
Proceedings of the Fourth Workshop on Teaching Natural Language Processing, pages 77–84,
Sofia, Bulgaria, August 4-9 2013. c©2013 Association for Computational Linguistics

Teaching the Basics of NLP and ML in an Introductory Course to
Information Science

Apoorv Agarwal
Department of Computer Science

Columbia University
New York, USA

apoorv@cs.columbia.edu

Abstract

In this paper we discuss our experience of
teaching basic Natural Language Processing
(NLP) and Machine Learning (ML) in an in-
troductory course to Information Science. We
discuss the challenges we faced while incor-
porating NLP and ML to the curriculum fol-
lowed by a presentation of how we met these
challenges. The overall response (of stu-
dents) to the inclusion of this new topic to the
curriculum has been positive. Students this
semester are pursuing NLP/ML projects, for-
mulating their own tasks (some of which are
novel and presented towards the end of the pa-
per), collecting and annotating data and build-
ing models for their task.

1 Introduction

An introductory course to Information Science has
been taught at Columbia University for over a
decade. The main goal of the course is to intro-
duce undergraduates at our university to applica-
tions of Computer Science. For most students, this
is their first course in the Computer Science de-
partment. The course has no pre-requisites such
as higher mathematics or programming. In fact,
through a survey we found that about 10% of the
class did not know the meaning of a programming
language.

Traditionally, the computer science applications
that have been taught in this course include HTML
(creating a website), Spreadsheets, Database Sys-
tems, World Wide Web and the Internet, Algorithms
and programming in Python. Given the importance
of understanding how humans are building smart
machines and the amount of excitement around

Natural Language Processing (NLP) and Machine
Learning (ML) applications, we decided to include a
social media analysis application – sentiment analy-
sis of Twitter – in the curriculum last year. The over-
all response to this inclusion has been positive. One
outcome of this inclusion is that the students are now
able to build basic models for popular NLP applica-
tions such as sentiment analysis of Twitter, spam de-
tection of emails, and document classification. But
a more significant outcome of this inclusion is that
the students seemed to have gained a general idea of
how machine learning works, as a result, they find
Watson playing Jeopardy! against the humans, and
Google’s self-driving car less “magical”.

There were two main challenges in incorporating
an introduction to NLP and ML to the curriculum:
(1) we wanted to include this topic without compro-
mising the traditionally covered material, which put
a constraint on the number of lectures we could use
for introducing NLP and ML and (2) we were re-
quired to abstract away from the inherently math-
ematical jargon used to explain NLP and ML. In
this paper we present the way we met these chal-
lenges. We present our lecture, homework and ex-
amination design that enabled us to get some of the
most important ideas of NLP and ML across in one
lecture. The students performed exceptionally well
on the NLP/ML section of the examination. More-
over, some students are pursuing projects related to
these topics formulating their own tasks, collecting
and annotating data, and building models to answer
their hypotheses. These are signs that undergrad-
uates with a broad spectrum of educational back-
grounds and interests are not only capable of tack-
ling the basics of NLP and ML, but that they may
even be doing so with relish.

77



There has been successful and fruitful effort by
researchers in the NLP community to share their
experiences and course design through this work-
shop in the past (Lee, 2002; Eisner, 2002; Liddy
and McCracken, 2005; Freedman, 2005; Zinsmeis-
ter, 2008). Steven Bird (2008) notes that an intro-
ductory course needs to serve some common, basic
needs – “For some students, it will be the first step
in a pathway leading to specialized courses, grad-
uate research, or employment in this field. For stu-
dents who do not continue, the introductory course
will be their main exposure to the field. Naturally,
this course is also a prime opportunity to promote
the field to newcomers and encourage them to pur-
sue advanced studies in this area.” We share the
same motivation (as (Bird, 2008)) – our target audi-
ence is in fact “newbies” in Computer Science, who
may or may not continue with more advanced topics
in Computer Science, in which case this course will
be their main exposure to the field and thus offers a
great opportunity for us to promote the field.

The rest of the paper is structured as follows: In
section 2, we give details of the course and stu-
dent demographics. Section 3 presents the NLP/ML
lecture organization and content. In section 4 we
present the problems on the mid term examination
and performance of the students on the NLP/ML
part of the exam. Section 5 describes some of the
most interesting student projects that have come out
of the course. We conclude in Section 6.

