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Abstract

Most distributional models of word sim-
ilarity represent a word type by a single
vector of contextual features, even though,
words commonly have more than one
sense. The multiple senses can be captured
by employing several vectors per word in a
multi-prototype distributional model, pro-
totypes that can be obtained by first con-
structing all the context vectors for the
word and then clustering similar vectors
to create sense vectors. Storing and clus-
tering context vectors can be expensive
though. As an alternative, we introduce
Multi-Sense Random Indexing, which per-
forms on-the-fly (incremental) clustering.
To evaluate the method, a number of mea-
sures for word similarity are proposed,
both contextual and non-contextual, in-
cluding new measures based on optimal
alignment of word senses. Experimental
results on the task of predicting semantic
textual similarity do, however, not show
a systematic difference between single-
prototype and multi-prototype models.

1 Introduction

Many terms have more than one meaning, or
sense. Some of these senses are static and can
be listed in dictionaries and thesauri, while other
senses are dynamic and determined by the con-
texts the terms occur in. Work in Word Sense Dis-
ambiguation often concentrate on the static word
senses, making the task of distinguishing between
them one of classification into a predefined set of
classes (i.e., the given word senses); see, e.g., Erk
et al. (2013; Navigli (2009) for overviews of cur-
rent work in the area. The idea of fixed generic
word senses has received a fair amount of criti-
cism in the literature (Kilgarriff, 2000).
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This paper instead primarily investigates dy-
namically appearing word senses, word senses that
depend on the actual usage of a term in a cor-
pus or a domain. This task is often referred to as
Word Sense Induction or Word Sense Discrimina-
tion (Schiitze, 1998). This is, in contrast, essen-
tially a categorisation problem, distinguished by
different senses being more or less similar to each
other at a given time, given some input data. The
dividing line between Word Sense Disambigua-
tion and Discrimination is not necessarily razor
sharp though: also different senses of a term listed
in a dictionary tend to have some level of overlap.

In recent years, distributional models have been
widely used to infer word similarity. Most such
models represent a word type by a single vector of
contextual features obtained from co-occurrence
counts in large textual corpora. By assigning a
single vector to each term in the corpus, the re-
sulting model assumes that each term has a fixed
semantic meaning (relative to all the other terms).
However, due to homonomy and polysemy, word
semantics cannot be adequately represented by a
single-prototype vector.

Multi-prototype distributional models in con-
trast employ different vectors to represent different
senses of a word (Reisinger and Mooney, 2010).
Multiple prototypes can be obtained by first con-
structing context vectors for all words and then
clustering similar context vectors to create a sense
vector. This may be expensive, as vectors need to
stored and clustered. As an alternative, we propose
a new method called Multi-Sense Random Index-
ing (MSRI), which is based on Random Indexing
(Kanerva et al., 2000) and performs an on-the-fly
(incremental) clustering.

MSRI is a method for building a multi-
prototype / multi-sense vector space model, which
attempts to capture one or more senses per unique
term in an unsupervised manner, where each sense
is represented as a separate vector in the model.
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This differs from the classical Random Indexing
(RI) method which assumes a static sense inven-
tory by restricting each term to have only one vec-
tor (sense) per term, as described in Section 2. The
MSRI method is introduced in Section 3.

Since the induced dynamic senses do not neces-
sarily correspond to the traditional senses distin-
guished by humans, we perform an extrinsic eval-
uation by applying the resulting models to data
from the Semantic Textual Similarity shared task
(Agirre et al., 2013), in order to compare MSRI
to the classical RI method. The experimental set-
up is the topic of Section 4, while the results of
the experiments are given in Section 5. Section 6
then sums up the discussion and points to ways in
which the present work could be continued.

2 Vector Space Models

With the introduction of LSA, Latent Semantic
Analysis (Deerwester et al., 1990), distributed
models of lexical semantics, built from unla-
belled free text data, became a popular sub-field
within the language processing research commu-
nity. Methods for building such semantic mod-
els rely primarily on term co-occurrence infor-
mation, and attempt to capture latent relations
from analysing large amounts of text. Most of
these methods represent semantic models as multi-
dimensional vectors in a vector space model.

After LSA, other methods for building seman-
tic models have been proposed, one of them being
Random Indexing (Kanerva et al., 2000). Com-
mon to these methods is that they generate a con-
text vector for each unique term in the training data
which represents the term’s “contextual” meaning
in the vector space. By assigning a single con-
text vector to each term in the corpus, the resulting
model assumes that each term has a fixed semantic
meaning (relative to all other terms).

