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Abstract
Large databases of facts are prevalent in
many applications. Such databases are
accurate, but as they broaden their scope
they become increasingly incomplete. In
contrast to extending such a database, we
present a system to query whether it con-
tains an arbitrary fact. This work can be
thought of as re-casting open domain in-
formation extraction: rather than growing
a database of known facts, we smooth this
data into a database in which any possi-
ble fact has membership with some confi-
dence. We evaluate our system predicting
held out facts, achieving 74.2% accuracy
and outperforming multiple baselines. We
also evaluate the system as a common-
sense filter for the ReVerb Open IE sys-
tem, and as a method for answer validation
in a Question Answering task.

1 Introduction

Databases of facts, such as Freebase (Bollacker
et al., 2008) or Open Information Extraction
(Open IE) extractions, are useful for a range of
NLP applications from semantic parsing to infor-
mation extraction. However, as the domain of a
database grows, it becomes increasingly impracti-
cal to collect completely, and increasingly unlikely
that all the elements intended for the database are
explicitly mentioned in the source corpus. In par-
ticular, common-sense facts are rarely explicitly
mentioned, despite their abundance. It would be
useful to infer the truth of such unseen facts rather
than assuming them to be implicitly false.

A growing body of work has focused on auto-
matically extending large databases with a finite
set of additional facts. In contrast, we propose
a system to generate the (possibly infinite) com-
pletion of such a database, with a degree of con-
fidence for each unseen fact. This task can be

cast as querying whether an arbitrary element is
a member of the database, with an informative de-
gree of confidence. Since often the facts in these
databases are devoid of context, we refine our no-
tion of truth to reflect whether we would assume
a fact to be true without evidence to the contrary.
In this vein, we can further refine our task as de-
termining whether an arbitrary fact is plausible –
true in the absence contradictory evidence.

In addition to general applications of such large
databases, our approach can further be integrated
into systems which can make use of probabilis-
tic membership. For example, certain machine
translation errors could be fixed by determining
that the target translation expresses an implausible
fact. Similarly, the system can be used as a soft
feature for semantic compatibility in coreference;
e.g., the types of phenomena expressed in Hobbs’
selectional constraints (Hobbs, 1978). Lastly, it is
useful as a common-sense filter; we evaluate the
system in this role by filtering implausible facts
from Open IE extractions, and filtering incorrect
responses for a question answering system.

Our approach generalizes word similarity met-
rics to a notion of fact similarity, and judges the
membership of an unseen fact based on the aggre-
gate similarity between it and existing members
of the database. For instance, if we have not seen
the fact that philosophers are mortal1 but we know
that Greeks are mortal, and that philosophers and
Greeks are similar, we would like to infer that the
fact is nonetheless plausible.

We implement our approach on both a large
open-domain database of facts extracted from the
Open IE system ReVerb (Fader et al., 2011), and
ConceptNet (Liu and Singh, 2004), a hand curated
database of common sense facts.

1This is an unseen fact in http://openie.cs.
washington.edu.
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2 Related Work

Many NLP applications make use of a knowl-
edge base of facts. These include semantic pars-
ing (Zelle and Mooney, 1996; Zettlemoyer and
Collins, 2005; Kate et al., 2005; Zettlemoyer
and Collins, 2007) question answering (Voorhees,
2001), information extraction (Hoffmann et al.,
2011; Surdeanu et al., 2012), and recognizing tex-
tual entailment (Schoenmackers et al., 2010; Be-
rant et al., 2011).

A large body of work has been devoted to creat-
ing such knowledge bases. In particular, Open IE
systems such as TextRunner (Yates et al., 2007),
ReVerb (Fader et al., 2011), Ollie (Mausam et al.,
2012), and NELL (Carlson et al., 2010) have tack-
led the task of compiling an open-domain knowl-
edge base. Similarly, the MIT Media Lab’s Con-
ceptNet project (Liu and Singh, 2004) has been
working on creating a large database of common
sense facts.

