
Comparison pattern matching and creative simile recognition

Vlad Niculae
Université de Franche-Comté, Besançon

Center for Computational Linguistics, University of Bucharest
vlad@vene.ro

Abstract

Comparisons are phrases that express the
likeness of two entities. They are usu-
ally marked by linguistic patterns, among
which the most discussed are X is like
Y and as X as Y. We propose a simple
slot-based dependency-driven description
of such patterns that refines the phrase
structure approach of Niculae and Yaneva
(2013). We introduce a simple similarity-
based approach that proves useful for mea-
suring the degree of figurativeness of a
comparison and therefore in simile (figu-
rative comparison) identification. We pro-
pose an evaluation method for this task on
the VUAMC metaphor corpus.

1 Introduction

The comparison structure is a common linguistic
pattern used to express similitude or distinction
of two entities with respect to a property. When
the comparison is not intended to be taken liter-
ally, it is called a simile. Identifying comparison
structures is important for information extraction,
as it is a way of asserting properties of entities.
The simile, on the other hand, is interesting for the
striking creative images it often produces:

“Mrs. Cratchit entered: flushed, but
smiling proudly: with the pudding, like
a speckled cannon-ball, so hard and
firm, (...)” (In “A Christmas Carol” by
Charles Dickens)

The simile, as a figure of speech, is receiv-
ing an increasing amount of interest, after being
historically discarded as a less interesting form
of metaphor. To clarify that the expressive span
of the metaphor and the simile overlap but are
different, Israel et al. (2004) gives examples of
metaphors that cannot be perfectly transformed

into similes, and vice versa. Further supporting
this point, Hanks (2012) identifies many cases
where the simile is used creatively as a way of
describing things by constructing images that sur-
pass the realm of the possible and the experienced.

2 Corpora

The VU Amsterdam Metaphor Corpus (Steen et
al., 2010), henceforth VUAMC, is a subset of
British National Corpus (BNC) Baby (Burnard,
1995) annotated for phenomena related to lin-
guistic metaphor. It consists of 16 202 sentences
and 236 423 tokens. About half (50.7%) of the
sentences have at least an mrw (metaphor-related
word) annotated. Of more interest for our study
is the mFlag (metaphor flag) annotation, which
surrounds trigger phrases for figurativeness. Ta-
ble 1 shows the most frequent mFlag tags. We
investigate the use of this annotation for automat-
ically evaluating simile identification. Given the
underrepresentation of similes in the VUAMC, we
chose to only present experiments using the com-
parison patterns involving like. The methods used
are not pattern specific. Up to a degree of variation
given by subtle language behaviour, they should
apply to any comparison, as they only involve the
contents of the comparison constituents that will
be described in section 3.

In addition to the VUAMC, we used the collec-
tion of examples from (Hanks, 2012) and a sub-
set of extracted matches from the BNC (Burnard,
1995). All text was tagged and parsed using Tur-
boParser (Martins et al., 2010) using the basic
projective model and lemmatized using Treex1

(Popel and Žabokrtskỳ, 2010).

3 Syntactic aspects

3.1 Characterisation of comparisons

1http://ufal.mff.cuni.cz/treex/index.html

110



flag count freq. per sentence
like 57 0.35%
as 28 0.17%
as if 7 0.04%
of 6 0.04%
other 45 0.28%
total 143 0.88%

Table 1: Metaphor flags in VUAMC

dict(slot=’E’,
pos=lambda x: x.startswith(’VB’),
kids=[

dict(slot=’C’,
form=’like’,
pos=’IN’,
kids=[dict(slot=’V’,

deprel=’PMOD’)]),
dict(slot=’T’,

deprel=’SUB’,
optional=True),

dict(slot=’P’,
optional=True,
deprel=’PRD’),

])

Listing 1: Python code representing the simple
pattern for comparisons using like defined by Fig-
ure 1b.

Hanks (2012) identifies the following con-
stituents of a comparison: the topic (T ), the even-
tuality (E), the shared property (P ), the compara-
tor (C) and the vehicle (V ). An example (adapted
from the BNC) of a simile involving all of the
above would be:

[He T ] [looked E] [like C] [a broiled
frog V ], [hunched P ] over his desk, grin-
ning and satisfied.

