
Proceedings of the SIGDIAL 2013 Conference, pages 204–213,
Metz, France, 22-24 August 2013. c©2013 Association for Computational Linguistics

Learning Dialogue Management Models for Task-Oriented Dialogue
with Parallel Dialogue and Task Streams

Eun Young Ha, Christopher M. Mitchell, Kristy Elizabeth Boyer,

and James C. Lester
Department of Computer Science
North Carolina State University

Raleigh, NC 27695, USA
{eha,cmmitch2,keboyer,lester}@ncsu.edu

Abstract

Learning dialogue management models poses
significant challenges. In a complex task-
oriented domain in which information is ex-
changed via parallel, interleaved dialogue and
task streams, effective dialogue management
models should be able to make dialogue
moves based on both the dialogue and the task
context. This paper presents a data-driven ap-
proach to learning dialogue management mod-
els that determine when to make dialogue
moves to assist users’ task completion activi-
ties, as well as the type of dialogue move that
should be selected for a given user interaction
context. Combining features automatically ex-
tracted from the dialogue and the task, we
compare two alternate modeling approaches.
The results of an evaluation indicate the
learned models are effective in predicting both
the timing and the type of system dialogue
moves.

1 Introduction

Automated dialogue systems allow users to in-
teract with information systems in a natural and
intuitive manner. With the growth of speech-
enabled applications for mobile devices, the de-
mands for practical dialogue systems have been
increasing at an accelerating pace. The core tasks
of automated dialogue systems include dialogue
management, which is concerned with selecting
system actions in response to a given user input.
Traditionally, dialogue managers have been
manually constructed. However, manually craft-
ing dialogue managers is labor-intensive and
yields systems that are brittle with respect to un-
expected user behaviors. For rapid creation of
robust and adaptive dialogue systems, data-
driven approaches to dialogue management hold

much appeal. Recent work on dialogue systems
has explored machine learning techniques to au-
tomatically learn dialogue managers from corpo-
ra (Scheffler and Young, 2002; Hardy et al.,
2006; Williams and Young, 2007; Bangalore et
al., 2008; Sridhar et al., 2009).

To support more natural human-computer dia-
logue, earlier work on dialogue systems envi-
sioned rich interaction environments that take
into account observed user actions for selecting
optimal dialogue strategies (Carberry, 1990; Rich
and Sidner, 1998; Allen et al., 2001). However,
recent data-driven approaches have primarily
focused on application domains in which infor-
mation between the user and the system are
communicated solely by dialogue, such as tele-
phone-based systems (Hardy et al., 2006;
Bangalore et al., 2008) and online chat dialogues
(Ivanovic, 2008; Kim et al., 2010). With increas-
ing demands for natural human-computer inter-
action beyond these restricted application do-
mains, dialogue systems are required to support
more complex types of interaction, in which us-
ers perform tasks in parallel to exchanging dia-
logue. For instance, dialogue interfaces for task-
assistance systems, such as intelligent tutoring
systems, should be able to monitor users’ task
completion activities and incorporate the ob-
served activities into dialogue management deci-
sions such that the systems can provide users
with spontaneous assistance (e.g., providing
hints) even without an explicit request from the
user.

We have been exploring data-driven ap-
proaches for a complex task-oriented application
domain in which information is delivered both
by exchanging dialogue with users and by ob-
serving users’ task completion activities. Our
previous work has focused on the automatic in-
terpretation of user dialogue input (Boyer et al.,

204

2010; Ha et al., 2012). Findings suggest that
identifying an effective representation to com-
bine information from dialogue and users’ task
completion activities is key to effective dialogue
processing in a domain consisting of parallel dia-
logue and task streams.

As the next step in this line of investigation on
complex task-oriented domains with parallel dia-
logue and task streams, this work proposes an
approach to automatically learning dialogue
management models from a human dialogue cor-
pus. The proposed approach combines infor-
mation from a dialogue stream and a task stream
in order to create spontaneous dialogue interven-
tions for users based on monitoring users’ activi-
ties. Two subtasks of dialogue management are
addressed: the first is to determine when to pro-
vide dialogue feedback (timing), and the second
is to determine what kind of dialogue feedback to
provide (type). Dialogue managers in conven-
tional domains have primarily focused on the
selection of feedback type. However, determin-
ing the appropriate timing of system moves is
critical for dialogue systems that support parallel
dialogue and task streams.

The work presented here makes three contri-
butions. First, it endeavors to expand data-driven
dialogue management by addressing more com-
plex task-oriented domains consisting of parallel
dialogue and task streams. Second, it proposes a
timing intervention model that determines the
correct time to make spontaneous system inter-
ventions. Third, it presents a maximum entropy
dialogue management model and compares al-
ternate approaches. It also compares the predic-
tive power of the dialogue and task streams on
the targeted dialogue management tasks.

