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Abstract

This paper describes our use of phrase-
based statistical machine translation (PB-
SMT) for the automatic correction of er-
rors in learner text in our submission to
the CoNLL 2013 Shared Task on Gram-
matical Error Correction. Since the lim-
ited training data provided for the task
was insufficient for training an effective
SMT system, we also explored alternative
ways of generating pairs of incorrect and
correct sentences automatically from other
existing learner corpora. Our approach
does not yield particularly high perfor-
mance but reveals many problems that re-
quire careful attention when building SMT
systems for error correction.

1 Introduction

Most approaches to error correction for non-native
text are based on machine learning classifiers for
specific error types (Leacock et al., 2010; Dale
et al.,, 2012). Thus, for correcting determiner
or preposition errors, for example, a multiclass
model is built that uses a set of features from the
local context around the target and predicts the ex-
pected article or preposition. If the output of the
classifier is the same as the original sentence, the
sentence is not corrected. Otherwise, a correction
is made based on the predicted class. This is the
de facto approach to error correction and is widely
adopted in previous work.

Building effective classifiers requires identifica-
tion of features types from the text that discrimi-
nate well correcting each specific error type, such
as part-of-speech tags of neighbouring words, n-
gram statistics, etc., which in turn require addi-
tional linguistic resources. Classifiers designed to
correct only one type of error do not perform well
on nested or sequential errors. Correcting more
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than one type of error requires building and com-
bining multiple classifiers. These factors make
the solution highly dependent on engineering de-
cisions (e.g. as regards features and algorithms)
as well as complex and laborious to extend to new
types.

An attractive and simpler alternative is to think
of error correction as a translation task. The un-
derlying idea is that a statistical machine transla-
tion (SMT) system should be able to translate text
written in ‘bad’ (incorrect) English into ‘good’
(correct) English. An advantage of using this ap-
proach is that there is no need for an explicit en-
coding of the contexts that surround each error (i.e.
features) since SMT systems learn contextually-
appropriate source-target mappings from the train-
ing data. Likewise, they do not require any special
modification for correcting multiple error types se-
quentially, since they generate an overall corrected
version of the sentence fixing as much as possible
from what they have learnt. Provided the system is
trained using a sufficiently large parallel corpus of
incorrect-to-correct sentences, the model should
handle all the observed errors without any further
explicit information like previously detected error
types, context or error boundaries, and so forth.

The increasing performance of state-of-the-art
SMT systems also suggests they could prove suc-
cessful for other applications, such as error cor-
rection. In fact, SMT systems have been success-
fully used in a few such experiments, as we re-
port below. The work presented here builds upon
these initial experiments and explores the factors
that may affect the performance of such systems.

The remainder of this paper is organised as fol-
lows: Section 2 gives a summary of previous re-
search using SMT for error correction, Section 3
describes our approach and resources, and Sec-
tion 4 reports our experiments and results. Sec-
tion 5 discusses a number of issues related to the
performance of our system and reports some at-

Proceedings of the Seventeenth Conference on Computational Natural Language Learning: Shared Task, pages 5261,
Sofia, Bulgaria, August 8-9 2013. (©2013 Association for Computational Linguistics



tempts at improving it while Section 6 includes
our official performance in the shared task. Fi-
nally, Section 7 provides conclusions and ideas for
future work.

2 Related Work

Brockett et al. (2006) describe the use of an
SMT system for correcting a set of 14 count-
able/uncountable nouns which are often confus-
ing for learners of English as a second language.
Their training data consists of a large corpus of
sentences extracted from news articles which were
deliberately modified to include typical countabil-
ity errors involving the target words as observed
in a Chinese learner corpus. Artificial errors are
introduced in a deterministic manner using hand-
coded rules including operations such as chang-
ing quantifiers (much — many), generating plurals
(advice — advices) or inserting unnecessary deter-
miners. Experiments show their SMT system was
generally able to beat the standard Microsoft Word
2003 grammar checker, although it produced a rel-
atively higher rate of erroneous corrections.

