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Abstract
In this paper we present three term weight-
ing approaches for multi-lingual docu-
ment summarization and give results on
the DUC 2002 data as well as on the
2013 Multilingual Wikipedia feature arti-
cles data set. We introduce a new interval-
bounded nonnegative matrix factorization.
We use this new method, latent semantic
analysis (LSA), and latent Dirichlet allo-
cation (LDA) to give three term-weighting
methods for multi-document multi-lingual
summarization. Results on DUC and TAC
data, as well as on the MultiLing 2013
data, demonstrate that these methods are
very promising, since they achieve ora-
cle coverage scores in the range of hu-
mans for 6 of the 10 test languages. Fi-
nally, we present three term weighting ap-
proaches for the MultiLing13 single docu-
ment summarization task on the Wikipedia
featured articles. Our submissions signifi-
cantly outperformed the baseline in 19 out
of 41 languages.

1 Our Approach to Single and
Multi-Document Summarization

The past 20 years of research have yielded a
bounty of successful methods for single docu-
ment summarization (SDS) and multi-document
summarization (MDS). Techniques from statistics,
machine learning, numerical optimization, graph
theory, and combinatorics are generally language-
independent and have been applied both to single
and multi-document extractive summarization of
multi-lingual data.

In this paper we extend the work of our re-
search group, most recently discussed in Davis et

al. (2012) for multi-document summarization, and
apply it to both single and multi-document multi-
lingual document summarization. Our extractive
multi-document summarization performs the fol-
lowing steps:

1. Sentence boundary detection;

2. Tokenization and term identification;

3. Term-sentence matrix generation;

4. Term weight determination;

5. Sentence selection;

6. Sentence ordering.

Sentence boundary detection and tokenization are
language dependent, while steps (3)-(6) are lan-
guage independent. We briefly discuss each of
these steps.

We use a rule based sentence splitter FASST-
E (very Fast, very Accurate Sentence Splitter for
Text – English) (Conroy et al., 2009) and its multi-
lingual extensions (Conroy et al., 2011) for deter-
mining the boundary of individual sentences.

Proper tokenization improves the quality of
the summary and may include stemming and
also morphological analysis to disambiguate com-
pound words in languages such as Arabic. To-
kenization may also include stop word removal.
The result of this step is that each sentence is rep-
resented as a sequence of terms, where a term can
be a single word, a sequence of words, or char-
acter n-grams. The specifics of tokenization are
discussed in Section 2.

Matrix generation (the vector space model) was
pioneered by Salton (1991). Later Dumais (1994)
introduced dimensionality reduction in document
retrieval systems, and this approach has also been
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used by many researchers for document summa-
rization. (In addition to our own work, see, for
example Steinberger and Jezek (2009).) We con-
struct a single term-sentence matrix A = (ai,j),
where i = 1, . . . ,m ranges over all terms, and
j = 1, . . . , n ranges over all sentences, for ei-
ther a single document, when we perform SDS, or
for a collection of documents for MDS. The row
labels of the term-sentence matrix are the terms
T = (t1, . . . , tm) determined after tokenization.
The column labels are the sentences S1, . . . , Sn of
the document(s). The entries of the matrix A are
defined by

ai,j = `i,jgi,

Here, `i,j is the local weight, which is 1 when term
i appears in sentence j and 0 otherwise.

The global weight gi should be proportional to
the contribution of the term in describing the major
themes of the document. While the global weight
could be used as a term weight in a sentence se-
lection scheme, it may be beneficial to perform di-
mensionality reduction on the matrix A and com-
pute term weights based on the lower dimensional
matrix. In this work we seek to find strong term
weights for both single- and and multi-document
summarization. These cases are handled sepa-
rately, as we found that multi-document summa-
rization benefits a lot from dimensionality reduc-
tion while single document summarization does
not.

