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Abstract

We present an approach to feature weight
optimization for document-level decoding.
This is an essential task for enabling future
development of discourse-level statistical
machine translation, as it allows easy inte-
gration of discourse features in the decod-
ing process. We extend the framework of
sentence-level feature weight optimization
to the document-level. We show experi-
mentally that we can get competitive and
relatively stable results when using a stan-
dard set of features, and that this frame-
work also allows us to optimize document-
level features, which can be used to model
discourse phenomena.

1 Introduction

Discourse has largely been ignored in traditional
machine translation (MT). Typically each sentence
has been translated in isolation, essentially yield-
ing translations that are bags of sentences. It is
well known from translation studies, however, that
discourse is important in order to achieve good
translations of documents (Hatim and Mason,
1990). Most attempts to address discourse-level
issues for statistical machine translation (SMT)
have had to resort to solutions such as post-
processing to address lexical cohesion (Carpuat,
2009) or two-step translation to address pronoun
anaphora (Le Nagard and Koehn, 2010). Recently,
however, we presented Docent (Hardmeier et al.,
2012; Hardmeier et al., 2013), a decoder based
on local search that translates full documents. So
far this decoder has not included a feature weight
optimization framework. However, feature weight
optimization, or tuning, is important for any mod-
ern SMT decoder to achieve a good translation
performance.

In previous research with Docent, we used grid
search to find weights for document-level features
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while base features were optimized using stan-
dard sentence-level techniques. This approach is
impractical since many values for the extra fea-
tures have to be tried, and, more importantly, it
might not give the same level of performance as
jointly optimizing all parameters. Principled fea-
ture weight optimization is thus essential for re-
searchers that want to use document-level features
to model discourse phenomena such as anaphora,
discourse connectives, and lexical consistency. In
this paper, we therefore propose an approach that
supports discourse-wide features in document-
level decoding by adapting existing frameworks
for sentence-level optimization. Furthermore, we
include a thorough empirical investigation of this
approach.

2 Discourse-Level SMT

Traditional SMT systems translate texts sentence
by sentence, assuming independence between sen-
tences. This assumption allows efficient algo-
rithms based on dynamic programming for explor-
ing a large search space (Och et al., 2001). Be-
cause of the dynamic programming assumptions it
is hard to directly include discourse-level features
into a traditional SMT decoder. Nevertheless,
there have been several attempts to integrate inter-
sentential and long distance models for discourse-
level phenomena into standard decoders, usually
as ad-hoc additions to standard models, address-
ing a single phenomenon.

Several studies have tried to improve pro-
noun anaphora by adding information about the
antecedent, either by using two-step decoding
(Le Nagard and Koehn, 2010; Guillou, 2012) or
by extracting information from previously trans-
lated sentences (Hardmeier and Federico, 2010),
unfortunately without any convincing results. To
address the translation of discourse connectives,
source-side pre-processing has been used to anno-
tate surface forms either in the corpus or in the
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phrase-table (Meyer and Popescu-Belis, 2012) or
by using factored decoding (Meyer et al., 2012)
to disambiguate connectives, with small improve-
ments. Lexical consistency has been addressed
by the use of post-processing (Carpuat, 2009),
multi-pass decoding (Xiao et al., 2011; Ture et al.,
2012), and cache models (Tiedemann, 2010; Gong
et al.,, 2011). Gong et al. (2012) addressed the
issue of tense selection for translation from Chi-
nese, by the use of inter-sentential tense n-grams,
exploiting information from previously translated
sentences. Another way to use a larger context
is by integrating word sense disambiguation and
SMT. This has been done by re-initializing phrase
probabilities for each sentence (Carpuat and Wu,
2007), by introducing extra features in the phrase-
table (Chan et al., 2007), or as a k-best re-ranking
task (Specia et al., 2008). Another type of ap-
proach is to integrate topic modeling into phrase
tables (Zhao and Xing, 2010; Su et al., 2012). For
a more thorough overview of discourse in SMT,
see Hardmeier (2012).

