
Proceedings of the 13th Meeting on the Mathematics of Language (MoL 13), pages 83–92,
Sofia, Bulgaria, August 9, 2013. c©2013 Association for Computational Linguistics

Why Letter Substitution Puzzles are Not Hard to Solve: A Case Study in
Entropy and Probabilistic Search-Complexity

Eric Corlett
University of Toronto

10 King’s College Rd., Room 3302
Toronto, ON, Canada M5S 3G4
ecorlett@cs.toronto.edu

Gerald Penn
University of Toronto

10 King’s College Rd., Room 3302
Toronto, ON, Canada M5S 3G4
gpenn@cs.toronto.edu

Abstract

In this paper we investigate the theoretical
causes of the disparity between the theo-
retical and practical running times for the
A∗ algorithm proposed in Corlett and Penn
(2010) for deciphering letter-substitution
ciphers. We argue that the difference seen
is due to the relatively low entropies of the
probability distributions of character tran-
sitions seen in natural language, and we
develop a principled way of incorporat-
ing entropy into our complexity analysis.
Specifically, we find that the low entropy
of natural languages can allow us, with
high probability, to bound the depth of the
heuristic values expanded in the search.
This leads to a novel probabilistic bound
on search depth in these tasks.

1 Introduction

When working in NLP, we can find ourselves
using algorithms whose worst-case running time
bounds do not accurately describe their empiri-
cally determined running times. Specifically, we
can often find that the algorithms that we are us-
ing can be made to run efficiently on real-world
instances of their problems despite having theo-
retically high running times. Thus, we have an ap-
parent disparity between the theoretical and prac-
tical running times of these algorithms, and so we
must ask why these algorithms can provide results
in a reasonable time frame. We must also ask to
what extent we can expect our algorithms to re-
main practical as we change the downstream do-
mains from which we draw problem instances.

At a high level, the reason such algorithms can
work well in the real world is that the real world
applications from which we draw our inputs do
not tend to include the high complexity inputs. In
other words, our problem space either does not

cover all possible inputs to the algorithm, or it
does, but with a probability distribution that gives
a vanishingly small likelihood to the “hard” inputs.
Thus, it would be beneficial to incorporate into our
running time analysis the fact that our possible in-
puts are restricted, even if only restricted in rela-
tive frequency rather than in absolute terms.

This means that any running time that we ob-
serve must be considered to be dependent on the
distribution of inputs that we expect to sample
from. It probably does not come as a surprise that
any empirical analysis of running time carries with
it the assumption that the data on which the tests
were run are typical of the data which we expect
to see in practice. Yet the received wisdom on the
asymptotic complexity of algorithms in computa-
tional linguistics (generally what one might see
in an advanced undergraduate algorithms curricu-
lum) has been content to consider input only in
terms of its size or length, and not the distribution
from which it was sampled. Indeed, many algo-
rithms in NLP actually take entire distributions as
input, such as language models. Without a more
mature theoretical understanding of time complex-
ity, it is not clear exactly what any empirical run-
ning time results would mean. A worst-case com-
plexity result gives a guarantee that an algorithm
will take no more than a certain number of steps
to complete. An average-case result gives the ex-
pected number of steps to complete. But an empir-
ical running time found by sampling from a distri-
bution that is potentially different from what the
algorithm was designed for is only a lesson in how
truly different the distribution is.

It is also common for the theoretical study of
asymptotic time complexity in NLP to focus on
the worst-case complexity of a problem or algo-
rithm rather than an expected complexity, in spite
of the existence for now over 20 years of methods
for average-case analysis of an algorithm. Even
these, however, often assume a uniform distribu-

83

tion over input, when in fact the true expectation
must consider the probability distribution that we
will draw the inputs from. Uniform distributions
are only common because we may not know what
the distribution is beforehand.

Ideally, we should want to characterize the run-
ning time of an algorithm using some known prop-
erties of its input distribution, even if the precise
distribution is not known. Previous work that at-
tempts this does exist. In particular, there is a vari-
ant of analysis referred to as smoothed analysis
which gives a bound on the average-case running
time of an algorithm under the assumption that all
inputs are sampled with Gaussian measurement er-
ror. As we will argue in Section 2, however, this
approach is of limited use to us.

We instead approach the disparity of theoretical
and practical running time by making use of statis-
tics such as entropy, which are taken from the in-
put probability distributions, as eligible factors in
our analysis of the running time complexity. This
is a reasonable approach to the problem, in view of
the numerous entropic studies of word and charac-
ter distributions dating back to Shannon.