Niculae and Yaneva (2013) used constituent
parsing with GLARF (Meyers et al., 2001) trans-
formations in order to match several hand-written
comparison patterns. While the normalizations
performed by GLARF allow for more general pat-
terns (constructions using auxiliary verbs such as
have been are handled transparently), the tool is
only available in English, and it proves error-prone
in practice for complex sentences.

Dependency parsing, based on the formalism
of Tesnière and Fourquet (1959), has been more

VG

E = VB

HEAD

T

SB
J

PP

IN

C ∈ { like, as }

HEA
D

V

OBJ

COMP/ADV

(a) GLARF-style pattern.

E: */VB

C:
like/IN

V

PM
O

D

P

PR
D

T

SUB

(b) DEP-style pattern. Its Python representation can be found
in Listing 1.

Figure 1: Visualisation of the two types of ap-
proaches for encoding the X is like Y pattern.

actively developed recently. Compared to con-
stituent parsing (phrase-structure grammars), de-
pendency trees are easier to annotate, hence the
availability of dependency treebanks and trained
models for more languages. The space of possible
dependency trees of a sentence is much smaller
than the space of possible constituent trees, al-
lowing for better models. Recent work in struc-
tured prediction includes the TurboParser (Martins
et al., 2010), which we use in this work.

Figure 1 shows the GLARF-style pattern for
comparisons using like, along with a correspond-
ing dependency pattern.

3.2 Encoding and matching dependency
patterns

In the case of phrase-structure treebanks, the pow-
erful tools Tgrep and Tgrep22 permit fast extrac-
tion of trees sharing common patterns. Unfortu-
nately, their formalism is inappropriate for query-

2http://tedlab.mit.edu/˜dr/Tgrep2/

111



ing dependency trees. Additionally, while expres-
sive, their syntax is arguably opaque and unwel-
coming. We propose a simpler pattern matcher
written in Python with patterns represented as
Python code. The resulting patterns look similar
to their graphical representation. This representa-
tion is a step closer to automatic construction of
patterns, compared to hand-written pattern match-
ing using conditionals. The implementation is cur-
rently available in the comparison-pattern pack-
age 3 under the permissive 3-clause BSD license.
Like Tgrep works on parenthesised trees, common
for representing constituent parses, our matcher
takes CoNLL-style input.

For brevity, we henceforth refer to our depen-
dency pattern matching system as DEP.

Listing 1 shows the code needed to represent the
pattern. For certain underspecified patterns with
symmetries, it’s possible that several matches with
the same root occur. Our matcher returns all of
them and choosing the appropriate one is left as a
separate problem that we do not treat in this work.

3.3 Comparison identification results
On the examples from (Hanks, 2012), DEP im-
proves recall by identifying 6 additional matches,
while losing only 2, one due to a POS tagging er-
ror and the other due to a parsing error. In cases
when both systems match a sentence, it is some-
times the case that DEP provides more complete
information, especially in the case of convoluted
sentence structures.

On the subset from the BNC used by Nic-
ulae and Yaneva (2013), we examine only the
points of disagreement between systems (sen-
tences matched by one but dismissed by the other).
Even though this analysis ignores the possibility
of making qualitatively different matches for the
same sentence, we opted for it for convenience, as
evaluation needs to be manual. Contrary to Nicu-
lae and Yaneva (2013), we disregard matches that
don’t identify the vehicle of the comparison, as
we are interested in finding common vehicles, for
mining different comparators.

At first sight, DEP identifies 199 sentences
that GLARF misses, while GLARF matches 36
instances missed by DEP. Upon going through
the examples, we find that 43 matches out of
the 199 are spurious because of preventable tag-
ging or parsing errors, many of them in tran-

3http://github.com/vene/comparison-pattern

System P R F1 count
LEXBL 0.166 1.00 0.284 320
GLARF 0.303 0.434 0.357 96
DEP 0.241 0.717 0.360 158
DEPSEM 0.252 0.717 0.373 151

Table 2: Simile identification performance, with
respect to the 53 instances of mFlag=like annota-
tion in VUAMC. LEXBL is the baseline that re-
trieves all sentences that contain the preposition
like. The last column measures the number of re-
trieved instances.

scribed speech, where the word like functions as
a filler word. However, 11 out of the GLARF-
only matches were also spurious. Using depen-
dency parsing is therefore a net gain for compari-
son identification.