Here we instead choose to work with the re-
cent document-level SMT decoder Docent (Hard-
meier et al., 2012). Unlike in traditional decod-
ing were documents are generated sentence by
sentence, feature models in Docent always have
access to the complete discourse context, even
before decoding is finished. It implements the
phrase-based SMT approach (Koehn et al., 2003)
and is based on local search, where a state con-
sists of a full translation of a document, which is
improved by applying a series of operations to im-
prove the translation. A hill-climbing strategy is
used to find a (local) maximum. The operations
allow changing the translation of a phrase, chang-
ing the word order by swapping the positions of
two phrases, and resegmenting phrases. The initial
state can either be initialized randomly in mono-
tonic order, or be based on an initial run from a
standard sentence-based decoder. The number of
iterations in the decoder is controlled by two pa-
rameters, the maximum number of iterations and
a rejection limit, which stops the decoder if no
change was made in a certain number of iterations.
This setup is not limited by dynamic programming
constraints, and enables the use of the translated
target document to extract features. It is thus easy
to directly integrate discourse-level features into
Docent. While we use this specific decoder in our
experiments, the method proposed for document-
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level feature weight optimization is not limited to
it. It can be used with any decoder that outputs
feature values at the document level.

3 Sentence-Level Tuning

Traditionally, feature weight optimization, or tun-
ing, for SMT is performed by an iterative process
where a development set is translated to produce a
k-best list. The parameters are then optimized us-
ing some procedure, generally to favor translations
in the k-best list that have a high score on some
MT metric. The translation step is then repeated
using the new weights for decoding, and optimiza-
tion is continued on a new k-best list, or on a com-
bination of all k-best lists. This is repeated until
some end condition is satisfied, for instance for a
set number of iterations, until there is only very
small changes in parameter weights, or until there
are no new translations in the k-best lists.

SMT tuning is a hard problem in general, partly
because the correct output is unreachable and
also because the translation process includes la-
tent variables, which means that many efficient
standard optimization procedures cannot be used
(Gimpel and Smith, 2012). Nevertheless, there
are a number of techniques including MERT (Och,
2003), MIRA (Chiang et al., 2008; Cherry and
Foster, 2012), PRO (Hopkins and May, 2011),
and Rampion (Gimpel and Smith, 2012). All of
these optimization methods can be plugged into
the standard optimization loop. All of the meth-
ods work relatively well in practice, even though
there are limitations, for instance that many meth-
ods are non-deterministic meaning that their re-
sults are somewhat unstable. However, there are
some important differences. MERT is based on
scores for the full test set, whereas the other meth-
ods are based on sentence-level scores. MERT
also has the drawback that it only works well for
small sets of features. In this paper we are not
concerned with the actual optimization algorithm
and its properties, though, but instead we focus
on the integration of document-level decoding into
the existing optimization frameworks.

In order to adapt sentence-level frameworks to
our needs we need to address the granularity of
scoring and the process of extracting k-best lists.
For document-level features we do not have mean-
ingful scores on the sentence level which are re-
quired in standard optimization frameworks. Fur-
thermore, the extraction of k-best lists is not as



Input: inputDocs, refDocs, init weights 6y, max decoder iters max, sample start ss, sample interval si,

Qutput: learned weights 0

1: 0 «— 90
2: Initialize empty klist
3: run « 1
4: repeat
5: Initialize empty klistrun
6: for doc < 1, inputDocs.size do Initialize decoder state randomly for inputDocs[doc]
7 for iter < 1, max do
8: Perform one hill-climbing step for inputDocs[doc]
9: if iter >=ss & iter mod si == 0 then
10: Add translation for inputDocs[doc] to klistrun
11: end if
12: end for
13: end for
14: Merge klistrun with klist
15: modelScores j,. < ComputeModelScores(klist)
16: metricStatsq,. < ComputeMetricStats(klist, refDocs)
17: t9run — 0
18: 0 « Opt imize(frun, modelScores ., metricStats 4, .)
19: run < run + 1

20: until Done(run, 8, frun)

Figure 1: Document-level feature weight optimization algorithm

straightforward in our hill-climbing decoder as in
standard sentence-level decoders such as Moses
(Koehn et al., 2007) where such a list can be ap-
proximated easily from the internal beam search
strategy. Working on output lattices is another op-
tion in standard approaches (Cherry and Foster,
2012) which is also not applicable in our case.