Specifically, we analyze the running time of the
A∗ search algorithm described in Corlett and Penn
(2010). This algorithm deciphers text that has
been enciphered using a consistent letter substitu-
tion, and its running time is linear in the length of
the text being deciphered, but theoretically expo-
nential in the size of the input and output alpha-
bets. This naı̈ve theoretical analysis assumes that
characters are uniformly distributed, however. A
far more informative bound is attainable by mak-
ing reference to the entropy of the input. Be-
cause the algorithm takes a language model as one
of its inputs (the algorithm is guaranteed to find
the model-optimal letter substitution over a given
text), there are actually two input distributions: the
distribution assumed by the input language model,
and the distribution from which the text to be de-
ciphered was sampled. Another way to view this
problem is as a search for a permutation of letters
as the outcomes of one distribution such that the
two distributions are maximally similar. So our
informative bound is attained through reference to
the cross-entropy of these two distributions.

We first formalize our innate assumption that
these two distributions are similar, and build an
upper bound for the algorithm’s complexity that
incorporates the cross-entropy between the two

distributions. The analysis concludes that, rather
than being exponential in the length of the input or
in the size of the alphabets, it is merely exponen-
tial in the cross-entropy of these two distributions,
thus exposing the importance of their similarity.
Essentially, our bound acts as a probability distri-
bution over the necessary search depth.

2 Related Work

The closest previous work to the analysis pre-
sented here is the use of smoothed analysis to ex-
plain the tractable real-world running time of a
number of algorithms with an exponential worst-
case complexity. These algorithms include the
simplex algorithm, as described by Spielman and
Teng (2004), the k-means clustering algorithm, as
described by Arthur et al. (2009) and others. As
in our current approach, smoothed analysis works
by running a general average-case analysis of the
algorithms without direct knowledge of the distri-
bution from which the problem inputs have been
drawn. The assumption made in smoothed anal-
ysis is that every input has been read with some
Gaussian measurement error. That is, in a typi-
cal worst-case analysis, we may have an adversary
choose any input for our algorithm, after which we
must calculate how bad the resulting running time
might be, but in a smoothed analysis, the adver-
sary gives us input by placing it into the real world
so that we may measure it, and this measurement
adds a small error drawn from a Gaussian dis-
tribution to the problem instance. The point of
smoothed analysis is to find the worst average-case
running time, under these conditions, that the ad-
versary can subject us to. Thus the analysis is an
average case, subject to this error, of worst cases.
In the papers cited above, this method of analysis
was able to drop running times from exponential
to polynomial.

It is unfortunate that this approach does not
readily apply to many of the algorithms that we
use in NLP. To see why this is, simply note that
we can only add a small Gaussian error to our in-
puts if our inputs themselves are numerical. If the
inputs to our algorithms are discrete, say, in the
form of strings, then Gaussian errors are not mean-
ingful. Rather, we must ask what sort of error we
can expect to see in our inputs, and to what extent
these errors contribute to the running time of our
algorithms. In the case of decipherment, “error”
is committed by substituting one character for an-

84

other consistently.

The strongest known result on the search com-
plexity of A∗ is given in Pearl (1984). This work
found that, under certain assumptions, a bound on
the absolute error between the heuristic used and
the true best cost to reach the goal yields a polyno-
mial worst-case depth for the search. This happens
when the bound is constant across search instances
of different sizes. On the other hand, if the relative
error does not have this constant bound, the search
complexity can still be exponential. This analy-
sis assumes that the relative errors in the heuristic
are independent between nodes of the search tree.
It is also often very difficult even to calculate the
value of a heuristic that possesses such a bound,
as it might involve calculating the true best cost,
which can be as difficult as completely solving a
search problem instance (Korf et al., 2001). Thus,
most practical heuristics still give rise to theoreti-
cally exponential search complexities in this view.

In Korf and Reid (1998) and Korf et al. (2001),
on the other hand, several practical problems are
treated, such as random k-SAT, Rubik’s cubes, or
sliding tile puzzles, which are not wholly unlike
deciphering letter substitution puzzles in that they
calculate permutations, and therefore can assume,
as we do, that overall time complexity directly cor-
responds to the number of nodes visited at differ-
ent depths in the search tree that have a heuris-
tic low enough to guarantee node expansion. But
their analysis assumes that it is possible to both es-
timate and use a probability distribution of heuris-
tic values on different nodes of the search graph,
whereas in our task, this distribution is very dif-
ficult to sample because almost every node in the
search graph has a worse heuristic score than the
goal does, and would therefore never be expanded.
Without an accurate idea of what the distribution
of the heuristic is, we cannot accurately estimate
the complexity of the algorithm. On the other
hand, their analysis makes no use of any estimates
of the cost of reaching the goal, because the prac-
tical problems that they consider do not allow for
particularly accurate estimates. In our treatment,
we find that the cost to reach the goal can be esti-
mated with high probability, and that this estimate
is much less than the cost of most nodes in the
search graph. These different characteristics allow
us to formulate a different sort of bound on the
search complexity for the decipherment problem.

3 The Algorithm

We now turn to the algorithm given in Corlett and
Penn (2010) which we will investigate, and we ex-
plain the model we use to find our bound.

The purpose of the algorithm is to allow us to
read a given ciphertext C which is assumed to
be generated by putting an unknown plaintext P
through an unknown monoalphabetic cipher.

