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Abstract
Automatic sign language recognition (ASLR) is a special
case of automatic speech recognition (ASR) and computer
vision (CV) and is currently evolving from using artificial lab-
generated data to using ’real-life’ data. Although ASLR still
struggles with feature extraction, it can benefit from techniques
developed for ASR. We present a large-vocabulary ASLR
system that is able to recognize sentences in continuous sign
language and uses features extracted from standard single-view
video cameras without using additional equipment. ASR
techniques such as the multi-layer-perceptron (MLP) tandem
approach, speaker adaptation, pronunciation modelling, and
parallel hidden Markov models are investigated. We evaluate
the influence of each system component on the recognition
performance. On two publicly available large vocabulary
databases representing lab-data (25 signer, 455 sign vocabulary,
19k sentence) and unconstrained ’real-life’ sign language (1
signer, 266 sign vocabulary, 351 sentences) we can achieve
22.1% respectively 38.6% WER.

Index Terms: Continuous Sign Language Recognition, Large
Vocabulary, ASR, Computer Vision, Recognition System

1. Introduction
Sign languages are natural languages that develop in commu-
nities of deaf people around the world and vary from region
to region. A sign consists of manual and non-manual com-
ponents that partly occur in parallel but are not perfectly syn-
chronous [1]. Manual components comprise hand configura-
tion, place of articulation, hand movement and hand orientation
while non-manual components include body pose and facial ex-
pression. ASLR is a subfield of CV and ASR allowing methods
of both worlds to be deployed but it also inherits their respec-
tive challenges. Large inter-/intra-personal signing variability,
strong coarticulation effects, context dependent classifier ges-
tures, no agreed written form or phoneme-like definition in con-
junction with partly parallel information streams, high signing
speed inducing motion blur, missing features and the need for
automatic hand and face tracking make video-based ASLR a
notoriously challenging research field.

Although ASLR is starting to tackle ’real-life’ data, the ma-
jority of work in the community still focusses on the recognition
of isolated signs, particularly in the context of gesture recogni-
tion. Deng and Tsui [2] and Wang et al. [3] use parallel HMMs
to recognize isolated signs in American Sign Language or Chi-
nese Sign Language, respectively, achieving recognition accu-

racies over 90%. Ong et al. [4] use boosted sequential pattern
trees to recognize isolated signs in British sign language (BSL)
allowing to combine partly parallel, not perfectly synchronous,
automatically mined phoneme-like units in the recognition pro-
cess. Pitsikalis et al. [5] extract subunit definitions from lin-
guistic annotation in HamNoSys [6], whereas Koller et al. [7]
employ an open SignWriting [8] dictionary to produce and align
linguistically meaningful subunits to signs in German sign lan-
guage (GSL).

However, in real tasks ASLR is more likely to face contin-
uous signing, that is what this work focusses on. In this con-
text, Cooper et al. [9] compare boosted sequential pattern trees
to HMMs using linguistically inspired subunits and 3D track-
ing information finding that the trees outperform HMMs for
BSL. Forster et al. [10] investigate techniques to combine not
perfectly synchronous information streams within an HMM-
based ASLR system finding that synchronization just at word
boundaries improves the recognition performance. Recogniz-
ing a sign language sentence by spotting individual signs has
been investigated by several authors [11, 12, 13, 14] reporting
promising results. Finally Yang et al. [15] use a nested dynamic
programming approach to handle coarticulation movements be-
tween signs.