There have been a number of systems aimed at
automatically extending these databases. That is,
given an existing database, they propose new re-
lations to be added. Snow et al. (2006) present
an approach to enriching the WordNet taxonomy;
Tandon et al. (2011) extend ConceptNet with new
facts; Soderland et al. (2010) use ReVerb extrac-
tions to enrich a domain-specific ontology. We
differ from these approaches in that we aim to pro-
vide an exhaustive completion of the database; we
would like to respond to a query with either mem-
bership or lack of membership, rather than extend-
ing the set of elements which are members.

Yao et al. (2012) and Riedel et al. (2013) present
a similar task of predicting novel relations be-
tween Freebase entities by appealing to a large col-
lection of Open IE extractions. Our work focuses
on arguments which are not necessarily named
entities, at the expense of leveraging less entity-
specific information.

Work in classical artificial intelligence has tack-
led the related task of loosening the closed world
assumption and monotonicity of logical reason-
ing, allowing for modeling of unseen propositions.
Reiter (1980) presents an approach to leveraging
default propositions in the absence of contradic-
tory evidence; McCarthy (1980) defines a means
of overriding the truth of a proposition in abnor-
mal cases. Perhaps most similar to this work
is Pearl (1989), who proposes approaching non-
monotonicity in a probabilistic framework, and in

particular presents a framework for making infer-
ences which are not strictly entailed but can be
reasonably assumed. Unlike these works, our ap-
proach places a greater emphasis on working with
large corpora of open-domain predicates.

3 Approach

At a high level, we are provided with a large
database of facts which we believe to be true, and
a query fact not in the database. The task is to
output a judgment on whether the fact is plausible
(true unless we have reason to believe otherwise),
with an associated confidence. Although our ap-
proach is robust to unary relations, we evaluate
only against binary relations.

We decompose this decision into three parts, as
illustrated in Figure 1: (i) we find candidate facts
that are similar to our query, (ii) we define a notion
of similarity between these facts and our query,
and (iii) we define a method for aggregating a col-
lection of these similarity values into a single judg-
ment. The first of these parts can be viewed as an
information retrieval component. The second part
can be viewed as an extension of word similarity
to fact similarity. The third part is cast as a classifi-
cation task, where the input is a set of similar facts,
and the decision is the confidence of the query be-
ing plausible.

We define a fact as a triple of two arguments
and a relation. We denote a fact in our database
as f = (a1, r, a2). A fact which we are querying
is denoted by fq – as our focus is on unseen facts,
this query is generally not in the database.

3.1 Finding Candidate Facts
Naı̈vely, when determining the correctness of a
query fact, it would be optimal to compare it to
the entire database of known facts. However, this
approach poses significant problems:

1. The computational cost becomes unreason-
able with a large database, and only a small
portion of the database is likely to be relevant.

2. The more candidates we consider the more
opportunities we create for false positives
in finding similar facts. For a sufficiently
large database, even a small false positive rate
could hurt performance.

To address these two problems, we consider
only facts which match the query fact in two
of their three terms. Formally, we define
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database candidates similarity aggregate

f1
f2
. . .
fn

(f1, s1)
. . .

(f1, sn)
. . .

(fn, sn)

Figure 1: An overview of our approach. A large database of facts is queried for candidate entries that
may be similar to the query fact (see Section 3.1); the similarity of each of these facts to the query fact is
computed using a number of word similarity metrics (see Section 3.2); finally, these similarity judgments
are aggregated into a single judgment per metric, and then a single overall judgment (see Section 3.3).

functions: cand(fq, fi; a1), cand(fq, fi; r), and
cand(fq, fi; a2) for whether the query fq matches
a fact in our database fi on all but one of the argu-
ments (or relation). For efficiency, the total num-
ber of candidates returned by each of these three
functions was limited to 100, creating up to 300
similar facts overall.

