Will my Spoken Dialogue System be a Slow Learner

Layla El Asri

Orange Labs / UMI 2958 (IMS-MalLlIS)
Issy-les-Moulineaux (France) / Metz (France) Issy-les-Moulineaux (France)

layla.elasri@orange.com

Abstract

This paper presents a practical
methodology for the integration of
reinforcement learning during the
design of a Spoken Dialogue System
(SDS). It proposes a method that
enables SDS designers to know, in
advance, the number of dialogues that
their system will need in order to learn
the value of each state-action couple.
We ask the designer to provide a user
model in a simple way. Then, we run
simulations with this model and we
compute confidence intervals for the
mean of the expected return of the
state-action couples.

1 Introduction

The Dialogue Manager (DM) of a Spoken Di-
alogue System (SDS) selects actions accord-
ing to its current beliefs concerning the state
of the dialogue. Reinforcement Learning (RL)
has been more and more used for the optimisa-
tion of dialogue management, freeing designers
from having to fully implement the strategy of
the DM.

A framework known as Module-Variable
Decision Process (MVDP) was proposed by
Laroche et al. (2009) who integrated RL into
an automaton-based DM. This led to the de-
ployment of the first commercial SDS imple-
menting RL (Putois et al., 2010).

Our work intends to continue this effort in
bridging the gap between research advances
on RL-based SDS and industrial release. One
important issue concerning the design of an
RL-based SDS is that it is difficult to evalu-
ate the number of training dialogues that will

97

?

Romain Laroche
Orange Labs

romain.laroche@orange.com

be necessary for the system to learn an opti-
mal behaviour. The underlying mathematical
problem is the estimation of the training sam-
ple size needed by the RL algorithm for con-
vergence. Yet, designers are often not experts
in RL. Therefore, this paper presents a simple
methodology for evaluating the necessary sam-
ple size for an RL algorithm embedded into an
SDS. This methodology does not require any
RL expertise from designers. The latter are
asked to provide a model of user behaviour in
a simple way. According to this model, numer-
ous simulations are run and the sample size
for each module-state-action triple of the DM
is estimated. This methodology was tested on
an SDS designed during the CLASSiC Euro-
pean project! (Laroche et al., 2011) and we
show that these computations are robust to
varying models of user behaviour.

2 Dialogue Management as a
Module-Variable Decision
Process

Module-Variable Decision Processes (MVDP)
factorise learning into modules, each module
having its own state and action spaces. For-
mally, an MVDP is a tuple (M, Vi, Ay, T)
where M is the module space, Vjs is the space
of local contexts, for each module m, V,,, C Vi
is the set of variables which are relevant for
m’s decision making. A,, C Ay is the set of
possible actions, an action beeing a transition
in the automaton. T" C R is the time scale. In
the following, time is measured in number of
dialogue turns, a turn being the time elapsed
between two ASR results.

!Computational Learning in Adaptive Systems for
Spoken Conversation, http://www.classic-project.org/

Proceedings of the SIGDIAL 2013 Conference, pages 97-101,
Metz, France, 22-24 August 2013. (©2013 Association for Computational Linguistics



2.1 The Compliance Based
Reinforcement Learning
Algorithm

The Compliance-Based Reinforcement Learn-
ing algorithm (CBRL, Laroche et al., 2009) is
an adaptation of the Monte Carlo algorithm
to online off-policy learning. Each evaluation
phase in the Monte Carlo procedure requires
numerous new episodes. CBRL enables to ac-
celerate this process by adjusting the current
policy not after a set of many new episodes
but right after each episode and using all the
previous episodes to evaluate the policy. Each
dialogue is modelled as a sequence of decisions
dy = (my, s¢, ag, t) where my is the module en-
countered at time ¢, s; is the current local con-
text of m; and a; is the action chosen by m;.
Each decision d; leads to an immediate reward
R;. With v a discount factor, the return for a
decision d; is 1y = Z:f:t v4~tRy,, tf being the
final turn of the dialogue. For a given module
m, the value of any state-action couple (s,a)
is the expected return starting from (s, a) and
then choosing actions according to 7, the pol-
icy of the system: QF (s,a) = E[ry | my
m,s; = s,a; = a,n]. 7w is the set of all the
policies of the modules: m = {p,,, ..., Ty }-
After a dialogue is taken under policy m, the
value of any triple (m,s,a) is updated as in