2 Student demographics

Students enrolling in this introductory course on In-
formation Science come from a wide variety of aca-
demic backgrounds. A majority of the class is un-
dergraduates who have never taken any course in the
Computer Science department before. The course is
taught over a period of 4 months, consisting of 24
lectures of 75 minute duration each.

Figure 1 and Figure 2 present a distribution of 61
students based on their college rank and major (aca-
demic background) respectively.

Figure 1 shows that a large majority of students
are freshman and sophomores (50%). While these
students have an idea of what they would like to
major in, they are not required to finalize their ma-
jors until the final semester of their sophomore year.

This introductory course is therefore a great oppor-
tunity to promote the field by exposing the students
to some of the most exciting applications of Com-
puter Science. In the first class of the course, we
showed the students a video of Watson playing the
popular gameshow Jeopardy! against the humans.
It was surprising that only a few students knew of
Watson. But even the ones who knew about it were
excited and curious to learn how Watson actually
works.

Figure 1: Student distribution based on College rank.
20% Freshman, 30% Sophomore, 16% Junior, 21% Se-
nior, 8% Graduate and 5% Other

Figure 2 presents a distribution of students based
on the majors they are pursuing or intend to pursue.
For this figure, we grouped the reported majors into
the following broader categories: Math/Engineering
(Math, Computer Science, Information Science,
Electrical Engineering), Basic sciences (Biology,
Zoology, Chemistry, Physics, Neuroscience), Polit-
ical Science, Social Science, Language (German,
French, Yiddish, English, Linguistics), Arts and Hu-
manities (including Literature, Film, Theatre), Re-
gional studies (Asian, American, Middle Eastern),
and Other (Finance, History, International Relations,
Marketing, Philosophy, Psychology).

The distribution of majors shows that the students
come from a wide variety of academic backgrounds.
Only about 12% of the students are pursuing or in-
tend to pursue a major in Math/Engineering. There
is a large majority of students who have only taken

78



Figure 2: Student distribution based on majors. 16%
Economics, 14% Political Science, 14% Basic Sciences,
12% Math/Engineering, 11% Arts and Humanities, 11%
Other, 9% Social Science, 8% Language, 6% Regional
Studies.

SAT level mathematics. The majority of these stu-
dents have never used any programming language
before. Therefore, one of the main challenges of
teaching this course, especially introducing NLP and
ML, was to abstract away from mathematical jar-
gon and convey the fundamentals through the use
of analogies and concrete illustrations.

3 Lecture organization and content

To meet the aforementioned challenges, we spent
one lecture introducing the class to some basic con-
cepts of NLP and ML. Through homework and ex-
amination, we introduced the students to more NLP
applications that also helped them appreciate the
strengths and weaknesses of the simple ML tech-
nique we introduced in class. We geared the Python
part of course towards text processing preparing the
students to implement an end-to-end pipeline of a
popular NLP application on another homework.

We started the lecture by introducing a concrete
and motivating NLP application – sentiment analy-
sis of Twitter. In line with Reva Freedman’s (2005)
observation, we found that starting with a concrete

application is important. We first defined sentiment
analysis as the task of building a machine that is able
classify the polarity of opinions in text into one of
two categories: positive and negative.1 We moti-
vated this application by briefly discussing some of
its use cases: predicting the outcome of a presiden-
tial election, gauging how a company or a product
of a company is performing in the market, finding
on average how people are feeling based on gender,
location, age and weather.2

After posing the question – how would a machine
learn to predict if a tweet has a positive or a nega-
tive sentiment – we first drew an analogy of how hu-
mans learn new concepts. Humans learn through ex-
amples and counter-examples. When we see a new
object or learn a new concept, our instinct is to com-
pare the new with the familiar. Our first attempt is to
find similarities and dissimilarities between this new
object with the objects we have already seen. Simi-
larly, to train a machine, we first need to provide it
with some labeled examples. For the task at hand,
examples are tweets and their labels are manually
annotated sentiment polarity (positive or negative).
Using these training examples, the machine learns
patterns of words that signify a particular sentiment.

We started with a small list of words, calling them
“features”. The training data and features are pre-
sented in Table 1. We asked the students to fill out
each cell in Table 1 by putting a 1 if a tweet contains
a particular word and 0 if it does not contain that
word. We mentioned that this process is called “fea-
ture extraction”, in which we convert unstructured
data into a structured representation. This represen-
tation is structured because each tweet is represented
as an ordered and fixed list of features.