Our previous multi-document summarization
algorithm, OCCAMS (Davis et al., 2012), used
the linear algebraic technique of Latent Seman-
tic Analysis (LSA) to determine term weights and
used techniques from combinatorial optimization
for sentence selection. In our CLASSY algorithms
(e.g., (Conroy et al., 2011)), we used both a lan-
guage model and machine learning as two alterna-
tive approaches to assign term weights. CLASSY
then used linear algebraic techniques or an inte-
ger linear program for sentence selection. Sec-
tion 3 describes the term weights we use when
we summarize single documents. In Section 4
we present three different dimensionality reduc-
tion techniques for the term-sentence matrix A.

Once term weight learning has assigned weights
for each term of the document(s) and dimension-
ality reduction has been applied (if desired), the
next step, sentence selection, chooses a set of sen-
tences of maximal length L for the extract sum-
mary. These sentences should cover the major

themes of the document(s), minimize redundancy,
and satisfy the bound on the length of the sum-
mary. We discuss our OCCAMS V sentence se-
lection algorithm in Section 5.

Sentence ordering is performed using an ap-
proximate traveling salesperson algorithm (Con-
roy et al., 2009).

Three term weighting variants were used to gen-
erate summaries for each of the 10 languages in
the MultiLing 2013 multi-document summariza-
tion task. The target summary length was set to be
250 words for all languages except Chinese, where
700 characters were generated.

We now present the details of our improvements
to our algorithms and results of our experiments.

2 From Text to Term-Sentence Matrix

After sentence boundaries are determined, we
used one of three simple tokenization methods
and then one of two term-creation methods, as
summarized in Table 1. Languages were divided
into three categories: English, non-English lan-
guages with space delimited words, and ideo-
graphic languages (Chinese for MDS and Chi-
nese, Japanese, and Thai for the SDS pilot task).
For non-ideographic languages, tokens are formed
based on a regular expression. For English, to-
kens are defined as contiguous sequences of upper
or lower case letters and numbers. For other non-
ideographic languages, tokens were defined sim-
ilarly, and the regular expression describes what
characters are used to break the tokens. These
characters include white space and most punctu-
ation except the apostrophe. For English, Porter
stemming was used for both SDS and MDS, with a
stop list of approximately 600 words for SDS. For
English and other word-based languages, lower-
cased bi-tokens were used in MDS and lower-
cased tokens for SDS. For all languages, and both
SDS and MDS, Dunning’s mutual information
statistic (Dunning, 1993) is used to select terms,
using the other documents as background. The p-
value (rejection threshold), initially set at 5.0e-4,
is repeatedly doubled until the number of terms
is at least twice the length of the target summary
(250 for MDS, 150 words or 500 characters for
SDS). Note that these terms are high confidence
signature terms (Lin and Hovy, 2000) i.e., the p-
value is small. We describe our terms as high mu-
tual information (HMI), since Dunning’s statistic
is equivalent to mutual information as defined by
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Language Tokens Terms for MDS Terms for SDS
English [ˆA-Za-z0-9] HMI bi-tokens HMI non-stop-word

tokens
Non-English [\s.?,";:˜![](){}<>&*=+@#$] HMI bi-tokens HMI tokens
Ideographic 4-byte grams HMI tokens HMI tokens

Table 1: Term and token definition as a function of language and task.

Cover and Thomas (1991).

3 Determining Term Weights for Single
Document Summarization

For SDS we consider three term weighting meth-
ods.

The first is global entropy as proposed by Du-
mais et al. for information retrieval (Dumais,
1994) (Rehder et al., 1997) and by Steinberger and
Jezek for document summarization (Steinberger
and Jezek, 2009). Global entropy weighting is
given by

w
(GE)
i = 1−

∑
j pi,j · log pi,j

log n
,

where n is the number of sentences, pi,j = tij/fi,
tij is the number of times term i appears in sen-
tence j, and fi is the total number of times term i
appears in all sentences.1

The second term weighting is simply the loga-
rithm of frequency of the term in all the sentences:

w
(LF)
i = 1 + log(fi).

