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Abstract

Attested and ‘pathological’ vowel har-

mony patterns are studied in the context of

subclasses of regular functions. The anal-

ysis suggests that the computational com-

plexity of phonology can be reduced from

regular to weakly deterministic.

1 Introduction

The expressivity of ordered rewrite-rule grammars

for phonology (Chomsky and Halle, 1968, hence-

forth SPE) and two-level phonology (Kosken-

niemi, 1983) are exactly the class of regular re-

lations (Johnson, 1972; Kaplan and Kay, 1994;

Beesley and Kartunnen, 2003). Since SPE-style

grammars can express virtually any phonologi-

cal generalization, it follows that the generaliza-

tions themselves are regular, even if they are rep-

resented with other formalisms (such as OT gram-

mars).

This result can be interpreted cognitively as

establishing a universal property of phonological

patterns: humanly possible phonological patterns

are regular. If correct, this would mean, for ex-

ample, that humanly possible syntactic patterns

which are nonregular are not humanly possible

phonological patterns (Heinz and Idsardi, 2011;

Lai, 2012; Heinz and Idsardi, 2013).

Recent research suggests that stronger univer-

sals than “being regular” can be established for

phonology. It has been shown that segmental

phonotactic patterns are star-free (Heinz et al.,

2011), as are virtually all stress patterns (Rogers

et al., to appear), and the semantics of two-level

rules appear to ensure that these mappings have

star-free-like properties, provided the contexts to

the rules are star-free (Yli-Jyrä and Koskenniemi,

2006).1

1There are multiple ways to generalize the class of star-
free regular sets to regular relations (Benedikt et al., 2001) so

This paper examines the hypothesis that subse-

quentiality is a necessary property of phonologi-

cal patterns by studying theories of iterative vowel

harmony. Informally, a function is left (right) sub-

sequential if there is a finite-state transducer de-

scribing the function which processes strings from

left to right (right to left) deterministically on the

input. We use the term ‘subsequentiality’ to mean

either left or right subsequential.

Previous work has found that synchronically at-

tested metathesis patterns and partial reduplica-

tion patterns are either left or right subsequen-

tial (Chandlee et al., 2012; Chandlee and Heinz,

2012). Also Gainor et al. (2012) show that the

vowel harmony generalizations in Nevins (2010)

are also left or right subsequential mappings.

Gainor et al.’s analysis, while insightful, is in-

complete since Nevin’s theory of vowel harmony

invokes underspecification and other theories of

vowel harmony do not. Phonological underspec-

ification is explained in section 3. The linguis-

tic generalizations examined in this paper come

from two types of theories of vowel harmony

patterns in linguistics which do not use under-

specification: traditional directional theories and

dominant/recessive/stem-control theories.

We prove that subsequentiality separates di-

rectional theories from logically possible but

‘pathological’ vowel harmony patterns (Wil-

son 2003). (This claim was also made by

Gainor et al. without proof.) It is also

shown that dominant/recessive/stem-control theo-

ries posit generalizations which are neither left nor

right subsequential, but which are weakly deter-

ministic. Informally, this means that these gen-

eralizations can be decomposed into a left sub-

sequential and right subsequential function with-

out the left-subsequential function marking up its

output in any special way. We conjecture this is

it would be interesting to determine more exactly the nature
of such two-level rules.

52



not the case for the pathological patterns. Since

subsequential and weakly deterministic functions

are proper subclasses of regular relations, these

results suggest concretely how the computational

complexity of phonology established by earlier re-

searchers can be improved.

Mathematical and phonological preliminaries

are given in sections 2 and 3, respectively. Sec-

tions 4, 5, and 6 consider the vowel harmony pat-

terns with respect to the regular and subsequential

boundaries. and weakly deterministic boundaries,

respectively. Section 7 concludes.

2 Preliminaries

2.1 Regular relations and functions

If X denotes a finite alphabet then X∗ and Xn

denotes the sets of all finite strings and the set of

all strings of length n over X, respectively. The

length of a string w is |w|. The unique string of

length zero is denoted λ. A string w of length k
can be written w1w2 · · ·wk, where wi is the ith
letter of w. The reverse of a string w = w1 · · ·wk

is wr = wk · · ·w1. For finite alphabets X and Y ,

a relation is a subset of X∗×Y ∗. If R is a relation,

the reverse relation Rr = {(xr, yr) | (x, y) ∈ R}.
Note the reverse relation is not the inverse rela-

tion. A relation R is length-preserving iff for all

(x, y) ∈ R it is the case that |x| = |y|. It is

length-increasing iff there exists (x, y) ∈ R such

that |x| < |y|.

