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Abstract 

Learning dialogue management models poses 
significant challenges. In a complex task-
oriented domain in which information is ex-
changed via parallel, interleaved dialogue and 
task streams, effective dialogue management 
models should be able to make dialogue 
moves based on both the dialogue and the task 
context. This paper presents a data-driven ap-
proach to learning dialogue management mod-
els that determine when to make dialogue 
moves to assist users’ task completion activi-
ties, as well as the type of dialogue move that 
should be selected for a given user interaction 
context. Combining features automatically ex-
tracted from the dialogue and the task, we 
compare two alternate modeling approaches. 
The results of an evaluation indicate the 
learned models are effective in predicting both 
the timing and the type of system dialogue 
moves. 

1 Introduction 

Automated dialogue systems allow users to in-
teract with information systems in a natural and 
intuitive manner. With the growth of speech-
enabled applications for mobile devices, the de-
mands for practical dialogue systems have been 
increasing at an accelerating pace. The core tasks 
of automated dialogue systems include dialogue 
management, which is concerned with selecting 
system actions in response to a given user input. 
Traditionally, dialogue managers have been 
manually constructed. However, manually craft-
ing dialogue managers is labor-intensive and 
yields systems that are brittle with respect to un-
expected user behaviors. For rapid creation of 
robust and adaptive dialogue systems, data-
driven approaches to dialogue management hold 

much appeal. Recent work on dialogue systems 
has explored machine learning techniques to au-
tomatically learn dialogue managers from corpo-
ra (Scheffler and Young, 2002; Hardy et al., 
2006; Williams and Young, 2007; Bangalore et 
al., 2008; Sridhar et al., 2009). 

To support more natural human-computer dia-
logue, earlier work on dialogue systems envi-
sioned rich interaction environments that take 
into account observed user actions for selecting 
optimal dialogue strategies (Carberry, 1990; Rich 
and Sidner, 1998; Allen et al., 2001). However, 
recent data-driven approaches have primarily 
focused on application domains in which infor-
mation between the user and the system are 
communicated solely by dialogue, such as tele-
phone-based systems (Hardy et al., 2006; 
Bangalore et al., 2008) and online chat dialogues 
(Ivanovic, 2008; Kim et al., 2010). With increas-
ing demands for natural human-computer inter-
action beyond these restricted application do-
mains, dialogue systems are required to support 
more complex types of interaction, in which us-
ers perform tasks in parallel to exchanging dia-
logue. For instance, dialogue interfaces for task-
assistance systems, such as intelligent tutoring 
systems, should be able to monitor users’ task 
completion activities and incorporate the ob-
served activities into dialogue management deci-
sions such that the systems can provide users 
with spontaneous assistance (e.g., providing 
hints) even without an explicit request from the 
user.  

We have been exploring data-driven ap-
proaches for a complex task-oriented application 
domain in which information is delivered both 
by exchanging dialogue with users and by ob-
serving users’ task completion activities. Our 
previous work has focused on the automatic in-
terpretation of user dialogue input (Boyer et al., 
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2010; Ha et al., 2012). Findings suggest that 
identifying an effective representation to com-
bine information from dialogue and users’ task 
completion activities is key to effective dialogue 
processing in a domain consisting of parallel dia-
logue and task streams. 

As the next step in this line of investigation on 
complex task-oriented domains with parallel dia-
logue and task streams, this work proposes an 
approach to automatically learning dialogue 
management models from a human dialogue cor-
pus. The proposed approach combines infor-
mation from a dialogue stream and a task stream 
in order to create spontaneous dialogue interven-
tions for users based on monitoring users’ activi-
ties. Two subtasks of dialogue management are 
addressed: the first is to determine when to pro-
vide dialogue feedback (timing), and the second 
is to determine what kind of dialogue feedback to 
provide (type). Dialogue managers in conven-
tional domains have primarily focused on the 
selection of feedback type. However, determin-
ing the appropriate timing of system moves is 
critical for dialogue systems that support parallel 
dialogue and task streams.  