Equation 1.
>

- Om(s,a)
Qn(s,a) = “Ol(sa) (1)
where Q,,(s,a) = Z W,
Om(s,a)

and ©p,(s,a) = {d:},, (2)

For any module m, the algorithm evaluates
the value of each couple (s, a) according to all
the decisions in which this tuple has been in-
volved from the beginning of learning (the set
of decisions O,,(s,a)).
of the Q-function, the policy 7 is updated fol-
lowing an exploratory strategy based on the
Upper Confidence Bound 1 - Tuned approach
(Auer et al., 2002). The weights w; in Equa-
tion 1 are there to take into account the fact
that 7 is evaluated according to all the rewards
observed since the beginning of learning, re-
wards that were obtained following other poli-
cies. A local compliance c;(d;) is associated

t=—Mm;St=S8;at—=a

After each evaluation

98

with each decision d;: it is the expected re-
gret induced by a; not being the optimal ac-
tion according to the system’s current policy
T, cro(di) = Qny, (8t, at) — MaTaea,,, Q. (81, a).
The global compliance with 7 of the decisions
following d; is a discounted sum of the local
compliances. The weight w; is then an increas-
ing function of the global compliance.

3 Problem Resolution

3.1 Approach

The problem to be solved is the follow-
ing. Let an MVDP (M, Vy, Ay, T). For
each triple (m,s,a), we want to compute
the error made on the estimate @, (s,a) of
E[r | m,s,a] according to the number of ob-
servations Oy, (s,a). Let 71,...,7,,(s,a)| De
the returns corresponding to the decisions in
Om(s,a) and 0,,(sq) the variance of these re-
We build a confidence interval for
E[r|m,s,al], centered in the estimate Qp, (s, a)
from user simulations with a bi-gram model
specified by the designer.

turns.

3.2 User Simulations

User simulation has been an active line of
research as it is often costly to gather real
data (Scheffler and Young, 2002; Georgila et
al., 2006; Yang and Heeman, 2007; Pietquin
and Hastie, 2010). Task-oriented systems such
as commercial ones aim to respond to a spe-
cific need. They are often conceived as slot-
filling systems (Raux et al., 2003; Chandramo-
han et al., 2011). The dialogue is relatively
well-guided by the system so there is no need
to take into account complex conversational
groundings to simulate user behaviour. There-
fore, we choose here to ask the designer to pro-
vide a bi-gram model (Eckert et al., 1997): a
probability distribution of user behaviour only
conditioned on the latest system action. For
each possible response, the designer provides
a lower and an upper bound for its probability
of occurring. Eckert et al. (1997) showed that
slight modifications of user behaviour in the
bi-gram model did not entail great differences
of system performance. We support this claim
in Section 4 where we show that the confidence
intervals computation is robust to varying user
behaviour.



3.3 Confidence Intervals

According to the Lyapunov central limit
theorem, Q,,(s,a) converges in law to the
normal distribution of mean FE[Q,(s,a)]
E[r | m,s,a] and variance var(Q.,(s,a)) =
2
w
Z@m(s,a) k o (s,a)

Q2 (s,a) Om

is unknown and the observations are not nec-
essarily distributed according to a normal law,
we can only rely on an asymptotic result ac-
cording to which, for a sufficiently large num-
ber of samples, the previous convergence re-
sult holds with the unbiased estimate of the
returns variance o, (s,a). A confidence inter-
val of probability 1 — « for E[r | m,s,al is
then:

2

(s,a). However, since o7,

[Qm(& a) — €m,s,a, Qm(sa a) + fm,s,a]

(3)
We note U = @&1(071)(]_ — %), Wlth @N(OJ) the

cumulative distribution function of N(0,1):

> i
Om(s,a) _
a

Q(s,a) m

€m,s,a —

(4)

(s,a)uq

In the non-weighted case, the previous asymp-
totic result is generally considered to hold for
a number of samples greater than 30. We thus
consider the confidence intervals to be valid for

_ 02 (s,
Q(s,a) = LQ)Q > 30.
Zem(s,a) Wi

3.4 p-Convergence Definition

A confidence interval can be computed for each
(m, s, a) triple of the system. From this com-
putation, we deduce the number of dialogues
necessary for convergence i.e. for the width
of the confidence interval to be under a given
threshold. The confidence interval radius of a
triple (m, s, a) depends on the variance of ob-
served returns (see equation 4) so we define
the normalised confidence interval radius:

Uq

Qn(s,a) —1

€m,s,a

Om(s,a)

()

€m,s,a =

We will consider that a triple (m, s, a) will
have S-converged once the normalised confi-
dence interval radius will have come under 3.

