
Proceedings of the SIGDIAL 2013 Conference, pages 157–159,
Metz, France, 22-24 August 2013. c©2013 Association for Computational Linguistics

Multi-step Natural Language Understanding

Pierrick Milhorat, Stephan Schlögl, Gérard Chollet
Institut Mines-Télécom

Télécom ParisTech, CNRS LTCI
Paris, France

{lastname}@enst.fr

Jérôme Boudy
Institut Mines-Télécom

Télécom SudParis
Paris, France

boudy@telecom-sudparis.eu

Abstract

While natural language as an interaction
modality is increasingly being accepted by
users, remaining technological challenges
still hinder its widespread employment.
Tools that better support the design, devel-
opment and improvement of these types
of applications are required. This demo
presents a prototyping framework for Spo-
ken Dialog System (SDS) design which
combines existing language technology
components for Automatic Speech Recog-
nition (ASR), Dialog Management (DM),
and Text-to-Speech Synthesis (TTS) with
a multi-step component for Natural Lan-
guage Understanding (NLU).

1 Introduction

Recently speech and other types of natural lan-
guage are experiencing an increased acceptance
when being used for interacting with ‘intelli-
gent’ computing systems. This trend is particu-
larly reflected by products such as Apple’s Siri1,
Google’s Now2 and Nuance’s Dragon Solutions3.
While these applications demonstrate the indus-
try’s vision of how we should be interacting with
our current and future devices, they also highlight
some of the great challenges that still exist. One
of these challenges may be seen in the fact that
Automatic Speech Recognition (ASR) remains a
highly error-prone technology which influences
subsequent natural language processing compo-
nents such as Natural Language Understanding
(NLU) and Dialog Management (DM) and leads
to often unsatisfying user experiences. Hence we
require appropriate tools that better support the
testing and studying of language as an interaction

1http://www.apple.com/ios/siri/
2http://www.google.com/landing/now/
3http://www.nuance.com/dragon/

modality and consequently allow us to build bet-
ter, more user-centered applications.

This demo presents our approach of develop-
ing a prototyping tool for Spoken Dialog Systems
(SDS). Our solution is particularly focusing on
the natural language understanding aspect of SDS
design. The overall framework is composed of
a set of existing open-source technology compo-
nents (i.e. ASR, DM, TTS) which are expanded
by several additional NLP modules responsible for
natural language understanding as well as genera-
tion. The following sections first provide a general
overview of the entire framework and then focus
particularly on the NLU part of our solution and
the different sub-modules it integrates.

2 Spoken Dialog System Design

A state-of-the-art SDS usually consists of a set of
technology components that are integrated to form
a consecutive processing chain. Starting on the
input side the ASR module produces a hypothe-
sis about the orthographic content of a spoken ut-
terance. The NLU takes this recognized utterance
and converts it into a machine readable command
or input Dialog Act (DA). The DM processes this
input DA and sends the relevant output DA to the
Natural Language Generation (NLG) component.
The NLG is then responsible for converting the
output DA into appropriate natural language text.
Finally, the Text-to-Speech (TTS) synthesis com-
ponent takes the text transmitted by the NLG and
speaks it to a user.

According to this general architecture different
open-source language components have been in-
tegrated to form a loosely coupled SDS frame-
work. The framework includes ASR performed by
the Julius Large Vocabulary Continuous Speech
Recognition engine4, dialog management based
on the Disco DM library (Rich, 2009; Rich

4http://julius.sourceforge.jp/en index.php

157



and Sidner, 2012) and TTS achieved through the
MARY Text-to-Speech Synthesis Platform5. Ad-
ditionally, we have integrated the WebWOZ Wiz-
ard of Oz Prototyping Platform6 (Schlögl et al.,
2010) in order to allow for the simulation of (flaw-
less) natural language understanding. Expanding
these existing components we have then developed
as a set of modules responsible for actual system-
based natural language processing. The following
section describes these modules in more detail and
highlights the types of challenges they try to over-
come.

3 Natural Language Understanding

Within the processing chain of a spoken/text-
based dialog system, the NLU component is the
link between the wide and informal communica-
tion space of a user’s input and the formal and
rather restrictive semantic space that can be pro-
cessed by the DM (Mori et al., 2007). Trying to
bridge these two spaces we have connected sev-
eral modules to form an NLU processing segment
whose different modules are described below.

3.1 Semantic Parsing

First we use a Semantic Parsing (SP) module to
convert the transcribed speech provided by the
ASR into so-called Semantic Frames (SFs). To
achieve this mapping Jurčı́ček et al. (2009) de-
signed a Transformation-Based Learning Seman-
tic Parser (Brill, 1995) which we adapted to inte-
grate it with our framework. The algorithm applies
an ordered set of rules to hypothetical [utterance,
SF] pairs in order to find the closest matching SF.

3.2 Semantic Unification

Next we use what we call the Semantic Unifier
and Reference Resolver (SURR) module to con-
vert input SFs into SFs that can be processed by
the DM input interface. To do this we imple-
mented a bottom-up search algorithm for rewrit-
ing trees whose nodes contain lists of valued slots.
The algorithm looks for a group of root nodes that
can be reached in the forest (i.e. the existing num-
ber of trees) by transforming an input SF’s set of
slots according to the given rewriting rules. It suc-
ceeds when all slots can be rewritten into a root
list of slots. This module is supported by exter-
nal knowledge sources such as for example the

5http://mary.dfki.de/
6https://github.com/stephanschloegl/WebWOZ

context in which an utterance has been produced
(i.e. it receives input from the Context Catcher
module described below). Furthermore it could
call operating system functions, sensor readings
7 or other knowledge sources capable of provid-
ing relevant data, in order to resolve and disam-
biguate input. For instance, special-valued slots
like ‘date=today’ are dynamically resolved to the
correct data type and value, making the NLU more
sensitive to its surrounding environment.