We asked the students how they would calculate
the similarity between two tweets. And we got an
obvious answer – count the number of words they
have in common.

The next question we asked was “how might the
machine calculate the similarity using the structured
representation?” The answer to this question was
less obvious but once we gave them the formula,

1We defined the italicized words and gave examples to help
students understand the definitions. We intentionally kept the
definition of sentiment analysis simple and restricted to classi-
fying polarity of opinions into positive and negative categories.

2http://www.wefeelfine.org

79



Tweet ID Tweet good bad not pretty great Label
T1 It’s a good day :) 1 0 0 0 0 +1
T2 The weather is pretty bad 0 1 0 1 0 -1
T3 Alice is pretty 0 0 0 1 0 +1
T4 Bieber is not all that great 0 0 1 0 1 -1

S1 It is a good day for biking 1 0 0 0 0 ?
S2 The situation is not pretty 0 0 1 1 0 ?
S3 Such a great show :) 0 0 0 0 1 ?

Table 1: Training and test data used in class to illustrate how a machine will learn to predict the polarity of tweets.

the students were able to grasp it quickly. We in-
troduced the formula as a bit-wise multiplication of
list of features followed by the summation of the re-
sulting bits.

Sim(T, S) =

d∑
i=1

ti × si

where T, S are tweets, d is the number of features in
the list of features, ti, si are the ith bit of tweets T
and S respectively.

The next question we asked was given a tweet,
whose polarity is unknown (an unseen tweet), how
might they use the training data to predict its po-
larity. This was a harder question, and though we
did not expect an answer, we posed this question
nonetheless to serve as a pause in the lecture and
indicate that a key idea was coming.

Before revealing the secret sauce, we made the
analogy of how humans would do a similar task.
Given two kinds of fish, say sea bass and salmon, the
way we would classify a new fish into one of these
two categories would be by comparing “features” of
the new fish with the features of sea bass and with
the features of salmon followed by observing if the
new fish is “closer” to sea bass or salmon. Similarly,
the machine will compare the list of features of the
unseen tweet with the list of features of the positive
and the list of features of the negative tweets and
compute a similarity score that will allow the ma-
chine to make a prediction about the polarity of this
unseen tweet.

We then introduced the following formula:

s =
N∑

i=1

Sim(Ti, S)× Labeli

where N is the total number of training examples,
Ti is the ith training example, S is the test tweet and
Labeli is the human annotated polarity of Ti.

The machine uses this score to make a final pre-
diction. If the score is less than or equal to 0, the ma-
chine predicts the polarity of the tweet as negative.
If the score is greater than 0, the machine predicts
the polarity of the tweet as positive.

We illustrated this by working out a few examples
of how the machine will go about predicting the po-
larity of the following unseen tweets:

1. “It is a good day for biking”

2. “The situation is not pretty”

3. “Such a great show :)”

We worked out the first example on the board and
asked the students to work out the remaining two on
their own. Following is the way in which we worked
out the first example on the board.

1. First the machine converts the test tweet S1
= “It is a good day for biking” into the same
structured representation as that of the training
tweets. The list of features for S1 is [1,0,0,0,0]
(see Table 1).

2. Then the machine compares the list of features
for S1 with each of the training tweets as fol-
lows:

(a) Comparing the list of features for tweets
T1 and S1, the machine finds the bit-
wise multiplication of their feature lists
[1, 0, 0, 0]× [1, 0, 0, 0] = [1, 0, 0, 0]. Then
the machine adds all the bits 1+0+0+0 =
1. We point out there is only one word in

80



common between the two tweets (namely
“good”). The similarity score between the
first training example and the test example
s1 = 1× (+1) = 1.

(b) Similarly, comparing the feature lists for
T2 and S1, we get a similarity score s2 =
([0, 1, 0, 1, 0]× [1, 0, 0, 0, 0])× (−1) = 0

(c) Comparing the feature lists for T3 and
S1, we get a similarity score s3 =
([0, 0, 0, 1, 0]× [1, 0, 0, 0, 0])× (+1) = 0

(d) Finally, comparing the feature lists for T4
and S1, we get a similarity score s4 =
([0, 0, 1, 0, 0]× [1, 0, 0, 0, 0])× (−1) = 0

3. Next, the machine adds all the similarity scores
together to get an aggregated score for the test
tweet s = s1 + s2 + s3 + s4 = 1. Since s > 0,
the machine predicts this test tweet T1, “It is a
good day for biking”, has a positive polarity.