Log frequency is motivated by the fact that the
sum of the term scores for a given sentence is
(up to an affine transformation) the log probabil-
ity of generating that sentence by sampling terms
independently at random, where the probability
of each term is estimated by maximum likelihood
from the observed frequencies fi.

The third method is a personalized variant of
TextRank, which was first proposed by Mihal-
cea (2005) and motivated by PageRank (Page et
al., 1999). The personalized version smooths the
Markov chain used in TextRank (PageRank) with
term (page) preferences. Previously, a sentence
based version of personalization has been used
for summarization; see, for example, Zhao et al.
(2009). Our current work may be the first use of

1We make the usual convenient definition that pi log pi =
0 when pi = 0.

a term based personalized TextRank (TermRank),
which we call PTR. The personalization vector we
choose is simply the normalized frequency, and
the Markov chain is defined by the transition ma-
trix

M =
1

2
LLTD +

1

2
peT

where
pi = fi/

∑
i

(fi),

L is the incidence term-sentence matrix. The el-
ements of L are previously defined local weights,
`ij . The vector e is all 1’s and D is a diagonal
matrix chosen to make the column sums equal to
one. The estimated weight vector used by OC-
CAMS V, w(PTR), is computed using 5 iterations
of the power method to approximate the station-
ary vector of this matrix. Note, there is no need to
form the matrix M since the applications of M to
a vector may be achieved by vector operations and
matrix-vector multiplies by L and LT .

We test the performance of these three term
weighting methods on two data sets: DUC 2002
English single-document data and the Wikipedia
Pilot at MultiLing 2013.

3.1 Results for DUC 2002 Data
The DUC 2002 English single-document data con-
tains 567 newswire documents for which there are
one or two human-generated summaries.

In addition to computing ROUGE-2 scores, we
also compute an oracle coverage score (Conroy et
al., 2006). At TAC 2011 (Conroy et al., 2011)
(Rankel et al., 2012) bigram coverage was shown
to be a useful feature for predicting the perfor-
mance of automated summarization systems rela-
tive to a human summarizer. Oracle unigram cov-
erage score is defined by

C1(X) =
∑
i∈T

f1(i),

where T is the set of terms and f1(i) is the frac-
tion of humans who included the ith term in the
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Term Weight ROUGE-2 C1 Group
PTR 0.194 19.1 1
LF 0.192 18.7 2
GE 0.190 18.6 2

Table 2: ROUGE-2 and Coverage bi-grams Scores

summary. More generally, we define Cn in similar
way for n-gram oracle coverage scores. Coverage
scores differ from ROUGE scores since the score
is not affected by the number of times that a given
human or machine-generated summary uses the
term, but only whether or not the term is included
in the machine summary and the estimated frac-
tion of humans that would use this term. We note
that this score can be modified to compute scores
for human summarizers using the analogous jack-
knife procedure employed by ROUGE.

Table 2 gives a summary of the results. We
ran a Wilcoxon test to check for statistical dis-
tinguishability in the performance of the different
term-weighting methods. Methods were placed in
the same group if they produced results in cover-
age (C1) that were indistinguishable. More pre-
cisely, we used the null hypothesis that the differ-
ence between the vector of scores for two methods
has median 0. If the p-value of two consecutive
entries in the table was less than 0.05, the group
label was increased and is shown in the last col-
umn.

Log frequency (LF) and global entropy (GE)
are correlated. For the DUC 2002 data they per-
form comparably. Personalized term rank (PTR)
weighting is statistically stronger than the other
two approaches, as measured by the oracle term
coverage score. For these data the definition of
term for the purposes of the computation of the
oracle coverage score is non-stop word stemmed
(unigram) tokens.