The simplest implementation of this cand
function would be exact match (candexact);
however, this is liable to return few re-
sults. As an example, suppose our query
is (private land, be sold to, government). We
would like to consider a fact in our database
(his land, be sold to, United States) as similar ex-
cept for second argument (government versus
United States), despite the first argument not
matching exactly. To account for this, we define
a class of functions which match the head word
of the two phrases, and as many of the follow-
ing stricter criteria as possible while maintaining
at least 40 candidate facts:2

candhead Match the head word of the two
phrases only. Head words were extracted using the
Stanford Parser (Klein and Manning, 2003), treat-
ing each argument and relation as a sentence.
candvn Match all verbs and nouns in the
two phrases; This prunes candidates such as
(land of our ancestors, be sold to, Prussia).
Tagging was done with the Stanford Tagger
(Toutanova et al., 2003).
candopen Match the open-class words be-
tween the two phrases. More precisely, it
matches every word which is not a pro-
noun, determiner, preposition, or form of the

2This threshold is chosen in conjunction with the aggre-
gation threshold in Section 3.3, to allow for at least two facts
in the 95% threshold.

verb be. This prunes candidates such as
(worthless land, be sold to, gullible investors).

We proceed to describe our notion of similarity
between facts, which will be applied to the set of
candidate similar facts retrieved.

3.2 Similarity Between Facts

Determining the similarity between two facts is
in general difficult. For sufficiently complicated
facts, it can be has hard as recognizing textual en-
tailment (RTE); for instance, determining that ev-
ery philosopher is mortal and Socrates is mortal
are similar requires fairly sophisticated inference.
We choose a simple approach, in order to avoid fit-
ting to a particular corpus or weakening our ability
to generalize to arbitrary phrases.

Our approach casts fact similarity in terms of as-
sessing word similarity. The candidate facts from
Section 3.1 differ from the query fact by a single
phrase; we define the similarity between the can-
didate and query fact to be the similarity between
the differing term.

The word similarity metrics are summarized
in Table 1. They fall into two broad classes:
information-theoretic thesaurus based metrics,
and distributional similarity metrics.

Thesaurus Based Metrics We adopt many of
the thesaurus based similarity metrics described
in Budanitsky and Hirst (2006). For each metric,
we use the WordNet ontology (Miller, 1995) com-
bined with n-gram counts retrieved from Google
n-grams (Brants and Franz, 2006). Every word
form was assigned a minimum count of 1; 2265
entries had no counts and were assigned this min-
imum (1.5%). 167 of these were longer than 5
words; the remaining did not appear in the corpus.

Since WordNet is a relatively sparse resource,
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if a query phrase is not found a number of simple
variants are also tried. These are, in order of pref-
erence: a lemmatized version of the phrase, the
head word of the phrase, and the head lemma of
the phrase. If none of these are found, then the
named entities in the sentence were replaced with
their types. If that fails as well, acronyms3 were
expanded. For words with multiple sense, the
maximum similarity for any pair of word senses
was used.

Distributional Similarity Based Metrics We
define a number of similarity metrics on the 50
dimensional word vectors of Huang et al. (2012).
These cover a vocabulary of 100,231 words; a spe-
cial vector is defined for unknown words.

Compound phrases are queried by treating the
phrase as a bag of words and averaging the word
vectors of each word in the phrase, pruning out
unknown words. If the phrase contains no known
words, the same relaxation steps are tried as the
thesaurus based metrics.

3.3 Aggregating Similarity
At this stage, we are presented with a set of candi-
date facts which may be similar to our query, and
a set of similarity judgments for each of these can-
didate facts. Intuitively, we would like to mark a
fact as plausible if it has enough sufficiently simi-
lar candidate facts based on a large number of met-
rics. This is a two-dimensional aggregation task:
(i) we aggregate judgments for a single similarity
metric, and (ii) we aggregate these aggregate judg-
ments across similarity metrics. We accomplish
the first half with a thresholded average similarity;
the second half we accomplish by using the aggre-
gate similarity judgments as features for a logistic
regression model.

