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Abstract

Intelligent Tutoring Systems (ITSs) are
now recognised as an interesting alter-
native for providing learning opportuni-
ties in various domains. The Reinforce-
ment Learning (RL) approach has been
shown reliable for finding efficient teach-
ing strategies. However, similarly to other
human-machine interaction systems such
as spoken dialogue systems, ITSs suffer
from a partial knowledge of the interlocu-
tor’s intentions. In the dialogue case, en-
gineering work can infer a precise state of
the user by taking into account the uncer-
tainty provided by the spoken understand-
ing language module. A model-free ap-
proach based on RL and Echo State New-
torks (ESNs), which retrieves similar in-
formation, is proposed here for tutoring.

1 Introduction

For the last decades, Intelligent Tutoring Sys-
tems (ITSs) have become powerful tools in various
domains such as mathematics (Koedinger et al.,
1997), physics (Vanlehn et al., 2005; Litman and
Silliman, 2004; Graesser et al., 2005), computer
sciences (Corbett et al., 1995), reading (Mostow
and Aist, 2001), or foreign languages (Heift and
Schulze, 2007; Amaral and Meurers, 2011). Their
appeal relies on the fact that each student does not
have to follow an average teaching strategy, espe-
cially as the one-to-one tutoring has been proven
the most efficent (Bloom, 1968). The expertise of
a teacher relies on his capacity to advice at the
right time the student to acquire new skills. To
do so, the teacher is able to choose iteratively ped-
agogical activities. From this perspective, teach-
ing is a sequential decision-making problem. To
solve it, the reinforcement learning (Sutton and
Barto, 1998) approach and the Markov Decision

Process (MDP) paradigm have been successfully
used (Iglesias et al., 2009). Given a situation, each
teacher’s decision is locally quantified by a re-
ward. However, the consequences of the teacher’s
actions on the student’s cognition cannot be ex-
actly determined, which introduce uncertainty.

To find a solution, one can notice that spoken
dialogue management and tutoring are closely re-
lated. Both are humain-computer interactions in
which the human user’s intentions are not per-
fectly known. In the spoken dialogue case, the
partial observability is due to the recognition er-
rors introduced by the speech understanding mod-
ule. They are taken into account by using some
hypotheses about how the language is constructed.
Thus, accurate models to link observations from
the user’s recognised utterances to the underlying
intentions can be set up. For example, the Hidden
Information State paradigm (Young et al., 2006;
Young et al., 2010) builds a state which is a sum-
mary of the dialogue history (Gašić et al., 2010;
Daubigney et al., 2011; Daubigney et al., 2012).
However, in the ITS case, such a state is harder to
develop since the cognition cannot be determined
by analysing a physical signal. Thus, a model-free
approach is preferred here.

To do so, a memory of the past observations
and actions is built by means of a Recurrent Neu-
ral Network (RNN) and more precisely an Echo
State Network (ESN) (Jaeger, 2001). The inter-
nal state of the network can be shown (under some
resonable conditions) to meet the Markov prop-
erty (Szita et al., 2006). This internal state is then
used with a standard RL algorithm to estimate the
optimal solution. It has already been applied to RL
in (Szita et al., 2006) in limited toy applications
and it is, to our knowledge, the first attempt to use
it in an interaction framework. The proof of con-
cept presented in Szita’s article uses the common
SARSA algorithm which is an on-line and on-
policy algorithm. Each improvement of the strat-
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egy is directly tested. In the case of teaching, test-
ing poor decisions can be problematic. Here, we
thus propose the combination of an ESN with an
off-line and off-policy algorithm, namely the Least
Square Policy Algorithm (LSPI) (Lagoudakis and
Parr, 2003), which is another original contribu-
tion of this paper. Indeed, learning the solution
with Partially Observable MDPs in a batch and
off-policy manner is not common in the literature.

2 Markov Decision Process and
Reinforcement Learning

Formally, an MDP is a tuple {S,A, T,R, γ} set
up to describe the tutor environment. The set
S is the state space which represents the infor-
mation about the student, A is the action space
which contains the tutor’s actions, T is a set of
transition probabilities defined such that T =
{p(s′|s, a),∀(s′, s, a) ∈ S × S × A}, R is the
reward function, given according to the student
progression for example, and γ ∈ [0, 1] is the
discount factor which weights the future rewards.
The set of transitions probabilities in the ITS case
is unknown: the evolution of the student intentions
cannot be determined. Solving the MPD consists
in finding the optimal strategy, called the optimal
policy which brings the highest expected cumula-
tive reward.