Having the students work out the other two exam-
ples in class on their own and interacting with their
neighbors, they began to see the meaning of pattern
recognition. Bringing their attention to Table 1, we
pointed out that the word “good” is associated with
a positive polarity by virtue of appearing in a posi-
tively labeled tweet. The word “pretty” is associated
with a neutral polarity because it appears both in a
positive and in a negative tweet. This means that
the machine has learned that it cannot make a pre-
diction simply based on the word “pretty”. The test
tweet “The situation is not pretty” makes this point
explicit. This tweet is classified correctly as negative
but only because of the presence of the word “not”,
which appears in a negative tweet.

In summary, through these worked out examples,
we were able to drive home the following points:

1. The machine automatically learns the connota-
tion of words by looking at how often certain
words appear in positive and negative tweets.

2. The machine also learns more complex patterns
that have to do with the conjunction and dis-
junction of features.

3. The quality and amount of training data is im-
portant – for if the training data fails to encode
a substantial number of patterns important for

classification, the machine is not going to learn
well.

Students asked the following questions, which
helped us build on the aforementioned points.3

1. Good and great are synonyms. Shouldn’t we
count them as one feature?

2. Could we create and use a dictionary that lists
the prior polarity of commonly used words?

3. If the prediction score for the tweet is high,
does that mean we the machine is more con-
fident about the prediction?

4. In this approach, the sequence of words does
not matter. But clearly, if “not” does not negate
the words containing opinion, then won’t the
machine learn a wrong pattern?

5. If we have too many negative tweets in our
training data (as compared to the positive
tweets), then would the machine not be pre-
disposed to predict the polarity of an unseen
tweet as negative?

Building on these concepts, we had the students
work through an end-to-end example of classifying
movie reviews into positive and negative on their
homework. What appeared to be a promising ma-
chine learning technique in class, seemed to fail for
this task. They realized that classifying movie re-
views is much harder because of the words used
in plot descriptions that mislead the classifier. We
used examples from the seminal paper by Peter Tur-
ney (2002) for this homework problem.

4 Problem and performance on the Mid
term examination

We further built on the fundamentals, by asking
the students to classify emails into “important” and
“unimportant” by using the same machine learning
technique (used for sentiment analysis of Twitter)
on their mid term examination. This helped them
see that the ML technique learned in class may be
used, in general, for other NLP applications. As
Heike Zinsmeister (2008) notes, redundancy and it-
erative re-introduction could be helpful for students,

3Questions are reformulated for succinctness and clarity.

81



we found that by having the students work out differ-
ent NLP applications using the same ML approach
helped them grasp the concepts better and appreci-
ate the strengths and weaknesses of this simple ML
approach.

Table 2 presents the training data along with the
features. Following are the problems from their mid-
term examination.

1. Extract features from the emails in the training
data, i.e. fill Table 2 with ones and zeros. (5
points)

2. What will be the prediction of the machine for
this new incoming email “It is important that
you register for this meeting. – your phd advi-
sor”. Say if, this is an important email, is the
prediction made by your machine correct? (4 +
1 points)

3. What will be the prediction of the machine for
this new incoming email “Bill, what up?”. Say
if, this is an unimportant email, is the prediction
made by your machine correct? (4 + 1 points)

4. What is the performance of your current ma-
chine learning model on all the test data? (2
points)

5. What other feature(s) will you add to the list
of features to improve the performance of your
machine learning model? How will this change
the prediction of the two incoming emails?
What will be the performance of your new
model? (3 + (2 + 2) + 1 points)

For problem 5 on the exam, most of the students
came up with the answer of adding the words “your”
and “advisor” to the list of features. But some stu-
dents devised more complex features. One student
proposed to add the capitalization feature to distin-
guish between “Bill” and “bill”. Another student ex-
tended this feature to additionally check if “Bill” is
a proper noun or not. The only type of feature we
introduced in class was the binary occurrence and
non-occurrence of words. It was promising to see
the students expand on the preliminary feature set to
create novel and more advanced set of features.