Any relation R ⊆ X∗ × Y ∗ is a function iff

for all x ∈ X∗, there is at most y ∈ Y ∗ such

that (x, y) ∈ R. In this case, we often write R :
X∗ → Y ∗. For two functions f : X∗ → Y ∗ and

g : Y ∗ → Z∗, the composition of f and g is a

function h : X∗ → Z∗ such that h(x) = g(f(x)).
We write h = g ◦ f .

For all x ∈ X∗, the prefixes of x are Pr(x) =
{u ∈ X∗ | ∃v ∈ X∗ such that x = uv}. For any

set L ⊆ X∗, the longest common prefix of L is

lcp(L) = w ⇔ w ∈
⋂

x∈L

Pr(x) ∧

(

∀w′ ∈
⋂

x∈L

Pr(x)
)[

|w′| ≤ |w|
]

(1)

Regular relations are those describable by

finite-state transducers (FSTs).2 A finite-state

transducer T is a tuple (Q,X, Y, I, F, δ) where

2In the algebraic theory of automata, these are called ra-
tional relations (Berstel, 1979; Sakarovitch, 2009).

Q is a finite set of states, X and Y are finite al-

phabets, I, F ⊆ Q are the initial and final states,

respectively, and δ ⊆ Q × X∗ × Y ∗ × Q is

the transition function. For all FSTs, the transi-

tion function δ is recursively extended to δ∗ in the

usual way. The relation that a finite state trans-

ducer T = (Q,X, Y, I, F, δ) recognizes/accepts/-

generates is

R(T ) =
{

(x, y) ∈ X∗ × Y ∗ | (∃qi ∈ I)

(qf ∈ F )
[

(qi, x, y, qf ) ∈ δ∗
]

}

.
(2)

Let RR denote the class of regular relations. This

class is closed under concatenation, Kleene clo-

sure, union, composition, and inversion, but not

intersection or complement.

A subsequential transducer is a tuple

(Q, q0,X, Y, σ, δ), where Q is a finite set of

states, X and Y are finite alphabets, q0 ∈ Q is

the initial state, and σ ⊆ Q × Y ∗ is the output

function. Informally, subsequential transducers

are weighted acceptors that are deterministic on

the input, and where the weights are strings and

multiplication is concatenation.

Formally, the transition function δ ⊆ Q×X ×
Y ∗ ×Q is deterministic:

(q, a, u, r), (q, a, v, s) ∈ δ ⇒ u = v ∧ r = s .

The transition function δ is also recursively ex-

tended to δ∗. The relation that a subsequen-

tial transducer T = (Q, q0,X, Y, σ, δ) recog-

nizes/accepts/generates is

R(t) =
{

(x, yz) ∈ X∗ × Y ∗ | (∃q ∈ F )

[

(q0, x, y, q) ∈ δ∗ ∧ z = σ(q)
]

}

.
(3)

Since subsequential transducers are deterministic,

the relations they recognize are functions.

Functions recognized by subsequential trans-

ducers are called left subsequential. A function

f is right subsequential iff its reverse f r is left

subsequential. Observe that for all w ∈ X∗, the

image of a right subsequential function f of w can

be calculated by reversing w, processing the result

with the subsequential transducer T recognizing

f r, and then reversing the result. Formally,

(∀w ∈ X∗)[f(w) = T (wr)r]. (4)

However, there is another way to state the above

without the reversing function (·r). This is to rec-

ognize that f(w) can be computed by applying T
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to w from right to left, instead of from left to right.

When T processes w right to left, we write
←−
T (w)

and when T processes w left to right, we write
−→
T (w). Then we can restate Equation 4 as

(∀w ∈ X∗)[f(w) =
←−
T (w)]. (5)

Let LSF and RSF denote the class of left and

right subsequential functions, respectively.