We will denote the ciphertext alphabet as Σc

and the plaintext alphabet as Σp. Given any string
T , we will denote n(T) as the length of T . Fur-
thermore, we assume that the plaintext P is drawn
from some string distribution q. We do not assume
q to be a trigram distribution, but we do require it
to be a distribution from which trigrams can be
calculated (e.g, a 5-gram corpus will in general
have probabilities that cannot be predicted using
the associated trigrams, but the associated trigram
corpus can be recovered from the 5-grams).

It is important to realize in the algorithm de-
scription and analysis that q may also not be
known exactly, but we only assume that it exists,
and that we can approximate it with a known tri-
gram distribution p. In Corlett and Penn (2010),
for example, p is the trigram distribution found us-
ing the Penn treebank. It is assumed that this is a
good approximation for the distribution q, which
in Corlett and Penn (2010) is the text in Wikipedia
from which ciphers are drawn. As is common
when dealing with probability distributions over
natural languages, we assume that both p and q
are stationary and ergodic, and we furthermore as-
sume that p is smooth enough that any trigram that
can be found in any string generated by q occurs in
p (i.e., we assume that the cross entropyH(p, q) is
finite).

The algorithm works in a model in which, for
any run of the algorithm, the plaintext string P
is drawn according to the distribution q. We do
not directly observe P , but instead its encoding
using the cipher key, which we will call πT . We
observe the ciphertext C = π−1

T (P). We note that
πT is unknown, but that it does not change as new
ciphertexts are drawn.

Now, the way that the algorithm in Corlett and
Penn (2010) works is by searching over the pos-
sible keys to the cipher to find the one that maxi-
mizes the probability of the plaintext according to
the distribution p. It does so as follows.

In addition to the possible keys to the cipher,

85

weakened cipher keys called partial solutions are
added to the search space. A partial solution of
size k (denoted as πk) is a section of a possible full
cipher key which is only defined on k character
types in the cipher. We consider the character
types to be fixed according to some preset order,
and so the k fixed letters in πk do not change
between different partial solutions of size k.

Given a partial solution πk, a string πn(C)
k (C)

is defined whose probability we use as an upper
bound for the probability of the plaintext when-
ever the true solution to the cipher contains πk
as a subset. The string π

n(C)
k (C) is the most

likely string that we can find that is consistent
with C on the letters fixed by πk. That is, we
define the set Πk so that S ∈ Πk iff whenever
si and ci are the characters at index i in S and
C, then si = πk(ci) if ci is fixed in πk. Note
that if ck is not fixed in πk, we let si take any
value. We extend the partial character function
to the full string function πn(C)

k on Σn(C)
c so that

π
n(C)
k (C) = argmax(S∈Πk)probp(S).

In Corlett and Penn (2010), the value πn(C)
k (C)

is efficiently computed by running it through
the Viterbi algorithm. That is, given C, p and
πk, a run of the Viterbi algorithm is set up in
which the letter transition probabilities are those
that are given in p. In order to describe the
emission probabilities, suppose that we partition
the ciphertext alphabet Σc into two sets Σ1 and
Σ2, where Σ1 is the set of ciphertext letters fixed
by πk. For any plaintext letter y ∈ Σp, if there
is a ciphertext letter x ∈ Σ1 such that y → x is
a rule in πk, then the emission probability that y
will be seen as x is set to 1, and the probability
that y will be seen as any other letter is set to 0.
On the other hand, if there is no rule y → x in
πk for any ciphertext letter x, then the emission
probability associated with y is uniform over the
letters x ∈ Σ2 and 0 for the letters x ∈ Σ1.

The search algorithm described in Corlett and
Penn (2010) uses the probability of the string
π
n(C)
k (C), or more precisely, the log probabil-

ity −logprobp(πn(C)
k (C)), as an A∗ heuristic over

the partial solutions πk. In this search, an edge
is added from a size k partial solution πk to a
size k + 1 partial solution πk+1 if πk agrees with
πk+1 wherever it is defined. The score of a node

πk is the log probability of its associated string:
−logprobp(πn(C)

k (C)). We can see that if πk has
an edge leading to πk+1, then Πk+1 ⊂ Πk, so that
−logprobp(πn(C)

k+1 (C)) ≥ −logprobp(πn(C)
k (C)).

Thus, the heuristic is nondecreasing. Moreover,
by applying the same statement inductively we can
see that any full solution to the cipher that has πk
as a subset must have a score at least as great as
that of πk. This means that the score never over-
estimates the cost of completing a solution, and
therefore that the heuristic is admissible.

4 Analysis

The bound that we will prove is that for any k > 0
and for any δ, ε > 0, there exists an n ∈ N such
that if the length n(C) of the cipher C is at least
n, then with probability at least 1 − δ, the search
for the key to the cipher C requires no more than
2n·(H(p,q)+ε) expansions of any partial solution of
size k to complete. Applying the same bound over
every size k of partial solution will then give us
that for any δ, ε > 0, there exists a n0 > 0 such
that if the length n(C) of the cipher C is at least
n, then with probability at least 1 − δ, the search
for the key to the cipher C requires no more than
2n(H(p,q)+ε) expansions of any partial solution of
size greater than 0 to complete (note that there is
only one partial solution of size 0).