However, in the ITS case, information about the
student’s knowledge, represented by s, can only
be known through observations. Let O = {oi} be
the set of possible observations. Yet, if only ob-
servations are available, a memory of what hap-
pened during previous interactions (the history)
is necessary, because the process of observations
does not meet the Markov property. The his-
tory is the sequence of observation-action pairs
encountered during a whole teaching phase. Let
H = {hi} be the set of all possible histories with
hi = {o0, a0, o1, a1, ..., oi−1, ai−1, oi}.

When the POMDP framework is used, the un-
derlying state si is inferred from the history by
means of a model of probabilities linking si to
hi. In the case of human-machine interactions, this
model is not available. It can be approximated but
the considered solutions are ad-hoc to a particular
problem, thus difficult to reuse. Here, we propose
an approach with as few assumptions as possible
about the student cognitive model by using Echo
States Networks (ESNs). This approach builds a
compact representation of the history space H .

u0

u1

u2

Input

x0

x1

x2

x3

x4 x5

x6

x7 x8

x9

Reservoir

y0

y1

y2

y3

Output

1

Figure 1: RNN structure (for sake of readability,
all the connections do not appear).

3 Echo State Networks

An Echo State Network is represented by three
layers of neurons (Fig. 1): an input, a hidden and
an output. The number of neurons in the hidden
layer is supposed to be large and each of them
can be connected to itself. These recurrent con-
nections are responsible for reusing the value of
the neurons at a previous time step. Consequently,
a memory is built in the reservoir and trajectories
can be encoded. Only the connections from the
hidden layer to the output one are learnt since all
the other connections are randomly and sparsely
set. The recurrent connections are defined so that
the echo state property is met (Jaeger, 2001): if
after a given number of updates of the input neu-
rons, two internal states are exactly the same, then
the input sequences which led to these two internal
states are identical.

The connections of the ESN are presented
in Fig. 2, with uk ∈ RNi , xk ∈ RNh and
yk ∈ RNo , respectively representing the values
of the input, hidden and output layers, Ni, Nh

and No being the respective number of neurons
and W in ∈ MNh×Ni , W

hid ∈ MNh×Nh
and

W out ∈ MNo×Nh
, matrix containing the synap-

tic weights. After a training, the output yk returns
a linear approximation of the internal state of the
reservoir. This output depends on the sequence of
inputs u0, · · · , uk and not only uk, through xk.

Combining ESNs and RL is of interest. By
means of the echo state property, a summary of
the observations and decisions encountered during
the tutoring phase is provided through the internal
state x. In (Szita et al., 2006), it has been proven
to meet the Markov property with high probabil-
ity. It thus can be used as a state for standard
RL algorithms. Here, more precisely, it represents
the basis function of an approximation of the Q-
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Figure 2: Structure of an ESN. For the example,
Ni = 1 and No = 1.

function. This function is associated with a policy
π, defined for each couple (s, a) ∈ S × A such
that Qπ(s, a) = E

[∑
i γ

iri|s0 = s, a0 = a
]

and
quantifies the policy. ESNs are used in the fol-
lowing way to solve RL problems. The network
is responsible for giving, from an observations ok
and an action ak at time step k, a linear estimation
of the value of the Q-function Q̂θ(hk, ak) (with
hk = {o0, a0, ..., ok−1, ak−1, ok}). The state s is
not used in the estimation of the Q-function since
it is unknown. Instead, it is replaced by the history
hk. The input of the ESN, uk, is thus the con-
catenation of the observation ok and the action ak:
uk = (ok, ak). The internal state xk which com-
ponent are in [−1, 1], is a summary of the history
hk and the action ak. Thus, the estimation of the
Q-function is Q̂θ(hk, ak) = θ>xk. The values of
the output connections are learnt by means of the
LSPI algorithm. With this algorithm, the optimal
policy is learnt from a fixed set of data.

4 Experimental settings

For the experiments, we assume that the teaching
can be done by means of three actions. First, a les-
son can be presented to make the knowledge of the
student increase. The second and third actions are
evaluations. They can either be a simple question
or a final exam. The final exam consists in ask-
ing a hundred yes/no questions of equal complex-
ity and on the same topic. The student does not
have a feedback. Once it is proposed, a new teach-
ing episode starts. Three observations are returned
to the ITS. If a lesson is proposed to the user, the
observation is neutral: no feedback comes from
the student since the direct influence of the lesson
remains unknown. The two other obervations ap-
pear when a question is asked (yes or no). Conse-
quently, one observation is not enough to choose
the next action since no clue is given about how
many lessons have led to this result. A non-null re-

ward is only given when a final exam is proposed.
In this case, it is proportional to the rate of cor-
rect answers among all the answers given during
the exam. Thus, each improvement is taken into
account. The γ factor is set to 0.97.