Theorem 1 (Mohri 1997) The following hold:

1. LSF,RSF ( RR.

2. RSF r = LSF .

3. LSF and RSF are incomparable.

There are some relevant subclasses and gen-

eralizations of subsequentiality. A subsequential

transduction T is sequential iff for all q ∈ Q, it

is the case that σ(q) = λ.3 Mohri (1997) gen-

eralizes subsequentiality to p-subsequentiality (al-

lowing up to p outputs for each input), preserving

many important properties. Mohri’s generaliza-

tions are important here because there are likely

to be a bounded number of exceptions, or optional

forms, in actual vowel harmony systems that fall

outside the purview of the 1-subsequential anal-

ysis presented here, but which would presumably

not fall outside a p-subsequential analysis (not pre-

sented here).

Elgot and Mezei proved the following.

Theorem 2 (Elgot and Mezei 1965) Let

T : X∗ → Y ∗ be a function. Then T ∈ RR
iff there exists L : X∗ → Z∗ ∈ LSF , and

R : Z∗ → Y ∗ ∈ RSF with X ⊆ Z such that

T = R ◦ L.

What this decomposition means is that the com-

putation of T (x) = y can be accomplished by

(1) reading x sequentially from left to right with a

subsequential transducer, which transforms it into

a word z possibly marking it up with additional

symbols; (2) reading the resulting word z from

right to left with another subsequential transducer

and writing from right to left the final output y. As

their proof makes clear, this decomposition of T
is possible because the alphabet Z may be strictly

3Sakarovitch (2009) prefers the term ‘sequential’ for sub-
sequential functions and the term ’pure sequential’ for se-
quential functions. While his arguments are reasonable (pp.
651-2), we adopt the more widely adopted terminology.

larger than X, and so z can be marked-up with ad-

ditional symbols which carry additional informa-

tion.4

Finally, we review one important property of

subsequential transducers and regular sets. For

any function f : X∗ → Y ∗ and x ∈ X∗, let the

tails of x in f be defined as

TLf (x) =
{

(y, v) | f(xy) = uv ∧

u = lcp(f(xX∗))
}

.
(6)

Every subsequential transducer T computing a

function f admits a canonical form, where the

states of T are in one-to-one correspondence with

TLf (x) for all x ∈ X∗.

Theorem 3 (Oncina et al. 1993) f ∈ LSF ⇔
{TLf (x) | x ∈ X∗} has finite cardinality.

This theorem is the functional counterpart to the

Myhill/Nerode relation. Recall that for any set of

strings L, the tails of a word w with respect to L
is defined as TLL(w) = {u | wu ∈ L}. This

relation partitions the set of all logically possible

strings into a finite set of equivalence classes iff

the set L is regular. These equivalence classes are

the basis for constructing the smallest determinis-

tic acceptor for a regular language.

Similarly, in the construction of the canonical

subsequential transducer for a left subsequential

function, the states correspond to the sets of tails

defined in (6) above. There is a rich literature on

subsequential functions (Elgot and Mezei, 1965;

Berstel, 1979; Oncina et al., 1993; Mohri, 1997;

Roche and Schabes, ; Sakarovitch, 2009).

2.2 Weak Determinism

Here we introduce the notion of weak determin-

ism. Informally, these are regular functions which

decompose into left and right subsequential func-

tions as in Elgot and Mezei’s theorem but without

the mark-up given by the intermediate, larger al-

phabet. Thus, they are not necessarily determinis-

tic, but they are “more” deterministic than regular

functions where Elgot and Mezei decomposition

requires the intermediate mark-up.

While the mark-up can be accomplished by

introducing new symbols (as done in Elgot and

4Berstel (1979) provides an updated proof. This
book is out of print but the first four chapters are
available for download at http://www-igm.

univ-mlv.fr/˜berstel/LivreTransductions/

LivreTransductions.html. The theorem and proof
begin on page 117 in the online version and on page 126 in
the printed version.
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X∗

X∗

Z∗ X∗

T

L′ = h ◦ L

L

R

R′ = R ◦ h−1

h

h−1

Figure 1: Decompositions of regular function T
with X ⊆ Z .

Mezei’s proof), for any alphabet with at least two

symbols, the mark-up can also be accomplished

by coding these new symbols as strings formed

over the original alphabet.5 Figure 1 illustrates.