Random Indexing incrementally builds a co-
occurrence matrix of reduced dimensionality, by
first assigning index vectors to each unique term.
The vectors are of a predefined size (typically
around 1000), and consist of a few randomly
placed 1s and -1s. Context vectors of the same size
are also assigned to each term, initially consisting
of only zeros. When traversing a document corpus
using a sliding window of a fixed size, the context
vectors are continuously updated: the term in the
centre of the window (the target term), has the in-
dex vectors of its neighbouring terms (the ones in

the window) added to its context vector using vec-
tor summation. Then the cosine similarity mea-
sure can be used on term pairs to calculate their
similarity (or “contextual similarity”).

Random Indexing has achieved promising re-
sults in various experiments, for example, on the
TOEFL test (“Test of English as a Foreign Lan-
guage”) (Kanerva et al., 2000). However, it is ev-
ident that many terms have more than one mean-
ing or sense, some being static and some dynamic,
that is, determined by the contexts the terms occur
in. Schiitze (1998) proposed a method for clus-
tering the contextual occurrences of terms into in-
dividual “prototype” vectors, where one term can
have multiple prototype vectors representing sep-
arate senses of the term. Others have adopted
the same underlying idea, using alternative meth-
ods and techniques (Reisinger and Mooney, 2010;
Huang et al., 2012; Van de Cruys et al., 2011; Dinu
and Lapata, 2010).

3 Multi-Sense Random Indexing, MSRI

Inspired by the work of Schiitze (1998) and
Reisinger and Mooney (2010), this paper intro-
duces a novel variant of Random Indexing, which
we have called “Multi-Sense Random Indexing”.
MSRI attempts to capture one or more senses per
unique term in an unsupervised and incremental
manner, each sense represented as an separate vec-
tor in the model. The method is similar to classical
sliding window RI, but each term can have mul-
tiple context vectors (referred to as sense vectors
here) which are updated separately.

When updating a term vector, instead of directly
adding the index vectors of the neighbouring terms
in the window to its context vector, the system first
computes a separate window vector consisting of
the sum of the index vectors. The similarity be-
tween the window vector and each of the term’s
sense vectors is calculated. Each similarity score
is then compared to a pre-set similarity threshold:

e if no score exceeds the threshold, the window
vector becomes a new separate sense vector
for the term,

e if exactly one score is above the threshold,
the window vector is added to that sense vec-
tor, and

o if multiple scores are above the threshold, all
the involved senses are merged into one sense
vector, together with the window vector.



Algorithm 1 MSRI training
for all terms ¢ in a document D do
generate window vector win from the neigh-
bouring words’ index vectors
for all sense vectors 5; of ¢ do
sim(s;) = CosSim(win, 5;)
end for
if sim(s; 1) > 7 then
Merge ;.5 and win through summing

else
if sim(s;) > 7 then
5+ = win
end if
else

if sim(s; ) < 7 then
Assign win as new sense vector of ¢
end if
end if

end for

See Algorithm 1 for a pseudo code version. Here
T represents the similarity threshold.

This accomplishes an incremental (on-line)
clustering of senses in an unsupervised manner,
while retaining the other properties of classical RI.
Even though the algorithm has a slightly higher
complexity than classical RI, this is mainly a mat-
ter of optimisation, which is not the focus of this
paper. The incremental clustering that we apply
is somewhat similar to what is used by Lughofer
(2008), although we are storing in memory only
one element (i.e., vector) for each “cluster” (i.e.,
sense) at any given time.

When looking up a term in the vector space, a
pre-set sense-frequency threshold is applied to fil-
ter out “noisy” senses. Hence, senses that have
occurred less than the threshold are not included
when looking up a term and its senses for, for ex-
ample, similarity calculations.

As an example of what the resulting models
contain in terms of senses, Table 1 shows four dif-
ferent senses of the term ‘round’ produced by the
MSRI model. Note that these senses do not nec-
essarily correspond to human-determined senses.
The idea is only that using multiple prototype
vectors facilitates better modelling of a term’s
meaning than a single prototype (Reisinger and
Mooney, 2010).

round; round, rounds; roundy
finish camping  inch launcher
final restricted  bundt grenade
match  budget dough  propel
half fare thick antitank
third adventure cake antiaircraft

Table 1: Top-5 most similar terms for four dif-
ferent senses of ‘round’ using the Max similarity
measure to the other terms in the model.