3.4 Automatically evaluating simile retrieval
On VUAMC, we can use the mFlag annotation
as ground truth for evaluating pattern matching.
However, as the focus of the corpus is figurative
language, literal comparison are not marked. Be-
cause pattern matching finds comparisons, without
any semantic processing, the retrieval precision
will be low (all literal comparisons would be seen
as spurious simile matches). However, it passes
the sanity check against the LEXBL baseline that
simply returns all sentences containing the prepo-
sition like (after part-of-speech tagging). To our
knowledge this is the first attempt at an automatic
evaluation of simile retrieval performance. The re-
sults are presented in table 2. Even though raw
extraction F1 score is very close, DEP has much
better recall and therefore leaves more way for
improvement with semantic methods, as promised
by our DEPSEM heuristic described in section 4.1.
This heuristic manages to improve precision at no
cost in recall.

4 Semantic approximations of
figurativeness and creativeness

4.1 Approach
Though the setting imposed by the VUAMC anno-
tation is to distinguish figurative from literal com-
parisons, the problem is much more nuanced. In
addition, there exists a distinction between con-
ventional and creative language, as discussed for
example in (Hanks, 2013). We investigate the use
of language conventionality as a proxy to negative

112



Figure 2: ROC curves for similarity as a predictor
of comparison figurativeness measured on com-
parisons found in the semantic resources (left) and
on all comparisons, assuming missing values are
zero (right).

figurativeness. We approximate conventionality as
similarity between the tagged lemmas of the head
words of T and V . To this end, we make use
of two precomputed, freely accessible resources.
The DEPSEM heuristic filters out matched com-
parisons with similarity scores above a manually-
set threshold, under the assumption that compar-
isons against highly similar things are unlikely to
be figurative.

4.2 Resources

Distributional Memory (Baroni and Lenci,
2010), henceforth DM, is a general-purpose model
of corpus-driven semantics. While it comes in a
tensor form of word-link-word, we use the distri-
butional word representations induced by random
indexing, available online4. Shutova et al. (2010)
used distributional verb-noun clusters in metaphor
identification, suggesting that such methods can
be adopted for measuring figurativeness. We mea-
sure similarity as the cosine between word vectors.

Thesaurus Rex (Veale and Li, 2013), hence-
forth THEREX5 is a knowledge base of categories
and stereotypes mined from the web using the pat-
terns as X as Y and X such as Y. While less com-
plete than a knowledge-cheaper distributional re-
source such as DM, THEREX contains structures
that can be explored for simile simplification, by
inferring the missing P as discussed in (Niculae
and Yaneva, 2013). We measure similarity be-
tween noun pairs as a sum of the weights of all
shared categories of the two words and categories
of each of the word, derived from the other6.

4http://clic.cimec.unitn.it/dm/
5http://ngrams.ucd.ie/therex2/
6This strategy proved better than measuring just the

shared categories, or than simply counting instead of adding

4.3 Evaluation
Figure 2 shows the ROC curves for the two meth-
ods, where the similarity scores are seen as predic-
tors of the target variable that indicates whether
mFlag=like is annotated within the sentence. It
can be seen that these measures perform better
than the baseline of always choosing the majority
class.

For a qualitative evaluation and proof of con-
cept, we point out several comparisons with low
and high similarities, identified in the BNC.

The piano ripples like patent leather.
[DM(piano, leather) = 0.076]

This is a vivid and funny produc-
tion and their expertise makes the
intricate puppetry go like a dream.
[DM(puppetry, dream) = 0.076]

Ink, like paint, uses subtractive colour
mixing while the video monitor uses
the additive colours; red, green and
blue, to produce the same effect.
[DM(ink, paint) = 0.502]

5 Conclusions and future work

We improve upon previous work in comparison
pattern matching by using dependency parsing,
and at the same time provide a more general in-
terpretation of pattern matching. Our approach is
much easier to adapt to other languages, as it needs
a POS tagger and a dependency parser.