The work presented here makes three contri-
butions. First, it endeavors to expand data-driven 
dialogue management by addressing more com-
plex task-oriented domains consisting of parallel 
dialogue and task streams. Second, it proposes a 
timing intervention model that determines the 
correct time to make spontaneous system inter-
ventions. Third, it presents a maximum entropy 
dialogue management model and compares al-
ternate approaches. It also compares the predic-
tive power of the dialogue and task streams on 
the targeted dialogue management tasks. 

2 Related Work 

Data-driven approaches to dialogue management 
continue to be the subject of increasing attention 
within the dialogue community. Prominent 
among these are reinforcement learning ap-
proaches for learning dialogue policies from cor-
pora (Henderson et al., 2008; Levin et al., 2000; 
Lewis and Di Fabbrizio, 2006; Roy et al., 2000; 
Scheffler and Young, 2002; Singh et al., 2002; 
Williams and Young, 2007; Young, 2002). These 
approaches model dialogue as Markov decision 
processes, either fully observable (MDPs) or par-
tially observable (POMDPs), in which the transi-
tions of dialogue states are associated with sys-
tem actions and rewards. The goal of reinforce-
ment learning is to learn optimal policies that 

maximize aggregate expected rewards, such as 
user satisfaction (Walker et al., 1997). Learned 
policies that result from RL exploration do not, 
by design, necessarily reflect the patterns in the 
bootstrap dialogue corpus. Additionally, to cover 
all possible state spaces, reinforcement learning 
typically requires a very large set of training da-
ta, which limits the complexity of the dialogue 
system in its representation of the dialogue states 
and the system actions (Young et al., 2013).  

A second body of related work focuses on dia-
logue act classification. Classification-based ap-
proaches aim at learning the patterns of dialogue 
that are present in the corpus. A variety of ma-
chine learning frameworks have been exploited, 
including hidden Markov models (Stolcke et al., 
2000; Boyer et al.,  2010), maximum entropy 
models (Bangalore et al., 2008; Sridhar et al., 
2009; Ha et al., 2012), support vector machines 
(Ivanovic, 2008), conditional random fields (Kim 
et al., 2010),  and memory-based classifiers in 
combination with latent semantic analysis (Di 
Eugenio et al., 2010). Classification-based ap-
proaches incorporate rich sets of features, includ-
ing not only lexical information, syntactic fea-
tures, and dialogue structure, but also prosodic 
features in the case of spoken dialogue (Stolcke 
et al., 2000; Sridhar et al., 2009) and non-verbal 
features such as facial expressions (Boyer et al., 
2011) and shifts in posture (Ha et al., 2012). 

While most work on dialogue act classifica-
tion has focused on either offline analysis of dia-
logue (Stolcke et al., 2000; Ivanovic, 2008; Kim 
et al., 2010; Di Eugenio et al., 2010) or interpre-
tation of user dialogue (Boyer et al., 2010; Ha et 
al., 2012), Bangalore et al. (2008) utilized dia-
logue act classification as a mechanism for de-
termining system dialogue moves. They pro-
posed a unified dialogue act classification ap-
proach for both the interpretation of user utter-
ances and selection of system dialogue moves. 

Our work is similar to Bangalore et al. (2008) 
in that it takes a dialogue act classification ap-
proach to the task of selecting system dialogue 
moves. However, it addresses the problems 
posed by complex task-oriented application do-
mains in which information is communicated not 
only by dialogue exchanges but also by monitor-
ing users’ task performance. In such domains, a 
user’s task activities constitute a full communica-
tive stream in its own right, separate from the 
dialogue stream. The challenges of parallel dia-
logue and task streams are addressed by exploit-
ing automatically obtained task features com-
bined with dialogue features. In contrast to pre-
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vious work (Bangalore et al. 2008, Boyer et al., 
2010), in which task information was derived 
from manual annotation, our work utilizes auto-
matically computed task features. 

Our work also focuses on a growing applica-
tion area of dialogue systems: intelligent tutor-
ing. In support of student learning, recent work 
in this area utilized human tutorial dialogue cor-
pora to learn effective tutorial strategies using 
MDPs (Chi et al., 2010; Mitchell et al., 2013), to 
develop tutorial dialogue models that adapt to 
students’ affective states (Forbes-Riley and 
Litman, 2011), and to improve robustness of a 
symbolic tutorial dialogue system (Dzikovska et 
al., 2013).  