Let X be a finite alphabet containing the symbols

{a, b}. Consider any alphabet-preserving regular

function T : X∗ → X∗. By Elgot and Mezei’s

theorem, there exists left subsequential L : X∗ →
Z∗ and right subsequential R : Z∗ → X∗ with

X ⊆ Z such that T = R ◦ L. Let h : Z∗ → X∗

be a function which encodes each word w in Z∗

by coding each symbol in w as follows. Assume

some enumeration of the symbols in Z and the

rewrite the nth symbol of Z as abna. For exam-

ple if Z = {a, b, c} and w = cab then h(w) =
abbaaaaba. It is not difficult to verify that h is

length-increasing and that both h and h−1 are sub-

sequential functions. Letting R′ = R ◦ h−1 and

L′ = h ◦ L, it follows that T = R′ ◦ L′ and that

both R′ and L′ have domain and co-domain X∗.

For this reason, it is not sufficient to require that

the decomposition be alphabet-preserving (i.e.

Z = X) to avoid any mark-up. It is also neces-

sary that the first factor L not be length-increasing.

This is because the only way to unambiguously en-

code a larger alphabet into a smaller one is with

length-increasing functions (like h in the above

example).

Definition 1 A regular function T is weakly de-

terministic iff there exists L : X∗ → X∗ ∈ LSF ,

and R : X∗ → X∗ ∈ RSF such that L is not

length-increasing and T = R ◦ L. The class of

weakly deterministic functions is denoted WD.

The corollary below is immediate from this def-

inition and Elgot and Mezei’s theorem.

Corollary 1 LSF,RSF ⊆WD ⊆ RR.

5We are indebted to an anonymous reviewer for this im-
portant observation.

noun genitive gloss

a. ip ip-in rope

b. el el-in and

c. son son-un end

d. pul pul-un stamp

Table 1: Examples illustrating a fragment of the

Vowel harmony from Turkish (Nevins 2010:32).

(a)

w f(w)

/ip-un/ [ip-in]
/el-un/ [el-in]

/son-un/ [son-un]
/pul-un/ [pul-un]

. . .

(b)

w f(w)

/−C+C/ [−C−C]

/C+C+C/ [C+C+C]
. . .

Table 2: Examples showing fragments of the

phonological function describing Turkish back

harmony assuming the underlying genitive mor-

pheme is /-un/.

The vowel harmony analysis below is sufficient to

go a step further and demonstrate a separation be-

tween LSF, RSF on one side and WD on the other.

We conjecture that one unattested ‘pathological’

vowel harmony patterns separates WD from RR.

3 Vowel Harmony

Vowel harmony is a pattern wherein vowels assim-

ilate with respect to some feature. Table 1 shows

two allomorphs of the genitive suffix, [-in] and [-

un]. The allomorph is predictable based on the

front/back dimension of the preceding vowel: if

the preceding vowel is front then [-in] occurs, but

if it is back then [-un] occurs. (Turkish also has

rounding harmony, which is not shown here.)

Phonological analysis conceives of the phono-

logical grammar as a function which maps an

abstract lexical representation (the ‘underlying

form’) to a more concrete—but still abstract—

phonological representation (the ‘surface form’)

(Hyman, 1975; Kenstowicz, 1994; Hayes, 2009).

Phonological transcriptions, like the ones in Ta-

ble 1, represent surface forms.

To illustrate, consider a simple phonological

analysis of the Turkish forms above, which posits

the underlying form of the genitive suffix to be

/-un/ and a mapping f which derives the surface

forms as shown in Table 2(a). Table 2(b) describes

the mapping only in terms of the relevant details

where [+] indicates [+ back] vowels, [−] indi-
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cates [−back] vowels, and C consonants.

Nevins’ (2010) analysis of vowel harmony uti-

lizes underspecification. We illustrate this concept

ostensively with the Turkish example above. In-

stead of positing the underlying form of the suffix

to be either /-in/ or /-un/, underspecification the-

ory would posit it to be /-Vn/ where V is high,

unrounded vowel unspecified for backness. In

Nevins’ theory, underlying vowels which have fea-

ture specifications can spread those features only

to vowels unspecified for those features. Under-

specification is not congruent with research in Op-

timality Theory (Prince and Smolensky, 2004),

which, by the principle of the rich base, requires

every underlying form to be considered (includ-

ing those where every vowel is fully specified).