3.2 Results for the Wikipedia Pilot at
MultiLing 2013

This task involves single-document summariza-
tion for 1200 Wikipedia feature articles: 30 doc-
uments in each of 40 languages. For each doc-
ument, the organizers generated a baseline lead
summary consisting of the first portion of the fea-
ture article following the “hidden summary.” Sum-
mary lengths were approximately 150 words for
all non-ideograph languages and 500 characters
for the ideograph languages. Sentences were or-

dered in the order selected by OCCAMS V. Thus,
sentences covering the largest number of relevant
terms, as measured by the term-weighting scheme,
will appear first.

Results of this pilot study will be presented in
detail in the overview workshop paper, but we note
here that, as measured by ROUGE-1, in 19 of the
40 languages, at least one of our three submit-
ted methods significantly outperformed the lead-
summary baseline.

4 Dimensionality Reduction

The goal of dimensionality reduction is to iden-
tify the major factors of the term-sentence ma-
trix A and to throw away those factors which are
“irrelevant” for summarization. Here we survey
three algorithms: the well-known LSA, the more
recent latent Dirichlet allocation (LDA), and the
new interval-bounded nonnegative matrix factor-
ization.

4.1 Latent Semantic Analysis
Davis et al. (2012) successfully used an approx-
imation to A, computed using the singular value
decomposition (SVD) A = USV T . They used
the first 200 columns U200 of the singular vector
matrix U and the corresponding part of the singu-
lar value matrix S. They eliminated negative en-
tries in U200 by taking absolute values. The term
weights were computed as the L1 norm (sum of
the entries) in the rows of W = |U200|S200.

Our method is similar, except that we use 250
columns and form them in a slightly different way.
Observe that in the SVD, if ui is a column of U
and vT

i is a row of V , then they can be replaced
by −ui and −vT

i . This is true since if D is any
diagonal matrix with entries +1 and −1, then

A = USV T = (UD)S(DV T ).

Therefore, we propose choosingD so that the sum
of the positive entries in each column of U is max-
imized. Then we form Û by setting each negative
entry of UD to zero and form W = Û250S250.

4.2 Latent Dirichlet Allocation
We use the term-sentence matrix to train a simple
generative topic model based on LDA (Blei et al.,
2003). This model is described by the following
parameters: the number of terms m; the number
of topics k; a vector w representing a probability
distribution over topics; and an m× k matrix A in
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which each column represents a probability distri-
bution over terms.

In this model, sentences are generated inde-
pendently. We use the “pure-topic” LDA model
and assume, for simplicity, that the length of the
sentence is fixed a priori. First, a topic i ∈
{1, . . . , k} is chosen from the probability distribu-
tion w. Then, terms are generated by sampling in-
dependently from the distribution specified by the
ith column of the matrix A.

We train this model using a recently-developed
spectral algorithm based on third-order tensor de-
compositions (Anandkumar et al., 2012a; Anand-
kumar et al., 2012b). This algorithm is guaranteed
to recover the parameters of the LDA model, pro-
vided that the columns of the matrixA are linearly
independent. For our experiments, we used a Mat-
lab implementation from Hsu (2012).

4.3 Interval Bounded Nonnegative Matrix
Factorization (IBNMF)

We also use a new method for dimensionality
reduction, a nonnegative matrix factorization al-
gorithm that handles uncertainty in a new way
(O’Leary and et al., In preparation).

Since the term-sentence matrix A is not known
with certainty, let’s suppose that we are given up-
per and lower bound matrices U and L so that
L ≤ A ≤ U . We compute a sparse nonnega-
tive low-rank approximation toA of the formXY ,
where X is nonnegative (i.e., X ≥ 0) and has
r columns and Y is nonnegative and has r rows.
This gives us an approximate nonnegative factor-
ization of A of rank at most r.