In the following section we describe how we
can address these issues in order to adapt sentence-
level frameworks for our purposes.

4 Document-Level Tuning

To allow document-level feature weight optimiza-
tion, we make some small changes to the sentence-
level framework. Figure 1 shows the algorithm we
use. It assumes access to an optimization algo-
rithm, Optimize, and an end criterion, Done.
The changes from standard sentence-level opti-
mization is that we compute scores on the docu-
ment level, and that we sample translations instead
of using standard k-best lists.

The main challenge is that we need meaning-
ful scores which we do not have at the sentence
level in document decoding. We handle this by
simply computing all scores (model scores and
metric scores) exclusively at the document level.
Remember that all standard MT metrics based on
sentence-level comparisons with reference trans-
lations can be aggregated for a complete test set.
Here we do the same for all sentences in a given
document. This can actually be an advantage com-
pared to optimization methods that use sentence-
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level scores, which are known to be unreliable
(Callison-Burch et al., 2012). Document-level
scores should thus be more stable, since they are
based on more data. A potential drawback is that
we get fewer data points with a test set of the same
size, which might mean that we need more data to
achieve as good results as with sentence-level op-
timization. We will see the ability of our approach
to optimize weights with reasonable data sets in
our experiments further down.

The second problem, the extraction of k-best
lists can be addressed in several ways. It is pos-
sible to get a k-best list from Docent by extract-
ing the results from the last & iterations. However,
since Docent operates on the document-level and
does not accept updates in each iteration, there will
be many identical and/or very similar hypotheses
with such an approach. Another option would be
to extract the translations from the k last differ-
ent iterations, which would require some small
changes to the decoder. Instead, we opt to use k-
lists, lists of translations sampled with some inter-
val, which contains & translations, but not neces-
sarily all the k best translations that could be found
by the decoder. A k-best list is of course a k-list,
which we get with a sample interval of 1.

We also choose to restart Docent randomly in
each optimization iteration, since it allows us to
explore a larger part of the search space. We
empirically found that this strategy worked better
than restarting the decoder from the previous best
state.



German-English English—Swedish
Type Sentences  Documents | Type Sentences  Documents
Training Europarl 1.9M - Europarl 1.5M -
News Commentary 178K - - - -
Tuning News2009 2525 111 Europarl (Moses) 2000 -
News2008-2010 7567 345 Europarl (Docent) 1338 100
Test News2012 3003 99 Europarl 690 20

Table 1: Domain and number of sentences and documents for the corpora

As seen in Figure 1, there are some additional
parameters in our procedure: the sample start iter-
ation and the sample interval. We also need to set
the number of decoder iterations to run. In Sec-
tion 5 we empirically investigate the effect of these
parameters.

Compared to sentence-level optimization, we
also have a smaller number of units to get scores
from, since we use documents as units, and not
sentences. The importance of this depends on the
optimization algorithm. MERT calculates metric
scores over the full tuning set, not for individual
sentences, and should not be affected too much
by the change in granularity. Many other opti-
mization algorithms, like PRO, work on the sen-
tence level, and will likely be more affected by
the reduction of units. In this work we focus on
MERT, which is the most commonly used opti-
mization procedure in the SMT community, and
which tends to work quite well with relatively few
features. However, we also show contrastive re-
sults for PRO (Hopkins and May, 2011). A fur-
ther issue is that Docent is non-deterministic, i.€.,
it can give different results with the same param-
eter weights. Since the optimization process is al-
ready somewhat unstable this is a potential issue
that needs to be explored further, which we do in
Section 5.

Implementation-wise we adapted Docent to out-
put k-lists and adapted the infrastructure available
for tuning in the Moses decoder (Koehn et al.,
2007) to work with document-level scores. This
setup allows us to use the variety of optimization
procedures implemented there.