We show that there exists some negative corre-
lation between lexical semantic similarity and fig-
urativeness, that we exploit in a simple heuristic
for simile identification. Such measures can be
used as features for simile classifiers.

Obvious improvements include measuring simi-
larity between children nodes and not just the head
node of each argument, or measuring other argu-
ments (E and V , for example). The shared cate-
gories of pairs of nouns and poetic categories of
single nouns available in THEREX show promise
for simile simplification. Measures of compo-
sitionality in distributional semantics as used by
Vecchi et al. (2011) for identifying impossible
constructions are expected to be better suited for
our task than the representation based on simple
co-occurrences.

weights. For brevity we omit the particular results.

113



References
Marco Baroni and Alessandro Lenci. 2010. Dis-

tributional memory: A general framework for
corpus-based semantics. Computational Linguis-
tics, 36(4):673–721.

Lou Burnard. 1995. British National Corpus: Users
Reference Guide British National Corpus Version
1.0. Oxford Univ. Computing Service.

Patrick Hanks. 2012. The Roles and Structure of Com-
parisons, Similes, and Metaphors in Natural Lan-
guage (An Analogical System). In Presented at the
Stockholm Metaphor Festival, September 6-8.

Patrick Hanks. 2013. Lexical Analysis: Norms and
Exploitations. Mit Press.

Michael Israel, Jennifer Riddle Harding, and Vera To-
bin. 2004. On simile. Language, Culture, and
Mind. CSLI Publications.

André FT Martins, Noah A Smith, Eric P Xing, Pe-
dro MQ Aguiar, and Mário AT Figueiredo. 2010.
Turbo parsers: Dependency parsing by approxi-
mate variational inference. In Proceedings of the
2010 Conference on Empirical Methods in Natural
Language Processing, pages 34–44. Association for
Computational Linguistics.

Adam Meyers, Ralph Grishman, Michiko Kosaka, and
Shubin Zhao. 2001. Covering treebanks with glarf.
In Proceedings of the ACL 2001 Workshop on Shar-
ing Tools and Resources - Volume 15, STAR ’01,
pages 51–58, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Vlad Niculae and Victoria Yaneva. 2013. Computa-
tional considerations of comparisons and similes. In
51st Annual Meeting of the Association for Compu-
tational Linguistics Proceedings of the Student Re-
search Workshop, pages 89–95, Sofia, Bulgaria, Au-
gust. Association for Computational Linguistics.

Martin Popel and Zdeněk Žabokrtskỳ. 2010. Tectomt:
modular nlp framework. In Advances in Natural
Language Processing, pages 293–304. Springer.

Ekaterina Shutova, Lin Sun, and Anna Korhonen.
2010. Metaphor identification using verb and noun
clustering. In Proceedings of the 23rd International
Conference on Computational Linguistics, pages
1002–1010. Association for Computational Linguis-
tics.

G.J. Steen, A.G. Dorst, and J.B. Herrmann. 2010.
A Method for Linguistic Metaphor Identification:
From Mip to Mipvu. Converging evidence in lan-
guage and communication research. Benjamins.

Lucien Tesnière and Jean Fourquet. 1959. Eléments
de syntaxe structurale, volume 1965. Klincksieck
Paris.

Tony Veale and Guofu Li. 2013. Creating similarity:
Lateral thinking for vertical similarity judgments. In
Proceedings of the 51st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 660–670, Sofia, Bulgaria, Au-
gust. Association for Computational Linguistics.

Eva Maria Vecchi, Marco Baroni, and Roberto Zam-
parelli. 2011. (linear) maps of the impossible: cap-
turing semantic anomalies in distributional space. In
Proceedings of the Workshop on Distributional Se-
mantics and Compositionality, pages 1–9. Associa-
tion for Computational Linguistics.

114