We choose to measure closeness of two ma-
trices using the Frobenius norm-squared, where
‖Z‖2F denotes the sum of the squares of the entries
of Z. Since A is sparse, we also want X and Y to
be sparse. We use the common trick of forcing this
by minimizing the sum of the entries of the matri-
ces, denoted by sum(X) + sum(Y ). This leads
us to determine X and Y by choosing a weighting
constant α and solving

min
X,Y,Z

α ‖XY − Z‖2F + sum(X) + sum(Y )

subject to the constraints

L ≤ Z ≤ U,
X ≥ 0,

Y ≥ 0.

We simplify this problem by noting that for any
W = XY , the entries of the optimal Z are

zij =


`ij , wij ≤ `ij ,
wij , `ij ≤ wij ≤ uij ,
uij , uij ≤ wij .

We solve our minimization problem by an alter-
nating algorithm, iterating by fixing X and deter-
mining the optimal Y and then fixing Y and de-
termining the optimal X . Either non-negativity is
imposed during the solution to the subproblems,
making each step more expensive, or negative en-
tries of the updated matrices are set to zero, ruin-
ing theoretical convergence properties but yielding
a more practical algorithm. Each iteration reduces
the distance to the term matrix, but setting nega-
tive values to zero increases it again.

For our summarization system we chose r = 50
and α = 1000. We scaled the rows of the matrix
using global entropy weights and used L = 0.9A
and U = 1.1A.

4.4 Term Weighting and Dimension Choice
for Multi-Document Summarization

A natural term weighting can be obtained by com-
puting the row sums of the dimension-reduced
approximation to the term-sentence matrix. For
LSA, the resulting term weights are the sum of
the entries in the rows of W = Û250S250. For
the LDA method the initial matrix is the matrix of
counts. The model has three components similar
to that of the SVD in LSA, and the term weights
are computed analogously. For IBNMF, the term
weights are the sum of the entries in the rows of
the optimal XY .

Each of the three dimensionality reduction
methods require us to specify the dimension of the
“topic space.” We explored this question using the
DUC 2005-2007 and the TAC 2011 data. Tables 3,
4, 5, and 6 give the average ROUGE-2, ROUGE-
4, and bi-gram coverage scores, with confidence
intervals, for the dimension that gave the best cov-
erage. The optimal ranks were 250 for LSA, 5 for
LDA, and 50 for IBNMF. We emphasize the these
results are very strong despite the fact that no use
of the topic descriptions or the guided summary
aspects for the TAC 2010 and 2011 are used. Thus,
we treat these data as if the task were to generate
a generic summary, as is the case in the MultiLing
2013 task. 2

2We note that some of the coverage (C2), and ROUGE-
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System R2 R4 C2

A 0.117 ( 0.106,0.129) 0.016 ( 0.011, 0.021) 26.333 (23.849,28.962)
C 0.118 ( 0.105,0.131) 0.016 ( 0.012, 0.022) 25.882 (23.086,28.710)
E 0.105 ( 0.092,0.120) 0.016 ( 0.010, 0.022) 23.625 (18.938,28.573)
F 0.100 ( 0.089,0.111) 0.014 ( 0.010, 0.019) 23.500 (19.319,27.806)
B 0.100 ( 0.086,0.115) 0.013 ( 0.008, 0.019) 23.118 (20.129,26.285)
D 0.100 ( 0.089,0.113) 0.012 ( 0.007, 0.017) 22.957 (20.387,25.742)
I 0.099 ( 0.085,0.116) 0.010 ( 0.007, 0.014) 21.806 (17.722,26.250)
H 0.088 ( 0.077,0.101) 0.011 ( 0.007, 0.016) 20.972 (17.389,24.750)
J 0.100 ( 0.090,0.111) 0.010 ( 0.007, 0.013) 20.472 (17.167,24.389)
G 0.097 ( 0.085,0.108) 0.012 ( 0.008, 0.017) 20.111 (16.694,24.000)

LSA250 0.085 ( 0.076,0.093) 0.008 ( 0.006, 0.009) 17.950 (17.072,18.838)
IBNMF50 0.079 ( 0.068,0.089) 0.007 ( 0.005, 0.009) 17.730 (16.843,18.614)

