 - - A1l not close to bar and seeking attention: BT
acknowledges this and engages with Al.

13:28:53:680 | 32001200 4 - - A2 visible, close to the bar, and seeking atten-
tion; BT is already engaged with A1l and there-
fore asks A2 to wait.

13:28:55:715 | 32001201 3 000 1 BT continues his interaction with A1l and asks
for their order.

13:28:56:928 | 32001201 3 060 0 BT continues with Al and waits for them to
order.

13:28:56:928 | 32001201 3 060 0 Same as above: BT still waiting for A1’s order.
Due to repeated ASR failures, this state action
pair is encountered several times.

13:29:52:066 | 32001201 3 010 2 AT’s has now been successfully recognised; BT
serves the ordered drink to Al.

13:30:12:013 | 32101201 5 - - A2 still seeking attention; BT can now acknowl-
edge this and engage with Al.

13:30:13:307 | 12103201 000 1 BT continues with A2 and asks for their order.

13:30:14:475 | 12103200 060 0 BT continues with A2 and waits for them to
order

13:30:17:737 | 12103200 010 2 A2’s recognised; BT serves ordered drink to A2.

13:30:37:623 | 12103210 O - - Both Al and A2 have been served; BT does
nothing

13:30:41:440 | 12103210 O - - Same as above.

Table 6: SSE-MDP trajectory for one session from the evaluation data, showing the states and response
actions taken for both MDPs. The states are represented via their value indices, corresponding to Tables 1
and 3; the action indices similarly correspond to the actions in Tables 2 and 4. In the descriptions, Al and
A2 refer to the first and second user detected; BT refers to the bartender.
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