Gainor et al. (2012) show that the iterative map-

pings Nevins describes are subsequential, but this

does not address those theories (like OT) which

may not consider underlying forms to permit un-

derspecification. All the vowel harmony patterns

considered in this paper do not admit any under-

specification whatsoever.

A traditional view of vowel harmony analyzes

vowel harmony patterns as either instances of

progressive harmony (PH) or regressive harmony

(RH). Informally, progressive harmony means the

value of a feature can be thought to spread from

left to the right (as in the Turkish example above).

Conversely, regressive harmony can be thought of

as spreading from right to left. This is illustrated

with examples (a-d) in Table 3.

Other theories of vowel harmony reject that di-

rectionality is a primitive of the theory and argue

that vowel harmony is either dominant/recessive

(DR) or stem-controlled (SC) (Baković, 2000;

Krämer, 2003) (see also (Archangeli and Pulley-

blank, 1994)). Dominant/recessive theories ana-

lyze vowel harmony patterns by postulating that a

particular feature value of a harmonizing feature

is the dominant one. The DR function in Table 3

identifies the [+] value as the dominant one; so

any underlying representation containing the har-

monizing feature with the value [+] will surface

so that the harmonizing feature in all vowels will

also be [+]. Stem-controlled analyses are similar

to dominant-recessive theories, however the fea-

ture that spreads is determined not by its value but

instead by the morphological position of the vowel

to which the feature belongs (for instance, is the

vowel in a stem or affix?).

An additional complication is that variations

of the above functions are introduced by neu-

tral vowels, which never undergo harmony. They

come in two kinds: transparent vowels which per-

mit features to spread through them, and opaque

vowels, which block the spread of harmony, but

trigger their own harmony domain. Some effects

of neutral vowels are shown in rows (e-f) in Ta-

ble 3. (Symbols [⊟] and [⊖] are [−F] vowels that

are opaque and transparent, respectively. Likewise

we use [⊞] and [⊕] to denote opaque and transpar-

ent vowels which are [+F].)

Additionally, the phonological literature in-

cludes discussion of logically possible, unattested

and unnatural vowel harmony patterns that are

predicted by classical approaches to vowel har-

mony in OT. These patterns include sour grapes

(SG) (Padgett, 1995; Wilson, 2003) and major-

ity rules (MR) (Lombardi, 1999; Baković, 2000).

Informally, SG is like progressive harmony ex-

cept that vowels only harmonize if every vowel

is guaranteed to harmonize. For example, if an

opaque vowel occurs after the trigger, no non-

neutral vowel harmonizes with the trigger. Ma-

jority Rules instantiates the following rule: If the

number of segments with αF is greater than the

number of segments with −αF , then segments

with αF are the triggers of harmony and segments

with −αF are the targets and undergo change.

Because phonologists consider SG and MR to be

bizarre, they are referred to as ‘pathologies’ (Wil-

son, 2003; Wilson, 2004; Finley, 2008) and it is a

strike against a theory if it predicts the existence

of either SG or MR.

Henceforth, let X = Y = {+,−, C,⊟,⊞}.
These symbols represent equivalence classes of a

partition of the phonemic inventory of any lan-

guage which exhibits progressive harmony for the

feature F . The symbols + and − represent the

classes of all harmonizing vowels which are +F
and −F , respectively. Phonemes invisible to har-

mony are in the C class; this includes consonants

and transparent vowels. The symbol ⊞ (⊟) refers

to opaque vowels which are +F (−F ), which

block the spread of −F (+F ), and which begins a

new harmonic domain spreading +F (−F ).