2 Related Work

Data-driven approaches to dialogue management
continue to be the subject of increasing attention
within the dialogue community. Prominent
among these are reinforcement learning ap-
proaches for learning dialogue policies from cor-
pora (Henderson et al., 2008; Levin et al., 2000;
Lewis and Di Fabbrizio, 2006; Roy et al., 2000;
Scheffler and Young, 2002; Singh et al., 2002;
Williams and Young, 2007; Young, 2002). These
approaches model dialogue as Markov decision
processes, either fully observable (MDPs) or par-
tially observable (POMDPs), in which the transi-
tions of dialogue states are associated with sys-
tem actions and rewards. The goal of reinforce-
ment learning is to learn optimal policies that

maximize aggregate expected rewards, such as
user satisfaction (Walker et al., 1997). Learned
policies that result from RL exploration do not,
by design, necessarily reflect the patterns in the
bootstrap dialogue corpus. Additionally, to cover
all possible state spaces, reinforcement learning
typically requires a very large set of training da-
ta, which limits the complexity of the dialogue
system in its representation of the dialogue states
and the system actions (Young et al., 2013).

A second body of related work focuses on dia-
logue act classification. Classification-based ap-
proaches aim at learning the patterns of dialogue
that are present in the corpus. A variety of ma-
chine learning frameworks have been exploited,
including hidden Markov models (Stolcke et al.,
2000; Boyer et al., 2010), maximum entropy
models (Bangalore et al., 2008; Sridhar et al.,
2009; Ha et al., 2012), support vector machines
(Ivanovic, 2008), conditional random fields (Kim
et al., 2010), and memory-based classifiers in
combination with latent semantic analysis (Di
Eugenio et al., 2010). Classification-based ap-
proaches incorporate rich sets of features, includ-
ing not only lexical information, syntactic fea-
tures, and dialogue structure, but also prosodic
features in the case of spoken dialogue (Stolcke
et al., 2000; Sridhar et al., 2009) and non-verbal
features such as facial expressions (Boyer et al.,
2011) and shifts in posture (Ha et al., 2012).

While most work on dialogue act classifica-
tion has focused on either offline analysis of dia-
logue (Stolcke et al., 2000; Ivanovic, 2008; Kim
et al., 2010; Di Eugenio et al., 2010) or interpre-
tation of user dialogue (Boyer et al., 2010; Ha et
al., 2012), Bangalore et al. (2008) utilized dia-
logue act classification as a mechanism for de-
termining system dialogue moves. They pro-
posed a unified dialogue act classification ap-
proach for both the interpretation of user utter-
ances and selection of system dialogue moves.

Our work is similar to Bangalore et al. (2008)
in that it takes a dialogue act classification ap-
proach to the task of selecting system dialogue
moves. However, it addresses the problems
posed by complex task-oriented application do-
mains in which information is communicated not
only by dialogue exchanges but also by monitor-
ing users’ task performance. In such domains, a
user’s task activities constitute a full communica-
tive stream in its own right, separate from the
dialogue stream. The challenges of parallel dia-
logue and task streams are addressed by exploit-
ing automatically obtained task features com-
bined with dialogue features. In contrast to pre-

205

vious work (Bangalore et al. 2008, Boyer et al.,
2010), in which task information was derived
from manual annotation, our work utilizes auto-
matically computed task features.

Our work also focuses on a growing applica-
tion area of dialogue systems: intelligent tutor-
ing. In support of student learning, recent work
in this area utilized human tutorial dialogue cor-
pora to learn effective tutorial strategies using
MDPs (Chi et al., 2010; Mitchell et al., 2013), to
develop tutorial dialogue models that adapt to
students’ affective states (Forbes-Riley and
Litman, 2011), and to improve robustness of a
symbolic tutorial dialogue system (Dzikovska et
al., 2013).

3 Task-Oriented Dialogue Corpus

To learn dialogue management models from nat-
urally occurring human-to-human dialogue we
utilize a human tutorial dialogue corpus we col-
lected in the domain of introductory program-
ming in Java. The corpus consists of textual dia-
logue exchanges between students and tutors in a
web-based remote-tutoring interface, aligned
with task context logs (Appendix A). A subset of
the corpus was annotated with dialogue acts,
which was used to train and test the dialogue
management models described in this paper.

3.1 Human tutoring study

The data collection study involved forty-two un-
dergraduate students who were paired with one
of four tutors. The students were enrolled in a
first-year engineering course and were pre-
screened to filter out those with significant pro-
gramming experience. The students were com-
pensated for their participation with partial
course credit. The tutors were graduate students
with previous tutoring or teaching experience in
Java programming, and the students worked with
the same tutor for the entire study. Each lesson
consisted of between four and thirteen distinct
subtasks.

The students completed six forty-minute tutor-
ing lessons, covering progressive topics in intro-
ductory computer science over four weeks. Each
lesson consisted of four to thirteen subtasks, in
which later subtasks built upon earlier ones. Dur-
ing each tutoring session, the paired student and
tutor interacted remotely using a web-based tu-
toring interface. With this tutoring interface, the
student and the tutor were able to exchange tex-
tual dialogue and share a synchronized view of
the task.