3 Task-Oriented Dialogue Corpus 

To learn dialogue management models from nat-
urally occurring human-to-human dialogue we 
utilize a human tutorial dialogue corpus we col-
lected in the domain of introductory program-
ming in Java. The corpus consists of textual dia-
logue exchanges between students and tutors in a 
web-based remote-tutoring interface, aligned 
with task context logs (Appendix A). A subset of 
the corpus was annotated with dialogue acts, 
which was used to train and test the dialogue 
management models described in this paper. 

3.1 Human tutoring study 

The data collection study involved forty-two un-
dergraduate students who were paired with one 
of four tutors. The students were enrolled in a 
first-year engineering course and were pre-
screened to filter out those with significant pro-
gramming experience. The students were com-
pensated for their participation with partial 
course credit. The tutors were graduate students 
with previous tutoring or teaching experience in 
Java programming, and the students worked with 
the same tutor for the entire study. Each lesson 
consisted of between four and thirteen distinct 
subtasks.  

The students completed six forty-minute tutor-
ing lessons, covering progressive topics in intro-
ductory computer science over four weeks. Each 
lesson consisted of four to thirteen subtasks, in 
which later subtasks built upon earlier ones. Dur-
ing each tutoring session, the paired student and 
tutor interacted remotely using a web-based tu-
toring interface. With this tutoring interface, the 
student and the tutor were able to exchange tex-
tual dialogue and share a synchronized view of 
the task.  

For each lesson, students completed a pre-test 
and a post-test before and after the main tutoring 
session. The pre- and post-test consisted of the 
same set of questions to assess students’ 
knowledge related to the lesson’s objectives. 
Compared to students’ pre-test results, signifi-
cant learning gains were observed on the post-
test, which indicates that the tutorial dialogue 
was effective for student learning (Mitchell et al., 
2012).  

3.2 Dialogue annotation 

A subset of the collected data was manually an-
notated with dialogue acts using an annotation 
scheme consisting of 13 dialogue act tags for 
task-oriented tutorial dialogue (Table 1). The 
annotated corpus consists of the first of the six 
tutoring lessons from 21 students, which contains 
2564 utterances (1777 tutor, 787 student). The 
average number of utterances per tutoring ses-
sion was 122 (min = 74; max = 201). The aver-
age number of tutor utterances per session was 
84.6 (min = 51; max = 137), and the average 
number of student utterances per session was 
37.4 (min = 22; max = 64). 

Three human annotators were trained to apply 
the scheme. The training consisted of an iterative 
process involving collaborative and independent 
tagging, followed by refinements of the tagging 
protocol. At the initial phase of training, the an-
notators tagged the corpus collaboratively. In 
later phases annotators tagged independently. To 
compute agreement between different annotators, 
24% (5 of the 21 sessions) of the corpus were 
doubly annotated by two annotators. All possible 
pairs of the annotators participated in double an-
notation. The aggregate agreement was 0.80 in 
Cohen’s Kappa (Cohen, 1960). 

4 Dialogue Management Models 

To support a task-oriented dialogue system capa-
ble of not only responding to users’ dialogue in-
put but also providing spontaneous system inter-
vention during users’ task activities, a dialogue 
manager should provide two functionalities. The 
first is to determine the timing of a system dia-
logue move (i.e., whether or not to provide a tu-
torial dialogue move at a given context). The 
second is to determine the type of dialogue move 
(i.e., selecting from available system dialogue 
acts). In this work, the problem of determining 
the system’s next dialogue move is cast as a clas-
sification task. In previous work we found a 
maximum entropy approach was effective for 
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classifying user dialogue acts for task-oriented 
dialogue with parallel dialogue and task streams 
(Ha, 2012). Maximum entropy outperformed 
both Naive Bayes and conditional random fields. 
Building on these results, we employ a maximum 
entropy classifier to learn dialogue management 
models that predict both the timing and the type 
of the system dialogue move. The following sec-
tions describe two alternate approaches to dia-
logue management that can both determine the 
timing and determine the type of system dialogue 
interventions.  