The duration of the exam was 75 min and it con-
sisted of 6 extended problems. The first two prob-
lems were compulsory and the students were asked

to do any two out of the remaining four problems
(NLP/ML, Logic Gates, Database Design, Machine
Instructions). Each of the remaining four problems
was worth 25 points. Table 3 shows their perfor-
mance on the four problems. The table shows that
the students did extremely well on the NLP/ML
problem – averaging 20.54 out of 25 with a stan-
dard deviation of 4.46. Note, students unanimously
attempted the NLP/ML part of the exam – only 2 stu-
dents scored a zero for this problem as compared to
17, 11 and 23 students, who scored a zero on Logic
Gates, Database Design and Machine Instructions
respectively.4

The performance of students on the mid term ex-
amination assured us that they were comfortable
with the terminology and the process of machine
learning. We decided to build on this foundation by
introducing them to basic text processing, indexing,
and stemming in the Python part of the course. On
their Python homework, they implemented a com-
plete pipeline, starting from creating a vocabulary
from the training data, then extracting features, and
finally implementing a simple version of the per-
ceptron algorithm to predict sentiment polarity of
tweets. The average on this homework was 87.8 out
of 115 with about 60% of the students scoring over
100 points.

5 Student project descriptions

The most exciting outcome of including NLP and
ML to the course has been that some students have
signed up for a course project in their demanding
curriculum. For the course project, the students were
asked to formulate their own tasks, collect and anno-
tate data and build machine learning models for their
tasks. Following are the two most novel task formu-
lations (in students’ own language) followed by a list
of other projects.5

Detecting liberal or conservative biases (Allen
Lipson and Tyler H. Dratch): Critics on both sides
of the political spectrum often accuse their adver-
saries of employing biased language to promote

4The grading was generous and students were given partial
credit for their attempt. Therefore, we approximate the number
of students who attempted a problem by counting the number
of students who scored a zero on that problem.

5The project reports are available at
www.cs.columbia.edu/∼apoorv/Teaching/ProjectReports

82



Email ID Email meeting register unsubscribe bill Label
E1 Meeting at 4, hurry! – your advisor. ... ... ... ... +1
E2 Free event. To register click here. To un-

subscribe click here.
... ... ... ... -1

E3 According to our register, your bill is yet
to be paid

... ... ... ... +1

E4 Register for this useless meeting. ... ... ... ... -1

Table 2: Structured representation of the training data or examples from which the machine will learn to differentiate
between important and unimportant emails.

Problem Average Std-dev Median Count (Score < 5) Count (Score == 0)
NLP/ML 20.54 4.46 22 2 2
Logic Gates 16.94 6.48 20 20 17
Database Design 13.63 6.48 14 14 11
Machine Instructions 12.8 6.81 14.5 27 23

Table 3: Distribution of scores for 53 students on problems on the mid term exam. Students were required to do any
two out of these four problems. Each problem was worth 25 points. Count (Score < 5) means the number of students
out of 53 that scored less than 5 points on a problem. Average, standard deviation and median values exclude students
who scored a 0.

an agenda. Nowhere in politics is the usage of
language more contentious than in the immigration
debate. Conservatives lambast “illegal aliens”;
liberals defend “undocumented workers.” Liberals
promote a “path to citizenship”; conservatives decry
“criminal amnesty”. But is this bias also present
in major news sources, the supposedly impartial
sources of society’s information? Or are papers like
the New York Times and the Wall Street Journal
firmly on opposite sides of the immigration debate?
We want to put this question to the test. We are
constructing a machine learning algorithm to detect
liberal or conservative biases on immigration in the
New York Times and the Wall Street Journal.

The Bechdel Test (Michelle Adriana Marguer
Cheripka and Christopher I. Young): The Bechdel
Test is a measure by which it is possible to iden-
tify gender bias in fiction. In order to pass the test,
the work of fiction must pass three criteria: there
must be two main female characters, they must have
a conversation, and they must be speaking about
something other than a man. Though primarily used
in film, the Bechdel test can also be applied to lit-
erature. In previous Bechdel experiments, the re-
sults indicated traditional, heteronormative pattern.
While a text does not necessarily need to be explic-

itly feminist in order to pass the test, the test itself is
an important gauge for the social roles that societies
uphold and perpetuate. This particular experiment
was created in order to determine if this trend was
consistent across mediums. Considering that chil-
dren’s books provide the foundation for a person’s
interaction with literature, the test could identify pat-
terns that emerge from an early stages of literature
and address their future impact.