For each lesson, students completed a pre-test
and a post-test before and after the main tutoring
session. The pre- and post-test consisted of the
same set of questions to assess students’
knowledge related to the lesson’s objectives.
Compared to students’ pre-test results, signifi-
cant learning gains were observed on the post-
test, which indicates that the tutorial dialogue
was effective for student learning (Mitchell et al.,
2012).

3.2 Dialogue annotation

A subset of the collected data was manually an-
notated with dialogue acts using an annotation
scheme consisting of 13 dialogue act tags for
task-oriented tutorial dialogue (Table 1). The
annotated corpus consists of the first of the six
tutoring lessons from 21 students, which contains
2564 utterances (1777 tutor, 787 student). The
average number of utterances per tutoring ses-
sion was 122 (min = 74; max = 201). The aver-
age number of tutor utterances per session was
84.6 (min = 51; max = 137), and the average
number of student utterances per session was
37.4 (min = 22; max = 64).

Three human annotators were trained to apply
the scheme. The training consisted of an iterative
process involving collaborative and independent
tagging, followed by refinements of the tagging
protocol. At the initial phase of training, the an-
notators tagged the corpus collaboratively. In
later phases annotators tagged independently. To
compute agreement between different annotators,
24% (5 of the 21 sessions) of the corpus were
doubly annotated by two annotators. All possible
pairs of the annotators participated in double an-
notation. The aggregate agreement was 0.80 in
Cohen’s Kappa (Cohen, 1960).

4 Dialogue Management Models

To support a task-oriented dialogue system capa-
ble of not only responding to users’ dialogue in-
put but also providing spontaneous system inter-
vention during users’ task activities, a dialogue
manager should provide two functionalities. The
first is to determine the timing of a system dia-
logue move (i.e., whether or not to provide a tu-
torial dialogue move at a given context). The
second is to determine the type of dialogue move
(i.e., selecting from available system dialogue
acts). In this work, the problem of determining
the system’s next dialogue move is cast as a clas-
sification task. In previous work we found a
maximum entropy approach was effective for

206

classifying user dialogue acts for task-oriented
dialogue with parallel dialogue and task streams
(Ha, 2012). Maximum entropy outperformed
both Naive Bayes and conditional random fields.
Building on these results, we employ a maximum
entropy classifier to learn dialogue management
models that predict both the timing and the type
of the system dialogue move. The following sec-
tions describe two alternate approaches to dia-
logue management that can both determine the
timing and determine the type of system dialogue
interventions.

4.1 One-step dialogue management model

In the first model, the two dialogue management
tasks are framed as a single classification prob-
lem by treating the decision of not to make a tu-
torial dialogue move as a special dialogue act.
Thus, a finite set of dialogue moves allowed for
the system is defined as 𝑀 = 𝑚!,𝑚!,⋯ ,𝑚! ,
in which 𝑀 = 𝐷𝐴 ∪ 𝑁𝑜𝑀𝑜𝑣𝑒 and 𝐷𝐴 =
{𝑑𝑎!,𝑑𝑎!,⋯ ,𝑑𝑎!} is the set of dialogue acts
available for the system. Given 𝑀 and the 𝑖!!
step in a given user interaction history
𝐻!!!! = ℎ!!! , ℎ!!!!!,⋯ , ℎ!, the goal of the dia-
logue management model is to predict system’s
dialogue move 𝑚!!! for the next step, which is
determined by the following equation.

𝑚!!! = 𝑎𝑟𝑔𝑚𝑎𝑥!∈!𝑃 𝑚 𝐻!!!! (1)

The task-oriented dialogue considered in this
work includes two parallel and interleaved data
streams: an explicit dialogue stream, consisting
of textual exchanges between a student and a
tutor, and an implicit task stream, consisting of
the student’s problem-solving activities. Thus, a
given interaction history can be decomposed into
a dialogue history and a task history, rewriting
equation (1) as follows,

𝑚!!! = 𝑎𝑟𝑔𝑚𝑎𝑥!∈!𝑃 𝑚 𝐷!!!! ,𝑇!!!! (2)

in which 𝐷!!!! = 𝑑!!! ,𝑑!!!!!,⋯ ,𝑑! and
𝑇!!!! = 𝑡!!! , 𝑡!!!!!,⋯ , 𝑡! represent the history
of dialogue utterances and the history of student
task activities, respectively.

In this work, the conditional probability distri-
bution in Equation (2) is estimated using the
maximum entropy framework (Berger et al.,
1996). The maximum entropy framework selects
a probability distribution that results in the high-
est entropy among all possible solutions. Given a
vector 𝜋 of feature set, the conditional probabil-
ity distribution is estimated by the following
equation,

𝑃 𝑋 = 𝑚! 𝜋 = !
!(!)

𝑒!!!∙! (3)

in which 𝜆 represents weights and 𝑍 is a normal-
izing factor. This work used MALLET

Tag Description Agreement
H Hint: The tutor gives advice to help the student proceed with the task .50
DIR Directive: The tutor explicitly tells the student the next step to take .63
ACK Acknowledgement: Either the tutor or the student acknowledges previous utterance;

conversational grounding
.73

RC Request for Confirmation: Either the tutor or the student requests confirmation from the
other participant (e.g., “Make sense?”)