4.1 One-step dialogue management model 

In the first model, the two dialogue management 
tasks are framed as a single classification prob-
lem by treating the decision of not to make a tu-
torial dialogue move as a special dialogue act. 
Thus, a finite set of dialogue moves allowed for 
the system is defined as 𝑀 = 𝑚!,𝑚!,⋯ ,𝑚! , 
in which 𝑀 = 𝐷𝐴   ∪ 𝑁𝑜𝑀𝑜𝑣𝑒 and 𝐷𝐴 =
{𝑑𝑎!,𝑑𝑎!,⋯ ,𝑑𝑎!}  is the set of dialogue acts 
available for the system. Given 𝑀  and the 𝑖!! 
step in a given user interaction history 
𝐻!!!! =   ℎ!!! , ℎ!!!!!,⋯ , ℎ!, the goal of the dia-
logue management model is to predict system’s 
dialogue move 𝑚!!! for the next step, which is 
determined by the following equation. 

𝑚!!! = 𝑎𝑟𝑔𝑚𝑎𝑥!∈!𝑃 𝑚 𝐻!!!!              (1) 

The task-oriented dialogue considered in this 
work includes two parallel and interleaved data 
streams: an explicit dialogue stream, consisting 
of textual exchanges between a student and a 
tutor, and an implicit task stream, consisting of 
the student’s problem-solving activities. Thus, a 
given interaction history can be decomposed into 
a dialogue history and a task history, rewriting 
equation (1) as follows, 

𝑚!!! = 𝑎𝑟𝑔𝑚𝑎𝑥!∈!𝑃 𝑚 𝐷!!!! ,𝑇!!!!     (2) 

in which 𝐷!!!! = 𝑑!!! ,𝑑!!!!!,⋯ ,𝑑!  and 
𝑇!!!! = 𝑡!!! , 𝑡!!!!!,⋯ , 𝑡!  represent the history 
of dialogue utterances and the history of student 
task activities, respectively. 

In this work, the conditional probability distri-
bution in Equation (2) is estimated using the 
maximum entropy framework (Berger et al., 
1996). The maximum entropy framework selects 
a probability distribution that results in the high-
est entropy among all possible solutions. Given a 
vector 𝜋 of feature set, the conditional probabil-
ity distribution is estimated by the following 
equation, 

𝑃 𝑋 = 𝑚! 𝜋 =    !
!(!)

𝑒!!!∙!                     (3) 

in which 𝜆 represents weights and 𝑍 is a normal-
izing factor. This work used MALLET 

Tag Description Agreement 
H Hint: The tutor gives advice to help the student proceed with the task .50 
DIR  Directive: The tutor explicitly tells the student the next step to take .63 
ACK  Acknowledgement: Either the tutor or the student acknowledges previous utterance; 

conversational grounding 
.73 

RC  Request for Confirmation: Either the tutor or the student requests confirmation from the 
other participant (e.g., “Make sense?”) 

Insufficient 
data 

RF  Request for Feedback: The student requests an assessment of his performance or his 
work from the tutor 

1.0 

PF  Positive Feedback: The tutor provides a positive assessment of the student’s perfor-
mance 

.90 

LF Lukewarm Feedback: The tutor provides an assessment that has both positive and nega-
tive elements 

.80 

NF Negative Feedback: The tutor provides a negative assessment of the student’s perfor-
mance 

.40 

Q Question: A question which does not fit into any of the above categories .95 
A Answer: An answer to an utterance marked Q .94 

C Correction: Correction of a typo in a previous utterance .54 
S  Statement: A statement which does not fit into any of the above categories .71 
O Other: Other utterances, usually containing only affective content .69 

Table 1.  Dialogue act annotation scheme and inter-rater agreement 
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(McCallum, 2002) to estimate this conditional 
distribution.  

4.2 Two-step dialogue management model 

A potential shortcoming of the one-step model is 
that the probability distribution over dialogue 
acts is prone to distortion depending on the por-
tion of NoMove in the training data. To avoid 
this, the second model takes a two-step approach, 
treating each dialogue management task as an 
independent classification task. The two-step 
model first determines whether or not to make a 
dialogue move. If a decision is made to provide a 
dialogue move, the second classifier is called for 
a selection of the type of dialogue move.  

