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Abstract

Within the natural language processing
(NLP) community, active learning has
been widely investigated and applied in or-
der to alleviate the annotation bottleneck
faced by developers of new NLP systems
and technologies. This paper presents the
first theoretical analysis of stopping active
learning based on stabilizing predictions
(SP). The analysis has revealed three ele-
ments that are central to the success of the
SP method: (1) bounds on Cohen’s Kappa
agreement between successively trained
models impose bounds on differences in
F-measure performance of the models; (2)
since the stop set does not have to be la-
beled, it can be made large in practice,
helping to guarantee that the results trans-
fer to previously unseen streams of ex-
amples at test/application time; and (3)
good (low variance) sample estimates of
Kappa between successive models can be
obtained. Proofs of relationships between
the level of Kappa agreement and the dif-
ference in performance between consecu-
tive models are presented. Specifically, if
the Kappa agreement between two mod-
els exceeds a threshold T (where T > 0),
then the difference in F-measure perfor-
mance between those models is bounded
above by 4(1−T )

T in all cases. If precision
of the positive conjunction of the models
is assumed to be p, then the bound can be
tightened to 4(1−T )

(p+1)T .

1 Introduction

Active learning (AL), also called query learning
and selective sampling, is an approach to reduce
the costs of creating training data that has received
considerable interest (e.g., (Argamon-Engelson

and Dagan, 1999; Baldridge and Osborne, 2008;
Bloodgood and Vijay-Shanker, 2009b; Bloodgood
and Callison-Burch, 2010; Hachey et al., 2005;
Haertel et al., 2008; Haffari and Sarkar, 2009;
Hwa, 2000; Lewis and Gale, 1994; Sassano,
2002; Settles and Craven, 2008; Shen et al., 2004;
Thompson et al., 1999; Tomanek et al., 2007; Zhu
and Hovy, 2007)).

Within the NLP community, active learning has
been widely investigated and applied in order to
alleviate the annotation bottleneck faced by devel-
opers of new NLP systems and technologies. The
main idea is that by judiciously selecting which
examples to have labeled, annotation effort will be
focused on the most helpful examples and less an-
notation effort will be required to achieve given
levels of performance than if a passive learning
policy had been used.

Historically, the problem of developing meth-
ods for detecting when to stop AL was tabled for
future work and the research literature was fo-
cused on how to select which examples to have la-
beled and analyzing the selection methods (Cohn
et al., 1996; Seung et al., 1992; Freund et al., 1997;
Roy and McCallum, 2001). However, to realize
the savings in annotation effort that AL enables,
we must have a method for knowing when to stop
the annotation process. The challenge is that if we
stop too early while useful generalizations are still
being made, then we can wind up with a model
that performs poorly, but if we stop too late after
all the useful generalizations are made, then hu-
man annotation effort is wasted and the benefits of
using active learning are lost.

Recently research has begun to develop meth-
ods for stopping AL (Schohn and Cohn, 2000;
Ertekin et al., 2007b; Ertekin et al., 2007a; Zhu
and Hovy, 2007; Laws and Schütze, 2008; Zhu
et al., 2008a; Zhu et al., 2008b; Vlachos, 2008;
Bloodgood, 2009; Bloodgood and Vijay-Shanker,
2009a; Ghayoomi, 2010). The methods are all
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heuristics based on estimates of model confidence,
error, or stability. Although these heuristic meth-
ods have appealing intuitions and have had ex-
perimental success on a small handful of tasks
and datasets, the methods are not widely usable in
practice yet because our community’s understand-
ing of the stopping methods remains too coarse
and inexact. Pushing forward on understanding
the mechanics of stopping at a more exact level
is therefore crucial for achieving the design of
widely usable effective stopping criteria.

Bloodgood and Vijay-Shanker (2009a) intro-
duce the terminology aggressive and conserva-
tive to describe the behavior of stopping meth-
ods1 and conduct an empirical evaluation of the
different published stopping methods on several
datasets. While most stopping methods tend to
behave conservatively, stopping based on stabiliz-
ing predictions computed via inter-model Kappa
agreement has been shown to be consistently ag-
gressive without losing performance (in terms of
F-Measure2) in several published empirical tests.
This method stops when the Kappa agreement be-
tween consecutively learned models during AL
exceeds a threshold for three consecutive itera-
tions of AL. Although this is an intuitive heuristic
that has performed well in published experimental
results, there has not been any theoretical analysis
of the method.

The current paper presents the first theoretical
analysis of stopping based on stabilizing predic-
tions. The analysis helps to explain at a deeper
and more exact level why the method works as it
does. The results of the analysis help to character-
ize classes of problems where the method can be
expected to work well and where (unmodified) it
will not be expected to work as well. The theory
is suggestive of modifications to improve the ro-
bustness of the stopping method for certain classes
of problems. And perhaps most important, the
approach that we use in our analysis provides an
enabling framework for more precise analysis of
stopping criteria and possibly other parts of the ac-
tive learning decision space.