Let π∗ be the solution that is found by the
search. This solution has the property that it is the
full solution that induces the most probable plain-
text from the cipher, and so it produces a plaintext
that is at least as likely as that of the true solution
P . Thus, we have that −logprobp(π∗n(C)(C)) ≤
−logprobp(πn(C)

T (C)) = −logprobp(P).
We find our bound by making use of the fact that

an A∗ search never expands a node whose score
is greater than that of the goal node π∗. Thus, a
partial solution πk is expanded only if

−logprobp(πn(C)
k (C)) ≤ −logprobp(π∗n(C)(C)).

Since

−logprobp(π∗n(C)(C)) ≤ −logprobp(P),

we have that πk is expanded only if

−logprobp(πn(C)
k (C)) ≤ −logprobp(P).

So we would like to count the number of solutions
satisfying this inequality.

86

We would first like to approximate the value of
−logprobp(P), then. But, since P is drawn from
an ergodic stationary distribution q, this value
will approach the cross entropy H(p, q) with high
probability: for any δ1, ε1 > 0, there exists an
n1 > 0 such that if n(C) = n(P) > N1, then

| − logprobp(P)/n(C)−H(p, q)| < ε1

with probability at least 1 − δ1. In this case, we
have that −logprobp(P) < n(C)(H(p, q) + ε1).

Now, if k is fixed, and if πk and π′k are two dif-
ferent size k partial solutions, then πk and π′k must
disagree on at least one letter assignment. Thus,
the sets Πk and Π′k must be disjoint. But then we
also have that πn(C)

k (C) 6= π
n(C)′
k (C). Therefore,

if we can find an upper bound for the size of the
set

{S ∈ Σn(C)
p |S = π

n(C)
k (C) for some πk},

we will have an upper bound on the number of
times the search will expand any partial solution
of size k. We note that under the previous assump-
tions, and with probability at least 1− δ1, none of
these strings can have a log probability larger than
n(C)(H(p, q) + ε1).

For any plaintext string C drawn from q, we let
aPb be the substring of P between the indices a
and b. Similarly, we let aSb be the substring of
S = π

n(C)
k (C) between the indices a and b.

We now turn to the proof of our bound: Let
δ, ε > 0 be given. We give the following three
bounds on n:

(a) As stated above, we can choose n1 so that for
any string P drawn from q with length at least
n1,

| − logprobp(P)/n(P)−H(p, q)| < ε1/2

with probability at least 1− δ/3.

(b) We have noted that if k is fixed then any two
size k partial solutions must disagree on at
least one of the letters that they fix. So if we
have a substring aPb of P with an instance of
every letter type fixed by the partial solutions
of size k, then the substrings aSb of S must
be distinct for every S ∈ {S ∈ Σn(C)

p |S =
π
n(C)
k (C) for some πk}. Since q is ergodic,

we can find an n2 such that for any string P
drawn from q with length at least n2, every

letter fixed in πk can be found in some length
n2 substring P2 of P , with probability at least
1− δ/3.

(c) By the Lemma below, there exists an n′ > 0
such that for all partial solutions πk, there ex-
ists a trigram distribution rk on the alphabet
Σp such that if S = π

n(C)
k (C) and b − a =

n > n′, then∣∣∣∣−logprob(aSb)n
−H(p, rk)

∣∣∣∣ < ε/4

with a probability of at least 1− δ/3.

Let n = max(n1, n2, n
′). Then, the probability

of any single one of the properties in (a), (b) or (c)
failing in a string of length at least n is at most δ/3,
and so the probability of any of them failing is at
most δ. Thus, with a probability of at least 1−δ, all
three of the properties hold for any string P drawn
from q with length at least n. Let P be drawn from
q, and suppose n(P) > n. Let aPb be a length n
substring of P containing a token of every letter
type fixed by the size k partial solutions.

Suppose that πk is a partial solution such that
−logprobp(πn(C)

k (C)) ≤ n(P)(H(p, q) + ε/2).
Then, letting S = π

n(C)
k (C), we have that if

˛̨̨̨
−logprob(S)

n(P)
−H(p, rk)

˛̨̨̨
< ε/4

and ˛̨̨̨
−logprob(aSb)

n
−H(p, rk)

˛̨̨̨
< ε/4

it follows that˛̨̨̨
−logprob(S)

n(P)
+
logprob(aSb)

n

˛̨̨̨
≤
˛̨̨̨
−logprob(S)

n(P)
−H(p, rk)

˛̨̨̨
+

˛̨̨̨
−H(p, rk)− logprob(aSb)

n

˛̨̨̨
≤ ε/4 + ε/4 = ε/2

But then,

− logprob(aSb)
n

<
−logprob(S)

n(P)
+ ε/2

≤ n(P)(H(p, q) + ε/2)
n(P)

+ ε/2

= H(p, q) + ε.