The vowel harmony mappings in this paper are

all, in fact, same-length relations. Furthermore,

they are sequential. These additional properties

do not appear to be shared by other phonological

processes. Epenthesis and deletion are common
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w PH(w) RH(w) DR(w) SG(w) MR(w)

a. /+ −−/ [+ + +] [−−−] [+ + +] [+ + +] [−−−]

b. /− + +/ [−−−] [+ + +] [+ + +] [−−−] [+ + +]

c. /− −−/ [−−−] [−−−] [− −−] [−−−] [−−−]

d. /− +−/ [−−−] [−−−] [+ + +] [−−−] [−−−]

e. /+ −⊟/ [+ + ⊟] [−−⊟] [+ + ⊟] [+−⊟] [−−⊟]

f. /+ ⊖−/ [+⊖+] [−⊖−] [+ ⊖+] [+⊖+] [−⊖−]

Table 3: Example mappings of underlying forms (w) given by progressive harmony (PH), regressive har-

mony (RH), dominant/recessive harmony (DR), sour grapes harmony (SG), and majority rules harmony

(MR). Symbols [+] indicates a [+F] vowel and [−] indicates a [−F] vowel where “F” is the feature

harmonizing. Symbols [⊟] and [⊖] are [−F] vowels that are opaque and transparent, respectively.

cross-linguistically, and the metathesis patterns

analyzed by Chandlee and Heinz (2012) are not

sequential (though they are subsequential). For

this reason, we keep the analysis focused at the

level of subsequentiality.

4 The regular boundary

In this section we show that the regular boundary

is sufficient to distinguish the pathological Major-

ity Rules pattern from the attested progressive and

regressive harmony patterns.

Formally, MR functions can be defined as fol-

lows. Let |w|+F and |w|−F denote the number of

participating vowels (i.e. non transparent vowels)

which are +F and −F , respectively, in w ∈ X∗.

Then we define a Majority Rules Harmony pattern

as any same-length function which at a minimum

obeys the following:

MR(w) =

{

+|w| if |w|+F > |w|−F

−|w| if |w|−F > |w|+F
(7)

The result below seems to be widely known (see

Riggle (2004, chapter 7, section 5)) though we

have not been able to find a proof in print.

Theorem 4 Majority Rules is not regular.

Proof By way of contradiction, suppose that MR
is a regular relation. Since regular relations are

closed under inverse, so is MR−1. The image of a

regular set under a regular relation is also a regular

set (see Roche and Schabes (, pp. 41-43)). There-

fore, MR−1(+∗) is a regular set. Since regular

sets are closed under intersection, it follows that

MR−1(+∗)∩ (+∗−∗) is regular as well. Call this

set S.

However, S is in fact not a regular set. Since

MR is length preserving, for all odd k ∈ N, it

0,λ

1,λ

2,λ

−,⊟

+,⊞
⊞⊟

C C, −, ⊟, + :−

C, +, ⊞, − :+

Figure 2: A subsequential transducer which rec-

ognizes iterative, progressive harmony.

is the case that MR(+k) ∩ (+∗−∗) = +m−n

where 0 ≤ m,n ≤ k and m + n = k and m > n.

Furthermore, for all for all odd k, it is the case

that TLS(+k), includes −n for all n < k − 1
but excludes −n for all n > k + 1. Thus there is

a distinct Nerode-equivalence class for each odd

k, and hence S is not a regular set, and therefore

MR is not a regular relation. ���

On the other hand, progressive and regressive

harmony are regular; in fact, subsequential. For

concreteness we analyze a canonical progressive

harmony pattern which includes neutral vowels.

The subsequential transducer TPH in Figure 2

faithfully captures the PH function. Labels on the

transitions are interpreted as in Beesley and Kar-

tunnen (2003): commas delimit multiple transi-

tions; the label x:y means x is the input and y the

output; absence of a colon means the input and

output are identical. The rightmost symbol inte-

rior to a state is the output of the σ function.

While TPH presupposes languages have opaque

vowels, it can be modified as needed to remove

this assumption without losing subsequentiality. If

a language has no opaque vowels, those transi-

tions can be removed. Since any subgraph of the

transducer shown in Figure 2 is also subsequen-
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tial, this establishes the left subsequentiality of it-

erative, progressive harmony patterns without un-

derspecification.6

As for iterative regressive harmony patterns,

they are simply the reverse of iterative progres-

sive patterns. In other words, for all w ∈ Σ∗,

RH(w) =
←−−
TPH .

5 The subsequential boundary

In this section we show that while the regular

boundary is not sufficient to separate the patho-

logical Sour Grapes pattern from attested harmony

patterns, the subsequential boundary is sufficient.