In addition, the information presented in this pa-

1Aggressive methods stop sooner, aggressively trying to
reduce unnecessary annotations while conservative methods
are careful not to risk losing model performance, even if it
means annotating many more examples than were necessary.

2For the rest of this paper, we will use F-measure to de-
note F1-measure, that is, the balanced harmonic mean of pre-
cision and recall, which is a standard metric used to evaluate
NLP systems.

per is useful for works that consider switching be-
tween different active learning strategies and oper-
ating regions such as (Baram et al., 2004; Dönmez
et al., 2007; Roth and Small, 2008). Knowing
when to switch strategies, for example, is sim-
ilar to the stopping problem and is another set-
ting where detailed understanding of the variance
of stabilization estimates and their link to perfor-
mance ramifications is useful. More exact un-
derstanding of the mechanics of stopping is also
useful for applications of co-training (Blum and
Mitchell, 1998), and agreement-based co-training
(Clark et al., 2003) in particular. Finally, the
proofs of the Theorems regarding the relationships
between Cohen’s Kappa statistic and F-measure
may be of broader use in works that consider inter-
annotator agreement and its ramifications for per-
formance appraisals, a topic that has been of long-
standing interest in computational linguistics (Car-
letta, 1996; Artstein and Poesio, 2008).

In the next section we summarize the stabiliz-
ing predictions (SP) stopping method. Section 3
analyzes SP and Section 4 concludes.

2 Stopping Active Learning based on
Stabilizing Predictions

The intuition behind the SP method is that the
models learned during AL can be applied to a large
representative set of unlabeled data called a stop
set and when consecutively learned models have
high agreement on their predictions for classify-
ing the examples in the stop set, this indicates that
it is time to stop (Bloodgood and Vijay-Shanker,
2009a; Bloodgood, 2009). The active learning
stopping strategy explicitly examined in (Blood-
good and Vijay-Shanker, 2009a) (after the general
form is discussed) is to calculate Cohen’s Kappa
agreement statistic between consecutive rounds of
active learning and stop once it is above 0.99 for
three consecutive calculations.

Since the Kappa statistic is an important as-
pect of this method, we now discuss some back-
ground regarding measuring agreement in general,
and Cohen’s Kappa in particular. Measurement
of agreement between human annotators has re-
ceived significant attention and in that context,
the drawbacks of using percentage agreement have
been recognized (Artstein and Poesio, 2008). Al-
ternative metrics have been proposed that take
chance agreement into account. Artstein and Poe-
sio (2008) survey several agreement metrics. Most
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of the agreement metrics they discuss are of the
form:

agreement =
Ao −Ae

1−Ae
, (1)

whereAo = observed agreement, andAe = agree-
ment expected by chance. The different metrics
differ in how they compute Ae. All the instances
of usage of an agreement metric in this article will
have two categories and two coders. The two cat-
egories are “+1” and “-1” and the two coders are
the two consecutive models for which agreement
is being measured.

Cohen’s Kappa statistic3 (Cohen, 1960) mea-
sures agreement expected by chance by modeling
each coder (in our case model) with a separate dis-
tribution governing their likelihood of assigning a
particular category. Formally, Kappa is defined by
Equation 1 with Ae computed as follows:

Ae =
∑

k∈{+1,−1}
P (k|c1) · P (k|c2), (2)

where each ci is one of the coders (in our case,
models), and P (k|ci) is the probability that coder
(model) ci labels an instance as being in category
k. Kappa estimates the P (k|ci) in Equation 2
based on the proportion of observed instances that
coder (model) ci labeled as being in category k.

3 Analysis

This section analyzes the SP stopping method.
Section 3.1 analyzes the variance of the estima-
tor of Kappa that SP uses and in particular the re-
lationship of this variance to specific aspects of
the operationalization of SP, such as the stop set
size. Section 3.2 analyzes relationships between
the Kappa agreement between two models and the
difference in F-measure between those two mod-
els.

3.1 Variance of Kappa Estimator
SP bases its decision to stop on the information
contained in the contingency tables between the
classifications of models learned at consecutive
iterations during AL. In determining whether to
stop at iteration t, the classifications of the current
model Mt are compared with the classifications of
the previous model Mt−1. Table 1 shows the pop-
ulation parameters for these two models, where:

3We note that there are other agreement measures (beyond
Cohen’s Kappa) which could also be applicable to stopping
based on stabilizing predictions, but an analysis of these is
outside the scope of the current paper.

Mt

Mt−1 + - Total
+ π++ π+− π+.