LDA5 0.077 ( 0.074,0.080) 0.008 ( 0.007, 0.009) 17.165 (16.320,18.024)

Table 3: DUC 2005

System R2 R4 C2

C 0.133 ( 0.116,0.152) 0.025 ( 0.018, 0.033) 30.517 (26.750,34.908)
D 0.124 ( 0.108,0.140) 0.017 ( 0.011, 0.023) 27.283 (23.567,31.050)
B 0.118 ( 0.105,0.134) 0.015 ( 0.012, 0.020) 25.933 (23.333,29.033)
G 0.113 ( 0.102,0.124) 0.016 ( 0.011, 0.022) 25.717 (23.342,28.017)
H 0.108 ( 0.098,0.117) 0.013 ( 0.010, 0.016) 24.767 (22.433,27.067)
F 0.109 ( 0.093,0.128) 0.016 ( 0.010, 0.023) 24.183 (20.650,28.292)
I 0.106 ( 0.096,0.116) 0.012 ( 0.008, 0.015) 24.133 (22.133,26.283)
J 0.107 ( 0.093,0.125) 0.015 ( 0.010, 0.022) 23.933 (20.908,27.233)
A 0.104 ( 0.093,0.116) 0.015 ( 0.010, 0.022) 23.283 (20.483,26.283)
E 0.104 ( 0.089,0.119) 0.014 ( 0.010, 0.020) 22.950 (19.833,26.450)

LDA5 0.103 ( 0.099,0.107) 0.012 ( 0.011, 0.013) 22.620 (21.772,23.450)
IBNMF50 0.095 ( 0.091,0.099) 0.010 ( 0.009, 0.011) 22.400 (21.615,23.177)
LSA250 0.099 ( 0.096,0.103) 0.012 ( 0.011, 0.013) 22.335 (21.497,23.200)

Table 4: DUC 2006

System R2 R4 C2

D 0.175 ( 0.157,0.196) 0.038 ( 0.029, 0.050) 39.481 (34.907,44.546)
C 0.151 ( 0.134,0.169) 0.035 ( 0.024, 0.049) 34.148 (29.870,38.926)
E 0.139 ( 0.125,0.154) 0.025 ( 0.020, 0.030) 30.907 (27.426,34.574)
J 0.139 ( 0.120,0.160) 0.028 ( 0.019, 0.038) 30.759 (25.593,36.389)
B 0.140 ( 0.116,0.163) 0.027 ( 0.019, 0.036) 30.537 (25.815,35.537)
I 0.136 ( 0.113,0.159) 0.022 ( 0.014, 0.030) 30.537 (25.806,35.241)
G 0.134 ( 0.118,0.150) 0.027 ( 0.018, 0.035) 30.259 (26.509,33.926)
F 0.134 ( 0.120,0.149) 0.024 ( 0.017, 0.033) 29.944 (26.481,33.870)
A 0.133 ( 0.117,0.149) 0.024 ( 0.016, 0.033) 29.315 (25.685,33.093)
H 0.130 ( 0.117,0.143) 0.020 ( 0.015, 0.027) 28.815 (25.537,32.185)

IBNMF50 0.140 ( 0.122,0.158) 0.023 ( 0.017, 0.031) 28.350 (27.092,29.567)
LSA250 0.125 ( 0.120,0.130) 0.022 ( 0.020, 0.024) 28.144 (26.893,29.344)
LDA5 0.124 ( 0.118,0.129) 0.021 ( 0.019, 0.023) 27.722 (26.556,28.893)

Table 5: DUC 2007
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System R2 R4 C2

IBNMF50 0.132 ( 0.124,0.140) 0.033 ( 0.029, 0.038) 12.585 (11.806,13.402)
D 0.128 ( 0.110,0.146) 0.024 ( 0.017, 0.032) 12.212 (10.394,14.045)