3.3 Context Inclusion
In order to optimize information exchange
Human-Human interactions usually build up a
common knowledge between dialog participants.
This inherent grounding process can be compared
to the dialog history recorded in an SDS’s DM.
Using these recordings we have introduced a so-
called Context Catcher (CC) module. The way
this module is currently working is as follows: The
DM requests information from the user to progress
through the task-oriented dialog. The user replies
without specifying the type of data he/she is pro-
viding, the overall intent of the utterance or the re-
lation to any dialog slot. The CC evaluates the re-
quest expressed by the DM and consequently up-
dates various parameters of the SURR component.
Consequently the SURR is able to provide a better,
more context-specific mapping between raw SFs
provided by the SP module and the expected slots
to be filled by the DM component.

3.4 Dialog Act Conversion
An SDS’s DM expects formal meaning represen-
tations to be converted to actual dialog moves or
Dialog Acts (DA); similar to parametrized dialog
commands. A DA is the smallest unit of determin-
istic action to support the dialogue flow. The num-
ber of DAs that are available at any given point is
finite, dynamic and depends on the current state of
the dialog (Note: Here a state does not refer to a
‘real’ state, such as the ones used in Markov De-
cision Processes or Partially Observable Markov
Decision Processes, but rather to a general status
of the dialog). In other words, two input utter-
ances carrying the same meaning may lead to dif-
ferent consequences depending on a given dialog
state. The right action, i.e. the accurate DA, is to
be determined by the NLU component. As there

7Note: At the moment sensor readings are not imple-
mented as they are currently not available in the developing
environment

158



is usually a many-to-many matching between SFs
and actual DAs we integrated an additional Dialog
Act Converter (DAC) module. This module uses
the context to generate a list of expected slots for
which a user may provide a value (i.e. it converts
possible DAs to SFs). Then a matching between
the actual inputs and the expectations is applied in
order to find the most probable DA.

4 Supporting Mixed Initiatives

SDS dialog designs usually run along an initia-
tive scale that ranges from user-driven to strictly
machine-driven interaction. In the case of a
machine-driven dialog a user has to follow the re-
quests of the system. Interactions that lie out of the
scope of this dialog design are not understood and
may either be discarded or, in the worst case, lead
to a system failure. Despite this potential for fail-
ure, machine-driven designs make the dialog eas-
ier to control and thus less prone to errors, yet,
due to the lack of adaptability exposed by the sys-
tem, also less human-like. On the other hand, pure
user-driven dialog designs minimize the functional
range of a system as they only react to commands
without assuring their functional integrity.

The above described modular approach to NLU
aims to support a mixed initiative design where a
system’s integrity and its goals are sufficiently de-
fined; the user, however, is not restricted by the
type and amount of spoken input he/she can use
to interact. To offer this type of interaction the
system needs to handle three kinds of potential
mis-usages: (1) out-of-application cases, (2) out-
of-dialog cases and (3) out-of-turn cases. To ad-
dress the first one our training corpus has been
augmented so that it includes examples of garbage
SFs. As a result an out-of-application utterance
triggers a generic reply from the system, notifying
the user that he/she is outside the scope of the ap-
plication. In the case where a user stays within
the scope of the application but tries to initiate
a new unrelated dialog (i.e. out-of-dialog case),
the DM’s stack of tasks is incremented with the
new dialog. The system will lead the user back
to the previous topic once the newly added one
is completed. Finally, as for the out-of-turn cases
i.e. the cases where a user would answer a sys-
tem request with a non-expected utterance such as
an over-complete one, the NLU process, retriev-
ing the DM’s expectations, discards unrelated or
over-complete information.

5 Demo Description

Focusing on the NLU aspect of the SDS pipeline
this demo will demonstrate how the different mod-
ules described above (i.e. SP, SURR, CC, and
DAC) work together. An application scenario
from the ambient assisted living domain (i.e. the
operation of a ‘Pillbox’ application) will serve as
an example use case. It will be shown how the
natural language input potentially recognized by
an ASR component is further interpreted by our
NLU processing segment. All the steps discussed
in Section 3 will be visible.

6 Conclusion

In this paper we described a set of NLU compo-
nents that were integrated as part of a loosely cou-
pled SDS. Separate modules for semantic parsing,
semantic unification and reference resolution, con-
text inclusion as well as dialog act conversion have
been described. Furthermore we have highlighted
how our system offers support for mixed-initiative
dialog interactions. A first test of this NLU pro-
cessing chain showed that the use of our multi-
component approach is feasible, and we believe
that this solution can be seen as a valuable test and
development framework for natural language pro-
cessing research.

References
E. Brill. 1995. Transformation-based error-driven

learning and natural language processing: A case
study in part-of-speech tagging. Computational lin-
guistics.

F. Jurčı́ček, F. Mairesse, M. Gašić, S. Keizer, B. Thom-
son, K. Yu, and S. Young. 2009. Transformation-
based Learning for semantic parsing. Proceedings
of INTERSPEECH, pages 2719–2722.

R. De Mori, F. Béchet, D. Hakkani-Tur, M. McTear,
G. Riccardi, and G. Tur. 2007. Spoken language
understanding: A survey. Proceedings of ASRU.

C. Rich and C. L. Sidner. 2012. Using collaborative
discourse theory to partially automate dialogue tree
authoring. Intelligent Virtual Agents, pages 327–
340.

C. Rich. 2009. Building task-based user interfaces
with ANSI/CEA-2018. Computer.

S. Schlögl, G. Doherty, S. Luz, and N. Karamanis.
2010. WebWOZ: A Wizard of Oz Prototyping
Framework. In Proceedings of ACM EICS, pages
109–114.

159


