
Proceedings of the Fourth Workshop on Teaching Natural Language Processing, pages 51–55,
Sofia, Bulgaria, August 4-9 2013. c©2013 Association for Computational Linguistics

Artificial IntelliDance: Teaching Machine Learning through a
Choreography

Apoorv Agarwal
Department of Computer Science

Columbia University, New York, USA
apoorv@cs.columbia.edu

Caitlin Trainor
Department of Dance

Barnard College, Columbia University
caitlinmarytrainor@gmail.com

Abstract

In this paper we present a choreography that
explains the process of supervised machine
learning. We present how a perceptron (in its
dual form) uses convolution kernels to learn
to differentiate between two categories of ob-
jects. Convolution kernels such as string ker-
nels and tree kernels are widely used in Nat-
ural Language Processing (NLP) applications.
However, the baggage associated with learn-
ing the theory behind convolution kernels,
which extends beyond graduate linear algebra,
makes the adoption of this technology intrinsi-
cally difficult. The main challenge in creating
this choreography was that we were required
to represent these mathematical equations at
their meaning level before we could translate
them into the language of movement. By or-
chestrating such a choreography, we believe,
we have obviated the need for people to posses
advanced math background in order to appre-
ciate the core ideas of using convolution ker-
nels in a supervised learning setting.

1 Introduction

Natural Language Processing (NLP) and Machine
Learning (ML) are making a significant impact in
our day to day lives. Advancement in these ar-
eas of research is changing the way humans inter-
act with each other and with objects around them.
For example, speech to speech translation is making
it possible for people speaking different languages
to communicate seamlessly.1 In this eco-system,
where machines and objects around us are becom-

1http://www.bbn.com/technology/speech/
speech to speech translation

ing smarter, there is a need to make this complex
technology available to a general audience.

The Dance Your PhD competition2 is a recent ef-
fort that encourages doctoral students pursuing re-
search in Physics, Chemistry, Biology and Social
Sciences to explain the scientific ideas in their the-
ses through movement. The main advantage of this
approach is that the scientific ideas become avail-
able to a general audience through a medium that is
both visual and entertaining. The main challenge, of
course, is to abstract away from the technical vocab-
ulary and physicalize these scientific ideas.

In this paper, we present a choreography that ex-
plains the process of learning from data in a super-
vised setting. Through this choreography, we bring
out some of the main ideas of supervised machine
learning, including representing data as structured
objects and formulating similarity functions that a
machine uses to calculate distances between data
points. While these are general ideas, more rele-
vant to an audience that is not familiar with machine
learning, the choreography may also be used for ex-
plaining convolution kernels to researchers familiar
with machine learning but not necessarily familiar
with how a perceptron uses a convolution kernel in
its dual form.

The main challenge in creating this choreography
was that we were required to represent these mathe-
matical equations at the meaning level before trans-
lating them into the language of movement. In doing
so, our primary concerns were accuracy, aesthetics,
and legibility. The scientific ideas at hand could not
be compromised, and yet a literal representation of
the symbols would negate the intent of the project.

2http://gonzolabs.org/dance/

51



Equally vital to the success of the piece is the qual-
ity of the choreography on its own formal and aes-
thetic terms. The challenge of the translation was
both critical to the process and also enriching, be-
cause it deepened our understanding of convolution
kernels.

As Jason Eisner correctly notes in his paper on
interactive spreadsheets for teaching the forward-
backward algorithm (Eisner, 2002) – They are con-
crete, visual, playful, sometimes interactive, and re-
main available to the students after the lecture ends
– we believe this choreography shares the same
spirit. Artificial IntelliDance functions to explain a
relatively sophisticated machine learning paradigm
in an accessible and entertaining format that can be
viewed repeatedly.3

The rest of the paper is structured as follows: In
section 2, we review the perceptron algorithm, its
dual form and convolution kernels. In section 3 we
present details of the choreography, focusing on the
aspects that explain the process of supervised ma-
chine learning and bring out the strengths and weak-
nesses of kernel learning. We conclude in Section 4.