LSA250 0.128 ( 0.120,0.136) 0.030 ( 0.025, 0.034) 12.210 (11.441,12.975)
A 0.119 ( 0.099,0.138) 0.024 ( 0.016, 0.033) 11.591 ( 9.758,13.455)

LDA5 0.120 ( 0.112,0.128) 0.028 ( 0.024, 0.033) 11.409 (10.678,12.159)
E 0.118 ( 0.099,0.138) 0.025 ( 0.016, 0.035) 11.288 ( 9.409,13.258)
H 0.115 ( 0.097,0.132) 0.020 ( 0.014, 0.027) 11.212 ( 9.439,12.955)
B 0.111 ( 0.099,0.125) 0.018 ( 0.013, 0.023) 10.591 ( 9.379,11.864)
F 0.109 ( 0.090,0.128) 0.017 ( 0.010, 0.025) 10.530 ( 8.515,12.500)
C 0.110 ( 0.095,0.126) 0.015 ( 0.010, 0.021) 10.379 ( 8.939,11.924)
G 0.110 ( 0.092,0.127) 0.016 ( 0.010, 0.023) 10.258 ( 8.682,11.894)

Table 6: TAC 2011

5 Sentence Selection

Our sentence selection algorithm, OCCAMS V,
is an extension of the one used in (Davis et al.,
2012), which uses the (1 − e−1/2)-approximation
scheme for the Budgeted Maximal Coverage
(BMC) problem and the Dynamic Programming
based FPTAS for the knapsack problem.

Algorithm OCCAMS V (T, D,W, c, L)

1. K1 = Greedy BMC(T,D,W, c, L)
2. K2 = Smax ∪ Greedy BMC(T ′,D′,W, c′, L′)),

where Smax = argmax{Si∈D}

{ ∑
tj∈Si

w(tj)
}

and T ′,D′,W, c′, L′ represent quantities updated
by deleting sentence Smax from the collection.
3. K3 = KS(Greedy BMC(T,D,W, c, 5L), L);
4. K4 = KS(K ′4, L), where
K ′4 = Smax ∪ Greedy BMC(T ′,D′,W, C′, 5L′));
5. K = argmaxk=1,2,3,4

{ ∑
T (Ki)

w(ti)
}

where T (Ki) is the set of terms covered by Ki.

This algorithm selects minimally overlapping
sentences, thus reducing redundancy, while maxi-
mizing term coverage. The algorithm guarantees
a (1− e−1/2) approximation ratio for BMC.

We use the m terms T = {t1, . . . , tm} and
their corresponding weightsW = {w1, . . . , wm}.
We also use the n sentences D = {S1, . . . , Sn},
where each Si is the set of terms in the ith sen-
tence, so that Si ⊆ T . We define c to be a vec-
tor whose components are the lengths of each sen-
tence. Our algorithm, OCCAMS V, determines
four candidate sets of summary sentences and then

2 scores reported in (Davis et al., 2012), where a rank 200
approximation and a large background corpus were used,
are higher than the ones reported here, where a small self-
background and a rank 250 approximation is used.

chooses the one with maximal coverage weight.
The first three candidate sets were used in the OC-
CAMS algorithm (Davis et al., 2012). The set
K1 is determined using the Greedy BMC heuris-
tic of Khuller et al. (1999) to maximize the sum
of weights corresponding to terms in the sum-
mary sentences. The set K2 is determined the
same way, but the sentence that has the best sum
of weights is forced to be included. The third
candidate K3 is determined by applying a fully
polynomial-time approximation scheme (FPTAS)
dynamic programming algorithm, denoted by KS,
to the knapsack problem using sentences chosen
by the Greedy BMC heuristic, asking for a length
of 5L. The fourth candidate K4 is similar, but the
sentence with the best sum of weights is forced to
be included in the input to KS.

OCCAMS V guarantees an approximation ratio
of (1− e−1/2) for the result because the quality of
the solution chosen is no worse than the approxi-
mation ratio achieved by the OCCAMS algorithm.