S Experiments

In this section we report experimental results
where we investigate several issues in connec-
tion with document-level feature weight optimiza-
tion for SMT. We first describe the experimental
setup, followed by baseline results using sentence-
level optimization. We then present validation ex-
periments with standard sentence-level features,
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which can be compared to standard optimization.
Finally, we report results with a set of document-
level features that have been proposed for joint
translation and text simplification (Stymne et al.,
2013).

5.1 Experimental Setup

Most of our experiments are for German-to-
English news translation using data from the
WMT13 workshop.! We also show results with
document-level features for English-to-Swedish
Europarl (Koehn, 2005). The size of the training,
tuning, and test sets are shown in Table 1. First of
all, we need to extract documents for tuning and
testing with Docent. Fortunately, the news data al-
ready contain document markup, corresponding to
individual news articles. For Europarl we define a
document as a consecutive sequence of utterances
from a single speaker. To investigate the effect of
the size of the tuning set, we used different subsets
of the available tuning data.

All our document-level experiments are car-
ried out with Docent but we also contrast with
the Moses decoder (Koehn et al., 2007). For the
purpose of comparison, we use a standard set of
sentence-level features used in Moses in most of
our experiments: five translation model features,
one language model feature, a distance-based re-
ordering penalty, and a word count feature. For
feature weight optimization we also apply the
standard settings in the Moses toolkit. We opti-
mize towards the Bleu metric, and optimization
ends either when no weights are changed by more
than 0.00001, or after 25 iterations. MERT is used
unless otherwise noted.

Except for one of our baselines, we always run
Docent with random initialization. For test we run
the document decoder for a maximum of 227 iter-
ations with a rejection limit of 100,000. In our
experiments, the decoder always stopped when
reaching the rejection limit, usually between 1-5

'http://www.statmt .org/wmt13/
translation—-task.html



million iterations.

We show results on the Bleu (Papineni et al.,
2002) and NIST (Doddington, 2002) metrics. For
German—English we show the average result and
standard deviation of three optimization runs, to
control for optimizer instability as proposed by
Clark et al. (2011). For English—Swedish we re-
port results on single optimization runs, due to
time constraints.

5.2 Baselines

Most importantly, we would like to show the effec-
tiveness of the document-level tuning procedure
described above. In order to do this, we created
a baseline using sentence-level optimization with
a tuning set of 2525 sentences and the News2009
corpus for evaluation. Increasing the tuning set is
known to give only modest improvements (Turchi
et al., 2012; Koehn and Haddow, 2012).

The feature weights optimized with the stan-
dard Moses decoder can then directly be used in
our document-level decoder as we only include
sentence-level features in our baseline model. As
expected, these optimized weights also lead to
a better performance in document-level decoding
compared to an untuned model as shown in Ta-
ble 2. Note, that Docent can be initialized in
two ways, by Moses and randomly. Not surpris-
ingly, the result for the runs initialized with Moses
are identical with the pure sentence-level decoder.
Initializing randomly gives a slightly lower Bleu
score but with a larger variation than with Moses
initialization, which is also expected. Docent is
non-deterministic, and can give somewhat varying
results with the same weights. However, this vari-
ation has been shown experimentally to be very
small (Hardmeier et al., 2012).

Our goal now is to show that document-level
tuning can perform equally well in order to verify
our approach. For this, we set up a series of ex-
periments looking at varying tuning sets and dif-
ferent parameters of the decoding and optimiza-
tion procedure. With this we like to demonstrate
the stability of the document-level feature weight
optimization approach presented above. Note that
the most important baselines for comparison with
the results in the next sections are the ones with
Docent and random initialization.