87

So, for our bound we will simply need to find the
number of substrings aSb such that

− log probp(aSb) < n(H(p, q) + ε).

Letting IH(aSb) = 1 if −logprobp(aSb) <
n(H(p, q) + ε) and 0 otherwise, the number of
strings we need becomesX
aSb∈Σ

n(C)
p

IH(aSb) = 2n·(H(p,q)+ε)
X

aSb∈Σ
n(C)
p

IH(aSb)2
−n·(H(p,q)+ε)

<2n·(H(p,q)+ε)
X

aSb∈Σ
n(C)
p

IH(aSb)probp(aSb)

(since − log probp(aSb) < n(H(p, q) + ε)

implies probp(aSb) > 2−n·(H(p,q)+ε))

≤ 2n·(H(p,q)+ε)
X

aSb∈Σ
n(C)
p

probp(aSb)

= 2n·(H(p,q)+ε)

Thus, we have a bound of 2n·(H(p,q)+ε) on
the number of substrings of length n satisfying
− log probp(aSb) < n(H(p, q) + ε). Since we
know that with probability at least 1− δ, these are
the only strings that need be considered, we have
proven our bound. �

4.1 Lemma:

We now show that for any fixed k > 0
and δ′, ε′ > 0, there exists some n′ > 0
such that for all partial solutions πk, there
exists a trigram distribution rk on the al-
phabet Σp such that if S = π

n(C)
k (C) and

b − a = n > n′, |−logprob(aSb)
n − H(p, rk)| < ε′

with a probability of at least 1− δ′.

Proof of Lemma: Given any partial solution πk,
it will be useful in this section to consider the
strings S = π

n(C)
k (C) as functions of the plain-

text P rather than the ciphertext C. Since C =
π−1
T (P), then, we will compose πn(C)

k and π−1
T

to get πn(C)′
k (P) = π

n(C)
k (π−1

T (P)). Now, since
πT is derived from a character bijection between
Σc and Σp, and since πn(C)

k fixes the k character
types in Σc that are defined in πk, we have that
π
n(C)′
k fixes k character types in Σp. Let ΣP1 be

the set of k character types in Σp that are fixed by
π
n(C)′
k , and let ΣP2 = Σp \ΣP1 . We note that ΣP1

and ΣP2 do not depend on which πk we use, but
only on k.

Now, any string P which is drawn from q
can be decomposed into overlapping substrings

by splitting it whenever it has see two adjacent
characters from ΣP1 . When we see a bigram in
P of this form, say, y1y2, we split P so that both
the end of the initial string and the beginning of
the new string are y1y2. Note that when we have
more than two adjacent characters from ΣP1 we
will split the string more than once, so that we get
a series of three-character substrings of P in our
decomposition. As a matter of bookkeeping we
will consider the initial segment to begin with two
start characters s with indices corresponding to 0
and −1 in P . As an example, consider the string

P = friends, romans, countrymen, lend me
your ears

Where ΣP1 = {‘ ’, ‘, ’, ‘a’, ‘y’}. In this case,
we would decompose P into the strings ‘ssfriends,
’, ‘, romans, ’, ‘, countrymen, ’, ‘, lend me ’, ‘e y’,
‘ your e’ and ‘ ears’.

Let M be the set of all substrings that can be
generated in this way by decomposing strings P
which are drawn from q. Since the end of any
string m ∈M contains two adjacent characters in
ΣP1 and since the presence of two adjacent char-
acters in ΣP1 signals a position at which a string
will be decomposed into segments, we have that
the set M is prefix-free. Every string m ∈ M
is a string in Σp, and so they will have probabili-
ties probq(m) in q. It should be noted that for any
m ∈ M the probability probq(m) may be differ-
ent from the trigram probabilities predicted by q,
but will instead be the overall probability in q of
seeing the string m.

For any pair T, P of strings, let #(T, P) be the
number of times T occurs in P . Since we as-
sume that the strings drawn from q converge to
the distribution q, we have that for any δ3, ε3 >
0 and any n4 > 0, there exists an n3 > 0
such that for any substring P3 of P of length
at least n3, where P is drawn from q, and for
any m ∈ M of length at most n4, the number
|#(m,P)/len(P3) − probq(m)| < ε3 with prob-
ability greater than 1− δ3.