Similar experiments were carried out by Mizu-
moto et al. (2011) for correcting Japanese as a
second language. However, their training corpus
comprised authentic learner sentences together
with corrections made by native speakers on a so-
cial learning network website. Because the origi-
nal data has no explicit annotation of error types,
the resulting SMT system is not type-constrained.
Their results show that the approach is a viable
way of obtaining very high performance at a rela-
tively low cost provided a large amount of train-
ing data is available. These claims were later
supported by similar experiments using English
texts written by Japanese students (Mizumoto et
al., 2012)

Ehsan and Faili (2013) trained SMT systems
for correcting grammatical errors and context-
sensitive spelling mistakes in English and Farsi.
Datasets are obtained by injecting artificial errors
into well-formed treebank sentences using prede-
fined error templates. Whenever an original sen-
tence from the corpus matches one of these tem-
plates, a pair of correct and incorrect sentences
is generated. This process is repeated multiple
times if a single sentence matches more than one
error template, thereby generating many pairs for
the same original sentence. A comparison be-
tween the proposed systems and rule-based gram-
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mar checkers show they are complementary, with
a hybrid system achieving the best performance.
Other approaches using machine translation for
error correction are not aimed at training SMT sys-
tems but rather at using them as auxiliary tools for
producing round-trip translations (i.e. translations
into a pivot foreign language and back into En-
glish) which are used for subsequent post-editing
of the original sentence (Hermet and Désilets,
2009; Madnani et al., 2012). This differs from
our work in that we focus on training and adapt-
ing SMT systems to make all the targeted correc-
tions sequentially rather than using them as ‘black
boxes’ on top of which other systems are built.

3 Method

We approach error correction as a translation task
from incorrect into correct English. Several SMT
systems are built using different training data
and the best one is selected for further refine-
ment. Given the CoNLL-2013 shared task spec-
ification, systems are required to correct five spe-
cific error types involving articles and determin-
ers (ArtOrDet), noun number (Nn), prepositions
(Prep), subject-verb agreement (SVA) and verb
forms (Vform) and must ignore other errors in or-
der to achieve a good score.

3.1 Data

The training data provided for the task is a sub-
set of the NUCLE v2.3 corpus (Dahlmeier et al.,
2013), which comprises essays written in English
by students at the National University of Singa-
pore. The original corpus contains around 1,400
essays, which amount to 1,220,257 tokens, but
since a portion of this data (25 essays of about 500
words each) was included in the test set, we es-
timate the remaining 1,375 essays in the training
set contain around 1,207,757 tokens. All the sen-
tences were manually annotated by human experts
using a set of 27 error types, although we used a
filtered version containing only the five types se-
lected for the shared task.

Because the size of the supplied training data
is too small to train an effective SMT system, we
used additional data from the Cambridge Learner
Corpus! (CLC). In particular, we derived new
pairs of incorrect and correct sentences using the

"http://www.cup.cam.ac.uk/gb/elt/
catalogue/subject/custom/item3646603/
Cambridge-International-Corpus-
Cambridge-Learner—Corpus/



publicly available scripts from the First Certificate
in English (FCE) (Yannakoudakis et al., 2011) and
others from the International English Language
Testing System (IELTS) examinations, which in-
clude mainly academic writing. These corpora
include about 16,068 sentences (532,033 tokens)
and 64,628 sentences (1,361,841 tokens) respec-
tively. Given that the error annotation scheme used
in the CLC is more detailed than the one used in
NUCLE, a mapping had to be defined so that we
could produce corrections only for the five target
error types (Table 1).

3.2 Generating Artificial Errors

Following previous approaches, we decided to in-
crease the size of our training set by introducing
new sentences containing artificial errors. This
has many potential advantages. First, it is an eco-
nomic and efficient way of generating error-tagged
data, which otherwise requires manual annotation
and is difficult to obtain. Second, it allows us to
introduce only the types of errors we want, thus
giving us the ability to imitate the original NU-
CLE data and circumvent annotation incompati-
bility. Finally, we can choose our initial sentences
so that they match specific requirements, such as
topic, length, linguistic phenomena, etc.