2 The Perceptron algorithm and
Convolution Kernels

The perceptron algorithm is an online learning algo-
rithm invented by Frank Rosenblatt in 1958 (Rosen-
blatt, 1958). Given a set of training data points,
D = {(xi, yi)}, where yi ∈ {1,−1}, the algorithm
works as follows:4

1. Start with the all-zeroes weight vector w1 = 0,
and initialize t to 1.

2. Given xi, predict positive if wt · xi > 0

3. On a mistake, update as follows:

wt+1 ← wt + yixi

4. t← t + 1

In natural language, a perceptron maintains a
weight vector wt at time instance t. The weight

3The video is available at the following URL:
http://tinyurl.com/mte8wda

4From lecture notes of Avrim Blum:
http://www.cs.cmu.edu/∼avrim/ML09/lect0126.pdf. Mod-
ified for our purposes.

vector is initialized to zero at the start of the algo-
rithm. The perceptron receives one data point after
the other. For each data point, it predicts the cate-
gory of the data point by calculating its dot product
with the weight vector. If the dot product is greater
than zero, it predicts the category of the data point
as 1, and -1 otherwise. On a mistake, the perceptron
updates the weight vector by adding the product of
the data point (xi) and its category (1 or -1).

The key idea here is that the weight vector is a
linear combination of the training data points whose
categories the perceptron predicted incorrectly at the
time of training. The algorithm remembers these
incorrectly classified data points by marking them
with their true category (1 or -1). Abusing terminol-
ogy, we refer to these incorrectly classified training
data points as support vectors. Notationally, the final
weight vector then is w =

∑Ns
k=1 ykxk, where Ns is

the number of support vectors.
This simple fact that the weight vector is a linear

combination of the data points has a deeper conse-
quence – to predict the category of an unseen exam-
ple, call it x, all we need is a dot product of x with
all the support vectors: w · x =

∑Ns
k=1 yk(xk · x).

This is usually referred to as the dual form of the
perceptron. The dual form allows for the use of ker-
nels because the dot product between two examples
can be replaced by a kernel as follows: w · x =∑Ns

k=1 ykK(xk,x). This is exactly where convolu-
tion kernels come into the picture. We review those
next.

Convolution kernels, first introduced by David
Haussler (1999), can be viewed as functions that
calculate similarities between abstract objects, K :
X × X → R, where X is the set of abstract ob-
jects. Since their introduction, convolution kernels
have been widely used in many NLP applications
(Collins and Duffy, 2002; Lodhi et al., 2002; Ze-
lenko et al., 2003; Culotta and Sorensen, 2004; Mos-
chitti, 2004; Zhou et al., 2007; Moschitti et al., 2008;
Agarwal and Rambow, 2010; Agarwal et al., 2011).
The reason for their popular use in NLP applica-
tions is that text has natural representations such as
strings, trees, and graphs. Representing text in its
natural representation alleviates the need for fine-
grained feature engineering and is therefore a con-
venient way of data representation. Using this natu-
ral data representation, convolution kernels calculate

52



the similarity between two objects by recursively di-
viding the objects into “parts”, calculating the simi-
larity between smaller parts, and aggregating these
similarities to report a similarity between objects.
For example, the way a string kernel will calcu-
late the similarity between two strings (say “abc”
and “aec”) is by mapping each string into an im-
plicit feature space and then calculating the similar-
ity between the two strings by taking a dot product
of the mappings (see Table 1). The feature space
is called implicit because the kernel never explicitly
writes out these features (or sub-structures). It calcu-
lates the similarity by using a dynamic program that
recurses over these structures to find similar sub-
structures.

a b c e ab ac bc ae ec
“abc” 1 1 1 0 1 1 1 0 0
“aec” 1 0 1 1 0 1 0 1 1

~v 1 0 1 0 0 1 0 0 0

Table 1: An example showing how a string kernel will
calculate the similarity between two strings. The implicit
feature space is {a, b, c, e, ab, ac, bc, ae, ec }. ~v refers to
the dot product of the vectors of the two strings. Similar-
ity between these two strings is

∑9
i=1 vi = 3

Thus, convolution kernels allow the learner to
make similarity calculations without compromising
the original structure of the objects (unlike feature
engineering, where every object is represented as
a vector in a finite dimensional space, thus losing
the original structure of objects). This was the key
observation that lead us to define objects as dance
forms, and to our choice of using convolution ker-
nels for explaining the machine learning process
through a choreography. We discuss this in detail
in the next section.

3 Artificial IntelliDance

In 2011, we created a choreography to present the
idea of how a machine goes through the process of
learning from data. We presented a perceptron, in
its dual form, that uses convolution kernels to learn
how to differentiate between two categories of ob-
jects. The 15 minute choreography is supported by
a narrative, which is an interaction between a ma-
chine, depicted by a dancer, and a user, whose voice
is heard but who remains unseen.

One of the main and early challenges we ran into
during the ideation of the choreography had to do
with the definition of objects. Though the central
goal of the choreography was to explain a scientific
idea, we wanted the choreography to maintain its
aesthetic value. As a consequence of this constraint,
we decided to stay away from defining objects as
things that would restrict the dancers from moving
freely in a natural way.