In this proof of concept, the results have been
obtained with simulated students from (Chang et
al., 2006) to ensure the reproducibility of the ex-
periments. The simulation implements two abili-
ties: answering a question and learning with a les-
son. Three groups of students have been set up.
The first one, T1, is supposed to be able to learn
very efficiently, the second, T2, needs a few more
lessons to provide good answers, and the third, T3,
needs a lot of lessons to answer correctly.

5 Results

Several teaching strategies have been compared.
As a lower bound baseline, a random strategy has
been tested. With a probability (w.p.) of 0.6, a les-
son is proposed, w.p. of 0.2 a question is chosen,
and w.p. of 0.2 a final exam is proposed. The data
generated with this random strategy have been
used by the LSPI algorithm and an informed state
space. The second baseline proposed is the reac-
tive policy learnt by LSPI (called reactive-LSPI),
only from obervations. Neither the information
about the number of lessons proposed nor the in-
ternal state of the ESN is used. The third strategy
is learnt by using the observations and a counter
of lessons already given (called informed-LSPI).
Thus, this state supposedly contains sufficient in-
formation to take the decision. For this case, since
the numbers of observations and lessons are dis-
crete thus countable, a tabular representation is
chosen for the Q-function. The fourth strategy
uses the internal state of the ESN as basis function
for the Q-function (called ESN-LSPI). There are
50 hidden neurons. Different sizes of training data
sets are tested. Among the data, the three types of
students are represented in equal proportions. One
hundred policies are learnt for each of the methods
presented, except for the ESN-LSPI. For this one,
10 ESNs are generated and 10 training sessions are
performed with each one of them. The mean over
the average results of each of the 10 learnings is
presented in the results. Each of the policies have
been tested 1000 times.

Fig. 3 shows a comparison of the learnt strate-
gies. The three types of students are used for
the training and test phases. One can notice that
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Figure 3: Comparison of the different strategies.

the standard deviation is larger when the ESN are
used because uncertainty is added when generat-
ing the ESN since the connections are randomly
set. The random and the reactive policies give
the poorest results. Yet, the average reward in-
creases because of the data in the training set. For
small sets, long sequences of lessons only have not
been encountered. Thus, larger rewards have not
been encountered either. For the two other curves,
with a reasonable number of interactions (around
8000), a good strategy is learnt by using informed-
LSPI. The strategies learnt with the ESN require
fewer transitions and allow a faster learning. In
this case, the optimum is reached with 2000 transi-
tions while 8000 ones are needed to reach the same
quality with the informed-LSPI strategy. Around
10000 samples, both policies give the same re-
sults. However, less information is given in the
ESN approach (only observations). Thus, this ap-
proach is more generic. The counter information
may not be sufficient for more complex problems.

To compare the efficiency of the learnt policies,
the informed-LSPI and ESN-LSPI are plotted for
each group of students in Fig. 4. All the strate-
gies are learnt with the same data sets than pre-
viously, but only one type of students is tested at
a time. For the T2 and T3 types, the average re-
sults are better with ESN-LSPI (especially for the
T3 type). For the T1 group, informed-LSPI re-
turns slighlty better results. A better insight of
the behaviour of each policy is given in Fig. 5 by
plotting the distribution of the actions used dur-
ing the test phase. A comparison reveals that the
number of lessons is higher in the ESN-LSPI case
(around 3) whereas only one lesson is given in av-
erage with informed-LSPI. This is of benefit to
students of the third group and thus implicitly to
those of the first and second groups. The number
of lessons is even larger for the third group than for
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Figure 5: Distribution of the actions (the size of
the training dataset is 10000).

the two others (0.5 more in average). However, in
the informed-LSPI case, the learnt policy is only
profitable for those of the first group, who are al-
ready skilled (this conclusion is consistent with the
Fig. 4). Questions are very rarely asked because
once the number of lessons has been learnt, they
bring no more information.

6 Conclusion

We proposed a model-free approach which uses
only observations to find optimal teaching state-
gies. A summary of the history encountered is
implemented by means of an ESN. This summary
has been proven to be Markovian by (Szita et al.,
2006). A standard RL algorithm which can learn
from already collected data, is then used to per-
form the learning. Preliminary experiments have
been presented on simulated data. In future works,
we plan to apply this method to SDSs.
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