In this model, system’s dialogue move 𝑚!!! 
for the next interaction step is determined by a 
function 𝑓 𝐻!!!! , such that 

𝑓 𝐻!!!! = 𝑁𝑜𝑀𝑜𝑣𝑒,                                                                               (4) 
when   𝑃 𝑁𝑜𝑀𝑜𝑣𝑒 𝐻!!!! > 𝑃 𝑀𝑜𝑣𝑒 𝐻!!!!                               

𝑓 𝐻!!!! = 𝑎𝑟𝑔𝑚𝑎𝑥!"∈!"𝑃 𝑑𝑎 𝐻!!!!       (5) 
otherwise.  

Similar to the one-step model, Equation (5) can 
be written as 

𝑓 𝐻!!!! = 𝑎𝑟𝑔𝑚𝑎𝑥!"∈!"𝑃 𝑑𝑎 𝐷!!!! ,𝑇!!!!  (6) 

This conditional probability distribution is also 
estimated by the maximum entropy framework. 

5 Features 

To learn high-performing dialogue management 
models for task-oriented dialogue with parallel 
dialogue and task streams, it is crucial to have an 
effective representation of user interaction state 
that captures information from all available data 
streams. The dialogue management models de-
scribed in the previous section determine the sys-
tem’s next dialogue move based on user interac-
tion state specified by the features extracted from 
the dialogue and the task streams. In contrast to 
previous work on task-oriented dialogue, in 
which task information is incorporated into dia-
logue utterances by manual tagging (Bangalore 
et al., 2008; Boyer et al., 2010), our work does 
not require manual effort to obtain the relevant 
task information. Instead, we rely on task context 
logs generated during students’ interactions with 
the tutoring interface, as well as a notion of stu-
dents’ task progress automatically estimated by a 
task analysis algorithm. The same set of features 

is used for the prediction of both the timing and 
the type of system move. 

5.1 Automatic task analysis 

In order to provide a measure of students’ task 
progress through each of the tutoring sessions, an 
edit distance metric was implemented. This met-
ric computes the minimum edit distance between 
a student’s program at a particular time t and a 
representative solution for a given programming 
task, in order to estimate how far away the stu-
dent is from completing the task. Because our 
tutors were experienced in the subject matter and 
were familiar with the lesson structures, we can 
safely assume that they knew what this final state 
of the code would be and thus had an intuitive 
metric of student progress, which is analogous to 
our edit distance metric. As this value changes 
over a session, one can observe how the stu-
dent’s progress is affected by tutor dialogue acts. 

Because a character-based edit distance would 
not capture the relative functional importance of 
each part of the student’s program, our edit dis-
tance metric is based on tokenized versions of 
the program, as generated by the Java compiler, 
and the output is the number of tokens that differ 
from the solution for that task. In this way, 
comments, variable names, or string literals with 
many characters are all treated as single tokens 
and do not artificially inflate the edit distance. 
This tokenization also allows for abstraction of 
these comments, variable names, and string liter-
als into generalized tokens so that they can be 
more easily compared between students.  

5.2 Dialogue features 

Previous work on dialogue act classification has 
shown that lexical features extracted from dia-
logue utterances are good predictors of dialogue 
acts (Bangalore et al., 2008; Boyer et al., 2010a; 
Kim et al., 2010). However, this finding does not 
apply when the goal of dialogue act classification 
is to learn dialogue management models because 
determining system moves precedes system ut-
terance generation. Instead, this work exploits 
features that represent local interaction structure 
within dialogue streams, which includes current 
student dialogue act, current tutor dialogue act, 
previous tutor dialogue act, and tutor utterance 
count. 

• Current student dialogue act represents 
the interpreted dialogue act for the previ-
ous user dialogue input. Student dialogue 
act interpretation is not addressed in this 
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paper, assuming the existence of an exter-
nal module that carries out user dialogue 
interpretation (e.g., Ha et al., 2012). 

• Current tutor dialogue act represents the 
type of system dialogue act at the current 
interaction step. In our tutorial dialogue 
corpus, we observed tutors often made 
several dialogue utterances in succession, 
such as a feedback (“Great Job.”) fol-
lowed by a question (“Do you have any 
questions?”). Thus, the value of the cur-
rent tutor dialogue act impacts the proba-
bility distribution over the tutor’s next dia-
logue move. This feature captures such 
temporal patterns present in tutor dialogue 
moves as observed in the corpus. 