5.3 Sentence-Level Features

In this section we present validation results where
we investigate different aspects of document-
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System Tuning Bleu NIST
Moses None 17.7 6.25
Docent-M  None 17.7 6.25
Docent-R  None 15.2(0.05) 5.88 (0.00)
Moses Moses 18.3(0.04) 6.22 (0.01)
Docent-M  Moses 18.3(0.04) 6.22(0.01)
Docent-R  Moses 18.1 (0.13) 6.23(0.01)

Table 2: Baseline results, where Docent-M is ini-
tialized with Moses and Docent-R randomly

Docs Sent. Min Max Bleu NIST

111 2525 3 127  18.0(0.11) 6.19 (0.04)
345 7567 3 127  18.1(0.14) 6.25(0.02)
100 1921 8 40 18.0 (0.05) 6.25(0.10)
200 3990 8 40 17.9 (0.25) 6.20 (0.09)
100 2394 8 100  18.0(0.12) 6.27 (0.07)
200 4600 8 100 18.1(0.29) 6.26 (0.10)
300 6852 8 100 18.2(0.13) 6.27 (0.03)

Table 3: Results for German—English with varying
sizes of tuning set, where the number of sentences
and documents are varied, as well as the minimum
and maximum number of sentences per document

level feature weight optimization with standard
sentence-level features. In this way we can com-
pare the results directly to standard sentence-level
optimization, and to the results of Moses.

Corpus size We investigate how tuning is af-
fected by corpus size. The corpus size was var-
ied in two ways, by changing the number of docu-
ments in the tuning set, and by changing the length
of documents in the tuning sets. In this exper-
iment we run 20000 decoder iterations per opti-
mization iteration, and use a k-list of size 101,
with sample interval 100. Table 3 shows the re-
sults with varying tuning set sizes for German—
English. There is very little variation between the
scores, and no clear tendencies. All results are of
similar quality to the baseline with random initial-
ization and sentence-level tuning, and better than
not using any tuning. The top line in Table 3 is
News2009, the same tuning set as for the base-
lines. The scores are somewhat more unstable than
the baseline scores, but stability is not related to
corpus size. In the following sections we will use
the tuning set with 200 documents, size 8-40.

Number of decoder iterations and k-list sam-
pling Two issues that are relevant for feature
weight optimization with the document-level de-
coder is the number of decoder hill-climbing iter-
ations in each optimization iteration, and the set-
tings for k-list sampling. These choices affect the



Iterations  K-list | UTK Bleu NIST Interval  Start UTK Bleu NIST
20000 101 55.6  17.9(0.25) 6.20(0.09) 1 19900 1.4 18.2(0.07) 6.25(0.04)
30000 201 67.2 17.9(0.06) 6.21(0.01) 10 19000 5.2 18.1(0.08) 6.22(0.03)
40000 301 79.9 18.2(0.11) 6.28 (0.09) 100 10000 55.6 17.9(0.25) 6.20(0.09)
50000 401 86.9 18.1(0.20) 6.22(0.05) 200 0 822 17.9(0.19) 6.15(0.05)
75000 651 99.2 17.8(0.15) 6.13(0.03)

100000 901 106.8 17.9 (0.17)  6.16 (0.03) Table 5: Results with different k-list-sample inter-
30000 101 21.6  18.0(0.15) 6.21(0.02) RE . : _
10000 101 126 177(053) 612(015) vals for k‘. lists size 10.1 (UTK is the avergge num
50000 101 82 17.9(0.24) 6.18(0.06) ber of unique translations per document in the k-

Table 4: Results for German—English with a vary-
ing number of iterations and k-list size (UTK is
the average number of unique translations per doc-
ument in the k-lists)

quality of the translations in each optimization it-
eration, and the spread in the k-list. We will report
the average number of unique translations per doc-
ument in the k-lists, UTK, during feature weight
optimization, in this section.

The top half of Table 4 shows results with a
different number of iterations, when we sample
k-lists from iteration 10000 with interval 100 for
German—English, which means that the size of the
k-lists also changes. The differences on MT met-
rics are very small. The number of new unique
translations in the k-lists decrease with the number
of decoder iterations. With 20K iterations, 55%
of the k-lists entries are unique, which could be
compared to only 12% with 100K iterations. The
majority of the unique translations are thus found
in the beginning of the decoding, which is not sur-
prising.