Thresholded Average Similarity Given a set
of similarity values, we average the top 5% of
the values and use this as the aggregate similarity
judgment. This approach incorporates the benefit
of two simpler aggregation techniques: averaging
and taking the maximum similarity.

Averaging similarity values has the advantage
of robustness – given a set of candidate facts, we
would like as many of those facts to be as similar
to the query as possible. To illustrate, we should
be more certain that (philosophers, are, mortal)

36053 acronyms and initialisms were scraped from
http://en.wikipedia.org/wiki/List_of_
acronyms_and_initialisms

Name Formula

Th
es

au
ru

s
B

as
ed

Path − log len(w1, lcs, w2)

Resnik − logP (lcs)

Lin log(P (lcs)2)
log(P (w1)·P (w2))

Jiang-Conrath log
(

P (lcs)2

P (w1)·P (w2)

)−1

Wu-Palmer 2·depth(lcs)
2·depth(lcs)+len(w1,lcs,w2)

D
is

tr
ib

ut
io

na
l

Cosine w1·w2
‖w1‖‖w2‖

Angle arccos
(

w1·w2
‖w1‖‖w2‖)

)

Jensen-Shannon (KL(p1‖p2)+KL(p2‖p1))
2

Hellinger 1√
2
‖√p1 −√p2‖

Jaccard ‖min(w1,w2)‖1
‖max(w1,w2)‖1

Dice ‖min(w1,w2)‖1
1
2
‖w1+w2‖1

Table 1: A summary of similarity metrics used to
calculate fact similarity. For the thesaurus based
metrics, the two synsets being compared are de-
noted by w1 and w2; the lowest common subsumer
is denoted as lcs. For distributional similarity met-
rics, the two word vectors are denoted by w1 and
w2. For metrics which require a probability distri-
bution, we pass the vectors through a sigmoid to
obtain pi =

1
1+e−wi

.

if we know both that (Greeks, are, mortal) and
(men, are, mortal). However, since the number of
similar facts is likely to be small relative the num-
ber of candidate facts considered, this approach
has the risk of losing the signal in the noise of un-
informative candidates. Taking the maximum sim-
ilarity judgment alleviates this concern, but con-
strains the use of only one element in our aggre-
gate judgment.

If fewer than 20 candidates are returned, our
combination approach reduces to taking the max-
imum similarity value. Note also that the 40 fact
threshold in the candidate selection phase is cho-
sen to provide at least two similarity values to be
averaged together. The threshold was chosen em-
pirically, although varying it does not have a sig-
nificant effect on performance.

Aggregate Similarity Values At this point, we
have a number of distinct notions of similarity:
for each metric, for each differing term, we have
a judgment for whether the query fact is similar
to the list of candidates. We combine these using
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a simple logistic regression model, treating each
judgment over different metrics and terms as a fea-
ture with weight given by the judgment. For ex-
ample, cosine similarity may judge candidate facts
differing on their first argument to have a similar-
ity of 0.2. As a result, a feature would be created
with weight 0.2 for the pair (cosine, argument 1).
In addition, features are created which are agnostic
to which term differs (e.g., the cosine similarity on
whichever term differs), bringing the total feature
count to 44 for 11 similarity metrics.

Lastly, we define 3 auxiliary feature classes:

• Argument Similarity: We define a feature
for the similarity between the two arguments
in the query fact. Similarity metrics (partic-
ularly distributional similarity metrics) often
capture a notion more akin to relatedness than
similarity (Budanitsky and Hirst, 2006); the
subject and object of a relation are, in many
cases, related in this sense.

• Bias: A single bias feature is included to ac-
count for similarity metrics which do not cen-
ter on zero.

• No Support Bias: A feature is included for
examples which have no candidate facts in
the knowledge base.

4 Data

Our approach is implemented using two datasets.
The first, described in Section 4.1, is built us-
ing facts retrieved from running the University of
Washington’s ReVerb system run over web text.
To showcase the system within a cleaner environ-
ment, we also build a knowledge base from the
MIT Media Lab’s ConceptNet.