6 Coverage Results for MultiLing 2013

We defined a term oracle coverage score in Section
3.1, an automatic summarization evaluation score
that computes the expected number of n-grams
that a summary will have in common with a hu-
man summary selected at random, assuming that
humans select terms independently. As reported
in (Davis et al., 2012), the 2-gram oracle cover-
age correlates as well with human evaluations of
English summaries as ROUGE-2 does for English
newswire summaries.3 It is natural then to ask to
what extent oracle coverage scores can predict a
summary’s quality for other languages.

3Here a term is defined as a stemmed 2-gram token.
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For each of the 10 MultiLing 2013 languages
we can tokenize and generate bigrams (or charac-
ter n-grams for Chinese) for the human-generated
summaries and the machine-generated summaries.
Table 7 gives the average oracle term (bi-gram)
coverage score (C2) for the lowest-scoring human
and for each of the dimensionality reduction algo-
rithms described in Section 4.

In all but four of the languages (Romanian,
Hindi, Spanish, and Chinese), at least one of our
methods scored higher than the lowest scoring hu-
man. As with the DUC and TAC testing, the LDA
method of term-weighting was the weakest of the
three. In fact, in eight of the languages one or both
of OCCAMS V(LSA) and OCCAMS V(IBNMF)
(indicated in boldface in the table) scored signif-
icantly higher than OCCAMS V(LDA) (p-value
< 0.05 using a paired Wilcoxon test).

The human coverage scores for three of the lan-
guages (Romanian, Hindi, and Chinese) are sur-
prisingly high. Examining these data more closely
indicates that a large number of the summaries are
nearly identical. As an example, in one of the Ro-
manian document sets, there were 266 bi-grams
in the union of the three summaries, and the sum-
mary length was 250. Document sets similar to
this are the major cause of the anomalously high
scores for humans in these languages.

Language Human LSA IBNMF LDA
english 37 38 37 34
arabic 22 29 28 23
czech 22 34 35 33
french 28 38 38 34
greek 19 25 25 24

hebrew 16 19 22 19
hindi 64 20 20 18

spanish 47 40 44 36
romanian 118 31 28 29
chinese 68 23 24 18

Table 7: MultiLing 2013 Coverage Results

Human evaluation of the multi-lingual multi-
document summaries is currently under way.
These evaluations will be extremely informative
and will help measure to what extent ROUGE,
coverage, and character n-gram based methods
such as MeMoG (Giannakopoulos et al., 2010),
are effective in predicting performance.

7 Conclusions and Future Work

In this paper we presented three term weight-
ing approaches for single document multi-lingual
summarization. These approaches were tested on
the DUC 2002 data and on a submission to the
MultiLing 2013 single document pilot task for all
40 languages. Automatic evaluation of these sum-
maries with ROUGE-1 indicates that the strongest
of the approaches significantly outperformed the
lead baseline. The Wikipedia feature articles pose
a challenge due to their variable summary size and
genre. Further analysis of the results as well as hu-
man evaluation of the submitted summaries would
deepen our understanding.

A new nonnegative matrix factorization
method, interval bounded nonnegative matrix
factorization (IBNMF), was used. This method
allows specifying interval bounds, which give
an intuitive way to express uncertainty in the
term-sentence matrix.

For MDS we presented a variation of a LSA
term-weighting for OCCAMS V as well as novel
use of both of the IBNMF and an LDA model.

Based on automatic evaluation using cover-
age, it appears that the LSA method and the
IBNMF term-weighting give rise to competitive
summaries with term coverage scores approach-
ing that of humans for 6 of the 10 languages. The
automatic evaluation of these summaries, which
should soon be finished, will be illuminating.

Note: Contributions to this article by NIST, an agency of the

US government, are not subject to US copyright. Any men-

tion of commercial products is for information only, and does

not imply recommendation or endorsement by NIST.
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