Now suppose that for some P drawn from q
we have a substring aPb of P such that aPb =
m,m ∈ M . If S = π

n(C)′
k (P), consider the sub-

string aSb of S. Recall that the string function
π
n(C)′
k can map the characters in P to S in one

of two ways: if a character xi ∈ ΣP1 is found at
index i in P , then the corresponding character in S

88

is πk(xi). Otherwise, xi is mapped to whichever
character yi in ΣP maximizes the probability in p
of S given πn(C)′

k (xi−2)πn(C)′
k (xi−1)yi. Since the

values of πn(C)′
k (xi−2), πn(C)′

k (xi−1) and yi are in-
terdependent, and since πn(C)′

k (xi−2) is dependent
on its previous two neighbors, the value that yi
takes may be dependent on the values taken by
π
n(C)′
k (xj) for indices j quite far from i. How-

ever, we see that no dependencies can cross over
a substring in P containing two adjacent charac-
ters in ΣP1 , since these characters are not trans-
formed by πn(C)′

k in a way that depends on their
neighbors. Thus, if aPb = m ∈ M , the endpoints
of aPb are made up of two adjacent characters in
ΣP1 , and so the substring aSb of S depends only
on the substring aPb of P . Specifically, we see that

aSb = π
n(C)′
k (aPb).

Since we can decompose any P into overlap-
ping substrings m1,m2, . . . ,mt in M , then, we
can carry over this decomposition into S to break
S into π

n(C)′
k (m1), πn(C)′

k (m2), . . . , πn(C)′
k (mt).

Note that the score generated by S in
the A∗ search algorithm is the sum∑

1≤i≤ logprobp(yi−2yi−1yi), where yi is
the ith character in S. Also note that ev-
ery three-character sequence yi−2yi−1yi
occurs exactly once in the decomposition
π
n(C)′
k (m1), πn(C)′

k (m2), . . . , πn(C)′
k (mt). Since

for anym the number of occurrences of πn(C)′
k (m)

in S under this decomposition will be equal to the
number of occurrences of m in P , we have that

−logprobp(S) =
X

1≤i≤n(P)

logprobp(yi−2yi−1yi)

=
X

m∈M

#(m,P) · (−logprobp(π
n(C)′
k (m))).

Having finished these definitions, we can
now define the distribution rk. In princi-
ple, this distribution should be the limit of
the frequency of trigram counts of the strings
S = π

n(C)′
k (P), where n(P) approaches infin-

ity. Given a string S = π
n(C)′
k (P), where P

is drawn from q, and given any trigram y1y2y3

of characters in Σp, this frequency count is
#(y1y2y3,S)

n(P) . Breaking S into its component sub-

strings π
n(C)′
k (m1), πn(C)′

k (m2), . . . , πn(C)′
k (mt),

as we have done above, we see that any instance
of the trigram y1y2y3 in S occurs in exactly one of

the substrings πn(C)′
k (mi), 1 ≤ i ≤ t. Grouping

together similar mis, we find

#(y1y2y3, S)

n(P)
=

tP
i=1

#(y1y2y3, π
n(C)′
k (mi))

n(P)

=

P
m∈M

#(y1y2y3, π
n(C)′
k (m)) ·#(m,P)

n(P)

As n(P) approaches infinity, we find that #(m,P)
n(P)

approaches probq(m), and so we can write

probrk (y1y2y3) =
X

m∈M

#(y1y2y3, π
n(C)′
k (m))probq(m).

Since 0 ≤
∑

m∈M #(y1y2y3, π
n(C)′
k (m))probq(m)

when P is sampled from q we have that

X
y1y2y3

probrk (y1y2y3)

=
X

y1y2y3

X
m∈M

#(y1y2y3, π
n(C)′
k (m))probq(m)

= lim
n(P)→∞

X
y1y2y3

X
m∈M

#(y1y2y3, π
n(C)′
k (m))

#(m,P)

n(P)

= lim
n(P)→∞

X
m∈M

X
y1y2y3

#(y1y2y3, π
n(C)′
k (m))

#(m,P)

n(P)

= lim
n(P)→∞

X
m∈M

(n(π
n(C)′
k (m))− 2)#(m,P)

n(P)

= lim
n(P)→∞

X
m∈M

(n(m)− 2)#(m,P)

n(P)

= lim
n(P)→∞

n(P)

n(P)
= 1,

so we have that probrk is a valid probability distri-
bution. In the above calculation we can rearrange
the terms, so convergence implies absolute conver-
gence. The sum

∑
y1y2y3

#(y1y2y3, π
n(C)′
k (m))

gives (n(πn(C)′
k (m)) − 2) because there is one

trigram for every character in πn(C)′
k (m), less two

to compensate for the endpoints. However, since
the different m overlap by two in a decomposition
from P , the sum (n(m) − 2)#(m,P) just gives
back the length n(P), allowing for the fact that
the initial m has two extra start characters.

Having defined rk, we can now find the value of
H(p, rk). By definition, this term will be

89

X
y1y2y3

−logprobp(y1y2y3)probrk (y1y2y3)

=
X

y1y2y3

−logprobp(y1y2y3)
X

m∈M

#(y1y2y3, π
n(C)′
k (m))probq(m)

=
X

m∈M

X
y1y2y3

−logprobp(y1y2y3)#(y1y2y3, π
n(C)′
k (m))probq(m)

=
X

m∈M

−logprobp(m)probq(m).