Again, we use a publicly available portion of the
CLC formed by all the corrected samples featured
on the English Vocabulary Profile? (EVP) website.
These sentences come from a variety of examina-
tions at different levels and amount to 18,830 sen-
tences and approximately 351,517 tokens.

In order to replicate NUCLE errors in EVP sen-
tences as accurately as possible, we applied the
following procedure:

1. We extract all the possible correction pat-
terns from the NUCLE v2.3 gold standard
and rewrite them as correct-fragment —
incorrect-fragment. Two types of patterns are
extracted, one in terms of lexical items (i.e.
surface forms/words) and another using part-
of-speech (PoS) tags. Table 2 shows some
sample patterns.

For each correct sentence in the EVP (target),
we generate a pseudo-source sentence by ap-
plying zero or more of extracted rules.

http://www.englishprofile.org/index.
php?option=com_contenté&view=article&id=
4&Itemid=5
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ORIGINAL

An Internet connection literally means
SENTENCE

having the world at your fingertips.

an — the ) (PREP DT NN — PREP NN )
(the > @) (NN = NNS )
Intey etliterally means

at your fingertips

ERROR
PATTERNS

ERROR
INJECTION

having|the]world

RESULTING

The Internet connections literally means
SENTENCE

having world at fingertips.

Figure 1: An example of the artificial error injec-
tion process.

Our approach is very naive and assumes all
error-injection rules have equal probability.
The injection of errors is incremental and
non-overlapping. Figure 1 illustrates this pro-
cedure.

. Lexical patterns take precedence over PoS
patterns. However, because the application of
a rule is decided randomly, a sentence might
end up being distorted by both types of pat-
terns, only one, or none at all (i.e. no er-
rors are introduced). In the last case, both
the source and target sentences contain cor-
rect versions.

A parallel corpus is built using the error-
injected sentences on the source side and
their original (correct) versions on the target
side.

As we explain in Section 4, this corpus is com-
bined with other training data in order to build dif-
ferent SMT systems.

3.3 Tools

All our systems were built using the Moses SMT
system (Koehn et al., 2007), together with Giza++
(Och and Ney, 2003) for word alignment and the
IRSTLM Toolkit (Federico et al., 2008) for lan-
guage modelling. For training factored models
(Koehn, 2010, Chapter 10) which use PoS infor-
mation, we use RASP’s PoS tagger (Briscoe et
al., 2006). Sentence segmentation, tokenisation
and PoS tagging for artificial error generation were
carried out using NLTK (Bird et al., 2009).



NUCLE v2.3 CLC

Error Category Tag Error Category Tag

Incorrect determiner inflection DI
Determiner agreement error AGD

Wrong determiner because of noun countability | CD

Article or determiner ArtOrDet Derivation of det.erminer error DD

Incorrect determiner form FD

Missing determiner MD

Replace determiner RD

Unnecessary determiner UD

Countability of noun error CN

Noun number Nn Wrong noun forrn . EN

Incorrect noun inflection IN
Noun agreement error AGN

Derivation of preposition error DT

Wrong preposition form FT

Preposition Prep Missing preposition MT

Replace preposition RT

Unnecessary preposition uUT
. Verb agreement error AGV
Subject-verb agreement SVA Determiner agreement error AGD

Wrong verb form FV

Incorrect verb inflection v

Verb form Vform Derivation of verb error DV
Incorrect tense of verb TV

Missing verb MV

Table 1: Mapping of error tags between NUCLE v2.3 and the CLC.
Lexical PoS
Pattern Example Pattern Example
has — have temperature has risen — NN — NNS information —
temperature have risen informations
to be used — to be use | technology to be used — DT NNP — NNP the US — US

technology to be use
during the early 60s —
for the early 60s

during — for

NN VBZ VBN — NN VBP VBN

expenditure is reduced —
expenditure are reduced

Table 2: Sample error injection patterns extracted from the NUCLE v2.3 corpus.