- π−+ π−− π−.
Total π.+ π.− 1

Table 1: Contingency table population probabili-
ties forMt (model learned at iteration t) andMt−1
(model learned at iteration t-1).

population probability πij for i, j ∈ {+,−} is the
probability of an example being placed in category
i by model Mt−1 and category j by model Mt;
population probability π.j for j ∈ {+,−} is the
probability of an example being placed in category
j by model Mt; and population probability πi. for
i ∈ {+,−} is the probability of an example being
placed in category i by model Mt−1. The actual
probability of agreement is πo = π++ + π−−. As
indicated in Equation 2, Kappa models the prob-
ability of agreement expected due to chance by
assuming that classifications are made indepen-
dently. Hence, the probability of agreement ex-
pected by chance in terms of the population prob-
abilities is πe = π+.π.++π−.π.−. From the defini-
tion of Kappa (see Equation 1), we then have that
the Kappa parameter K in terms of the population
probabilities is given by

K =
πo − πe
1− πe

. (3)

For practical applications we will not know the
true population probabilities and we will have to
resort to using sample estimates. The SP method
uses a stop set of size n for deriving its estimates.
Table 2 shows the contingency table counts for
the classifications of models Mt and Mt−1 on a
sample of size n. The population probabilities πij
can be estimated by the relative frequencies pij for
i, j ∈ {+,−, .}, where: p++ = a/n; p+− = b/n;
p−+ = c/n; p−− = d/n; p+. = (a+ b)/n; p−. =
(c+d)/n; p.+ = (a+ c)/n; and p.− = (c+d)/n.
Let po = p++ + p−−, the observed proportion of
agreement and let pe = p+.p.+ + p−.p.−, the pro-
portion of agreement expected by chance if we as-
sume that Mt and Mt−1 make their classifications
independently. Then the Kappa measure of agree-
ment K between Mt and Mt−1 (see Equation 3) is
estimated by

K̂ =
po − pe
1− pe

. (4)
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Mt

Mt−1 + - Total
+ a b a+ b
- c d c+ d

Total a+ c b+ d n

Table 2: Contingency table counts for Mt (model
learned at iteration t) and Mt−1 (model learned at
iteration t-1).

Using the delta method, as described in (Bishop
et al., 1975), Fleiss et al. (1969) derived an estima-
tor of the large-sample variance of K̂. According
to Hale and Fleiss (1993), the estimator simplifies
to

V ar(K̂) =
1

n(1− pe)2
×

{ ∑

i∈{+,−}
pii[1− 4p̄i(1− K̂)]

− (K̂ − pe(1− K̂))2 + (1− K̂)2×
∑

i,j∈{+,−}
pij [2(p̄i + p̄j)− (pi. + p.j)]

2

}
,

(5)

where p̄i = (pi. + p.i)/2. From Equation 5, we
can see that the variance of our estimate of Kappa
is inversely proportional to the size of the stop set
we use.

Bloodgood and Vijay-Shanker (2009a) used a
stop set of size 2000 for each of their datasets.
Although this worked well in the results they re-
ported, we do not believe that 2000 is a fixed size
that will work well for all tasks and datasets where
the SP method could be used. Table 3 shows
the variances of K̂ computed using Equation 5
at the points at which SP stopped AL for each of
the datasets4 from (Bloodgood and Vijay-Shanker,
2009a).

These variances indicate that the size of 2000
was typically sufficient to get tight estimates of
Kappa, helping to illuminate the empirical success
of the SP method on these datasets. More gener-
ally, the SP method can be augmented with a vari-
ance check: if the variance of estimated Kappa at
a potential stopping point exceeds some desired

4We note that each of the datasets was set up as a binary
classification task (or multiple binary classification tasks).
Further details and descriptions of each of the datasets can
be found in (Bloodgood and Vijay-Shanker, 2009a).

threshold, then the stop set size can be increased
as needed to reduce the variance.

Looking at Equation 5 again, one can note that
when pe is relatively close to 1, the variance of K̂
can be expected to get quite large. In these situ-
ations, users of SP should expect to have to use
larger stop set sizes and in extreme conditions, SP
may not be an advisable method to use.

3.2 Relationship between Kappa agreement
and change in performance between
models

Heretofore, the published literature contained only
informal explanations of why stabilizing predic-
tions is expected to work well as a stopping
method (along with empirical tests demonstrat-
ing successful operation on a handful of tasks and
datasets). In the remainder of this section we
describe the mathematical foundations for stop-
ping methods based on stabilizing predictions. In
particular, we will prove that even in the worst
possible case, if the Kappa agreement between
two subsequently learned models is greater than
a threshold T , then it must be the case that the
change in performance between these two models
is bounded above by 4(1−T )

T . We then go on to
prove additional Theorems that tighten this bound
when assumptions are made about model preci-
sion.