4.1 ReVerb

We created a knowledge base of facts by running
ReVerb over ClueWeb09 (Callan et al., 2009). Ex-
tractions rated with a confidence under 0.5 were
discarded; the first billion undiscarded extractions
were used in the final knowledge base. This re-
sulted in approximately 500 million unique facts.

Some examples of facts extracted with ReVerb
are given in Table 2. Note that our notion of plau-
sibility is far more unclear than in the ConceptNet
data; many facts extracted from the internet are ex-
plicitly false, and others are true only in specific
contexts, or are otherwise underspecified.

Argument 1 Relation Argument 2
cat Desires tuna fish
air CapableOf move through

tiny hole
sneeze HasA allergy

person who IsA not wage-slaves
get more sleep

Table 3: Example ConceptNet extractions. The
top rows correspond to characteristic correct ex-
tractions; the bottom rows characterize the types
of noise in the data.

4.2 ConceptNet

We also created a dataset using a subset of Con-
ceptNet. ConceptNet is a hand-curated common
sense database, taking information from multi-
ple sources (including ReVerb) and consolidating
them in a consistent format. We focus on the man-
ually created portion of the database, extracted
from sources such as the Open Mind Common
Sense4 (Singh et al., 2002).

The knowledge base consists of 597,775 facts,
each expressing one of 34 relations. Examples of
facts in the ConceptNet database are given in Ta-
ble 3. While the arguments are generally cleaner
than the ReVerb corpus, there are nonetheless in-
stances of fairly complex facts.

4.3 Training Data

Our training data consists of a set of tuples, each
consisting of a fact f and a database d which
does not contain f . We create artificial negative
training instances in order to leverage the stan-
dard classification framework. We would like neg-
ative examples which are likely to be implausi-
ble, but which are close enough to known facts
that we can learn a reasonable boundary for dis-
criminating between the two. To this end, we
sample negative instances by modifying a sin-
gle argument (or the relation) of a correspond-
ing positive training instance. In more detail: we
take a positive training instance (a1, r, a2) and a
fact from our database (a′1, r

′, a′2), and compute
the cosine similarity simcos(a1, a

′
1), simcos(r, r

′),
and simcos(a2, a

′
2). Our negative instance will be

one of (a′1, r, a2), (a1, r
′, a2), or (a1, r, a

′
2) cor-

responding to the entry whose similarity was the
largest. Negative facts which happen to be in the
database are ignored.

4http://openmind.media.mit.edu/
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Argument 1 Relation Argument 2
officials contacted students

food riots have recently taken place in many countries
turn left on Front Street

animals have not been performed to evaluate the carcinogenic potential of adenosine

Table 2: Example ReVerb extractions. The top rows correspond to characteristic correct extractions; the
bottom rows shows examples of the types of noise in the data. Note that in general, both the arguments
and the predicate can be largely unconstrained text.

To simulate unseen facts, we construct training
instances by predicting the plausibility of a fact
held out from the database. That is, if our database
consists of d = {f0, f1, . . . fn}we construct train-
ing instances (fi, d\{fi}). Negative examples are
likewise constrained to not occur in the database,
as are the facts used in their construction.

5 Results

We evaluate our system with three experiments.
The first, described in Section 5.2, evaluates the
system’s ability to discriminate plausible facts
from sampled implausible facts, mirroring the
training regime. The second evaluates the system
as a semantic filter for ReVerb extractions, tested
against human evaluations. The third uses our sys-
tem for validating question answering responses.

5.1 Baselines

We define a number of baselines to compare
against. Many of these are subsets of our system,
to justify the inclusion of additional complexity.

Similar Fact Count This baseline judges the
truth of a fact by tuning a threshold on the total
number of similar facts in the database. This base-
line would perform well if our negative facts were
noticeably disconnected from our database.

Argument Similarity A key discriminating fea-
ture may be the similarity between a1 and a2 in
true versus false facts. This baseline thresholds the
cosine similarity between arguments, tuned on the
training data to maximize classification accuracy.

