Inference for Natural Language

Amal Alshahrani
School of Computer Science
Universit of Manchester
Manchester M13 9PL, UK

amal.alshahraniW@postgrad.

Allan Ramsay
School of Computer Science
Universit of Manchester
Manchester M13 9PL, UK

Allan.Ramsav@manchester.

manchester.ac.uk

Abstract

The main aim of this study is to develop a nat-
ural language inference (NLI) engine that is
more robust than typical systems that are based
on post-Montague approaches to semantics and
more accurate than the kinds of shallow ap-
proaches usually used for textual entailment, The
term robustness is concerned with processing as
many inputs as possible successfully, and the
term accuracy is concerned with producing cor-
rect result. In recent years, several approaches
have been proposed for NLI. These approaches
range from shallow approaches to deep ap-
proaches. However, each approach has a number
of limitations, which we discuss in this paper. We
argue that all approaches to NLI share a common
architecture, and that it may be possible to over-
come the limitations inherent in the existing ap-
proaches by combining elements of both kinds
of strategy.

1 Introduction

In order to understand natural language, we need
to know a lot about the world and be able to
draw inference (Ovchinnikova, 2012). For in-
stance, to answer the query “Was Shakespeare
the author of Romeo and Juliet?” from the fol-
lowing text: “Romeo and Juliet is one of
Shakespeare’s early tragedies. The play has been
highly praised by critics for its language and dra-
matic effect” we need background knowledge
such as: (i) Tragedies are plays. (ii) Shakespeare
is a playwright; playwrights write plays. (iii)
Plays are written in some language and have dra-
matic effect.

Hence without background knowledge, an-
swering the query would be impossible.

Tackling this task will open the door to applic-
ations of these ideas in various areas of Natural
Language Processing (NLP) (Dale, Moisl and
Somers, 2000) such as question answering (QA),

ac.uk

information extraction (IE), summarisation, and
semantic search.

Many approaches have been suggested in the
literature to achieve this goal. These approaches
can be divided into two groups:

Shallow approaches, which are based on lexical
overlap, pattern matching, distributional similar-
ity and others (Dagan and Glickman, 2004).

These approaches have a number of limitations
and difficulties. In particular,
» They may not take semantic representa-
tion into account.
* They may not be sound.
» They cannot easily make use of complex
background knowledge.

Deep approaches, which are based on semantic
analysis, lexical and world knowledge, logical
inference and others (Blackburn et al., 2001).

These approaches have a number of limitations
and difficulties For instance,

A Compositional translation to logical form
requires syntactic analysis which con-
forms to a grammar expressed as a set of
rules. Such analyses are very hard to ob-
tain for freely occurring texts.

A For complex sentences, logical forms of-
ten turn out to be extremely verbose, and
hence are difficult for standard theorems
provers to handle.

A Vast amounts of additional knowledge
are required.

This kind of deep approach can succeed in re-
stricted domains, but it fails badly on open do-
main problems.

2 Proposed system

It is widely assumed that shallow and deep ap-
proaches of NLI have completely different struc-

mailto:Allan.Ramsay@manchester
mailto:amal.alshahrani@postgrad

ture (MacCartney, 2009). However, if you look at
the left and right-sides of Figure (1), you can see
that at a very gross level of abstraction they can
be decomposed into the same three major steps.
They start with a pre-processing stage (stage A)
which analyses the syntactic structure of input as
some kind of parse tree. Then the second step
(stage B) is responsible for normalising these
trees to some format that is suitable for the inten-
ded inference engine. Finally, the inference en-
gone (stage C) is responsible for comparing the
representations obtained by stage B to see what
follows from what was said.

Deep approach: Logical-based Current approach Shallow approach: Pattern matching

=11 L=
PO =°/ TN Parasite
arser Parse Malt Parser
ROCG NGy) Stanfore
Pasar —— Farser
A || DCG Parser MsTParss
Dependency J
Trees
—" /Kpipl?‘\
Rule Bases
or
|| pisson = ompositinal DRT
B[] agtion N Rales TFLR;;E
‘ Logial ‘ ‘ Other Trees
Formis
Logical
\M?XB $
2
e

Figure 1: System Architecture.