Insufficient
data

RF Request for Feedback: The student requests an assessment of his performance or his
work from the tutor

1.0

PF Positive Feedback: The tutor provides a positive assessment of the student’s perfor-
mance

.90

LF Lukewarm Feedback: The tutor provides an assessment that has both positive and nega-
tive elements

.80

NF Negative Feedback: The tutor provides a negative assessment of the student’s perfor-
mance

.40

Q Question: A question which does not fit into any of the above categories .95
A Answer: An answer to an utterance marked Q .94

C Correction: Correction of a typo in a previous utterance .54
S Statement: A statement which does not fit into any of the above categories .71
O Other: Other utterances, usually containing only affective content .69

Table 1. Dialogue act annotation scheme and inter-rater agreement

207

(McCallum, 2002) to estimate this conditional
distribution.

4.2 Two-step dialogue management model

A potential shortcoming of the one-step model is
that the probability distribution over dialogue
acts is prone to distortion depending on the por-
tion of NoMove in the training data. To avoid
this, the second model takes a two-step approach,
treating each dialogue management task as an
independent classification task. The two-step
model first determines whether or not to make a
dialogue move. If a decision is made to provide a
dialogue move, the second classifier is called for
a selection of the type of dialogue move.

In this model, system’s dialogue move 𝑚!!!
for the next interaction step is determined by a
function 𝑓 𝐻!!!! , such that

𝑓 𝐻!!!! = 𝑁𝑜𝑀𝑜𝑣𝑒, (4)
when 𝑃 𝑁𝑜𝑀𝑜𝑣𝑒 𝐻!!!! > 𝑃 𝑀𝑜𝑣𝑒 𝐻!!!!

𝑓 𝐻!!!! = 𝑎𝑟𝑔𝑚𝑎𝑥!"∈!"𝑃 𝑑𝑎 𝐻!!!! (5)
otherwise.

Similar to the one-step model, Equation (5) can
be written as

𝑓 𝐻!!!! = 𝑎𝑟𝑔𝑚𝑎𝑥!"∈!"𝑃 𝑑𝑎 𝐷!!!! ,𝑇!!!! (6)

This conditional probability distribution is also
estimated by the maximum entropy framework.

5 Features

To learn high-performing dialogue management
models for task-oriented dialogue with parallel
dialogue and task streams, it is crucial to have an
effective representation of user interaction state
that captures information from all available data
streams. The dialogue management models de-
scribed in the previous section determine the sys-
tem’s next dialogue move based on user interac-
tion state specified by the features extracted from
the dialogue and the task streams. In contrast to
previous work on task-oriented dialogue, in
which task information is incorporated into dia-
logue utterances by manual tagging (Bangalore
et al., 2008; Boyer et al., 2010), our work does
not require manual effort to obtain the relevant
task information. Instead, we rely on task context
logs generated during students’ interactions with
the tutoring interface, as well as a notion of stu-
dents’ task progress automatically estimated by a
task analysis algorithm. The same set of features

is used for the prediction of both the timing and
the type of system move.

5.1 Automatic task analysis

In order to provide a measure of students’ task
progress through each of the tutoring sessions, an
edit distance metric was implemented. This met-
ric computes the minimum edit distance between
a student’s program at a particular time t and a
representative solution for a given programming
task, in order to estimate how far away the stu-
dent is from completing the task. Because our
tutors were experienced in the subject matter and
were familiar with the lesson structures, we can
safely assume that they knew what this final state
of the code would be and thus had an intuitive
metric of student progress, which is analogous to
our edit distance metric. As this value changes
over a session, one can observe how the stu-
dent’s progress is affected by tutor dialogue acts.

Because a character-based edit distance would
not capture the relative functional importance of
each part of the student’s program, our edit dis-
tance metric is based on tokenized versions of
the program, as generated by the Java compiler,
and the output is the number of tokens that differ
from the solution for that task. In this way,
comments, variable names, or string literals with
many characters are all treated as single tokens
and do not artificially inflate the edit distance.
This tokenization also allows for abstraction of
these comments, variable names, and string liter-
als into generalized tokens so that they can be
more easily compared between students.

5.2 Dialogue features

Previous work on dialogue act classification has
shown that lexical features extracted from dia-
logue utterances are good predictors of dialogue
acts (Bangalore et al., 2008; Boyer et al., 2010a;
Kim et al., 2010). However, this finding does not
apply when the goal of dialogue act classification
is to learn dialogue management models because
determining system moves precedes system ut-
terance generation. Instead, this work exploits
features that represent local interaction structure
within dialogue streams, which includes current
student dialogue act, current tutor dialogue act,
previous tutor dialogue act, and tutor utterance
count.

• Current student dialogue act represents
the interpreted dialogue act for the previ-
ous user dialogue input. Student dialogue
act interpretation is not addressed in this

208

paper, assuming the existence of an exter-
nal module that carries out user dialogue
interpretation (e.g., Ha et al., 2012).