99

_— —
/1 First proposition \\\/,,
ofa )

- lime slot 4

<
/" Second (or more) \
proposttion ofa L=
. time slot

Figure 1: A schematic view of the system.

4 Experiments

4.1 System Description

The negotiation strategy of the system is hard-
coded (see Figure 1). The system starts each
dialogue proposing to the user its first avail-
ability (module 1). Then, if the user rejects
the proposition, the system asks them to give
their first availability (module 3). If the first
two steps have not resulted in success, the sys-
tem proposes its next availabilities (module 2)
until an appointment is booked (module 7) or
the system has no more propositions to make
(module 8). When a user proposes a date, the
system asks for a confirmation through mod-
ule 4. Two error-repair modules (modules 6
and 5) notify the user that they have not been
understood or heard (in case of a time out).
More details can be found in (Laroche et al.,
2011). Each module has to choose between
three actions: uttering with a calm (action 1),
neutral (action 2) or dynamic (action 3) tone.
In our experiments, user simulation was mod-
elled so that the first two alternatives were ar-
tificially disadvantaged: the number of failures
was slightly increased whenever one of them
was chosen. We modelled here the fact that
users would always prefer the dynamic intona-
tion.

We ran 2000 simulations, one simulation
consisting of a complete dialogue ending with
an update of the state-action value function for
each of the system’s modules. The following
results are averages on 100 runs.

We set the hanging-up rate to 10%. a was
set to 0.05 and 8 to 0.1. In the following sec-
tion, we use the notation (i,7,k) to refer to
(mi, s, ax).>

23j is always equal to 1 because the local contexts
space is equal to the module space



10

Tuple(4,1,3)

Tuple(4,1,2)

08

= Tuple(1,1,3)

== Tuple(1,1,1)

06

04

02

Normalised Confidence Interval Radius

y=01
(alpha = 0.05, beta = 0.1)

00

T T T T
500 1000 1500
Number of Dialogues

Figure 2: Evolution of €, s, for triples (1, 1,
1), (1, 1, 3), (4, 1, 2) and (4, 1, 3) according
to the total number of dialogues. Users prefer
action 3.

4.2 Results

By the end of our experiments, modules 4, 5
and 8 had not 5y 1-converged. Module 5 was
not likely to be visited quite often according to
our specification of user behaviour. The same
happened for module 4, only accessible from
module 3 (see Figure 1), which was not itself
often visited. Module 1 is, with module 8, a
starting module of the system. At the begin-
ning of a dialogue, module 1 had a 95% proba-
bility of being visited whereas this probability
was of 5% for module 8 (this only happened
when all available appointments had already
been booked). Therefore, module 1 was vis-
ited once during almost every dialogue. We
will now focus on modules 1 and 4 for clarity
of presentation.

We can conclude from Figure 2 that triple
(1, 1, 3) Bpi-converged after about 640 di-
alogues, corresponding to about 425 visits
whereas neither triple (1, 1, 1) nor (4, 1, 2)
nor (4, 1, 3) fo.1-converged, even after 2000 di-
alogues. Indeed, these triples did not receive
enough visits during the simulations. Triple
(1, 1, 3) Bo.1-converged whereas (1, 1, 1) did
not because, at one point, the growth of the
number of visits to (1, 1, 1) slowed down as
module 1 favoured action 3 and reduced its
exploration of other actions. The fact is that
the RL algorithm did not need such a precise
estimation for (1, 1, 1) to understand action 1
(the neutral tone) was suboptimal.

100

The variance over the 100 runs of the final
estimation of €, s, was below 0.01. For all
triples of the system, the variance was very
low after about 500 dialogues only (from 107°
to 0.02). This means that the approximate
user behaviour, defined with probability win-
dows, only had a limited impact on the reli-
ability of the computed confidence intervals.
The probability windows used in the experi-
ments were narrow (of an average size of 10%)
so user behaviour did not change drastically
from a run to another. With a behaviour much
more erratic (larger probability windows), the
variance over 10 runs was higher but did not
exceed 0.02.