Given the cited work and the works described in the sur-
vey on sign language recognition by Ong and Ranganath[16],
two approaches to ASLR are observable. On the one hand,
ASLR is viewed as a pure CV problem neglecting the natural
language processing nature of the task and focussing on devel-
oping tailor-made solutions for gestures. However, we believe
to be soon able to tackle real-world problems, ASLR should
much more be seen as application of ASR, exploiting previous
knowledge gained in that area. Following that track, we pro-
vide systematically gathered knowledge on how to create a large
vocabulary ASLR system for continuous SL evaluating which
techniques from ASR are applicable. Specifically, we investi-
gate the impact of CV and ASR techniques on the recognition
performance. Among others, the impact of the performance of
automatic hand tracking on the recognition performance is in-
vestigated. Tackling the question of suitable features for non-
rigid objects such as the hands, HoG3D [17] features proposed
in the area of action recognition, appearance based features and
learned MLP features used in ASR are investigated. Address-
ing inter signer variability, the technique of automatic signer
adaptation is adopted from ASR (speaker adaptation) and tested
within our proposed large-vocabulary, HMM-based sign lan-
guage recognition system. Additionally, techniques to combine
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Figure 1: Bayes’ decision rule used in ASLR.

partly parallel information streams/modalities are presented and
evaluated. The system and its components are tested in the
context of continuous ASLR for two publicly available, large-
vocabulary databases. One database represents lab-data created
for pattern recognition purposes and one database represents
’real-life’ data recorded from German public TV. Comparing
findings on lab-data and ’real-life’ data we investigate which
findings on lab-data generalize to ’real-life’ scenarios.

2. System overview and features
The ASLR system described here follows the system design
proposed in [18] and is based on Bayes’s decision rule but
differs in several aspects. Specifically, features adapted from
action recognition, learned features, a number of techniques
to combine different modalities within the system, class-based
language models, gap/noise models and signer adaptation tech-
niques for multi-signer data are employed.

The recognition result of the system is the sequence of
words that best fits the trained word models and the language
model (see Figure 1). One has to note that linguistically
this represents a major simplification but the use of gloss an-
notations (see Section 2.1 for a short definition) is a com-
mon practice within the recognition community to deal with
the non-availability of a common writing system for sign lan-
guages. While linguistically motivated writing notations such
as HamNoSys[6] or SignWriting [8] cover information about
different modalities used within sign languages, they are still a
weak labeling scheme for signs because they do not give an
annotation of the movement, facial expression, etc. per time
frame. Furthermore, using glosses as target classes and annota-
tion scheme allows for faster annotation of large amounts sign
language data which is needed for a automatic statistical recog-
nition approach.

Finally, the proposed recognition system has been tested
on the two publicly available databases SIGNUM [19] and
RWTH-PHOENIX-Weather (PHOENIX) [20] for GSL which
are among the biggest datasets available for continuous ASLR.

2.1. Visual modeling

Albeit the cited work on automatic subunit extraction from sign
language videos, it is still unclear how signs can be split into
subunits. Furthermore, the majority of sign language corpora
including those used in this work (see Section 3) is annotated
using glosses effectively labeling the meaning of a sign rather
than its appearance. Therefore, the proposed system is based on

whole-word models. The visual model (VM) of a sign consists
of a left-to-right HMM in Bakis topology [21] where each seg-
ment of the model (each pair of consecutive states) is modelled
by a separate Gaussian mixture model (GMM) with globally
pooled covariance matrix. The number of segments per model
is estimated from manually annotated sign boundaries on the
training data. Due to strong visual pronunciation variances (3
different signs for Sunday exist in GSL), the effect of explicit
visual pronunciation modelling is investigated in Section 3.

2.2. Language models

Language models (LMs) play a crucial role in state-of-the-art
ASR and ASLR systems. Dreuw et al. [18] showed that the
impact of the well-known LM scale on the recognition perfor-
mance of an ASLR system is in the same order of magnitude as
in an ASR system. Therefore, the LM scale is optimized for all
experiments presented in this work.

In contrast to ASR where it is possible to obtain language-
specific almost arbitrarily large text collections for every lan-
guage and domain, here the LM can only be trained on the tran-
scribed training data of any given database for ASLR inherit-
ing the problem of singletons and infrequent signs which often
make up more than 40% of the available vocabulary of typically
200 to 500 signs. Inspired by the idea of class and topic LMs in
ASR [22, 23, 24] and statistical sign language translation [25],
we propose to use classes of visually and contextual similar
signs within the LM. Class selection is based on the analysis
of errors of a baseline system without LM classes. In this work,
all LMs are trained using the SRILM toolkit [26] with modified
Kneser-Ney discounting with interpolation [27].