• Current tutor dialogue act represents the
type of system dialogue act at the current
interaction step. In our tutorial dialogue
corpus, we observed tutors often made
several dialogue utterances in succession,
such as a feedback (“Great Job.”) fol-
lowed by a question (“Do you have any
questions?”). Thus, the value of the cur-
rent tutor dialogue act impacts the proba-
bility distribution over the tutor’s next dia-
logue move. This feature captures such
temporal patterns present in tutor dialogue
moves as observed in the corpus.

• Previous tutor dialogue act represents the
type of system dialogue act generated for
the previous interaction step. This is simi-
lar to the current tutor dialogue act fea-
ture, but models longer temporal patterns
by extending the size of interaction history.

• Tutor utterance count represents the
number of system dialogue acts generated
in succession without interruption until the
current interaction step. In our corpus, it
was observed that the tutor dialogue turns
often consist of multiple utterances. This
feature is included to model system dia-
logue turns consisting of multiple utteranc-
es.

5.3 Task features

To create a rich representation of task context, a
number of features were automatically extracted
from task streams. Three groups of task infor-
mation were considered, including types of task
activity taken by user, the amount of time taken
between certain activities, and the user’s task
progress estimated by the task analysis algorithm
(Section 5.1). Alternate representations of these
features were empirically compared, resulting in
the following task features incorporated in cur-
rent dialogue management models.

• Current log type represents the type of
activity taken at the current interaction
step either by the user or the system. A
complete list of log types is shown in
Appendix B.

• Previous log type represents the type of
activity taken at the previous interaction
step. Analogous to previous tutor dia-
logue act in dialogue stream, this feature

models temporal patterns among task ac-
tivities.

• Same log type is a binary feature indi-
cating the type of activities at the current
and previous interaction step is identical.

• Previous and current log type is a fea-
ture that combines the current and previ-
ous log types (i.e., a bigram of log types).

• Elapsed time is the amount of time
since the last logged activity, which rep-
resents the duration of the user’s inac-
tivity. This feature is included to enable
the learned dialogue management model
to make spontaneous dialogue interven-
tions when a user has been detected to be
inactive for an excessive period of time.

• Elapsed coding time specifies the
amount of time the user has taken since
the beginning of current coding task.

6 Evaluation

The dialogue act models were trained and tested
using the manually annotated portion of the task-
oriented tutorial dialogue corpus described in
Section 3. The textual dialogue exchanges in the
corpus were aligned with the logged task-
completion activities based on the timestamp,
resulting in 6919 total interaction logs. Table 2
shows the distribution of different types of ac-
tivities in the resulting interaction logs. It was
observed that tutors made a dialogue move in
26.5% of the total logged interactions (Table 3).

Among the thirteen dialogue acts in the origi-
nal annotation scheme (Section 3.2), four rarely
occurring dialogue acts were combined into other
categories, which include LF (lukewarm feed-
back) merged with NF (negative feedback) and
RC (request for confirmation), RF (request for
feedback), and C (correction) merged to O (oth-
er). A new category, GREET (greetings) was

Interaction Type Frequency (%)
Programming 38.2
Compiling the Program 10.8
Running the Program 12.2
Progressing to Next Task 4.2
Exchanging Dialogue 34.6

Table 2. Distribution of interaction types

Tutor Dialogue Move Frequency (%)
Move 26.5
NoMove 73.5
Table 3. Distribution of system dialogue move

209

added to distinguish conventional expressions for
greetings and thanks from more general state-
ments and questions. Table 4 shows the resulting
distribution of tutor dialogue acts in the corpus.

The performance of the dialogue act models
were evaluated in a ten-fold cross validation. In
the cross validation, the corpus was partitioned to
ten non-overlapping sets and each set was used
as testing data exactly once, while models were
trained using the remaining nine sets.

6.1 Results

The first study compared the accuracies of the
dialogue management models on predicting the
timing and the type of tutor dialogue moves. The
accuracy of the timing prediction was calculated
for all user interaction logs in the data, including
both dialogue exchanges and task-completion
activities. The accuracy of the type prediction
was calculated for dialogue activities by tutors
only. The results are shown in Table 5.

Both the one-step (t(9) = 4.14, p = 0.0013) and
the two-step (t(9) = 6.26, p < .0001) models per-
formed significantly better than the majority
baseline in predicting the timing of tutorial dia-
logue moves. The two-step model achieved
higher accuracy than the one-step model. The
difference between the two models was statisti-
cally significant (t(9) = 2.17, p = 0.0291).

The one-step (t(9) = 2.68, p = 0.0126) and the
two-step (t(9) = 10.93, p < 0.0001) models

achieved significantly higher accuracies over the
baseline for the task of predicting the type of tu-
torial dialogue moves, as well. Again, the two-
step model performed significantly better than
the one-step model (t(9) = 4.22, p = .0011).

6.2 Comparing dialogue and task streams

The second study compared the predictive power
of the dialogue stream and the task stream on the
given two dialogue management tasks. In this
study, the accuracy of the two-step model was
compared in three conditions: using the dialogue
features only (Dialogue), using the task features
only (Task), and using all features (All). Table 6
reports the results.