• Previous tutor dialogue act represents the 
type of system dialogue act generated for 
the previous interaction step. This is simi-
lar to the current tutor dialogue act fea-
ture, but models longer temporal patterns 
by extending the size of interaction history. 

•  Tutor utterance count represents the 
number of system dialogue acts generated 
in succession without interruption until the 
current interaction step. In our corpus, it 
was observed that the tutor dialogue turns 
often consist of multiple utterances. This 
feature is included to model system dia-
logue turns consisting of multiple utteranc-
es. 

5.3 Task features 

To create a rich representation of task context, a 
number of features were automatically extracted 
from task streams. Three groups of task infor-
mation were considered, including types of task 
activity taken by user, the amount of time taken 
between certain activities, and the user’s task 
progress estimated by the task analysis algorithm 
(Section 5.1). Alternate representations of these 
features were empirically compared, resulting in 
the following task features incorporated in cur-
rent dialogue management models. 

• Current log type represents the type of 
activity taken at the current interaction 
step either by the user or the system. A 
complete list of log types is shown in 
Appendix B.  

• Previous log type represents the type of 
activity taken at the previous interaction 
step. Analogous to previous tutor dia-
logue act in dialogue stream, this feature 

models temporal patterns among task ac-
tivities. 

• Same log type is a binary feature indi-
cating the type of activities at the current 
and previous interaction step is identical.  

• Previous and current log type is a fea-
ture that combines the current and previ-
ous log types (i.e., a bigram of log types). 

• Elapsed time is the amount of time 
since the last logged activity, which rep-
resents the duration of the user’s inac-
tivity. This feature is included to enable 
the learned dialogue management model 
to make spontaneous dialogue interven-
tions when a user has been detected to be 
inactive for an excessive period of time.  

• Elapsed coding time specifies the 
amount of time the user has taken since 
the beginning of current coding task.  

6 Evaluation 

The dialogue act models were trained and tested 
using the manually annotated portion of the task-
oriented tutorial dialogue corpus described in 
Section 3. The textual dialogue exchanges in the 
corpus were aligned with the logged task-
completion activities based on the timestamp, 
resulting in 6919 total interaction logs. Table 2 
shows the distribution of different types of ac-
tivities in the resulting interaction logs. It was 
observed that tutors made a dialogue move in 
26.5% of the total logged interactions (Table 3). 

Among the thirteen dialogue acts in the origi-
nal annotation scheme (Section 3.2), four rarely 
occurring dialogue acts were combined into other 
categories, which include LF (lukewarm feed-
back) merged with NF (negative feedback) and 
RC (request for confirmation), RF (request for 
feedback), and C (correction) merged to O (oth-
er).  A new category, GREET (greetings) was 

Interaction Type Frequency (%) 
Programming 38.2 
Compiling the Program 10.8 
Running the Program 12.2 
Progressing to Next Task 4.2 
Exchanging Dialogue 34.6 

Table 2. Distribution of interaction types 

Tutor Dialogue Move Frequency (%) 
Move 26.5 
NoMove 73.5 
Table 3. Distribution of system dialogue move 
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added to distinguish conventional expressions for 
greetings and thanks from more general state-
ments and questions. Table 4 shows the resulting 
distribution of tutor dialogue acts in the corpus. 

The performance of the dialogue act models 
were evaluated in a ten-fold cross validation. In 
the cross validation, the corpus was partitioned to 
ten non-overlapping sets and each set was used 
as testing data exactly once, while models were 
trained using the remaining nine sets. 

6.1 Results 

The first study compared the accuracies of the 
dialogue management models on predicting the 
timing and the type of tutor dialogue moves. The 
accuracy of the timing prediction was calculated 
for all user interaction logs in the data, including 
both dialogue exchanges and task-completion 
activities. The accuracy of the type prediction 
was calculated for dialogue activities by tutors 
only. The results are shown in Table 5. 

Both the one-step (t(9) = 4.14, p = 0.0013) and 
the two-step (t(9) = 6.26, p < .0001) models per-
formed significantly better than the majority 
baseline in predicting the timing of tutorial dia-
logue moves. The two-step model achieved 
higher accuracy than the one-step model. The 
difference between the two models was statisti-
cally significant (t(9) = 2.17, p = 0.0291).  