2.3. Manual and non-manual features

GSL conveys information through manual and non-manual pa-
rameters. Manual parameters comprise both hands’ shape, their
orientation and position. There are two-handed, as well as
single-handed signs. Single-handed signs are usually signed us-
ing the dominant hand which in the databases used in this work
corresponds to the right hand for all subjects in PHOENIX and
all but two in the SIGNUM database.

Manual features: For full coverage of a sign, manual
features of both hands are used as well as non-manual features
of the face and upper-body. To extract hand features, tracking
is performed for both hands separately using a robust tracking
algorithm with decision back-tracing originally proposed
in [28]. Four different kinds of manual features are extracted.
The first one are colored image patches cut out around the
tracked positions of the dominant hand with a size of 32 × 32
Pixel for SIGNUM and 53×65 Pixel for PHOENIX. As second
feature, histograms of oriented image gradients in 3D space
(HoG3D) [17] are extracted using a non-dense spatio-temporal
grid from video volumes of ±4 cropped patches. Third, the
movement trajectory of the right hand is extracted, represented
by the position relative to the nose and the eigenvectors and
eigenvalues of the movement within a time window of 2δ + 1
frames. Fourth, MLP features have been successfully used
in ASR [29] and optical character recognition [30]. Here a
feed-forward network with one hidden layer of 2000 nodes
is trained using frame alignments from a previously trained
HMM system as labels and PCA reduced hand patches in case
of SIGNUM and HoG3D and trajectory features in case of
PHOENIX. The training of the MLP has been performed on
the training set of the HMM system. Cross validation is used to
adjust the learning rate and to avoid over-fitting.
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Non-manual features: Face patches are extracted using the
same tracking approach as described above. Furthermore,
a position and orientation invariant active appearance model
(POIAAM) [31] is fitted to each frame obtaining a 109 di-
mensional shape descriptor, including shape model parameters,
head rotation in space, mouth and eye openings and degrees
of eyebrow raise. Finally, every frame of a video sequence is
scaled down to 32×32 and 53×65 respectively to get a simple
upper body feature as originally proposed in [18].

For all features, temporal context is included by stacking
±4 video frames for SIGNUM and ±2 frames for PHOENIX.
Since the resulting feature dimension is too high to robustly es-
timate HMM parameters, PCA is applied. All features but the
movement trajectory are reduced to 200 dimensions. In case of
the colored hand and face patches PCA is applied to each color
channel (red, green, blue) separately, yielding a final feature di-
mension of 210. The movement trajectory feature itself has only
limited discriminative power and is therefore combined with the
HoG3D features of the right hand.

2.4. Signer adaptation and modality combination

Sign languages use partly parallel, but not perfectly syn-
chronous information streams/modalities to convey meaning.
These modalities must be handled in the recognition process
but it is an open question how to incorporate different modali-
ties within such a system. A similar situation exists in audio-
visual speech recognition (AVSR) where acoustic features and
visual features of the mouth are combined. Following the work
in AVSR, we investigated feature combination (concatenation),
system combination using (i)ROVER [32] as well as combina-
tion between HMMs on state level (synchronous combination)
and at word boundaries (asynchronous combination). Experi-
mental results show that the first two types of combination are
not effective for current ASLR because either the resulting fea-
ture space dimension is too high or the systems make too similar
recognition errors [10]. Here, only results for synchronous and
asynchronous combination are presented.
Signer adaptation: ASR systems trained on different speak-
ers have to address the speakers’ voice and speech patterns to
achieve good recognition performance. A common approach is
to use speaker adaptive training (SAT) and learn speaker depen-
dent feature transformation matrices using constraint maximum
likelihood linear regression (CMLLR). Analogous to ASR,
ASLR has to tackle signing styles. Therefore, SAT/CMLLR
is evaluated in the context of ASLR for 25 signers.