Lemma 3.1 Suppose F-measure F and Kappa K
are computed from the same contingency table of
counts, such as the one given in Table 2. Suppose
ad− bc ≥ 0. Then F ≥ K.

Proof By definition, in terms of the contingency
table counts,

K =
2ad− 2bc

(a+ b)(b+ d) + (a+ c)(c+ d)
(6)

and
F =

2a

2a+ b+ c
. (7)

Rewriting F so that it will have the same numera-
tor as K, we have:

F = F

(
d− bc

a

d− bc
a

)
(8)

=
( 2a

2a+ b+ c

)(d− bc
a

d− bc
a

)
(9)

=
2ad− 2bc

2ad+ bd+ cd− 2bc− b2c+bc2

a

.(10)
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Task-Dataset Variance of K̂
NER-DNA (10-fold CV) 0.0000223
NER-cellType (10-fold CV) 0.0000211
NER-protein (10-fold CV) 0.0000074
Reuters (10 Categories) 0.0000298
20 Newsgroups (20 Categories) 0.0000739
WebKB Student (10-fold CV) 0.0000137
WebKB Project (10-fold CV) 0.0000190
WebKB Faculty (10-fold CV) 0.0000115
WebKB Course (10-fold CV) 0.0000179
TC-spamassassin (10-fold CV) 0.0000042
TC-TREC-SPAM (10-fold CV) 0.0000043
Average (macro-avg) 0.0000209

Table 3: Estimates of the variance of K̂. For each dataset, the estimate of the variance of K̂ is computed
(using Equation 5) from the contingency table at the point at which SP stopped AL and the average of
all the variances (across all folds of CV) is displayed. The last row contains the macro-average of the
average variances for all the datasets.

We can see that the expression for F in Equa-
tion 10 has the same numerator as K in Equa-
tion 6 but the denominator ofK in Equation 6 is≥
the denominator of F in Equation 10. Therefore,
F ≥ K.

Theorem 3.2 LetMt be the model learned at iter-
ation t of active learning and Mt−1 be the model
learned at iteration t − 1. Let Kt be the estimate
of Kappa agreement between the classifications of
Mt and Mt−1 on the examples in the stop set. Let
F̃t be the F-measure between the classifications of
Mt and truth on the stop set. Let F̃t−1 be the F-
measure between the classifications of Mt−1 and
truth on the stop set. Let ∆Ft be F̃t − F̃t−1. Sup-
pose T > 0. Then Kt > T ⇒ |∆Ft| ≤ 4(1−T )

T .

Proof Suppose Mt, Mt−1, Kt, F̃t, F̃t−1, ∆Ft,
and T are defined as stated in the statement of
Theorem 3.2. Let Ft be the F-measure between
the classifications of Mt and Mt−1 on the exam-
ples in the stop set. Let Table 2 show the con-
tingency table counts for Mt versus Mt−1 on the
examples in the stop set. Then, from their defi-
nitions, we have Kt = 2(ad−bc)

(a+b)(b+d)+(a+c)(c+d) and
Ft = 2a

2a+b+c . There exist true labels for the ex-
amples in the stop set, which we don’t know since
the stop set is unlabeled, but nonetheless must ex-
ist. We use the truth on the stop set to split Table 2
into two subtables of counts, one table for all the
examples that are truly positive and one table for
all the examples that are truly negative. Table 4

Mt

Mt−1 + - Total
+ a1 b1 a1 + b1
- c1 d1 c1 + d1

Total a1 + c1 b1 + d1 n1

Table 4: Contingency table counts for Mt (model
learned at iteration t) versus Mt−1 (model learned
at iteration t-1) for only the examples in the stop
set that have truth = +1.

Mt

Mt−1 + - Total
+ a−1 b−1 a−1 + b−1
- c−1 d−1 c−1 + d−1

Total a−1 + c−1 b−1 + d−1 n−1

Table 5: Contingency table counts for Mt (model
learned at iteration t) versus Mt−1 (model learned
at iteration t-1) for only the examples in the stop
set that have truth = -1.

shows the contingency table for Mt versus Mt−1
for all of the examples in the stop set that have true
labels of +1 and Table 5 shows the contingency ta-
ble for Mt versus Mt−1 for all of the examples in
the stop set that have true labels of -1.