The one-step (t(9) = 2.68, p = 0.0126) and the 
two-step (t(9) = 10.93, p < 0.0001) models 

achieved significantly higher accuracies over the 
baseline for the task of predicting the type of tu-
torial dialogue moves, as well. Again, the two-
step model performed significantly better than 
the one-step model (t(9) = 4.22, p = .0011).  

6.2 Comparing dialogue and task streams 

The second study compared the predictive power 
of the dialogue stream and the task stream on the 
given two dialogue management tasks. In this 
study, the accuracy of the two-step model was 
compared in three conditions: using the dialogue 
features only (Dialogue), using the task features 
only (Task), and using all features (All). Table 6 
reports the results. 

For determining when to intervene, the dia-
logue and the task features exhibited similar pre-
dictive power. No statistical significance was 
found for the difference between the dialogue 
and the task conditions. The highest accuracy 
was achieved by the All condition. Compared to 
the All condition, the Dialogue condition showed 
statistically significant decrease in accuracy (t(9) 
= 2.21, p = 0.0272), which implies the task 
stream provided important features for the dia-
logue management model in determining the tim-
ing of tutorial dialogue moves. 

A similar trend was observed for determining 
what type of dialogue move to make. The Dia-
logue and the Task conditions achieved similar 
accuracies, with the highest accuracy achieved 
by the All condition. The drops in accuracy com-
pared to the All condition were statistically sig-
nificant for both the Dialogue (t(9) = 3.38, p = 
0.0040) and the Task conditions. (t(9) = 4.36, p = 
0.0009). The results imply that the prediction of 
the type of tutorial dialogue moves required in-
formation from both the dialogue and the task 
streams.  

7 Discussion 

The experiments presented in Section 6 com-
pared two alternate approaches to learning dia-
logue management models for two given sub-
tasks: determining when to provide the user with 
a dialogue move, and determining which type of 

Dialogue Act Frequency (%) 
S (Statement) 35.4 
PF (Positive Feedback) 19.8 
Q (Question) 16.0 
H (Hint)  8.0 
DIR (Directive)  6.6 
A (Answer)  5.7 
GREET (Greetings)  3.1 
ACK (Acknowledgement)  2.3 
NF (Negative Feedback)  1.5 
O (Other)  1.6 

Table 4. Distribution of tutor dialogue acts 

Model Timing Type 
Baseline 73.5 35.4 
One-step 79.2* 40.5* 
Two-step  80.3*§  49.7*§ 
Table 5. Model accuracy (%) on dialogue man-
agement tasks (*statistical significance over 
baseline, §statistical significance over one-step 
model) 

Features Timing Type 
Dialogue 79.6 45.0 
Task 80.1 44.9 
All  80.3*  49.7*§ 
Table 6. Comparison of features on dialogue 
management tasks (*statistical significance over 
Dialogue, §statistical significance over Task) 
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dialogue move to choose. The results suggest 
that the two-step approach, which models the 
two subtasks as separate classifiers, was more 
effective than the alternate one-step approach, 
which combined the two subtasks into a single 
classification problem. The two-step model 
achieved higher performance than the one-step 
model in both the timing and the type prediction. 
However, the difference in the performance of 
the two models was more apparent in the type 
prediction, with the two-step model achieving 
over 22% higher accuracy than the one-step 
model. One possible explanation for the superi-
ority of the two step-model over the one-step 
model is that the corpus used to train the models 
was highly skewed. For more than 73% of the 
total interaction logs in the corpus, the tutors did 
not provide any dialogue feedback. Since the 
one-step model treated NoMove as a special dia-
logue act, the skewed distribution over NoMove 
and Move impacted the learned distribution over 
dialogue acts.  

Two previous investigations reported the accu-
racies of dialogue act classification on system 
utterances. Bangalore et al. (2008) reported a 
prediction accuracy of 55% for system dialogue 
acts when a flat task model was used in a cata-
logue-ordering domain. When a hierarchical task 
structure was used in the same domain, the 
achieved prediction accuracy for system dialogue 
acts was 35.6% (Bangalore and Stent, 2009). 
Boyer (2010) achieved accuracy of 57% for sys-
tem dialogue acts in a task-oriented tutorial dia-
logue. While both of these lines of investigation 
employed task structure features that were manu-
ally annotated, our best-performing two-step dia-
logue management model resulted in comparable 
performance utilizing only automatic features, 
achieving an accuracy of 49.7%. 