5 Related Work

Suendermann et al. (2010) tackled the issue of
reducing the risk induced by on-line learning
for commercial SDS with contender-based di-
alogue management. Our study relates to this
work but within the more complex learning
structure of RL.

Closer to our study, Tetreault et al. (2007)
compared confidence intervals for the expected
return for different MDPs, all modelling the
same SDS but with a different state space.
They showed how the intervals bounds as well
as the expected cumulative returns estima-
tions could be used in order to select an appro-
priate state space. More recently, Daubigney
et al. (2011) as well as Gasic et al. (2011) de-
veloped an efficient exploration strategy for an
MDP-based DM based on the uncertainties on
the expected returns estimations. The differ-
ence between these two approaches and ours
is that they compute the confidence intervals
for a known policy whereas we compute the
expected confidence intervals for an unknown
policy that will be learnt on-line.

6 Conclusion

To help the development of SDS embedding
on-line RL, we have designed and implemented
an algorithm which computes the normalised
confidence interval radius for the value of a
state-action couple. We have illustrated this
algorithm on an appointment scheduling SDS.
We believe our method can be transferred to
any system implementing an RL episodic task,
as long as the environment can be simulated.



References

Senthilkumar Chandramohan, Matthieu Geist, Fabrice
Lefevre, and Olivier Pietquin. 2011. User simula-
tion in dialogue systems using inverse reinforcement
learning. In Proceedings of Interspeech.

Lucie Daubigney, Milica Gasic, Senthilkumar Chan-
dramohan, Matthieu Geist, Olivier Pietquin, and
Steve Young. 2011. Uncertainty management for
on-line optimisation of a pomdp-based large-scale
spoken dialogue system. In Proceedings of Inter-
speech, pages 1301-1304.

Wieland Eckert, Esther Levin, and Roberto Pieraccini.
1997. User modeling for spoken dialogue system
evaluation. In Proceedings of IEEE ASRU, pages
80-87.

Milica Gasic, Filip Jurcicek, Blaise Thomson, Kai Yu,
and Steve Young. 2011. On-line policy optimisation
of spoken dialogue systems via live interaction with
human subjects. In Proceedings of IEEE ASRU.

Kallirroi Georgila, James Henderson, and Oliver
Lemon. 2006. User simulation for spoken dialogue
systems: Learning and evaluation. In Proceedings of
Interspeech.

Romain Laroche, Ghislain Putois, Philippe Bretier,
and Bernadette Bouchon-Meunier. 2009. Hybridis-
ation of expertise and reinforcement learning in di-
alogue systems. In Proceedings of Interspeech.

Romain Laroche, Ghislain Putois, Philippe Bretier,
Martin Aranguren, Julia Velkovska, Helen Hastie,
Simon Keizer, Kai Yu, Filip Jurcicek, Oliver Lemon,
and Steve Young. 2011. D6.4: Final evaluation
of classic towninfo and appointment scheduling sys-
tems. Technical report, CLASSIC Project.

Olivier Pietquin and Helen Hastie. 2010. Metrics for
the evaluation of user simulations. Technical Report
Deliverable 3.5, CLASSIC Project.

Ghislain Putois, Romain Laroche, and Philippe
Bretier. 2010. Enhanced monitoring tools and on-
line dialogue optimisation merged into a new spoken
dialogue system design experience. In Proceedings of
SIGdial Workshop on Discourse and Dialogue, pages
185-192.

Antoine Raux, Brian Langner, Allan Black, and Max-
ine Eskenazi. 2003. LET’S GO: Improving Spoken
Dialog Systems for the Elderly and Non-natives. In
Proceedings of FEurospeech.

Konrad Scheffler and Steve Young. 2002. Automatic
learning of dialogue strategy using dialogue simula-

tion and reinforcement learning. In Proceedings of
HLT, pages 12-18.

David Suendermann, John Liscombe, and Roberto
Pieraccini. 2010. Contender. In Proceedings of
IEEE SLT, pages 330-335.

Joel R. Tetreault, Dan Bohus, and Diane J. Litman.
2007. Estimating the reliability of mdp policies:

A confidence interval approach. In Proceedings of
HLT-NAACL, pages 276-283.

101

Fan Yang and Peter A. Heeman. 2007. Exploring ini-
tiative strategies using computer simulation. In Pro-
ceedings of Interspeech, pages 106—109.