From Tables 2, 4, and 5 one can see that a is
the number of examples in the stop set that both
Mt and Mt−1 classified as positive. Furthermore,
out of these a examples, a1 of them truly are pos-
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Mt

Truth + - Total
+ a1 + c1 b1 + d1 n1
- a−1 + c−1 b−1 + d−1 n−1

Total a+ c b+ d n

Table 6: Contingency table counts for Mt (model
learned at iteration t) versus truth. (Derived from
Tables 4 and 5

Mt−1
Truth + - Total

+ a1 + b1 c1 + d1 n1
- a−1 + b−1 c−1 + d−1 n−1

Total a+ b c+ d n

Table 7: Contingency table counts for Mt−1
(model learned at iteration t-1) versus truth. (De-
rived from Tables 4 and 5

itive and a−1 of them truly are negative. Similar
explanations hold for the other counts. Also, from
Tables 2, 4, and 5, one can see that the equalities
a = a1 + a−1, b = b1 + b−1, c = c1 + c−1, and
d = d1 + d−1 all hold. The contingency tables
for Mt versus truth and Mt−1 versus truth can be
derived from Tables 4 and 5. For convenience, Ta-
ble 6 shows the contingency table for Mt versus
truth and Table 7 shows the contingency table for
Mt−1 versus truth. Suppose that Kt > T . This
implies, by Lemma 3.15, that Ft > T . This im-
plies that

2a
2a+b+c > T (11)

⇒ 2a > (2a+ b+ c)T (12)

⇒ 2a(1− T ) > (b+ c)T (13)

⇒ b+ c < 2a(1−T )
T . (14)

Note that Equations 12 and 14 are justified since
2a+ b+ c > 0 and T > 0, respectively.

From Table 6 we can see that
F̃t = 2(a1+c1)

2(a1+c1)+b1+d1+a−1+c−1
; from Table 7

we can see that F̃t−1 = 2(a1+b1)
2(a1+b1)+c1+d1+a−1+b−1

.
For notational convenience, let: g =
2(a1 + c1) + b1 + d1 + a−1 + c−1; and
h = 2(a1 + b1) + c1 + d1 + a−1 + b−1.

5Note that the condition ad − bc ≥ 0 of Lemma 3.1 is
met since Kt > T and T > 0 imply Kt > 0, which in turn
implies ad− bc > 0.

It follows that

∆Ft =
2(a1 + c1)

g
− 2(a1 + b1)

h
(15)

=
(2a1 + 2c1)h− (2a1 + 2b1)g

gh
(16)

For notational convenience, let: x = 2(a1c1 +
a1b−1 + c21 + c1d1 + c1a−1 + c1b−1); and y =
2(a1b1 + a1c−1 + b21 + b1d1 + b1a−1 + b1c−1).
Then picking up from Equation 16, it follows that

∆Ft =
x− y
gh

(17)

=
2[u1 + c1u2 − b1u3]

gh
, (18)

where u1 = a1c1 − a1b1 + a1b−1 − a1c−1, u2 =
c1+d1+a−1+b−1, and u3 = b1+d1+a−1+c−1.

For notational convenience, let: dA = c1 − b1
and dB = c−1 − b−1. Then it follows that

∆Ft =
2u4
gh

, (19)

where: u4 = a1(dA − dB) + dA(d1 + a−1 + b1 +
c1) + c1b−1 − b1c−1.

Noting that g = h+ dA + dB , we have

∆Ft =
2u4

h(h+ dA + dB)
. (20)

Noting that 2u4 = 2[dA(a1 + b1 + c1 + d1 +
a−1 + b−1)− dB(a1 + b1)] and letting u5 = a1 +
b1 + c1 + d1 + a−1 + b−1, we have

∆Ft =
2[dAu5 − dB(a1 + b1)]

h(h+ dA + dB)
. (21)

Therefore,

|∆Ft| ≤ 2

(∣∣∣∣
dAu5

h(h+ dA + dB)

∣∣∣∣

+

∣∣∣∣
dB(a1 + b1)

h(h+ dA + dB)

∣∣∣∣

) (22)

Recall that b+ c = b1 + b−1 + c1 + c−1. Then
observe that the following three inequalities hold:
b+ c ≥ dA; b+ c ≥ dB; and h(h+dA +dB) > 0.
Therefore,

|∆Ft| ≤ 2(b+c)[2a1+2b1+c1+d1+a−1+b−1]
h(h+dA+dB) (23)

= 2(b+c)h
h(h+dA+dB) (24)

= 2(b+c)
h+dA+dB

(25)

≤ 2(2a)(1−T )
T (h+dA+dB) (26)

=
(4(1−T )

T

)(
a

h+dA+dB

)
. (27)

15



Observe that h+dA+dB = 2a1+b1+2c1+d1+
a−1 + c−1. Therefore, a

h+dA+dB
≤ 1. Therefore,

we have

|∆Ft| ≤
4(1− T )

T
. (28)

Note that in deriving Inequality 26, we used
the previously derived Inequality 14. Also, the
proof of Theorem 3.2 assumes a worst possible
case in the sense that all examples where the clas-
sifications of Mt and Mt−1 differ are assumed
to have truth values that all serve to maximize
one model’s F-measure and minimize the other
model’s F-measure so as to maximize |∆Ft| as
much as possible. A resulting limitation is that the
bound is loose in many cases. It may be possible
to derive tighter bounds, perhaps by easing off to
an expected case instead of a worst case and/or by
making additional assumptions.6