3. Experimental results
The SIGNUM database [19] contains lab recordings of 25 sign-
ers wearing black long-sleeve clothes in front of a dark blue
background signing predefined sentences. Videos are recorded
at 780× 580 Pixel and 30 frames per second (fps). Each signer
signs the 603 unique training and 177 testing sentences once,
whereas they are signed thrice in the single signer setup. 3.6%
of the glosses are out of vocabulary (OOV). Table 1 shows
statistics of the single signer setup only. The multi signer setup
has the same vocabulary and OOV rate but 15k sentences (92k
running glosses) for training and 4.4k sentences (23k running
glosses) for testing. If not stated explicitly otherwise, all pre-
sented SIGNUM results refer to the single signer setup.

The PHOENIX [20] database contains ’real-life’ sign lan-
guage footage recorded from weather-forecasts aired by the

Table 1: Statistics for SIGNUM single signer and PHOENIX
SIGNUM PHOENIX

Train Test Train Test
# sentences 1809 531 304 47
# running glosses 11,109 2805 3309 487
vocabulary size 455 - 266 -
# singletons 0 - 90 -
# OOV [%] - 3.6 - 1.6
perplexity (3-gram) 17.8 72.2 15.9 34.9

public German TV-station PHOENIX. ’Real-life’ is meant from
a computer vision point of view, where the signers were not ar-
tificially restricted in any sense in their signing (sentence struc-
ture, choice of vocabulary, size and intensity of signs, . . . ) and
where the recording conditions have a much larger variance than
on other signing corpora (lighting, camera-signer position, . . . ).
The video footage has not been created for pattern recognition
purposes or linguistic research. From a linguistic point of view
the employed language has to be classified as non-native, as
the signer is a hearing interpreter, whose parents are deaf. The
videos (210× 260 Pixel, 25 fps interlaced) show the interpreter
wearing dark clothes in front of an artificial gray gradient back-
ground and pose a strong challenge to CV and ASLR due to
high signing speed (majority of signs spans less than 10 frames),
strong coarticulation effects and more than 30% of the vocabu-
lary being singletons. Statistics of both databases are shown in
Table 1.

The system is trained using maximum likelihood and the
EM-algorithm. The number of Gaussian densities and the
LM-scale are optimized. For PHOENIX, the system uses
1433 emission distributions with a total of 4k Gaussians and
a globally pooled covariance matrix. The same applies to
SIGNUM, but the numbers are 1366 emission distributions
with 24k Gaussians for single signer and 198k for multi-signer.
Recognition uses word-conditioned tree search and Viterbi
approximation.

Basic Features: In order to build a well performing ASLR
system, the feature selection plays a crucial role. The full
video images can be seen as a global descriptor of manual and
non-manual parameters and are, thus, a good starting point. As
the hands are known to carry the most information in signing,
tracked and cut out hand patches have often been preferred
[18] over full frames. Comparing both features, hand patches
outperform full images on both databases (see Table 2, Row 1).

Model length estimation: In ASR, the HMM model of a word
is formed by the linked models of the word’s subunit HMMs.
Thereby, the typical temporal length of a word is modelled.
This approach is not yet possible in ASLR because the defini-
tion and extraction of subunits is still an open research question.
PHOENIX includes word boundary annotations from which the
number of segments for each gloss HMM can been estimated by
choosing the median of the lengths minus 20% and adjusting
the length in case the adapted median is shorter than the short-
est utterance of the gloss. The hand patch baseline presented
above uses this approach. Using uniform length for all glosses,
the recognition result is 60.8% instead of 55.0% WER. ’Boot-
strapping’ the initial system alignment using the word boundary
ground truth, we achieve 57.5% WER.