Some of the other project proposals are as fol-
lows: Gim Hong Lee built a sentiment analysis en-
gine to rate a professor based on his/her reviews
available on CULPA.info (Columbia Underground
Listing of Professor Ability). Xueying (Alice) Lin
built a recommendation system for Yelp. She ac-
quired the data-set from kaggle.com.6 A group
of three students (Roni Saporta, Moti Volpo and
Michal Schestowitz) experimented with the breast
cancer data-set available at the UCI data-repository.7

They used scikit-learn’s8 implementation of the lo-
gistic regression algorithm.

It is heartening to see that students who had very
limited (or no) idea about how machines learn at the
start of the course are now formulating tasks and at-

6http://www.kaggle.com/c/yelp-recruiting
7http://archive.ics.uci.edu/ml/
8http://scikit-learn.org/stable/

83



tempting to build their own machine learning mod-
els. What they still do not know, we believe, is that
they are mapping each document into a finite dimen-
sional feature space and calculating dot products be-
tween feature vectors to calculate similarity between
documents. While this math vocabulary is probably
required to make more progress and dive deeper into
NLP and ML, we believe it is not required to convey
the essence of pattern recognition.

6 Conclusion

In this paper, we presented a lecture, homework and
examination design, through which we were able to
get some basic ideas of Natural Language Process-
ing and Machine Learning across to students who
came from a wide variety of academic backgrounds,
majority of whom did not have an advanced math
background. Apart from the challenge of having to
abstract away from the inherently mathematical con-
cepts, we faced another challenge at the onset of de-
signing the lecture – we had to deliver the NLP and
ML material in one or two lectures so that we do not
compromise on the traditionally covered topics.

We believe that the lecture, homework and exami-
nation design presented in this paper may be used by
lecturers teaching introductory course such as ours
or by researchers who are interested in presenting
a simplified explanation of NLP and ML to general
popular science audiences.

Acknowledgments

We would like to thank Kapil Thadani, Caronae
Howell, Kshitij Yadav, Owen Rambow, Meghna
Agarwala, Sara Rosenthal, Daniel Bauer and anony-
mous reviewers for useful comments.

References
Steven Bird. 2008. Defining a core body of knowledge

for the introductory computational linguistics curricu-
lum. In Proceedings of the Third Workshop on Issues
in Teaching Computational Linguistics, pages 27–35,
Columbus, Ohio, June. Association for Computational
Linguistics.

Jason Eisner. 2002. An interactive spreadsheet for teach-
ing the forward-backward algorithm. In Proceed-
ings of the ACL-02 Workshop on Effective Tools and
Methodologies for Teaching Natural Language Pro-
cessing and Computational Linguistics, pages 10–18,
Philadelphia, Pennsylvania, USA, July. Association
for Computational Linguistics.

Reva Freedman. 2005. Concrete assignments for teach-
ing NLP in an M.S. program. In Proceedings of the
Second ACL Workshop on Effective Tools and Method-
ologies for Teaching NLP and CL, pages 37–42, Ann
Arbor, Michigan, June. Association for Computational
Linguistics.

Lillian Lee. 2002. A non-programming introduction
to computer science via nlp,ir,and ai. In Proceed-
ings of the ACL-02 Workshop on Effective Tools and
Methodologies for Teaching Natural Language Pro-
cessing and Computational Linguistics, pages 33–38,
Philadelphia, Pennsylvania, USA, July. Association
for Computational Linguistics.

Elizabeth Liddy and Nancy McCracken. 2005. Hands-on
NLP for an interdisciplinary audience. In Proceedings
of the Second ACL Workshop on Effective Tools and
Methodologies for Teaching NLP and CL, pages 62–
68, Ann Arbor, Michigan, June. Association for Com-
putational Linguistics.

Peter D. Turney. 2002. Thumbs up or thumbs down? se-
mantic orientation applied to unsupervised classifica-
tion of reviews. In the Proceedings of the 40th meet-
ing of Association of Computational Linguisitcs (ACL
2002).

Heike Zinsmeister. 2008. Freshmen’s CL curriculum:
The benefits of redundancy. In Proceedings of the
Third Workshop on Issues in Teaching Computational
Linguistics, pages 19–26, Columbus, Ohio, June. As-
sociation for Computational Linguistics.

84