A crucial distinction between user and system 
dialogue act classification is that lexical features 
for a given dialogue turn are not available for 
system dialogue act classification because a sys-
tem utterance is generated after a system dia-
logue act is selected. The absence of lexical fea-
tures poses a significant challenge to system dia-
logue act classification, given that lexical fea-
tures have been among the most predictive fea-
tures for this task. To address this challenge, fu-
ture research should continue exploring larger 
spaces of features to improve prediction accura-
cies of learned models. 

8 Conclusions and Future Work 

Automatically learning dialogue management 
models for complex task-oriented domains with 
separate dialogue and task streams poses signifi-
cant challenges. Effective dialogue management 
models in such domains should be able to proac-
tively intervene by making spontaneous dialogue 
moves based on the observed history of both the 
dialogue and the user’s task activities. With the 
overarching goal of creating a data-driven auto-
mated dialogue system that incorporates parallel 
dialogue and task streams, this paper has pre-
sented classification-based dialogue management 
models that integrate a rich set of features auto-
matically extracted from parallel dialogue and 
task streams. Two subtasks of dialogue manage-
ment were considered: when the system should 
provide user with a dialogue move and what type 
of system dialogue act the system should select 
for a given user interaction context. An evalua-
tion found that a two-step approach that modeled 
the two subtasks as separate classifiers were ef-
fective, achieving significantly higher perfor-
mance than an alternate approach that modeled 
the two subtasks with a single classifier. 

The results suggest several promising direc-
tions for future work. First, incorporating richer 
features may improve the accuracies of learned 
models, such as more global interaction histories 
and deeper dialogue structures. Second, develop-
ing more sophisticated task analyses will inform 
the learned models with a representation of the 
user task context, guiding the models to make 
more context-appropriate decisions. Finally, it 
will be important to evaluate the learned models 
by incorporating them into a dialogue manage-
ment system and validating their effectiveness in 
interactions with users in rich task-oriented dia-
logue.  
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Appendix A. An Excerpt from the Task-Oriented Dialogue Corpus 

Lesson 
ID 

Task 
ID Role Type Text Timestamp 

1 4 STUDENT CODING System.out.printIn("Hello World" 2011-09-21 
08:17:17.737 

1 4 STUDENT CODING System.out.printIn("Hello World") 2011-09-21 
08:17:19.407 

1 4 STUDENT CODING System.out.printIn("Hello World"); 2011-09-21 
08:17:19.812 

1 4 TUTOR MESSAGE good. 2011-09-21 
08:17:24.913 

1 4 TUTOR MESSAGE also you can try to compile at anytime. 2011-09-21 
08:17:33.805 

1 4 STUDENT COMPILE_ 
BEGIN 

studentCode\jt101\JavaTutor3.java 2011-09-21 
08:17:38.080 

1 4 STUDENT COMPILE_ 
ERROR 

line 1  : cannot find symbol 
symbol  : method printIn(java.lang.String) 
location: class java.io.PrintStream 
System.out.printIn("Hello World"); 
          ^ 
1 error 

2011-09-21 
08:17:38.220 

1 4 TUTOR MESSAGE carefully compare your line with the example 2011-09-21 
08:17:57.330 

Appendix B.  Types of Activity Logs in Corpus 

Log Type Description Action Initiator 
MESSAGE Either student or tutor has sent a chat message. Student, Tutor 
SESSION_PROGRESS Tutor has allowed student to progress to next task. Tutor 
CODING Student has written programming code. Student 
COMPILE_BEGIN Student has begun compiling code. Student 
COMPILE_SUCCESS Recent code compilation has ended successfully. N/A 
COMPILE_ERROR Recent code compilation has failed with errors. N/A 
RUN_BEGIN Student has begun running code. Student 
INPUT_SENT Student has sent an input to a running code. Student 
RUN_SUCCESS Recent code running has ended successfully. N/A 
RUN_STOP Tutor has stopped running student’s code because of errors in the 

code. 
Tutor 
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