4 Experiments and Results

We first built a baseline SMT system using only
the NUCLE v2.3 corpus and compared it to other
systems trained on incremental additions of the re-
maining corpora. All our systems were trained us-
ing 4-fold cross-validation where the training set
for each run always included the full FCE, IELTS
and EVP corpora but only 3/4 of the NUCLE data,
leaving the remaining fourth chunk for testing.
This training method allowed us to concentrate on
how the system performed on NUCLE data.

Performance was evaluated in terms of preci-
sion, recall and F; as computed by the M? Scorer
(Dahlmeier and Ng, 2012), with the maximum
number of unchanged words per edit set to 3 (an
initial suggestion by the shared task organisers
which was eventually changed for the official eval-
uation). The average performance of each system
is reported in Table 3.
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In general, results show that precision tends to
drop as we add more training data whereas recall
and F; slightly increase. This suggests that our
additional corpora do not resemble NUCLE very
much, although they allow the system to correct
some further errors. Contrary to our expectations,
the biggest difference between precision and re-
call is observed when we add the EVP-derived
data, which was deliberately engineered to repli-
cate NUCLE errors. Although it has been reported
that artificial errors often cause drops in perfor-
mance (Sjobergh and Knutsson, 2005; Foster and
Andersen, 2009), in our case this may also be due
to differences in form (e.g. sentence length, gram-
matical structures covered, error coding) and con-
tent (i.e. topics) between our source (EVP) and
target (NUCLE) corpora as well as poor control
over the artificial error generation process. In fact,
our method does not explicitly consider error con-
texts, error type distribution or other factors that



Model P R Fi - Model P R F1 o

NUCLE 0.1505 | 0.1530 | 0.1517 | 0.0201 NUCLE 0.1989 | 0.1013 | 0.1342 | 0.0165
NUCLE+FCE 0.1547 | 0.1518 | 0.1532 | 0.0216 NUCLE+FCE 0.2248 | 0.0933 | 0.1319 | 0.0151
NUCLE+FCE+IELTS 0.1217 | 0.2068 | 0.1532 | 0.0151 NUCLE+FCE+IELTS 0.1706 | 0.1392 | 0.1533 | 0.0163
NUCLE+FCE+IELTS+EVP | 0.1187 | 0.2183 | 0.1538 | 0.0206 NUCLE+FCE+IELTS+EVP | 0.1696 | 0.1480 | 0.1581 | 0.0148
Table 3: Performance of our lexical SMT models.  Table 4: Performance of our PoS factored
The best results are marked in bold. Standard devi- SMT models. The best results are marked in

ation (o) indicates how stable/homogeneous each
dataset is (lower values are better).

certainly have an impact on the quality of the gen-
erated sentences and may introduce noise if not
controlled. Nevertheless, the system trained on all
four corpora yields the best F; performance.

We also tested factored models which include
PoS information. Results are shown in Table 4.
The same behaviour is observed for the metrics,
although values for precision are now generally
higher while values for recall are lower. Again,
the best system in terms of F; is the one trained on
all our corpora, slightly outperforming our previ-
ous best system.

5 Error Analysis and Further
Improvements

When building error correction systems, minimis-
ing the number of cases where correct language
is flagged as incorrect is often regarded as more
important than covering a large number of errors.
Technically, this means high precision is often pre-
ferred over high recall, especially when it is diffi-
cult to achieve both (as is the case for our systems).
A closer observation of the training data, transla-
tion tables and system output reveals a series of
issues that are affecting performance, which are
summarised below.

In order to test some solutions to these prob-
lems, we used our best system as a baseline and
retrained it to include each proposed modification
individually. Results are included in Table 5 and
referenced accordingly.