Taking this possibility up, we now prove tighter
bounds when assumptions about the precision of
the models Mt and Mt−1 are made. Consider that
in the proof of Theorem 3.2 when transitioning
from Equality 27 to Inequality 28, we used the
fact that a

h+dA+dB
≤ 1. Note that a

h+dA+dB
=

a
2a1+b1+2c1+d1+a−1+c−1

, from which one sees that
a

h+dA+dB
= 1 only if all of a1, b1, c1, d1 and c−1

are all zero. This is a pathological case. In many
practically important classes of cases to consider,

a
h+dA+dB

will be strictly less than 1, and often sub-
stantially less than 1. The following two Theorems
prove tighter bounds on |∆Ft| than Theorem 3.2
by utilizing this insight.

Theorem 3.3 Suppose Mt, Mt−1, Kt, F̃t, F̃t−1,
∆Ft, and T are defined as stated in the statement
of Theorem 3.2. Let the contingency tables be de-
fined as they were in the proof of Theorem 3.3. Let
MPositiveConjunction be a model that only clas-
sifies an example as positive if both models Mt

and Mt−1 classify the example as positive. Sup-
pose that MPositiveConjunction has perfect preci-
sion on the stop set, or in other words that every
single example from the stop set that both Mt and
Mt−1 classify as positive is truthfully positive (i.e.,
a−1 = 0). Then Kt > T ⇒ |∆Ft| ≤ 2(1−T )

T .

Proof The proof of Theorem 3.2 holds exactly
as it is up until Equality 27. Now, using the
additional assumption that a−1 = 0, we have

6If one is planning to undertake this challenge, we would
suggest further consideration of Inequalities 22, 23, 26, and
28 as a possible starting point.

a
h+dA+dB

≤ 1
2 . Therefore, we have

|∆Ft| ≤
2(1− T )

T
. (29)

Theorem 3.3 is a special case (in the limit) of
a more general Theorem. Before stating and prov-
ing the more general Theorem, we prove a Lemma
that will be helpful in making the proof of the gen-
eral Theorem clearer.

Lemma 3.4 Let f , dA, dB and contingency ta-
ble counts be defined as they were in the proof
of Theorem 3.2. Suppose a1 = xa−1. Then

a
h+dA+dB

≤ x+1
2x+1 .

Proof a1 = xa−1 by hypothesis. a = a1 + a−1
by definition of contingency table counts. Hence,
a = (x+ 1)a−1. Therefore,

a

h+ dA + dB
≤ (x+1)a−1

2xa−1+a−1
(30)

= (x+1)a−1

(2x+1)a−1

= x+1
2x+1 .

The following Theorem generalizes Theo-
rem 3.3 to cases when MPositiveConjunction has
precision p in (0, 1).7

Theorem 3.5 Suppose Mt, Mt−1, Kt, F̃t, F̃t−1,
∆Ft, and T are defined as stated in the statement
of Theorem 3.2. Let the contingency tables be de-
fined as they were in the proof of Theorem 3.2. Let
MPositiveConjunction be a model that only classi-
fies an example as positive if both models Mt and
Mt−1 classify the example as positive. Suppose
that MPositiveConjunction has precision p on the
stop set. Then Kt > T ⇒ |∆Ft| ≤ 4(1−T )

(p+1)T .

Proof The proof of Theorem 3.2 holds exactly as
it is up until Equality 27. MPositiveConjunction has
precision p on the stop set⇒ p = a1

a1+a−1
. Solv-

ing for a1 in terms of a−1 we have a1 = p
1−pa−1.

Therefore, applying Lemma 3.4 with x = p
1−p , we

have a
h+dA+dB

≤
p

1−p
+1

2p
1−p

+1
. Therefore we have

|∆Ft| ≤ 4

(
p

1−p
+1

2p
1−p

+1

)
(1−T )

T (31)

= 4(1−T )
(p+1)T . (32)

7The case when p = 0 is handled by Theorem 3.2 and the
case when p = 1 is handled by Theorem 3.3.
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Precision 1
p+1 (to 3 decimal places)

50% 0.667
80% 0.556
90% 0.526
95% 0.513
98% 0.505
99% 0.503

99.9% 0.500

Table 8: Values of the scaling factor from Theo-
rem 3.5 for different precision values.

The scaling factor 1
p+1 in Theorem 3.5 shows

how the precision of the conjunctive model affects
the bound. Theorem 3.2 had the scaling factor im-
plicitly set to 1 in order to handle the pathologi-
cal case where the positive conjunctive model has
precision = 0. In Theorem 3.3, where the positive
conjunctive model has precision = 1 on the exam-
ples in the stop set, the scaling factor is set to 1/2.
Theorem 3.5 generalizes the scaling factor so that
it is a function of the precision of the positive con-
junctive model. For convenience, Table 8 shows
the scaling factor values for a few different preci-
sion values.