Cosine Similarity At its core, our model judges
the truth of a fact based on its similarity to facts
in the database; we create a baseline to capture
this intuition. For every candidate fact (differing
in either an argument or the relation), we compute
the cosine similarity between the query and the
candidate, evaluated on the differing terms. This

System ReVerb ConceptNet
Train Test Train Test

random 50.0 50.0 50.0 50.0

count 51.9 52.3 51.0 51.6
argsim 52.0 52.6 62.1 60.0

cos 71.4 70.6 71.9 70.5

system 74.3 74.2 76.5 74.3

Table 4: Classification accuracy for ReVerb and
ConceptNet data. The three baselines are de-
scribed above the line as described in Section 5.1;
random chance would get an accuracy of 50%.

baseline outputs the maximum similarity between
a query and any candidate; a threshold on this sim-
ilarity is tuned on the training data to maximize
classification accuracy.

5.2 Automatic Evaluation
A natural way to evaluate our system is to use the
same regime as our training, evaluating on held
out facts. For both domains we train on a balanced
dataset of 20,000 training and 10,000 test exam-
ples. Performance is measured in terms of classi-
fication accuracy, with a random baseline of 50%.

Table 4 summarizes our results. The similar fact
count baseline performs nearly at random chance,
suggesting that our sampled negative facts cannot
be predicted solely on the basis of connectedness
with the rest of the database. Furthermore, we out-
perform the cosine baseline, supporting the intu-
ition that aggregating similarity metrics is useful.

To evaluate the informativeness of the confi-
dence our system produces, we can allow our sys-
tem to abstain from unsure judgments. Recall
refers to the percentage of facts the system chooses
to make a guess on; precision is the percentage of
those facts which are classified correctly. From
this, we can create a precision/recall curve – pre-
sented in Figure 2 for ReVerb and Figure 3 for
ConceptNet. Our system achieves an area under
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Figure 2: Accuracy of ReVerb classification, as a
function of the percent of facts answered. The y
axis begins at random chance (50%).
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Figure 3: Accuracy of ConceptNet classification,
as a function of the percent of facts answered. The
y axis begins at random chance (50%).

the curve of 0.827 on ConceptNet (compared to
the cosine baseline of 0.751). For ReVerb, we ob-
tain an area of 0.860 (compared to 0.768 for the
cosine baseline).5

5.3 ReVerb Filtering

In order to provide a grounded evaluation metric
we evaluate our system as a confidence estima-
tor for ReVerb extractions. Many ReVerb extrac-
tions are semantically implausible, or clash with
common-sense intuition. We annotate a number
of extractions on Mechanical Turk, and attempt to
predict the extractions’ feasibility.

This task is significantly more difficult than the
intrinsic evaluations. Part of the difficulty stems

5Curves begin at the recall value given a system confi-
dence of 1.0. For area under the curve calculations, this value
is extended through to recall 0.
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Figure 4: PR curve for ReVerb confidence estima-
tion. The y axis of the graph is truncated at 65% –
this corresponds to the majority class baseline.

from our database itself (and therefore our can-
didate similar facts) being unfiltered – our query
facts empirically were and therefore in a sense
should be in the database. Another part stems from
these facts already having been filtered once by
ReVerb’s confidence estimator.

To collect training and test data, we asked work-
ers on Amazon Mechanical Turk to rate facts as
correct, plausible, or implausible. They were in-
structed that they need not research the facts, and
that correct facts may be underspecified. Workers
were given the following descriptions of the three
possible responses:

• Correct: You would accept this fact if you
read it in a reputable source (e.g., Wikipedia)
in an appropriate context.
• Plausible: You would accept this fact if you

read it in a storybook.
• Implausible: The fact is either dubious, or

otherwise nonsense.

Below this, five examples were shown along-
side one control (e.g., (rock, float on, water)).
Workers who answered more than 20% of the con-
trols incorrectly were discarded. In total, 9 work-
ers and 117 of 1200 HITs were discarded.