Now, we can finish the proof of the Lemma.
Holding k fixed, let δ′, ε′ > 0 be given. Since we
have assumed that p does not assign a zero proba-
bility to any trigram generated by q, we can find a
trigram x1x2x3 generated by q whose probability
in p is minimal. Let X = −logprobp(x1x2x3),
and note that probp(x1x2x3) > 0 implies
X < ∞. Since we know by the argu-
ment above that when P is sampled from q,

limn(P)→∞(
∑

m∈M
(nπ

n(C)′
k (m)−2)·#(m,P)

n(P)) = 1,
we have that∑

m∈M
(nπn(C)′

k (m)− 2)probq(m) = 1.

Thus, we can choose n4 so that

∑
m∈M,n(m)≤n4

(nπn(C)′
k (m)− 2)probq(m)

> 1− ε′/4X.

Let Y = |{m ∈ M,n(m) ≤ n4}|, and choose
n′ such that if P is sampled from q and aPb is a
substring of P with length greater than n′, then
with probability at least 1 − δ′, for every m ∈ M
we will have that

˛̨̨̨
#(m, aPb)

n(aPb)
− probq(m)

˛̨̨̨
< ε′/4XY (n4 − 2).

Let πk be any partial solution of length k, and let
rk be the trigram probability distribution described
above. Then let P be sampled from q, and let S =
π
n(C)
k (C) = π

n(C)′
k (P), and let a, b be indices of

S such that b − a = n > n′. Finally, we will
partition the set M as follows: we let M ′ be the
set {m ∈M |n(n) ≤ n4} andM ′′ be the set {m ∈
M |n(m) > n4}. Thus, we have that

˛̨̨̨
−logprob(aSb)

n
−H(p, rk)

˛̨̨̨
=

˛̨̨̨
˛
P

m∈M #(m, aPb)(−logprobp(π
n(C)′
k (m))

n

−
X

m∈M

probq(m) · (−logprobp(π
n(C)′
k (m))

˛̨̨̨
˛ .

Grouping the terms of these sums into the index
sets M ′ and M ′′, we find that this value is at most

˛̨̨̨
˛ X
m∈M′

„
#(m, aPb)

n
− probq(m)

«
(−logprobp(π

n(C)′
k (m))

˛̨̨̨
˛

+

˛̨̨̨
˛ X
m∈M′′

„
#(m, aPb)

n
− probq(m)

«
(−logprobp(π

n(C)′
k (m))

˛̨̨̨
˛

Furthermore, we can break up the sum over the
index M ′′ to bound this value by

˛̨̨̨
˛ X
m∈M′

„
#(m, aPb)

n
− probq(m)

«
(−logprobp(π

n(C)′
k (m))

˛̨̨̨
˛

+

˛̨̨̨
˛ X
m∈M′′

#(m, aPb)

n
(−logprobp(π

n(C)′
k (m))

˛̨̨̨
˛

+

˛̨̨̨
˛ X
m∈M′′

probq(m)(−logprobp(π
n(C)′
k (m))

˛̨̨̨
˛

Now, for any m ∈ M , we have that
the score −logprobp(πn(C)′

k (m) equals∑
1≤i≤n(m)−2−logprobp(yiyi+1yi+2), where yi

is the character at the index i in π
n(C)′
k (m).

Taking the maximum possible values for
−logprobp(yiyi+1yi+2), we find that this sum is
at most (n(m)− 2)X . Applying this bound to the
previous formula, we find that it is at most

˛̨̨̨
˛ X
m∈M′

„
#(m, aPb)

n
− probq(m)

«
(n(m)− 2)X

˛̨̨̨
˛

+

˛̨̨̨
˛ X
m∈M′′

#(m, aPb)

n
(n(m)− 2)X

˛̨̨̨
˛

+

˛̨̨̨
˛ X
m∈M′′

probq(m) · (n(m)− 2)X

˛̨̨̨
˛ .

We can bound each of these three terms separately.
Looking at the first sum in this series, we find that
with probability at least 1− δ′,

90

˛̨̨̨
˛ X
m∈M′

„
#(m, aPb)

n
− probq(m)

«
(n(m)− 2)X

˛̨̨̨
˛ (*)

≤
X

m∈M′

˛̨̨̨
#(m, aPb)

n
− probq(m)̨̨̨̨ (n(m)− 2)X

≤
X

m∈M′

˛̨̨̨
ε′

4(n4 − 2)XY

˛̨̨̨
· (n(m)− 2)X

≤
X

m∈M′

˛̨̨̨
ε′

4Y

˛̨̨̨

=
ε′

4Y

X
m∈M′

1 =
ε′

4Y
Y = ε/4.

In order to bound the second sum, we make use
of the fact that

∑
m∈M #(m, aPb)(n(m) − 2) =

n(aPb) = n to find that once again, with probabil-
ity greater than 1− δ′,

˛̨̨̨
˛ X
m∈M′′

#(m, aPb)

n
(n(m)− 2)X

˛̨̨̨
˛

≤
X

m∈M′′

˛̨̨̨
#(m, aPb)

n
(n(m)− 2)X

˛̨̨̨
.