The bounds in Theorems 3.2, 3.3, and 3.5 all
bound the difference in performance on the stop
set of two consecutively learned models Mt and
Mt−1. An issue to consider is how connected the
difference in performance on the stop set is to the
difference in performance on a stream of applica-
tion examples generated according to the popula-
tion probabilities. Taking up this issue, consider
that the proof of Theorems 3.2, 3.3, and 3.5 would
hold as it is if we had used sample proportions in-
stead of sample counts (this can be seen by simply
dividing every count by n, the size of the stop set).
Since the stop set is unbiased (selected at random
from the population), as n approaches infinity, the
sample proportions will approach the population
probabilities and the difference between the dif-
ference in performance between Mt and Mt−1 on
the stop set and on a stream of application exam-
ples generated according to the population proba-
bilities will approach zero.

4 Conclusions

To date, the work on stopping criteria has been
dominated by heuristics based on intuitions and
experimental success on a small handful of tasks

and datasets. But the methods are not widely
usable in practice yet because our community’s
understanding of the stopping methods remains
too inexact. Pushing forward on understanding
the mechanics of stopping at a more exact level
is therefore crucial for achieving the design of
widely usable effective stopping criteria.

This paper presented the first theoretical anal-
ysis of stopping based on stabilizing predictions.
The analysis revealed three elements that are cen-
tral to the SP method’s success: (1) the sample es-
timates of Kappa have low variance; (2) Kappa has
tight connections with differences in F-measure;
and (3) since the stop set doesn’t have to be la-
beled, it can be arbitrarily large, helping to guar-
antee that the results transfer to previously unseen
streams of examples at test/application time.

We presented proofs of relationships between
the level of Kappa agreement and the difference in
performance between consecutive models. Specif-
ically, if the Kappa agreement between two mod-
els is at least T, then the difference in F-measure
performance between those models is bounded
above by 4(1−T )

T . If precision of the positive con-
junction of the models is assumed to be p, then the
bound can be tightened to 4(1−T )

(p+1)T .
The setup and methodology of the proofs can

serve as a launching pad for many further inves-
tigations, including: analyses of stopping; works
that consider switching between different active
learning strategies and operating regions; and
works that consider stopping co-training, and es-
pecially agreement-based co-training. Finally, the
relationships that have been exposed between the
Kappa statistic and F-measure may be of broader
use in works that consider inter-annotator agree-
ment and its interplay with system evaluation, a
topic that has been of long-standing interest.
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tein Haug Olsen, and André O. Falcão, editors, Pro-
ceedings of the Sixteenth ACM Conference on Infor-
mation and Knowledge Management, CIKM 2007,
Lisbon, Portugal, November 6-10, 2007, pages 127–
136. ACM.

Seyda Ertekin, Jian Huang, and C. Lee Giles. 2007b.
Active learning for class imbalance problem. In
Wessel Kraaij, Arjen P. de Vries, Charles L. A.
Clarke, Norbert Fuhr, and Noriko Kando, editors,
SIGIR 2007: Proceedings of the 30th Annual Inter-
national ACM SIGIR Conference on Research and
Development in Information Retrieval, Amsterdam,
The Netherlands, July 23-27, 2007, pages 823–824.
ACM.

Joseph L. Fleiss, Jacob Cohen, and B. S. Everitt. 1969.
Large sample standard errors of kappa and weighted
kappa. Psychological Bulletin, 72(5):323 – 327.

Yoav Freund, H. Sebastian Seung, Eli Shamir, and Naf-
tali Tishby. 1997. Selective sampling using the
query by committee algorithm. Machine Learning,
28:133–168.

Masood Ghayoomi. 2010. Using variance as a stop-
ping criterion for active learning of frame assign-
ment. In Proceedings of the NAACL HLT 2010
Workshop on Active Learning for Natural Language
Processing, pages 1–9, Los Angeles, California,
June. Association for Computational Linguistics.

Ben Hachey, Beatrice Alex, and Markus Becker. 2005.
Investigating the effects of selective sampling on the
annotation task. In Proceedings of the Ninth Confer-
ence on Computational Natural Language Learning
(CoNLL-2005), pages 144–151, Ann Arbor, Michi-
gan, June. Association for Computational Linguis-
tics.

Robbie Haertel, Eric Ringger, Kevin Seppi, James Car-
roll, and Peter McClanahan. 2008. Assessing the
costs of sampling methods in active learning for an-
notation. In Proceedings of ACL-08: HLT, Short Pa-
pers, pages 65–68, Columbus, Ohio, June. Associa-
tion for Computational Linguistics.