As discussed in the previous section, since con-
volution kernels allow for a natural representation
of objects, we define our objects to be two dance
forms: Ballet and Modern dance. Much like string
kernels, where the implicit feature space is the space
of sub-strings (that form a string), in our case, the
high dimensional kernel space is the space of sub-
movements (that form a movement). Each dancer is
a data point, seen as a sequence of movements in an
infinite dimensional space.

Figure 1: Above is a scene from one of the performances
in which the machine, represented by the dancer in sil-
ver, “considers” the data. Prominently featured are data
point dancers in red and yellow, both of whom have been
marked with category-differentiating shapes (round for
Ballet and diamond for Modern).

The choreography is broken into multiple phases.
In the first phase, we motivate the need for ma-
chine learning, or pattern recognition, by presenting
an apparently chaotic scene; all of the dancers are
onstage at once, performing unique movement se-
quences, with only brief moments of synchronized
action. The cacophonous dancing conveys the over-
whelming difficulty for data scientists to find pat-
terns in data using the naked eye. The dialogue ad-
vances the choreography to the next phase, where
we sketch out the learning process.

In the learning phase, the machine starts by mak-

53



ing a prediction on the first data point. Since the
machine has no prior knowledge (w1 = 0), it makes
a random prediction and gets the category wrong.
The machine marks the dancer with a symbol in or-
der to remember the data point (wt ← wt + yixi).
The machine is then asked to make a prediction on a
second data point. The machine compares this new
data point with the data point it marked and makes
a prediction (w · x =

∑Ns
k=1 ykK(xk,x)). Once

again, it gets the category wrong and marks the sec-
ond data point as well. This process continues until
the machine has seen all the training instances and
has selected data points it thinks encode structures
important for classification.

Marking of dancers is done explicitly where the
machine dancer attaches a round or triangular sym-
bol to the data points: round is for Ballet and trian-
gle is for Modern (see Figure 1). This is analogous
to how a perceptron attaches positive and negative
weights to the data points belonging to positive and
negative categories respectively.

The narration points out a big limitation of con-
volution kernel methods, which is, in the worst case,
every data-point is compared with every other data
point in the training data, thus making the learn-
ing process slow (because the machine needs to go
through the training data twice).

We also differentiate between the low dimen-
sional feature space, in which the machine is un-
able to separate the data, and the high dimensional
space, which offers distinguishability. The set of in-
active training data points, i.e. the data points in
a low dimensional feature space, is depicted by a
clump of dancers in a corner who are hardly mov-
ing. The set of data points that are actively moving
lie in a high dimensional feature space in which the
machine learns a linear separator.

The next phase is testing, in which the machine
compares the test dancers with the dancers it marked
in the learning phase. After comparing each test
point with all the support vectors, the machine
makes a prediction. This phase concludes by show-
ing that the machine has in fact learned to differen-
tiate between the two categories.

The user is impressed and asks the machine to
reveal the secret sauce. In this part of the chore-
ography we visually describe how convolution ker-
nels go about calculating similarities between two

abstract objects, by breaking the object into parts,
and recursing over the parts to calculate similarity.
This action is illustrated by a comparison of simi-
lar movements and sub-movements as executed by a
ballet and modern dancer. Situated side by side, the
two dancers fragment the movements into increas-
ingly smaller bits so as to make differences in the
two forms of dance (objects) more visibly compa-
rable. We also highlight the reason for the machine
to look at a pair of data points instead of individ-
ual data points. The reason is that the machine does
not remember the sub-structures important for clas-
sification (because the implicit feature space is enor-
mous). By marking the data points, it only remem-
bers the data points that encode these sub-structures.
To this, the user voice points out another limita-
tion of using convolution kernels; interpretability of
models is hard. We can learn predictive models, but
the fine grained structures important for classifica-
tion remain hidden.

The piece ends with all the dancers linearly sepa-
rated into categories in a high dimensional implicit
feature space. Through the narration we point out
the main differences and similarities between the
two forms of dance, which are aesthetically visible
but are sometimes hard to articulate.

4 Conclusion

In this paper, we presented a choreography that il-
lustrates the process of supervised machine learn-
ing using a perceptron and convolution kernels. The
choreography is structured around a scene in which
the machine (represented by a dancer) learns to dif-
ferentiate between two categories of objects, ballet
and modern dance. The choreography not only ex-
plains the process of machine learning and how con-
volution kernels work, it also brings out two major
limitations of using convolution kernels visually –
having to go through the data twice, which makes
the learning process slow, and that the interpretabil-
ity of the models is hard, because the important sub-
structures are not stored explicitly. While the gen-
eral ideas about supervised machine learning may
be more relevant to an audience that is not familiar
with machine learning, the choreography may also
be used to explain convolution kernels (in a visual
and entertaining way) to researchers familiar with

54



machine learning but not necessarily familiar with
how a perceptron uses a convolution kernel in its
dual form.