For determining when to intervene, the dia-
logue and the task features exhibited similar pre-
dictive power. No statistical significance was
found for the difference between the dialogue
and the task conditions. The highest accuracy
was achieved by the All condition. Compared to
the All condition, the Dialogue condition showed
statistically significant decrease in accuracy (t(9)
= 2.21, p = 0.0272), which implies the task
stream provided important features for the dia-
logue management model in determining the tim-
ing of tutorial dialogue moves.

A similar trend was observed for determining
what type of dialogue move to make. The Dia-
logue and the Task conditions achieved similar
accuracies, with the highest accuracy achieved
by the All condition. The drops in accuracy com-
pared to the All condition were statistically sig-
nificant for both the Dialogue (t(9) = 3.38, p =
0.0040) and the Task conditions. (t(9) = 4.36, p =
0.0009). The results imply that the prediction of
the type of tutorial dialogue moves required in-
formation from both the dialogue and the task
streams.

7 Discussion

The experiments presented in Section 6 com-
pared two alternate approaches to learning dia-
logue management models for two given sub-
tasks: determining when to provide the user with
a dialogue move, and determining which type of

Dialogue Act Frequency (%)
S (Statement) 35.4
PF (Positive Feedback) 19.8
Q (Question) 16.0
H (Hint) 8.0
DIR (Directive) 6.6
A (Answer) 5.7
GREET (Greetings) 3.1
ACK (Acknowledgement) 2.3
NF (Negative Feedback) 1.5
O (Other) 1.6

Table 4. Distribution of tutor dialogue acts

Model Timing Type
Baseline 73.5 35.4
One-step 79.2* 40.5*
Two-step 80.3*§ 49.7*§
Table 5. Model accuracy (%) on dialogue man-
agement tasks (*statistical significance over
baseline, §statistical significance over one-step
model)

Features Timing Type
Dialogue 79.6 45.0
Task 80.1 44.9
All 80.3* 49.7*§
Table 6. Comparison of features on dialogue
management tasks (*statistical significance over
Dialogue, §statistical significance over Task)

210

dialogue move to choose. The results suggest
that the two-step approach, which models the
two subtasks as separate classifiers, was more
effective than the alternate one-step approach,
which combined the two subtasks into a single
classification problem. The two-step model
achieved higher performance than the one-step
model in both the timing and the type prediction.
However, the difference in the performance of
the two models was more apparent in the type
prediction, with the two-step model achieving
over 22% higher accuracy than the one-step
model. One possible explanation for the superi-
ority of the two step-model over the one-step
model is that the corpus used to train the models
was highly skewed. For more than 73% of the
total interaction logs in the corpus, the tutors did
not provide any dialogue feedback. Since the
one-step model treated NoMove as a special dia-
logue act, the skewed distribution over NoMove
and Move impacted the learned distribution over
dialogue acts.

Two previous investigations reported the accu-
racies of dialogue act classification on system
utterances. Bangalore et al. (2008) reported a
prediction accuracy of 55% for system dialogue
acts when a flat task model was used in a cata-
logue-ordering domain. When a hierarchical task
structure was used in the same domain, the
achieved prediction accuracy for system dialogue
acts was 35.6% (Bangalore and Stent, 2009).
Boyer (2010) achieved accuracy of 57% for sys-
tem dialogue acts in a task-oriented tutorial dia-
logue. While both of these lines of investigation
employed task structure features that were manu-
ally annotated, our best-performing two-step dia-
logue management model resulted in comparable
performance utilizing only automatic features,
achieving an accuracy of 49.7%.

A crucial distinction between user and system
dialogue act classification is that lexical features
for a given dialogue turn are not available for
system dialogue act classification because a sys-
tem utterance is generated after a system dia-
logue act is selected. The absence of lexical fea-
tures poses a significant challenge to system dia-
logue act classification, given that lexical fea-
tures have been among the most predictive fea-
tures for this task. To address this challenge, fu-
ture research should continue exploring larger
spaces of features to improve prediction accura-
cies of learned models.

8 Conclusions and Future Work

Automatically learning dialogue management
models for complex task-oriented domains with
separate dialogue and task streams poses signifi-
cant challenges. Effective dialogue management
models in such domains should be able to proac-
tively intervene by making spontaneous dialogue
moves based on the observed history of both the
dialogue and the user’s task activities. With the
overarching goal of creating a data-driven auto-
mated dialogue system that incorporates parallel
dialogue and task streams, this paper has pre-
sented classification-based dialogue management
models that integrate a rich set of features auto-
matically extracted from parallel dialogue and
task streams. Two subtasks of dialogue manage-
ment were considered: when the system should
provide user with a dialogue move and what type
of system dialogue act the system should select
for a given user interaction context. An evalua-
tion found that a two-step approach that modeled
the two subtasks as separate classifiers were ef-
fective, achieving significantly higher perfor-
mance than an alternate approach that modeled
the two subtasks with a single classifier.