5.1 Size of training corpus

With slightly over a million tokens, the NUCLE
corpus seems too small to train an efficient SMT
system. However, the additional data we were able
to use differs from the NUCLE corpus in terms of
learner-level, native language, and the tasks being
attempted.
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bold. Standard deviation (o) indicates how sta-
ble/homogeneous each dataset is (lower values are
better).

5.2 Word reordering

In many cases, our system made corrections by re-
ordering words. Since the five error types in the
shared task rarely implied reordering, this caused
unnecessary edits that harmed precision, as in the
following example.

Original sentence

High Temperture Behaviour Of Candidate...
System hypothesis

High Behaviour Of Temperture Candidate...
Gold standard

High Temperture Behaviour Of Candidate...
(unchanged)

Disabling word reordering in our system helped
to avoid this problem and increased precision
without harming recall (Table 5 #1).

5.3 Limited translation model

Because of the relatively small size of our train-
ing corpus, the resulting phrase tables used by our
SMT systems contain very general alignments (i.e.
corrections) with high probability, which are often
applied in inappropriate contexts and result in a
large number of miscorrections.

In order to minimise this effect, we forced our
SMT system to output the alignments that were
used for correcting each sentence in our devel-
opment sets and deleted from the phrase table
those which consistently caused deviations from
the gold standard. This was done by manually
comparing our systems’ hypotheses to their gold-
standard versions and identifying common pat-
terns in the alignments that led to miscorrections,
such as to — to the, have — have a, people — peo-
ple to, etc. 1,120 out of the total 11,421,886 align-
ments in the original translation table were re-
moved (~0,01%). Removing such alignments re-



sults in higher precision but lower recall, as shown
in Table 5 #2.

We also observed that the system was bi-
ased towards making unnecessary insertions of
the definite article before some specific nouns.
This means that the system would almost always
change words like cost, elderly or government for
the cost, the elderly or the government, regardless
of whether this fits the context or not. We believe
this is due to the lack of sufficient training sam-
ples where these words remained unaltered on the
source and target side, so we decided to augment
the NUCLE corpus by adding a copy of all the
corrected versions of the sentences on both sides.
Then, the system should learn that these words can
also remain unchanged in corrections. Table 5 #3
shows this improves precision but harms recall.

Out-of-vocabulary words (i.e. words not seen
during training) are a also common problem in
SMT systems, and this is directly related to the
amount of data available for training. In our sys-
tems, all out-of-vocabulary words were directly
transferred from source to target. That is, when-
ever our system encounters a word it has not seen
previously, it keeps it unchanged. Because of the
way our SMT system works, there is no explicit
generation of verb or noun forms so unless the sys-
tem has learnt this from appropriate contexts (for
example, that a progressive tense is consistently
being used after a preposition), it is unable to make
such corrections.

5.4 Inability to distinguish between
prepositions

We also observed that our systems did not often
correct prepositions. We believed this was due to
the PoS language model using the same tag for
all prepositions and therefore being unable to dis-
tinguish when each preposition must be used. In
fact, when using an ordinary PoS language model,
the original PoS patterns match those of the ex-
pected corrections (i.e. the expected correction has
a preposition and the hypothesis has one too) so no
change is proposed. The following example illus-
trates this problem.

Original sentence

the need toward energy

DT NN PREP NN
System hypothesis

the need toward energy

DT NN PREP NN
(unchanged)
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Expected output (not in gold standard)

the need for energy
DT NN PREP NN

However, when the PoS language model is
modified to use preposition-specific tags, the dif-
ference between the original sentence and the ex-
pected output should be detected and fixed by the
system, as shown below.

Original sentence

the need toward energy

DT NN PREP_TOWARD NN
System hypothesis

the need for energy

DT NN PREPFOR NN
(unchanged)
Expected output (not in gold standard)

the need for energy

DT NN PREP_FOR NN

We expected this change to improve system per-
formance. Although it increased recall, it lowered
precision (Table 5 #4).