Artificial IntelliDance premiered at Barnard Col-
lege in April 2012, and has since been invited to
perform at the World Science Festival 2012 and
TEDx ColumbiaEngineering 2012. The audience
was comprised of a combination of scientists and
non-scientists, including dance artists, undergradu-
ate and graduate students, and the general public.
The primary concepts of the presentation were un-
derstood clearly by a number of viewers lacking fa-
miliarity with any machine learning paradigm as ev-
idenced by the post-presentation discussions. Unfor-
tunately, we do not have a more precise evaluation as
to how many people actually understood the scien-
tific ideas. The only “evaluation” we have is that the
video continues to be showcased; we were recently
invited to showcase it at Australia’s National Sci-
ence Week 2013. However, we have not yet heard
of the video being used in a Machine Learning lec-
ture.

In addition to functioning as an educational tool,
a noteworthy outcome of the project is that it fosters
dialogue between the general public and the arts and
computer science communities.

Acknowledgments

We would like to thank Caronae Howell, Kapil
Thadani, and anonymous reviewers for useful com-
ments. We thank the dancers involved in the pro-
duction and performance of the piece (in no par-
ticular order): Aditi Dhruv, Jenna Simon, Mor-
gan Caglianone, Maddie James, Claire Salant, Anna
Brown Massey, Emily Craver, Mindy Upin, Tem-
ple Kemezis, Taylor Gordon, Chelsea Cusack, Lane
Halperin, Lisa Fitzgerald and Eleanor Barisser. We
would like to thank Robert Boston for music and
Marlon Cherry for voice of the user.

References

Apoorv Agarwal and Owen Rambow. 2010. Automatic
detection and classification of social events. In Pro-
ceedings of the 2010 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1024–
1034, Cambridge, MA, October. Association for Com-
putational Linguistics.

Apoorv Agarwal, Boyi Xie, Ilia Vovsha, Owen Rambow,
and Rebecca Passonneau. 2011. Sentiment analy-
sis of twitter data. In Proceedings of the Workshop
on Language in Social Media (LSM 2011), pages 30–
38, Portland, Oregon, June. Association for Computa-
tional Linguistics.

Michael Collins and Nigel Duffy. 2002. New rank-
ing algorithms for parsing and tagging: Kernels over
discrete structures, and the voted perceptron. In Pro-
ceedings of the 40th annual meeting on association for
computational linguistics, pages 263–270. Association
for Computational Linguistics.

Aron Culotta and Jeffrey Sorensen. 2004. Dependency
tree kernels for relation extraction. In Proceedings of
the 42nd Meeting of the Association for Computational
Linguistics (ACL’04), Main Volume, pages 423–429,
Barcelona, Spain, July.

Jason Eisner. 2002. An interactive spreadsheet for teach-
ing the forward-backward algorithm. In Proceed-
ings of the ACL-02 Workshop on Effective Tools and
Methodologies for Teaching Natural Language Pro-
cessing and Computational Linguistics, pages 10–18,
Philadelphia, Pennsylvania, USA, July. Association
for Computational Linguistics.

David Haussler. 1999. Convolution kernels on discrete
structures. Technical report, University of California
at Santa Cruz.

Huma Lodhi, Craig Saunders, John Shawe-Taylor, Nello
Christianini, and Chris Watkins. 2002. Text classifi-
cation using string kernels. The Journal of Machine
Learning Research, 2:419–444.

Alessandro Moschitti, Daniele Pighin, and Roberto
Basili. 2008. Tree kernels for semantic role labeling.
Special Issue on Semantic Role Labeling, Computa-
tional Linguistics Journal,.

Alessandro Moschitti. 2004. A study on convolution
kernels for shallow semantic parsing. In Proceedings
of the 42nd Conference on Association for Computa-
tional Linguistic.

Frank Rosenblatt. 1958. The perceptron. Psych. Rev,
65(6):386–408.

Dmitry Zelenko, Chinatsu Aone, and Anthony
Richardella. 2003. Kernel methods for relation
extraction. The Journal of Machine Learning
Research, 3:1083–1106.

GuoDong Zhou, Min Zhang, DongHong Ji, and QiaoM-
ing Zhu. 2007. Tree kernel-based relation extraction
with context-sensitive structured parse tree informa-
tion. In Proceedings of EMNLP-CoNLL.

55