The differences between the left- and right-hand
sides of Figure 1 are that the stage C of the deep
approach utilises a standard theorem prover for
first-order logic (or some extension thereof), and
hence requires stage B to produce formulae of
the relevant logic on the basis of the trees pro-
duced by stage A. It is, however, extremely diffi-
cult to produce such formulae from freely occur-
ring texts, since most parsers that are robust
enough to handle texts such as newspaper art-
icles or Wikipedia pages rely on implicit rules
that have been extracted from corpora, and it is
somewhere between difficult and impossible to
attach compositional rules to such inferred pars-
ing rules. Shallow approach are less ambitious
about the degree of normalisation that can be
achieved, but as a consequence the inference en-
gines that they depend on are less powerful. The
goal of the current proposal is to use an adapta-
tion of a standard theorem prover, but to apply it
directly, or almost directly, to the dependency
trees obtained by the parser.

61

2.1 Stage A: Structural Analysis

This stage represents the pre-processing of the
current system. It is responsible of converting in-
put sentences from natural language expressions
into dependency trees. To achieve this goal, we
use the PARASITE parser (Ramsay, 1999;
Seville and Ramsay, 2001). The advantage of
using an in-house parser is that it allows some
measure of control over the shape of then output
trees—that if, for instance, we believe that it is
better for the auxiliaries in a verb chain to be the
head of the chain then we can arrange it so that
our trees have this shape; and if we decide that
the contrary is the case, then we can easily make
the change. Controlling the underlying structure
of the grammar obviates the need for subsequent
transformations during the second stage of the
process—to take another example, making the
determiner the head of an NP might make sense
from the point of view of the inference engine, so
if we have control over that decision during the
parsing process then we will not have to do any-
thing about it during normalisation.

2.2 Stage B: Normalisation

In any NLI system, the output of the initial struc-
tural analysis is likely to produce structures that
are not well-matched to the intended inference
engine. This is clear for deep approaches, where
a considerable amount of machinery is required
for transforming parse trees into logical forms,
but it is also true for shallow approaches: Alab-
bas & Ramsay (2012), for instance, showed that
induced dependency parsers work better if the
head of the first element of a coordinated expres-
sion is taken to be the head of the whole coordin-
ated expression, but almost all approaches to in-
ference require the head of such an expression to
be the conjunction itself. It is therefore nearly al-
ways necessay to carry out some post-processing
of the trees produced by the parser before carry-
ing out the third stage of the overall task. In the
following sections we describe three such norm-

alisation techniques.

Shallow normalisation

Normalisation in shallow approaches is typically
involves producing abstract 'entailment tem-
plates' from sets of sentence pairs, where com-
mon element of the two sentences in a pair are
replaced by variables (Kouylekov and Magnini,
2005).

Numerous systems have been suggested for
automatic acquisition of rules, ranging from dis-
tributional similarity to finding shared contexts

such as DIRT' (Lin and Pantel, 2001), TEASE®
(Szpektor et al., 2004), and MSR Paraphrase
Corpus (Dolan et al., 2004). For example, the
normalisation for the sentence (‘X solves Y’ im-
plies ‘X finds a solution to Y’), which is (Tem-
plates with variables) is illustrated in Figure 4.

converting into the form (LHS - RHS) as in
Figure 5(c’) and Figure 5(d’), using the rules in
Figure 6(b, ¢, and d). Then in Figure 7&8 we
simplified the sub-tree (c) and (d) to obtain the
last version of sub-tree (¢) & (f) as required for
using with our theorem prover.

)) find
solve m
A — X solution Y
X Y | |

to

'l

a

Figure 4: Normalise the sentences ‘X solves Y
= X finds a solution to Y.

Deep normalisation

Normalisation in deep approaches is defined as
translation of natural language expressions into
formal meaning representations (logical form)
(Blackburn et al., 2001). There are a lot of sys-
tems available such as conversion to clausal form
(Lukasova et al., 2012), Skolemisation (Degtyar-
ev, Lyaletski, and Morokhovets, 1999), distribu-
tion of negation and others. For instance, (John
solves the problem — John finds a solution to
the problem).