The results suggest several promising direc-
tions for future work. First, incorporating richer
features may improve the accuracies of learned
models, such as more global interaction histories
and deeper dialogue structures. Second, develop-
ing more sophisticated task analyses will inform
the learned models with a representation of the
user task context, guiding the models to make
more context-appropriate decisions. Finally, it
will be important to evaluate the learned models
by incorporating them into a dialogue manage-
ment system and validating their effectiveness in
interactions with users in rich task-oriented dia-
logue.

Acknowledgments
This research was supported by the National Sci-
ence Foundation under Grant DRL-1007962.
Any opinions, findings, and conclusions ex-
pressed in this material are those of the authors
and do not necessarily reflect the views of the
National Science Foundation.

References
Allen, J., Ferguson, G., & Stent, A. (2001). An

architecture for more realistic conversational
systems. Proceedings of Intelligent User Interfaces
(pp. 1–8). Santa Fe, NM.

211

Bangalore, S., Di Fabbrizio, G., & Stent, A. (2008).
Learning the structure of task-driven human-
human dialogs. IEEE Transactions on Audio,
Speech, and Language Processing, 16(7), 1249–
1259.

Bangalore, S., & Stent, A. J. (2009). Incremental
parsing models for dialog task structure.
Proceedings of the 12th Conference of the
European Chapter of the Association for
Computational Linguistics (pp. 94–102). Athens,
Greece.

Berger, A. L., Della Pietra, V. J., & Della Pietra, S. A.
(1996). A maximum entropy approach to natural
language processing. Computational Linguistics,
22(1), 39–71.

Boyer, K. E. (2010). Structural and Dialogue Act
Modeling in Task-Oriented Tutorial Dialogue.
Ph.D. Dissertation. Department of Computer
Science, North Carolina State University.

Boyer, K. E., Grafsgaard, J. F., Ha, E. Y., Phillips, R.,
& Lester, J. C. (2011). An affect-enriched dialogue
act classification model for task-oriented dialogue.
Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies (pp. 1190–1199). Portland,
OR.

Boyer, K. E., Ha, E. Y., Phillips, R., Wallis, M. D.,
Vouk, M. A., & Lester, J. C. (2010). Dialogue Act
Modeling in a Complex Task-Oriented Domain.
Proceedings of the 11th Annual SIGDIAL Meeting
on Discourse and Dialogue (pp. 297–305). Tokyo,
Japan.

Carberry, S. (1991). Plan Recognition in Natural
Language Dialogue. MIT Press.

Cavicchio, F. (2009). The modulation of cooperation
and emotion in dialogue: The REC corpus.
Proceedings of the ACL-IJCNLP 2009 Student
Research Workshop (pp. 81–87). Suntec,
Singapore.

Chi, M., VanLehn, K., Litman, D., & Jordan, P.
(2010). Inducing Effective Pedagogical Strategies
Using Learning Context Features. Proceedings of
the Eighteenth International Conference on User
Modeling, Adaptation, and Personalization (pp
147-158). Big Island, HI.

Cohen, J. (1960). A coefficient of agreement for
nominal scales. Educational and Psychological
Measurement, 20(1), 37 – 46.

Di Eugenio, B., Xie, Z., & Serafin, R. (2010).
Dialogue act classification, instance-based
learning, and higher order dialogue structure.
Dialogue and Discourse, 1(2), 81 – 104.

Dzikovska, M.O., Farrow, E, & Moore, J.D. (2013).
Combining deep parsing and classification for
improved explanation processing in a tutorial
dialogue system. Proceedings of the 16th
International Conference on Artificial Intelligence
in Education (pp. 279 - 288). Memphis, TN.

Forbes-Riley, K. & Litman, D. (2011). Designing and
evaluating a wizarded uncertainty-adaptive spoken

dialogue tutoring system. Computer Speech and
Language, 25(1), 105-126.

Ha, E. Y., Grafsgaard, J. F., & Mitchell, C. M. (2012).
Combining Verbal and Nonverbal Features to
Overcome the “Information Gap” in Task-Oriented
Dialogue. Proceedings of the 13th Annual Meeting
of the Special Interest Group on Discourse and
Dialogue (pp. 247–256). Seoul, South Korea.

Hardy, H., Biermann, A., Inouye, R. B., McKenzie,
A., Strzalkowski, T., Ursu, C., Webb, N., et al.
(2006). The Amitiés system: Data-driven
techniques for automated dialogue. Speech
Communication, 48(3-4), 354–373.

Henderson, J., Lemon, O., & Georgila, K. (2008).
Hybrid reinforcement/supervised learning of
dialogue policies from fixed data sets.
Computational Linguistics, 34(4), 487–511.

Ivanovic, E. (2008). Automatic instant messaging
dialogue using statistical models and dialogue
acts. The University of Melbourne.

Kim, S. N., Cavedon, L., & Baldwin, T. (2010).
Classifying dialogue acts in one-on-one live chats.
Proceedings of the 2010 Conference on Empirical
Methods in Natural Language Processing (pp.
862–871). Cambridge, MA, USA: Association for
Computational Linguistics.