Each example was shown to three separate
workers; a final judgment was made by taking the
majority vote between correct (corresponding to
our notion of plausibility) and implausible, ignor-
ing votes of plausible. In cases where all the votes
were made for plausible, or there was a tie, the
example was discarded.

The experiment was run twice on 2000 ReVerb
extractions to collect training and test data. The
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training corpus consists of 1256 positive and 540
negative examples (1796 total; 70% positive). The
test corpus consists of 1286 positive and 689 neg-
ative examples (1975 total; 65% positive)

Our system was retrained with the human eval-
uated training data; to account for class bias, our
system’s classification threshold was then tuned
on the training data, optimizing for area under the
precision/recall curve. Figure 4 illustrates our re-
sults, bounded below by majority choice. Our sys-
tem achieves an area under the curve of 0.721; the
cosine baseline has an area of 0.696.

Our system offers a viable trade-off of recall in
favor of precision. For example, keeping only a
third of the data can reduce the error rate by 25%
– this can be appealing for large corpora where
filtering is frequent anyways.

5.4 Answer Validation Exercise

The Answer Validation Exercise, organized as a
track at CLEF between 2006 and 2008, focuses on
filtering candidate answers from question answer-
ing systems (Peñas et al., 2007; Peñas et al., 2008;
Rodrigo et al., 2009). Systems are presented with
a question, and a set of answers along with their
justification. The answers are either validated, re-
jected, or given an annotation of unknown and ig-
nored during scoring. Since the proportion of cor-
rect answers is small (around 10%), the evaluation
measures precision and recall over true answers
predicted by each system.

Many answers in the task are incorrect be-
cause they violate common-sense intuition – for
instance, one answer to What is leprosy? was
Africa clinic. While any such specific mistake is
easy to fix, our approach can be a means of han-
dling a wide range of such mistakes elegantly.

To adapt our system to the task, we first heuris-
tically converted the question into a query fact us-
ing the subject and object Stanford Dependency
labels (de Marneffe and Manning, 2008). If ei-
ther the subject or object specifies a type (e.g.,
Which party does Bill Clinton belong to?), the
score of the fact encoding this relationship (e.g.,
(Democrat, be, party)) is averaged with the main
query. Next, answers with very little n-gram over-
lap between the justification and either the ques-
tion or answer are filtered; this filters answers
which may be correct, but were not properly justi-
fied. Lastly, our system trained on Turk data (see
Section 5.3), predicts an answer to be correct if it

System 2007 2008
P R F1 P R F1

all validated 11 100 19 8 100 14
filter only 16 95 27 14 100 24

median – – 35 – – 20
best – – 55 – – 64

system 31 62 41 16 43 23

Table 5: Classification accuracy for the Answer
Validation Exercise task. The baseline is accept-
ing all answers as correct (all validated); a second
baseline (filter only) incorporates only the n-gram
overlap threshold. The median and top performing
scores for both years are provided for comparison.

scores above the 65th percentile of candidate re-
sponse scores. Lastly, as our system has no princi-
pled way of handling numbers, any answer which
is entirely numeric is considered invalid.

Results are shown in Table 5. We evaluate on
the 2007 and 2008 datasets, outperforming the me-
dian score both years. Our system would place
third out of the eight systems that competed in
both the 2007 and 2008 tasks. As we are evaluat-
ing our system as a single component not trained
on the task, we understandably fall well under
the top performing systems; however, our perfor-
mance is nonetheless an indication that the system
provides a valuable signal for the task.

6 Conclusion

We have created a simple yet effective system to
determine the plausibility of an arbitrary fact, both
in terms of an intrinsic measure, and in down-
stream applications. Furthermore we have shown
that the confidences returned by our system are in-
formative, and that high-precision judgments can
be obtained even at reasonable recall. We hope
to devote future work to enriching the notion of
fact similarity, and better handling the noise in the
training data.
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