The normalization for the previous sentences is:

Vx,y(solve(x,y)
Jz(find(x,z) Asolution(z)Ato(z,y))

Our normalization

In our normalization we translate a form of a nat-
ural language into a restricted subset of the same
natural language,

In our case the first form is a dependency tree,
obtained from the parser in stage (A). Such a tree
may not be ideal for using with the theorem
prover in stage (C). We therefore have to normal-
ise such trees in order to adapt them for use with
our chosen theorem proving strategy. Exactly
what normalisation is required depends on the
nature of the theorem prover. For example in
Figure 5 we use the dependency tree in figure
5(b’) to obtain a subset of dependency tree by

! “Discovery of Inference Rules from Text”.
2 “Textual Entailment Anchor Set Extraction”.

62

loves)

T is loves
if X woman

—» X man ==2 X woman

is some

a s50me

X man

Y () (d)
Figure 5: Convert the sentence into the form
(LHS (¢’) = RHS (d)).

Q1 ...

(R

.t
L

() (c) [d)

Figure 6: Rule for converting the sentence into
the form (antecedent (c) = consequent (d)).

be

(e

Sis loves loves
" .

| X man i__, X woman — b P __s X woman
. ‘ \ ;
\ ‘

N some some

@ @ f€) {d)

Figure 7:Simplifed subtree(c’) to subtree (¢’) by
applying the rule in (c) & (e).

some
d]

- Newname(Y)

/loves
/)

man : \ man loves woman ™,
IX woman |]
\ g

==> ==>! &

) / X XY Yo
L, some T Pt
AN A

T “7 = Newname(Y)

i)

&) d) ()

Figure 8:Simplified subtree(d’) into sub-tree(f”)
by applying the rule in (d) & (f).

2.3 Stage C: Inference Engine

The key to the current proposal is the observation
that the central step in almost all current theorem
provers, namely that given two sequents/clauses
A & ... &4, ==>C,or ...or C, or Xand X'
1
&AT & ... & A’
n2
X and X' can be unified by some unifier o, you
can 'cut' X toobtain 6 (4, & ... &4, &A1 &
1
or C,; or C'yor ...

=> (C'50r .. or C',, where

L&A
n2

==>C, or ... or
C'wy

There are numerous ways of invoking this
rule: the key is that for the vast majority of theor-
em provers this rule is the core of the process.

It is worth noting that the elements of a rule
need not be expressions of some formal logic.
They usually are, but there is no a priori reason
why they should be. They could, for instance, be
the rules of a game: a program for playing chess
might exploit rules which describe legal board
transformations, a program for finding routes
might exploit rules which describe links between
places, ... In particular, they might be depend-
ency trees.

This is clear enough for simple rules: if we al-
low natural language utterances to contain vari-
ables, then we can easily write rules like

X and Y used to be married if X and Y have got
divorced

Rules like this can easily be applied using the
standard rule of cut mentioned above. More in-
terestingly, we can also us it to apply essentially
higher-order rules such as

P are not Q if P used to be Q

We have previously shown how to extend
SATCHMO (Manthey & Bry 1988) to cover in-
tensionality (Ramsay 2001). The same ma-
chinery can be exploited to handle higher rules of
the kind shown, which is crucial for handling
natural language, where intensionality, type-
shifting and other higher-order notions are rife.

We also intend to generalise the conditions un-
der which cut applies. The standard rule requires
X and X' to unify. Within the current framework,
X and X' are trees. As such, we can use approx-
imate matching, e.g. allowing X' to be subset of
X to allow for the deletion of modifiers, or by al-
lowing the terms that appear in X’ to denote sub-
sets of the corresponding terms in X.

63

These two moves will allow us to work dir-
ectly with dependency trees, without making any
assumptions about where these trees came from.
We can thus avoid the need to translate into some
target formal language: if some element of the
antecedent of one rule matches an element of the
consequent of another, subject to whatever con-
straints we put on the matching process, then we
can use the rule.

3 Conclusion

We have proposed a strategy for carrying out in-
ference over natural language sentences by ap-
plying standard theorem proving technology dir-
ectly to dependency trees. This circumvents the
need to translate from parse trees, of whatever
kind, to formal logic, which has proved challen-
ging for over forty years. It does introduce two
risks: that the inference chaijns will become un-
sound, and that inference will become very slow.
The first of these can be moderated by varying
the conditions under which a partial match is al-
lowed: if only exact matches are allowed, then
there will be no risk, but rules which are poten-
tially relevant may be missed, and as more flex-
ibility in the matching process is permitted there
will be more chance of mistakes but wider cover-
age. Similarly, if subtrees are only matched if
they are term-unifiable then there should be no
loss of speed, and as the conditions for matching
are relaxed the process will become slower but
more flexible.