5.5 Unnecessary edits

In many cases, our system makes good corrections
which are not considered to belong to any of the
target error types, as illustrated in the following
example.

Original sentence

Thus, we should not compare now with the past
but we need to worried about the future prob-
lems that caused by this situation.

System hypothesis

Thus, we should not compare now with the past
but we need to worry about the future problems
that are caused by this situation.

Gold standard

Thus, we should not compare now with the past
but we need to worry about the future problems
that caused by this situation.

We believe this can be traced to two main
causes. First, there is no clear-cut definition of
each error type, so it is not possible to know the
annotation criteria or scope of each error type.
Therefore, inferring this information from the an-
notated examples may result in poor error map-
ping between the CLC and NUCLE, making the
system learn corrections that are not part of our



target set and miss others which are actually use-
ful. For example, it is not clear if ‘verb form’ er-
rors (Vform) include change of tense or the addi-
tion of missing verbs. Second, because SMT sys-
tems learn from all parts of a parallel corpus and
maximise fluency using a general language model,
it is hard to limit the corrections to a predefined
set of error types. Using a larger language model
based on the corrected version of the CLC con-
firms this: precision drops while recall improves
(Table 5 #5).

5.6 Gold-standard annotation

The original NUCLE corpus contains corrections
for 27 error types. However, the version used
for the shared task only includes 5 error types
and discards all the remaining corrections. Be-
cause nested and context-dependent errors are
very frequent, the systematic removal of annota-
tions which do not belong to these five types often
generates mutilated or partly-corrected sentences,
a deficiency that has also been reported in other
shared tasks (Kochmar et al., 2012). Here is a typ-
ical example.

Original sentence

These approaches may not produce effect soon,
but it is sustainable for the future generation.

Corrected sentence

These approaches may not produce [immediate

effectsJwei, but [they]pys [are]sya [useful]wc;
for the future [generations ;.

Type-constrained sentence

These approaches may not produce effect
soon, but it [are]sys sustainable for the future
[generations | y;,.

These ill-formed sentences are particularly
harmful for SMT systems which, unlike classi-
fiers, work at a global rather than local level. As
a result, many corrections proposed by our sys-
tem are considered incorrect because they do not
match the gold-standard version, as shown below.

Original sentence
Although it is essential for all the fields, ...
System hypothesis

Although it is essential for all the fields, ...
(unchanged)
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# | System settings P R F1

0 | NUCLE+FCE+IELTS+EVP 0.1696 | 0.1480 | 0.1581
1 | Disabled reordering 0.1702 | 0.1480 | 0.1583
2 | Removal of incorrect alignments | 0.1861 | 0.1399 | 0.1598
3 | Double NUCLE data 0.1792 | 0.1229 | 0.1458
4 | Detailed Prep PoS tags 0.1632 | 0.1504 | 0.1565
5 | Bigger LMs 0.1532 | 0.1676 | 0.1601

[ 6 | Final system (0+1+2+3+5) [ 0.1844 ] 0.1375 [ 0.1575 |

Table 5: Performance of the baseline system plus
different individual settings. Bold values indicate
an improvement over the original baseline system.

Gold standard
Although it [are]sys essential for all the fields,

This raises the question of how to design an ef-
fective and challenging shared task.

5.7 Scoring criteria

The official evaluation using the M? scorer is sen-
sitive to capitalisation and white space, although
these error types were not part of the task. Both
this fact and the lack of alternative corrections for
each gold-standard edit leave out many other valid
corrections, which in turn means true system per-
formance is underestimated.

5.8 Other factors

Differences between the training and test data can
also affect performance, such as changes in the
writers’ native language, their level of language
proficiency or the topic of their compositions.

The final system submitted to the shared task
is a combination of our best factored model (i.e.
baseline) plus a selection of improvements (Ta-
ble 5 #6).