No word boundary ground truth is available for SIGNUM.
Model length estimation is performed using statistics on the
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Table 2: WERs for competing features (Rows 1.-6.), WERs
without and with specific techniques (Rows 7.-11.). ’+’ denotes
a synchronous, asynchronous or feature combination. Please
see corresponding text parts for explanations. HoG3D uses
tracked hand locations. For PHOENIX, in rows 3.-5., manual
ground truth annotation has been used instead.

Competing Features PHOENIX SIGNUM
1. Full image Hand patch 80.1 55.0 31.6 16.0
2. Hand patch HoG3D 55.0 49.7 16.0 12.5
3. HoG3D +Traj 45.2 42.1 12.5 14.2
4. HoG3D+Traj +Face 42.1 41.9 14.2 14.2
5. HoG3D +Full 45.2 45.2 12.5 10.7

Impact of Techniques WER [%] WER [%]
6. Model Length Estimation 60.8 55.0 16.0 17.5
7. Temporal Context 51.3 49.7 12.7 12.4
8. MLP 39.8 43.3 16.0 13.0
9. Manual Tracking Annotation 55.0 48.3 – –

10. Gap Models 42.1 39.8 – –
11. Class LM 39.8 38.6 – –

frame alignment of an HMM system with uniform length.
No improvement over uniform length is observed due to the
estimation on the frame alignment having limited accuracy and
the signs in the video already sharing a similar length.

Visual pronunciation variants: Sign languages exhibit strong
pronunciation variation which manifest in visual sign vari-
ants. Visual variants are not explicitly labeled in PHOENIX or
SIGNUM. While in SIGNUM no variants exist because of the
artificial nature of the database, PHOENIX shows high variabil-
ity within signs annotated by the same gloss. This arises mainly
from the interpreter mixing different dialects.

We have manually annotated the variants with regard to
the visual appearance and the motion of the hand yielding
on average 2.7 variants per gloss and a total of 711 different
variants. Using these annotations, each variant is modelled
by a distinct HMM with model length estimation achieving
56.5% WER in contrast to the baseline of 55.0%. Further, both
systems outperform the 62.2% WER of a ’nearest-neighbor’
style system where each gloss occurrence is modelled indepen-
dently. Apparently, increasing the number of dedicated HMMs
per gloss worsens recognition. Coherent manual definition
of variants is likely to be a problematic factor, as well as the
HMMs not generalizing well over unseen data because of the
reduction in training data per HMM and strong coarticulation
effects.

Tracking Influence: The presented hand patch baselines rely
on tracking to localize the hands of the signer. Tracking is not
perfect and errors propagate through the recognition system.
Figure 2 shows the impact of tracking quality measured in
tracking error rate (TrackEr) [28] counting a tracked position as
wrong if it differs by more than 20 Pixel from ground truth on
ASLR for PHOENIX. The TrackEr of 0 at 48.3% WER refers
to using ground truth tracking annotation (see Table 2, Row 9).

HoG3D: HoG3D features encode the shape and its change over
time of a tracked hand. The latter aspect is not covered by hand
patch features. Further, HoG3D features are more compact than
hand patches, and robust against local illumination changes.
Comparing to the hand patch baselines, recognition results are
improved from 55.0% to 49.7% WER for PHOENIX and from
16.0% to 12.5% WER for SIGNUM. The result on PHOENIX
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Figure 2: Solid Black: Influence of tracking performance in
TrackEr on WER for PHOENIX using right hand patches fea-
tures (read top x-axis vs. left y-axis). Dotted: Impact of tempo-
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(read bottom x-axis vs. left y-axis). Dashed: Impact of tem-
poral context using HoG3D (right hand) on WER for SIGNUM
(read bottom x-axis vs. right y-axis)

is almost as good as using ground truth tracking information
for the hand patches.