The bottom half of Table 4 shows results with
a different number of decoder iterations, but a set
k-list size. In this setting the number of unique
hypotheses in the k-lists obviously decreases with
the number of decoder iterations. Despite this,
there are mostly small result differences, except
for 40K iterations, which has more unstable results
than the other settings. It does not seem useful to
increase the number of decoder iterations without
also increasing the size of the k-list. An even bet-
ter strategy might be to only include unique entries
in the k-lists. We will explore this in future work.

We also ran experiments where we did not
restart the decoder with a random state in each iter-
ation, but instead saved the previous state and con-
tinued decoding with the new weights from there.
This, however, was largely unsuccessful, and gave
very low scores. We believe that the reason for this
is mainly that a much smaller part of the search
space is explored when the decoder is not restarted
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lists)

with a new seed repeatedly. The fact that a higher
overall quality can be achieved with a higher num-
ber of iterations (see Figure 2) can apparently not
compensate for this drawback.

Finally, we investigate the effect of the sam-
ple interval for the k-lists. To get k-lists of equal
size, 101, we start the sampling at different itera-
tions. Table 5 shows the results, and we can see
that with a small sample interval, the number of
unique translations decreases drastically. Despite
this, there are no large result differences. There
is actually a slight trend that a smaller sample in-
terval is better. This does not confirm our intuition
that it is important with many different translations
in the k-list. Especially for interval 1 it is surpris-
ing, since there is often only 1 unique translation
for a single document. We believe that the fact that
k-lists from different iterations are joined, can be
part of the explanation for these results. We think
more work is needed in the future, to further ex-
plore these settings, and the interaction with the
total number of decoder iteration, and the k-list
sampling.

To further shed some light to these results, we
show learning curves from the optimization. Fig-
ure 2 shows Bleu scores for the system optimized
with 100K decoder iterations after different num-
bers of iterations, for the last three iterations in
each of the three optimization runs. As shown in
Hardmeier et al. (2012), the translation quality in-
creases fast at first, but start to level out at around
40K iterations. Despite this, the optimization re-
sults are good even with 20K iterations, which is
somewhat surprising. Figures 3 and 4 show the
Bleu scores after each tuning iteration for the sys-
tems in Tables 4 and 5. As is normal for SMT tun-
ing, the convergence is slow, and there are some
oscillations even late in the optimization. Over-
all systems with many iterations seem somewhat
more stable.

Overall, the results are better than the untuned
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Figure 3: Bleu scores during feature weight opti-
mization for systems with different number of de-
coder iterations and k-list sizes.

baseline and on par with the sentence-level tuning
baselines in all settings, with a relatively modest
variation, even across settings. In fact, if we cal-
culate the total scores of all 36 systems in Tables 4
and 5, we get a Bleu score of 18.0 (0.23) and a
NIST score of 6.19 (0.07), with a variation that is
not higher than for many of the different settings.

Optimization method In this section we com-
pare the performance of the MERT optimiza-
tion algorithm with that of PRO, and a combi-
nation that starts MERT with weights initialized
with PRO (MERT+PRO), suggested by Koehn and
Haddow (2012). Here we run 30000 decoder it-
erations. Table 6 shows the results. Initializing
MERT with PRO did not affect the scores much.
The scores with only PRO, however, are slightly
lower than for MERT, and have a much larger
score variation. This could be because PRO is
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Figure 4: Bleu scores during feature weight opti-
mization for systems with different k-list sample
interval and number of decoder iterations.

Bleu NIST
MERT 17.9(0.06)  6.21 (0.01)
PRO 17.5(0.41)  6.15(0.20)
MERT+PRO | 18.0 (0.12)  6.18 (0.06)

Table 6: Results with different optimization algo-
rithms for German—English

likely to need more data, since it calculates met-
ric scores on individual units, sentences or docu-
ments, not across the full tuning set, like MERT.
This likely means that 200 documents are too few
for stable results with optimization methods that
depend on unit-level metric scores.