Levin, E., Pieraccini, R., & Eckert, W. (2000). A
Stochastic Model of Human-Machine Interaction
for Learning Dialog Strategies. IEEE Transactions
on Speech and Audio Processing, 8(1), 11–23.

Lewis, C., & Di Fabbrizio, G. (2006). Prompt
selection with reinforcement learning in an AT&T
call routing application. Proceedings of the Ninth
International Conference on Spoken Language
Processing (pp. 96–103).

Mitchell, C.M., Boyer, K.E., & Lester, J.C. (2013). A
Markov Decision Process Model of Tutorial
Intervention in Task-Oriented Dialogue.
Proceedings of the International Conference on
Artificial Intelligence in Education (pp. 828-831),
Memphis, TN.

Mitchell, C. M., Ha, E. Y., Boyer, K. E., & Lester, J.
C. (2012). Recognizing effective and student-
adaptive tutor moves in task-oriented tutorial
dialogue. Proceedings of the Intelligent Tutoring
Systems Track of the 25th International Conference
of the Florida Artificial Intelligence Research
Society (pp. 450–455).

Rich, C., & Sidner, C. (1998). COLLAGEN: A col-
laboration manager for software interface agents.
User Modeling and User-Adapted Inter-action,
8(3-4), 315–350.

Roy, N., Pineau, J., & Thrun, S. (2000). Spoken
dialogue management using probabilistic
reasoning. Proceedings of the 38th Annual Meeting
on Association for Computational Linguistics (pp.
93–100). Wanchai, Hong Kong.

Scheffler, K., & Young, S. (2002). Automatic
learning of dialogue strategy using dialogue
simulation and reinforcement learning.

212

Proceedings of the second international conference
on Human Language Technology Research (pp.
12–19). San Diego, CA.

Singh, S., Litman, D. J., Kearns, M., & Walker, M.
(2002). Optimizing Dialogue Management with
Reinforcement Learning: Experiments with the
NJFun System. Journal of Artificial Intelligence
Research, 16, 105–133.

Sridhar, R., Bangalore, S., & Narayanan, S. (2009).
Combining lexical, syntactic and prosodic cues for
improved online dialog act tagging. Computer
Speech and Language, 23(4), 407 – 422.

Stolcke, A., Ries, K., Coccaro, N., Shriberg, E., Bates,
R., Jurafsky, D., Taylor, P., et al. (2000). Dialogue
act modeling for automatic tagging and recognition
of conversational speech. Computational
Linguistics, 26(3), 339–373.

Walker, M., Litman, D., Kamm, C., & Abella, A.
(1997). Paradise: A framework for evaluating

spoken dialogue agents. Proceedings of ACL (pp.
271–280). Madrid, Spain.

Williams, J., & Young, S. (2007). Partially
Observable Markov Decision Processes for Spoken
Dialog Systems. Computer Speech and Language,
21(2), 393–422.

Young, S. (2002). Talking to machines (statistically
speaking). Proceedings of ICSLP (pp. 32–41).
Denver, CO.

Young, S., Gasic, M., Thomson, B., & Williams, J.
(2013). POMDP-Based Statistical Spoken Dialog
Systems: A Review. Proceedings of the IEEE,
101(5), 1160–1179.

Appendix A. An Excerpt from the Task-Oriented Dialogue Corpus

Lesson
ID

Task
ID Role Type Text Timestamp

1 4 STUDENT CODING System.out.printIn("Hello World" 2011-09-21
08:17:17.737

1 4 STUDENT CODING System.out.printIn("Hello World") 2011-09-21
08:17:19.407

1 4 STUDENT CODING System.out.printIn("Hello World"); 2011-09-21
08:17:19.812

1 4 TUTOR MESSAGE good. 2011-09-21
08:17:24.913

1 4 TUTOR MESSAGE also you can try to compile at anytime. 2011-09-21
08:17:33.805

1 4 STUDENT COMPILE_
BEGIN

studentCode\jt101\JavaTutor3.java 2011-09-21
08:17:38.080

1 4 STUDENT COMPILE_
ERROR

line 1 : cannot find symbol
symbol : method printIn(java.lang.String)
location: class java.io.PrintStream
System.out.printIn("Hello World");
 ^
1 error

2011-09-21
08:17:38.220

1 4 TUTOR MESSAGE carefully compare your line with the example 2011-09-21
08:17:57.330

Appendix B. Types of Activity Logs in Corpus

Log Type Description Action Initiator
MESSAGE Either student or tutor has sent a chat message. Student, Tutor
SESSION_PROGRESS Tutor has allowed student to progress to next task. Tutor
CODING Student has written programming code. Student
COMPILE_BEGIN Student has begun compiling code. Student
COMPILE_SUCCESS Recent code compilation has ended successfully. N/A
COMPILE_ERROR Recent code compilation has failed with errors. N/A
RUN_BEGIN Student has begun running code. Student
INPUT_SENT Student has sent an input to a running code. Student
RUN_SUCCESS Recent code running has ended successfully. N/A
RUN_STOP Tutor has stopped running student’s code because of errors in the

code.
Tutor

213