Temporal Context: The temporal context of a feature includes
information that cannot easily be learned by an HMM system
but has been shown to improve results in ASR [33].

Although HoG3D features already incorporate temporal
context, we find that including additional context benefits the
recognition, as can be seen in Figure 2. More context than ±2
frames degrades recognition accuracy on PHOENIX, capturing
too much information of the following glosses. On SIGNUM,
we observe only marginal recognition improvement indicating
that the context included in HoG3D is sufficient. The chosen
system defaults are at ±2 frames for PHOENIX and ±4 frames
for SIGNUM and are, thus, well chosen for both cases.

Modalities: In addition to the body pose (full image) and the
right hand (HoG3D), we evaluate the performance using fa-
cial expressions (POIAAM), the left hand (HoG3D) and the
movement of the right hand (Traj). For both databases, the
left hand tracking quality is worse than the right hand. Hence-
forth ground truth tracking annotations are used for PHOENIX
to avoid tracking bias. Thus, the HoG3D baseline improves
to 45.2% WER. Using left hand features 63.9% respectively
51.0% WER are achieved for PHOENIX and SIGNUM. The
stronger recognition degradation for PHOENIX reflects the dif-
ficulty of the database. With facial features, the recognition
result is 62.6% respectively 89.3% WER for PHOENIX and
SIGNUM. The high WER for SIGNUM is due to the fact that
hardly any facial expressions are present here. Concatenating
movement trajectory and right hand HoG3D, results are im-
proved for PHOENIX but not for SIGNUM (Table 2, Row 3).

Using synchronous (Table 2, Row 4) and asynchronous
(Table 2, Row 5) modality combination techniques, recognition
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results for both databases are improved if the respectively best
single modalities are combined. For a full overview of modality
combination techniques and results refer to [10].

Gap Models: The SIGNUM database is designed to con-
tain only one-handed signs and no switching of the hand.
Contrarily, in PHOENIX signers partly switch hands and use
the left hand for signing while holding the right. This effect
introduces missing features in the information stream of the
right and left hand. One way to remedy this problem is to
borrow the idea of noise models from ASR and to augment
the system’s vocabulary by two such models. One model
subsuming signs performed by the left hand only and one for
long gaps between signs of more than five frames that are part
of the sentence but do not belong to either neighboring sign.
The training data annotation is automatically augmented by
labels for both aspects using ground truth annotation. Using
these gap models, the WER is improved from 42.1% to 39.8%
on PHOENIX, due to the models only being populated with
clean and complete data. Further, we observe an improved
feature to HMM state alignment (measured as distance to the
ground truth annotation).

MLP-tandem: The MLP-tandem approach was evaluated for
SIGNUM and PHOENIX. For SIGNUM the MLP is trained on
hand patch features resulting in 13.0% WER that outperforms
the baseline by 3%. This result is comparable to the 12.5%
obtained using HoG3D features. For PHOENIX, the MLP is
trained on concatenated HoG3D with Trajectory features. The
recognition result is with 43.3% WER (at ± 1 frame temporal
context) 3.5% worse than the baseline of 39.8% obtained by
the HoG3D+Traj features alone. Including more temporal
context does not help because it is already included in the MLP
posterior estimates. Two aspects feature into the performance
of the MLP features on PHOENIX. On the one hand, it is not
clear if the MLP can reliably extract the relevant information
from the HoG3D+Traj features although following the ASR
praxis of using the best feature available. On the other hand,
the MLPs for PHOENIX and SIGNUM have about the same
number of parameters but the MLP on SIGNUM is trained
using ten times the data of PHOENIX. Anyhow, the results
show that MLP features as used in ASR achieve comparable
results to specialized features from CV although requiring
training themselves.