3.1 Term Similarity Measures

Unlike classical RI, which only has a single con-
text vector per term and thus calculates similarity
between two terms directly using cosine similarity,
there are multiple ways of calculating the similar-
ity between two terms in MSRI. Some alternatives
are described in Reisinger and Mooney (2010). In
the experiment in this paper, we test four ways of
calculating similarity between two terms ¢ and ¢/
in isolation, with the Average and Max methods
stemming from Reisinger and Mooney (2010).
Let s; ,, and s j..m be the sets of sense vectors
corresponding to the terms ¢ and ¢’ respectively.
Term similarity measures are then defined as:

Centroid
For term ¢, compute its centroid vector by
summing its sense vectors S; . The same is
done for ¢’ with its sense vectors s’ j..m- These
centroids are in turn used to calculate the co-
sine similarity between ¢ and t'.

Average .
For all s;,, int, find the pair 5, s; with high-
est cosine similarity:
1< -
- Z CosSimmaz (i, '5)
i=1

Then do the same for all s’ j.m 1IN '

1 & . 5
- Z CosSimmaz(';, 5;)
=1
The similarity between ¢ and ¢’ is computed
as the average of these two similarity scores.

Max
The similarity between ¢; and t equals the
similarity of their most similar sense:

—
/.

Sim(t,t") = CosSimmaz,; (5, s's)



Hungarian Algorithm

First cosine similarity is computed for each
possible pair of sense vectors s;_,, and s joams
resulting in a matrix of similarity scores.
Finding the optimal matching from senses 3;
to s ;j that maximises the sum of similarities
is known as the assignment problem. This
combinatorial optimisation problem can be
solved in polynomial time through the Hun-
garian Algorithm (Kuhn, 1955). The over-
all similarity between terms ¢ and ¢’ is then
defined as the average of the similarities be-
tween their aligned senses.

All measures defined so far calculate similarity be-
tween terms in isolation. In many applications,
however, terms occur in a particular context that
can be exploited to determine their most likely
sense. Narrowing down their possible meaning to
a subset of senses, or a single sense, can be ex-
pected to yield a more adequate estimation of their
similarity. Hence a context-sensitive measure of
term similarity is defined as:

Contextual similarity

Let C and C" be vectors representing the con-
texts of terms ¢ and ¢’ respectively. These
context vectors are constructed by summing
the index vectors of the neighbouring terms
within a window, following the same proce-
dure as used when training the MSRI model.
We then find § and §’ as the sense vectors
best matching the context vectors:

A~

§ = argmax; CosSim(5;,C)

arg max; CosSim(sj, el

Finally, contextual similarity is defined as the
similarity between these sense vectors:

Simeontext(t,t') = CosSim(5,8")

3.2 Sentence Similarity Features

In the experiments reported on below, a range of
different ways to represent sentences were tested.
Sentence similarity was generally calculated by
the average of the maximum similarity between
pairs of terms from both sentences, respectively.
The different ways of representing the data in
combination with some sentence similarity mea-
sure will here be referred to as similarity features.
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1. MSRI-TermCentroid:
In each sentence, each term is represented as
the sum of its sense vectors. This is similar
to having one context vector, as in classical
RI, but due to the sense-frequency filtering,
potentially “noisy” senses are not included.

MSRI-TermMaxSense:

For each bipartite term pair in the two sen-
tences, their sense-pairs with maximum co-
sine similarity are used, one sense per term.

. MSRI-TermInContext:

A 5 + 5 window around each (target) term
is used as context for selecting one sense of
the term. A window vector is calculated by
summing the index vectors of the other terms
in the window (i.e., except for the target term
itself). The sense of the target term which is
most similar to the window vector is used as
the representation of the term.

MSRI-TermHASenses:

Calculating similarity between two terms is
done by applying the Hungarian Algorithm
to all their bipartite sense pairs.

. RI-TermAvg:
Classical Random Indexing — each term is
represented as a single context vector.

. RI-TermHA:
Similarity between two sentences is calcu-
lated by applying the Hungarian Algorithm to
the context vectors of each constituent term.

The parameters were selected based on a com-
bination of surveying previous work on RI (e.g.,
Sokolov (2012)), and by analysing how sense
counts evolved during training. For MSRI, we
used a similarity threshold of 0.2, a vector dimen-
sionality of 800, a non-zero count of 6, and a win-
dow size of 5 + 5. Sense vectors resulting from
less than 50 observations were removed. For clas-
sical RI, we used the same parameters as for MSRI
(except for a similarity threshold).