Since M ′′ = M −M ′, this value isX
m∈M

˛̨̨̨
#(m, aPb)

n
(n(m)− 2)X

˛̨̨̨

−
X

m∈M′

˛̨̨̨
#(m, aPb)

n
(n(m)− 2)X

˛̨̨̨

=X −
X

m∈M′

˛̨̨̨
#(m, aPb)

n
(n(m)− 2)X

˛̨̨̨
.

This value can further be split into

=X−
X

m∈M′

˛̨̨̨„
#(m, aPb)

n
+(1−1)probq(m)

«
(n(m)−2)X

˛̨̨̨

≤X −

 X
m∈M′

|probq(m)(n(m)− 2)X|

−
X

m∈M′

˛̨̨̨
#(m, aPb)

n
− probq(m)

˛̨̨̨
(n(m)− 2)X

!

Using our value for the sum in (*), we find that
this is

=X −
X

m∈M′

|probq(m)(n(m)− 2)X|

+
X

m∈M′

˛̨̨̨
#(m, aPb)

n
− probq(m)

˛̨̨̨
(n(m)− 2)X

≤X −
X

m∈M′

|probq(m)(n(m)− 2)X|+ ε′

4
,

Using our definition of n4, we can further bound
this value by

=X

1−

X
m∈M′

probq(m)(n(m)− 2)

!
+
ε′

4

<X

„
1−

„
1− ε′

4X

««
+
ε′

4

=X
ε′

4X
+
ε′

4
=
ε′

2
.

Finally, we once again make use of the definition
of n4 to find that the last sum is

˛̨̨̨
˛ X
m∈M′′

probq(m) · (n(m)− 2)X

˛̨̨̨
˛

=
X

m∈M′′

probq(m) · (n(m)− 2)X

= X
X

m∈M′′

probq(m) · (n(m)− 2)

< X
ε′

4X

=
ε′

4
.

Adding these three sums together, we get

ε′

4
+
ε′

2
+
ε′

4
= ε′.

Thus,
∣∣∣−logprob(aSb)

n −H(p, rk)
∣∣∣ < ε′ with prob-

ability greater than 1− δ′, as required. �

5 Conclusion

In this paper, we discussed a discrepancy between
the theoretical and practical running times of cer-
tain algorithms that are sensitive to the entropies
of their input, or the entropies of the distributions
from which their inputs are sampled. We then
used the algorithm from Corlett and Penn (2010)
as a subject to allow us to investigate ways to
talk about average-case complexity in light of
this discrepancy. Our analysis was sufficient
to give us a bound on the search complexity
of this algorithm which is exponential in the
cross-entropy between the training distribution
and the input distribution. Our method in effect
yields a probabilistic bound on the depth of the
search heuristic used. This leads to an exponen-
tially smaller search space for the overall problem.

We must note, however, that our analysis does
not fully reconcile the discrepancy between the

91

theoretical and practical running time for this
algorithm. In particular, our bound still does not
explain why the number of search nodes expanded
by this algorithm tends to converge on one per
partial solution size as the length of the string
grows very large. As such, we are interested in
further studies as to how to explain the running
time of this algorithm. It is our opinion that this
can be done by refining our description of the sets
Πk to exclude strings which cannot be considered
by the algorithm. Not only would this allow us
to reduce the overall number of strings we would
have to count when determining the bound, but
we would also have to consider fewer strings
when determining the value of n′. Both changes
would reduce the overall complexity of our bound.

This general strategy may have the potential to
illuminate the practical time complexities of ap-
proximate search algorithms as well.

References

David Arthur, Bodo Manthey, and Heiko Röglin.
k-means has polynomial smoothed complex-
ity. In The 50th Annual Symposium on Foun-
dations of Computer Science. IEEE Computer
Society Technical Committee on Mathematical
Foundations of Computing, 2009. URL http:
//arxiv.org/abs/0904.1113.

Eric Corlett and Gerald Penn. An exact A∗ method
for deciphering letter-substitution ciphers. In
Proceedings of the 48th Annual Meeting of
the Association for Computational Linguistics,
pages 1040–1047, 2010.

Richard E Korf and Michael Reid. Complexity
analysis of admissible heuristic search. In Pro-
ceedings of the Fifteenth National Conference
on Artificial Intelligence, 1998.

Richard E Korf, Michael Reid, and Stefan
Edelkamp. Time complexity of iterative-
deepening-A∗. Artificial Intelligence, 129(1–2):
199–218, 2001.

Judea Pearl. Heuristics: Intelligent Search Strate-
gies for Computer Problem Solving. Addison-
Wesley, 1984.

Daniel A Spielman and Shang-Hua Teng.
Smoothed analysis of algorithms: Why the
simplex algorithm usually takes polynomial
time. Journal of the ACM, 51(3):385–463,
2004.

92