Class LM: With regard to PHOENIX the analysis of the recog-
nition errors showed that 3.8% absolute of all errors are due to
misclassified numbers and 2.2% absolute are due to orientations
such as north. Further, both classes appear in a specific context
such as a number before the gloss TEMPERATURE which is
not adequately captured by sign-level LMs. Additionally, num-
bers have a low frequency in the LM training data appearing on
average less than ten times. Augmenting the LM for PHOENIX
with a class for numbers, the perplexity (PPL) on the test data
is reduced from 34.9 to 29.3. Orientations reduce PPL to 31.2
and using both classes PPL is reduced to 25.7.

Table 3 shows that using the orientation category the recog-
nition performance is only marginally improved but using the
number category alone improves the overall recognition result
by 1.2% WER. Other categories as used in sign language trans-
lation [25] did not improve results. For SIGNUM, class LMs
have not been used because of the special and artificial struc-
ture of the sentences.

Table 3: Class LM results for PHOENIX. Error rates in %.
Class del/ins WER
None 20.7/4.5 39.8
Orientation 18.1/5.3 39.2
Numbers 19.3/4.1 38.8

+ Orientation 16.2/6.2 38.6

Signer adaptation: Applying the findings on SIGNUM single
signer to the case of 25 signers and using tracked hand patches
of the right hand as features, the system achieves 23.6% WER.

In ASR SAT is used to adapt the features to better fit the
learned models. In the same fashion, we use SAT to adapt the
baseline system to the signers sign patterns. In a second train-
ing pass, signer specific feature transformation matrices are esti-
mated using CMLLR. In SIGNUM the signer ids are annotated
and hence no signer clustering is performed.

Using the signer ids of the test data, it is possible to evaluate
what is the maximal achievable improvement in terms of WER
using SAT/CMLLR on the given test data. In the typical recog-
nition setup the ids of the signers in the test data are not known
and the resulting improvement is lower due to errors in the clus-
tering process. Adapting the proposed recognition system build
for the SIGNUM multi-signer database using SAT/CMLLR, the
WER of 23.6% is improved to 22.1% showing that the standard
approach from ASR is applicable to ASLR without any modifi-
cations.

4. Summary and conclusion

In this work, a large-vocabulary ASLR system for continuous
sign language using single-view videos as well as the process
of feature selection, technology transfer from ASR and CV and
system design have been presented. Techniques from ASR and
CV have been evaluated in the context for ASLR for challeng-
ing ’real-life’ data and data designed for pattern recognition.

Some aspects were found to generalize over both data sets:
HoG3D alone outperforms all other tested features with MLPs
being a close second. The combination of the two best single
performing modalities achieves the best combination result and
the system benefits from including temporal context in features.

Other findings are related to particularities of the given cor-
pora: On PHOENIX, gap models improve results but use spe-
cific annotations not necessarily available in other corpora. The
improvement by class LMs exploits domain-specific knowledge
and model length estimation relies on accurate sign boundaries.

To sum up, the WER on ’real life’ data has been reduced
from over 80% to 38.6% and on lab data from over 30% to
10.7% for single signer and to 22.1% for multi signer. Although
this might sound very high compared to the state-of-the-art in
ASR, this is one of the first times that recognition results have
been published on ’real-life’ data. We believe that our work
helps pushing ASLR towards more realistic application scenar-
ios, which come along with challenges most of the current sign
language data sets ignore. This goes especially for the use of
single-view video material in contrast to using special hardware
such as bulky cyber gloves, or stereo cameras.

Future work will investigate sub units and coarticulation ef-
fects.
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dependent mlps for lvcsr: Tandem, hybrid or both?” in Inter-
speech, Portland, OR, USA, Sep. 2012.

[30] G. R. J. Schenk, “Novel hybrid nn/hmm modelling techniques for
on-line handwriting recognition,” in IWFHR, Oct 2006, pp. 619 –
623.

[31] J. Piater, T. Hoyoux, and W. Du, “Video Analysis for Continu-
ous Sign Language Recognition,” in 4th Workshop on the Repre-
sentation and Processing of Sign Languages: Corpora and Sign
Language Technologies, May 2010, lREC.
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