4 Experimental Setup

In order to explore the potential of the MSRI
model and the textual similarity measures pro-
posed here, experiments were carried out on data
from the Semantic Textual Similarity (STS) shared
task (Agirre et al.,, 2012; Agirre et al., 2013).



Given a pair of sentences, systems participating
in this task shall compute how semantically sim-
ilar the two sentences are, returning a similar-
ity score between zero (completely unrelated) and
five (completely semantically equivalent). Gold
standard scores are obtained by averaging multi-
ple scores obtained from human annotators. Sys-
tem performance is then evaluated using the Pear-
son product-moment correlation coefficient (p) be-
tween the system scores and the human scores.

The goal of the experiments reported here was
not to build a competitive STS system, but rather
to investigate whether MSRI can outperform clas-
sical Random Indexing on a concrete task such as
computing textual similarity, as well as to identify
which similarity measures and meaning represen-
tations appear to be most suitable for such a task.
The system is therefore quite rudimentary: a sim-
ple linear regression model is fitted on the training
data, using a single sentence similarity measure
as input and the similarity score as the dependent
variable. The implementations of RI and MSRI
are based on JavaSDM (Hassel, 2004).

As data for training random indexing models,
we used the CLEF 2004-2008 English corpus,
consisting of approximately 130M words of news-
paper articles (Peters et al., 2004). All text was
tokenized and lemmatized using the TreeTagger
for English (Schmid, 1994). Stopwords were re-
moved using a customized version of the stoplist
provided by the Lucene project (Apache, 2005).

Data for fitting and evaluating the linear re-
gression models came from the STS development
and test data, consisting of sentence pairs with
a gold standard similarity score. The STS 2012
development data stems from the Microsoft Re-
search Paraphrase corpus (MSRpar, 750 pairs),
the Microsoft Research Video Description cor-
pus (MSvid, 750 pairs), and statistical machine
translation output based on the Europarl corpus
(SMTeuroparl, 734 pairs). Test data for STS
2012 consists of more data from the same sources:
MSRpar (750 pairs), MSRvid (750 pairs) and
SMTeuroparl (459 pairs). In addition, different
test data comes from translation data in the news
domain (SMTnews, 399 pairs) and ontology map-
pings between OntoNotes and WordNet (OnWN,
750 pairs). When testing on the STS 2012 data, we
used the corresponding development data from the
same domain for training, except for OnWN where
we used all development data combined.
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The development data for STS 2013 consisted
of all development and test data from STS 2012
combined, whereas test data comprised machine
translation output (SMT, 750 pairs), ontology
mappings both between WordNet and OntoNotes
(OnWN, 561 pairs) and between WordNet and
FrameNet (FNWN, 189 pairs), as well as news ar-
ticle headlines (HeadLine, 750 pairs). For sim-
plicity, all development data combined were used
for fitting the linear regression model, even though
careful matching of development and test data sets
may improve performance.

5 Results and Discussion

Table 2 shows Pearson correlation scores per fea-
ture on the STS 2012 test data using simple linear
regression. The most useful features for each data
set are marked in bold. For reference, the scores of
the best performing STS systems for each data set
are also shown, as well as baseline scores obtained
with a simple normalized token overlap measure.

There is large variation in correlation scores,
ranging from 0.77 down to 0.27. Part of this vari-
ation is due to the different nature of the data sets.
For example, sentence similarity in the SMT do-
main seems harder to predict than in the video
domain. Yet there is no single measure that ob-
tains the highest score on all data sets. There is
also no consistent difference in performance be-
tween the RI and MSRI measures, which seem
to yield about equal scores on average. The
MSRI-TermInContext measure has the low-
est score on average, suggesting that word sense
disambiguation in context is not beneficial in its
current implementation.

The corresponding results on the STS 2013 test
data are shown in Table 3. The same observations
as for the STS 2012 data set can be made: again
there was no consistent difference between the RI
and MSRI features, and no single best measure.

All in all, these results do not provide any ev-
idence that MSRI improves on standard RI for
this particular task (sentence semantic similarity).
Multi-sense distributional models have, however,
been found to outperform single-sense models on
other tasks. For example, Reisinger and Mooney
(2010) report that multi-sense models significantly
increase the correlation with human similarity
judgements. Other multi-prototype distributional
models may yield better results than their single-
prototype counterparts on the STS task.