6 Official Evaluation Results

Systems were evaluated using a set of 50 essays
containing about 500 words each (~25,000 words
in total) which were written in response to two dif-
ferent prompts. One of these prompts had been
used for a subset of the training data while the
other was new. No error annotations were initially
available for this set. As we mentioned above,
the M? scorer was set to be sensitive to capitalisa-
tion and white space as well as limit the maximum
number of unchanged tokens per edit to 2.
Initially, each participating team received their
official system results individually. After the gold-
standard annotations of the test set were released,



Evaluation round Corr. | Prop. | Gold P R Fy
edits | edits | edits

First (pre-revision) 166 424 1643 | 0.3915 | 0.1010 | 0.1606

Second (post-revision) 222 426 1565 | 0.5211 | 0.1419 | 0.2230

Table 6: Official results of our system before and
after revision of the test set annotations. The num-
ber of correct, proposed and gold edits are also in-
cluded for comparison.

many participants raised concerns about their ac-
curacy so they were given the opportunity to sub-
mit alternative annotations. These suggestions
were manually revised by a human annotator and
merged into a new test set which was used to re-
score all the submitted systems in a second official
evaluation round. Evaluation results of our sys-
tem in both rounds (before and after revision of
the test set annotations) are included in Table 6.
Although this measure helped overcome some of
the problems described in Section 5.6, other prob-
lems such as whitespace and case sensitivity were
not addressed.

In both evaluation rounds, our system scores
third in terms of precision, which is particularly
encouraging for error correction environments
where precision is preferred over recall. How-
ever, these values should be considerably higher
in order to prove useful in applications like self-
assessment and tutoring systems (Andersen et al.,
2013).

Results also reveal precision on the test set is
considerably higher than in our cross-validation
experiments. This may be partly a result of the
larger amount of training data in our final system
and/or greater grammatical or thematic similarity
between the test and training sets.

Table 7 shows the distribution of system edits
by error type. The results suggest that lexical het-
erogeneity in the contexts surrounding errors is a
factor in performance, which might be improved
through larger training sets.

7 Conclusions and Future Work

In this paper we have described the use of SMT
techniques for building an error correction system.
We trained lexical and factored phrase-based sys-
tems using incremental combinations of training
data and observed that, in general, recall increases
at the expense of precision. However, this might
be due to structural and thematic differences in the
corpora we used. We also tried a relatively sim-
ple mechanism for injecting artificial errors into
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Error Type Pre-'revision Post'-revision

Corr. | Missed | Unnec. | Corr. | Missed | Unnec.
ArtOrDet 104 586 161 134 548 132
Nn 30 366 25 38 362 20
Prep 11 301 18 13 246 15
SVA 7 116 0 8 103 0
Vform 14 108 41 29 84 25
Other 0 0 13 0 0 12
TOTAL 166 1477 258 | 222 1343 204

Table 7: Distribution of system edits by error
type for the two official evaluation rounds (before
and after revision of the test annotations). ‘Corr.’
stands for correct edits, ‘Missed’ for missed ed-
its and ‘Unnec.” for unnecessary edits. The cate-
gory ‘Other’ includes changes made by our system
which do not belong to any of the other categories.

new data, which caused a drop in precision but in-
creased recall and F;.

Cross-validation experiments show that our sys-
tems were unable to achieve particularly high per-
formance (with precision, recall and F; consis-
tently below 0.20). A careful analysis revealed
many factors that affect system performance, such
as annotation criteria, training parameters and cor-
pus size and heterogeneity. Our final system sub-
mitted to the CoNLL 2013 shared task was de-
signed to circumvent some of these problems and
maximise precision.

Plans for future work include more detailed er-
ror analysis and the implementation of new solu-
tions to avoid drops in performance. We would
also like to test our approach in an unrestricted
scenario (i.e. using corpora which are not limited
to a fixed number of error types) and use more
flexible evaluation schemes. We believe further
study of the methods used for generating artificial
errors is also vital to help SMT systems become a
useful approach to error correction.
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