Acknowledgements

Allan Ramsay's contribution to this work was
supported by Qatar National Research Founda-
tion grant NPRP 09-046-6-001. Amal Alshahran
is supported by a grant from the government of
the Kingdom of Saudi Arabia.

References

Alabbas, M & Ramsay A M, Arabic Treebank.:.

from _Phrase-Structure Trees to Dependency
Trees, META-RESEARCH Workshop on Ad-

vanced Treebanking, LREC 2012, Istanbul, 61--

68,2012

Blackburn, P., Bos, J., Kohlhase, M., & De Niv-
elle, H. (2001). Inference and computational se-
mantics. In Computing Meaning (pp. 11-28).
Springer Netherlands.

Dagan, I. and Glickman, O. (2004). Probabilistic
textual entailment: generic applied modeling of
language variability. In Proceedings of the PA
CAL Workshop on Learning Methods for Text
Understanding and Mining, pp. 26-29, Grenoble,
France.

http://www.lrec-conf.org/proceedings/lrec2012/workshops/12.LREC%202012%20Advanced%20Treebanking%20Proceedings.pdf
http://www.lrec-conf.org/proceedings/lrec2012/workshops/12.LREC%202012%20Advanced%20Treebanking%20Proceedings.pdf
http://www.lrec-conf.org/proceedings/lrec2012/workshops/12.LREC%202012%20Advanced%20Treebanking%20Proceedings.pdf

Dale, R., Moisl, H. L., & Somers, H. L. (Eds.).
(2000). Handbook of natural language pr cess-
ing. CRC Press.

Degtyarev, A. 1., Lyaletski, A. V., & Morok-
hovets, M. K. (1999, January). Evidence al-
gorithm and sequent logical inference search.
In Logic for Programming and Automated Reas-
oning (pp. 44-61). Springer Berlin Heidelberg.

Dolan, W. B., Quirk, C., and Brockett, C.. 2004.
Unsupervised Construction of Large Paraphrase
Corpora: Exploiting Massively Parallel News
Sources. In Proceedings of COLING 2004.

Kouylekov, M., & Magnini, B. (2005, April). Re-
cognizing textual entailment with tree edit dis-
tance algorithms. In Proceedings of the First
Challenge Workshop Recognising Textual Entail-
ment (pp. 17-20).

Lin, D. and Pantel, P. (2001). DIRT-discovery of
inference rules from text. In Proceedings of the
7th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pp. 323-328, San
Francisco, California, USA.
doi:10.1145/502512.502559.

Lukasova, A., Zacek, M., Vajgl, M., & Kotyrba,
M. (2012). Resolution reasoning by RDF Claus-
al Form Logic. International Journal of Com-
puter Science, 9.

MacCartney, B. (2009). Natural language infer-
ence (Doctoral dissertation, Stanford University).
Manthey, R., & Bry, F. (1988, January).
SATCHMO: a theorem prover implemented in
Prolog. In 9th International Conference on Auto-
mated Deduction (pp. 415-434). Springer Berlin
Heidelberg.

64

Ovchinnikova, E. (2012). Integration of world
knowledge for natural language understand-
ing (Vol. 3). Springer.

Ramsay, A.M., Theorem proving for untyped

constructive lambda-calculus: implementation
and application, Logic Journal of the Interest

Group in Pure and Applied Logics, 9(1), 89-106,
2001

Ramsay, A.M., (1999). Parsing with discontinu-
ous phrases. Natural Language Engineering,
5(3):271-300,doi:10.1017/S1351324900002242.

Seville, H. and Ramsay, A. (2001). Capturing
sense in intensional contexts. In Proceedings of
the 4th International Workshop on Computation-
al Semantics, pp. 319-334, Tilburg, The Nether-
lands.

http://jigpal.oxfordjournals.org/cgi/reprint/9/1/83
http://jigpal.oxfordjournals.org/cgi/reprint/9/1/83
http://jigpal.oxfordjournals.org/cgi/reprint/9/1/83