Features: MSRpar MSRvid SMTeuroparl SMTnews OnWN Mean
Best systems 0.73 0.88 0.57 0.61 0.71 0.70
Baseline 0.43 0.30 0.45 0.39 0.59 0.43
RI-TermAvg 0.44 0.71 0.50 0.42 0.65 0.54
RI-TermHA 0.41 0.72 0.44 0.35 0.56 0.49
MSRI-TermCentroid 0.45 0.73 0.50 0.33 0.64 0.53
MSRI-TermHASenses 0.40 0.77 0.47 0.39 0.68 0.54
MSRI-TermInContext 0.33 0.55 0.36 0.27 0.42 0.38
MSRI-TermMaxSense 0.44 0.71 0.50 0.32 0.64 0.52

Table 2: Pearson correlation scores per feature on STS 2012 test data using simple linear regression

Feature Headlines SMT FNWN OnWN Mean
Best systems 0.78 0.40 0.58 0.84 0.65
Baseline 0.54 0.29 0.21 0.28 0.33
RI-TermAvg 0.60 0.37 0.21 0.52 0.42
RI-TermHA 0.65 0.36 0.27 0.52 0.45
MSRI-TermCentroid 0.60 0.35 0.37 0.45 0.44
MSRI-TermHASenses 0.63 0.35 0.33 0.54 0.46
MSRI-TermInContext 0.20 0.29 0.19 0.36 0.26
MSRI-TermMaxSense 0.58 0.35 0.31 0.45 0.42

Table 3: Pearson correlation scores per feature on STS 2013 test data using simple linear regression

Notably, the more advanced features used in our
experiment, such as MSRI-TermInContext,
gave very clearly inferior results when compared
to MSRI-TermHASenses. This suggests that
more research on MSRI is needed to understand
how both training and retrieval can be fully uti-
lized and optimized.

6 Conclusion and Future Work

The paper introduced a new method called Multi-
Sense Random Indexing (MSRI), which is based
on Random Indexing and performs on-the-fly
clustering, as an efficient way to construct multi-
prototype distributional models for word similar-
ity. A number of alternative measures for word
similarity were proposed, both context-dependent
and context-independent, including new measures
based on optimal alignment of word senses us-
ing the Hungarian algorithm. An extrinsic eval-
uation was carried out by applying the resulting
models to the Semantic Textual Similarity task.
Initial experimental results did not show a sys-
tematic difference between single-prototype and
multi-prototype models in this task.

There are many questions left for future work.
One of them is how the number of senses per word
evolves during training and how the distribution
of senses in the final model looks like. So far we
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only know that on average the number of senses
keeps growing with more training material, cur-
rently resulting in about 5 senses per word at the
end of training (after removing senses with fre-
quency below the sense-frequency threshold). It
is worth noting that this depends heavily on the
similarity threshold for merging senses, as well as
on the weighting schema used.

In addition there are a number of model para-
meters that have so far only been manually tuned
on the development data, such as window size,
number of non-zeros, vector dimensionality, and
the sense frequency filtering threshold. A system-
atic exploration of the parameter space is clearly
desirable. Another thing that would be worth
looking into, is how to compose sentence vectors
and document vectors from the multi-sense vector
space in a proper way, focusing on how to pick
the right senses and how to weight these. It would
also be interesting to explore the possibilities for
combining the MSRI method with the Reflective
Random Indexing method by Cohen et al. (2010)
in an attempt to model higher order co-occurrence
relations on sense level.

The fact that the induced dynamic word senses
do not necessarily correspond to human-created
senses makes evaluation in traditional word sense
disambiguation tasks difficult. However, correla-



tion to human word similarity judgement may pro-
vide a way of intrinsic evaluation of the models
(Reisinger and Mooney, 2010). The Usim bench
mark data look promising for evaluation of word
similarity in context (Erk et al., 2013).

It is also worth exploring ways to optimise the
algorithm, as this has not been the focus of our
work so far. This would also allow faster training
and experimentation on larger text corpora, such
as Wikipedia. In addition to the JavaSDM pack-
age (Hassel, 2004), Lucene (Apache, 2005) with
the Semantic Vectors package (Widdows and Fer-
raro, 2008) would be an alternative framework for
implementing the proposed MSRI algorithm.
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