Gholamreza Haffari and Anoop Sarkar. 2009. Active
learning for multilingual statistical machine trans-
lation. In Proceedings of the Joint Conference of

18



the 47th Annual Meeting of the ACL and the 4th In-
ternational Joint Conference on Natural Language
Processing of the AFNLP, pages 181–189, Suntec,
Singapore, August. Association for Computational
Linguistics.

Cecilia A. Hale and Joseph L. Fleiss. 1993. Interval es-
timation under two study designs for kappa with bi-
nary classifications. Biometrics, 49(2):pp. 523–534.

Rebecca Hwa. 2000. Sample selection for statistical
grammar induction. In Hinrich Schütze and Keh-
Yih Su, editors, Proceedings of the 2000 Joint SIG-
DAT Conference on Empirical Methods in Natural
Language Processing, pages 45–53. Association for
Computational Linguistics, Somerset, New Jersey.

Florian Laws and Hinrich Schütze. 2008. Stopping cri-
teria for active learning of named entity recognition.
In Proceedings of the 22nd International Conference
on Computational Linguistics (Coling 2008), pages
465–472, Manchester, UK, August. Coling 2008 Or-
ganizing Committee.

David D. Lewis and William A. Gale. 1994. A se-
quential algorithm for training text classifiers. In SI-
GIR ’94: Proceedings of the 17th annual interna-
tional ACM SIGIR conference on Research and de-
velopment in information retrieval, pages 3–12, New
York, NY, USA. Springer-Verlag New York, Inc.

D. Roth and K. Small. 2008. Active learning for
pipeline models. In Proceedings of the National
Conference on Artificial Intelligence (AAAI), pages
683–688.

Nicholas Roy and Andrew McCallum. 2001. Toward
optimal active learning through sampling estimation
of error reduction. In In Proceedings of the 18th In-
ternational Conference on Machine Learning, pages
441–448. Morgan Kaufmann.

Manabu Sassano. 2002. An empirical study of active
learning with support vector machines for japanese
word segmentation. In ACL ’02: Proceedings of the
40th Annual Meeting on Association for Computa-
tional Linguistics, pages 505–512, Morristown, NJ,
USA. Association for Computational Linguistics.

Greg Schohn and David Cohn. 2000. Less is more:
Active learning with support vector machines. In
Proc. 17th International Conf. on Machine Learn-
ing, pages 839–846. Morgan Kaufmann, San Fran-
cisco, CA.

Burr Settles and Mark Craven. 2008. An analysis
of active learning strategies for sequence labeling
tasks. In Proceedings of the 2008 Conference on
Empirical Methods in Natural Language Process-
ing, pages 1070–1079, Honolulu, Hawaii, October.
Association for Computational Linguistics.

H. S. Seung, M. Opper, and H. Sompolinsky. 1992.
Query by committee. In COLT ’92: Proceedings of
the fifth annual workshop on Computational learn-
ing theory, pages 287–294, New York, NY, USA.
ACM.

Dan Shen, Jie Zhang, Jian Su, Guodong Zhou, and
Chew-Lim Tan. 2004. Multi-criteria-based ac-
tive learning for named entity recognition. In Pro-
ceedings of the 42nd Meeting of the Association for
Computational Linguistics (ACL’04), Main Volume,
pages 589–596, Barcelona, Spain, July.

Cynthia A. Thompson, Mary Elaine Califf, and Ray-
mond J. Mooney. 1999. Active learning for natural
language parsing and information extraction. In In
Proceedings of the 16th International Conference on
Machine Learning, pages 406–414. Morgan Kauf-
mann, San Francisco, CA.

Katrin Tomanek, Joachim Wermter, and Udo Hahn.
2007. An approach to text corpus construction
which cuts annotation costs and maintains reusabil-
ity of annotated data. In Proceedings of the 2007
Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural
Language Learning (EMNLP-CoNLL), pages 486–
495.

Andreas Vlachos. 2008. A stopping criterion for
active learning. Computer Speech and Language,
22(3):295–312.

Jingbo Zhu and Eduard Hovy. 2007. Active learn-
ing for word sense disambiguation with methods for
addressing the class imbalance problem. In Pro-
ceedings of the 2007 Joint Conference on Empirical
Methods in Natural Language Processing and Com-
putational Natural Language Learning (EMNLP-
CoNLL), pages 783–790.

Jingbo Zhu, Huizhen Wang, and Eduard Hovy. 2008a.
Learning a stopping criterion for active learning for
word sense disambiguation and text classification.
In IJCNLP.

Jingbo Zhu, Huizhen Wang, and Eduard Hovy. 2008b.
Multi-criteria-based strategy to stop active learning
for data annotation. In Proceedings of the 22nd In-
ternational Conference on Computational Linguis-
tics (Coling 2008), pages 1129–1136, Manchester,
UK, August. Coling 2008 Organizing Committee.

19