5.4 Document-Level Features

In this section we investigate the effect of opti-
mization with a number of document-level fea-
tures. We use a set of features proposed in Stymne
et al. (2013), in order to promote the readability
of texts. In this scenario, however, we use these
features in a standard SMT setting, where they
can potentially improve the lexical consistency of
translations. The features are:

e Type token ratio (TTR) — the ratio of types,
unique words, to tokens, total number of
words

e OVIX — a reformulation of TTR that has tra-
ditionally been used for Swedish and that is
less sensible to text length than TTR, see
Eq. 1

o (Q-value, phrase level (QP) - The Q-value was
developed as a measure for bilingual term
quality (Deléger et al., 2006), to promote
common and consistently translated terms.
See Eq. 2, where f(st) is the frequency of



German-English English-Swedish

System  Optimization Bleu NIST Bleu NIST
Moses Sentence 18.3(0.04) 6.22(0.01) | 24.3 6.12
Docent  Sentence 18.1 (0.13) 6.23(0.01) | 24.1 6.06
Docent  Document 17.9 (0.25) 6.20(0.09) | 234 6.01

TTR Document 18.3(0.16) 6.33(0.04) | 23.6 6.15
OVIX Document 18.3(0.13) 6.30(0.03) | 234 5.99
QW Document 18.1 (0.14) 6.22(0.03) | 242 6.11

QP Document 18.0 (0.10) 6.23 (0.05) | 21.2 5.70

Table 7: Results when using document-level features

the phrase pair, n(s) is the number of unique
target phrases which the source phrase is
aligned to in the document, and n(t) is the
same for the target phrase. Here the Q-value
is applied on the phrase level.

Q-value, word level (QW) - Same as above,
but here we apply the Q-value for source
words and their alignments on the target side.

OVIX — log(count(tokens)) 0
) 9 _ log(count(types))
o8 log(count(tokens))
__ f(st)
Q-value = n(s) + (D) 2)

We added these features one at a time to the
standard feature set. Optimization was performed
with 20000 decoder iterations, and a k-list of size
101. As shown in the previous sections, there
are slightly better settings, which could have been
used to boost the results somewhat.

The results are shown in Table 7. For German—
English, the results are generally on par with the
baselines for Bleu and slightly higher on NIST for
OVIX and TTR. For English—-Swedish, we used a
smaller tuning set on the document level than on
the sentence level, see Table 1, due to time con-
straints. This is reflected in the scores, which are
generally lower than for sentence-level decoding.
Using the QW feature, however, we receive com-
petitive scores to the sentence-based baselines,
which indicates that it can be meaningful to use
document-level features with the suggested tuning
approach.

While the results do not improve much over
the baselines, these experiments still show that
we can optimize discourse-level features with
our approach. We need to identify more useful
document-level features in future work, however.

6 Conclusion

We have shown how the standard feature weight
optimization workflow for SMT can be adapted to
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document-level decoding, which allows easy inte-
gration of discourse-level features into SMT. We
modified the standard framework by calculating
scores on the document-level instead of the sen-
tence level, and by using k-lists rather than k-best
lists.

Experimental results show that we can achieve
relatively stable results, on par with the results for
sentence-level optimization and better than with-
out tuning, with standard features. This is de-
spite the fact that we use the hill-climbing de-
coder without initialization by a standard decoder,
which means that it is somewhat unstable, and
is not guaranteed to find any global maximum,
even according to the model. We also show that
we can optimize document-level features success-
fully. We investigated the effect of a number of
parameters relating to tuning set size, the number
of decoder iterations, and k-list sampling. There
were generally small differences relating to these
parameters, however, indicating that the suggested
approach is robust. The interaction between pa-
rameters does need to be better explored in future
work, and we also want to explore better sampling,
without duplicate translations.

This is the first attempt of describing and exper-
imentally investigating feature weight optimiza-
tion for direct document-level decoding. While we
show the feasibility of extending sentence-level
optimization to the document level, there is still
much more work to be done. We would, for in-
stance, like to investigate other optimization pro-
cedures, especially for systems with a high num-
ber of features. Most importantly, there is a large
need for the development of useful discourse-level
features for SMT, which can now be optimized.
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