Padgett (1995) defines Sour Grapes Harmony

as “Either all features must spread, or none

will. . . ” For concreteness, consider a progressive

Sour Grapes pattern. The form +−−− would be

mapped to ++++ as in progressive harmony, but

the form + − −⊟ is mapped to + − −⊟ because

the opaque vowel will not become +F , and so the

spreading process grumpily chooses not to spread

at all. Therefore, a progressive Sour Grapes Har-

mony pattern is defined as any length-preserving

function which at a minimum includes the follow-

ing mappings for all n ∈ N:

SG(+−n) = ++n∧SG(+−n
⊟) = +−n

⊟ (8)

There is a finite state transducer which describes

this fragment of the SG function, shown in Fig-

ure 3. As a total function, for SG to be regular, it

is important that the image of the complement of

∪n∈N{+−
n} ∪n∈N {+ −

n
⊟} under SG also be

regular. Pictorially, this would mean that the frag-

ment shown in Figure 3 is a subgraph of the full

SG pattern. Crucially, however, there can also be

no transition from state 2 bearing the input symbol

⊟ that can lead (even eventually) to a final state.

We now prove the main theorem of this paper.

Theorem 5 SG is neither left nor right subse-

quential.

Proof We show that, for all distinct n,m ∈ N,

the tails of +−n is not the same as the tails of

+−m. This immediately implies that the canon-

ical left subsequential transducer would have in-

finitely many states, and hence that any SG pattern

meeting Equation 8 is not left subsequential.

6It is true that TPH does not model progressive harmony
patterns where transparent vowels can trigger harmony. It
is not difficult to modify TPH to accommodate this without
sacrificing subsequentiality.

0 1 2

3 4

+ −:+

−

⊟

−:+

−

Figure 3: A non-deterministic transducer which

recognizes a fragment of SG harmony.

To illustrate, consider x = +−. Since SG(+−
X∗) includes elements +++ and +−⊟ (mapped

from e.g. + − − and + − ⊟, resp.), it fol-

lows that lcp(SG(+ − X∗)) = +. Therefore,

(−,++) ∈ TLSG(+−). Observe that (−,+n) 6∈
TLSG(+−) for all n 6= 2 since SG is length-

preserving.

More generally it is the case that (−,+n+1) ∈
TLSG(+−n) and (−,+m) 6∈ TLSG(+−n) for all

m 6= n + 1. Therefore there are infinitely many

distinct sets of tails for functions conforming to

(8), and thus no SG pattern is subsequential.

A similar argument (omitted) establishes that

any SG pattern is not right subsequential. ���

Consequently, the subsequential boundary sepa-

rates SG and MR from PH and RH.

6 The weakly deterministic boundary

As mentioned earlier, the dominant/recessive and

stem-control theories of vowel harmony reject the

directionality generalizations inherent in the PH

and RH mappings. If these theories are correct,

then it is important to see what boundary (if any)

separates MR and SG from vowel harmony pat-

terns described with dominant/recessive and stem-

control based generalizations. We show that the

mappings these theories posit are, like SG, not

subsequential. However, we believe there is an

interesting complexity difference between SG on

the one hand and DR and SC on the other. In par-

ticular, we show that DR and SC are weakly de-

terministic. We conjecture that SG is not weakly

deterministic and provide the intuition behind this

conjecture, though its proof currently escapes us.

A dominant/recessive analysis of vowel har-

mony says if the word contains the dominant value

of the harmonizing feature, then other vowels in

the word take on the dominant value for this fea-

ture. For example, if the [+] value for harmoniz-

ing feature F is the dominant one and an under-
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lying representation contains a vowel specified as

+F, then all other non-neutral vowels in the word

will be realized as +F as well.

Therefore, we can define a function as dom-

inant/recessive as any length-preserving function

which includes the following mappings:

∀w ∈ {+,−}∗,

DR(w) =

{

+|w| if (∃ 0 ≤ i ≤ |w|)[wi = +]

−|w| otherwise

(9)

The next two theorems establish that DR har-

mony is properly weakly deterministic.

Theorem 6 DR is neither left nor right subse-

quential.

Proof The proof is similar to the one for SG. We

show that, for all distinct n,m ∈ N, the tails of−n

is not the same as the tails of −m.

Consider first x = −−. To find its tails we must

know lcp(DR(− − X∗)). Since DR(− − X∗)
includes elements − − − and + + + (mapped

from e.g. − − − and − − +, resp.), it fol-

lows that lcp(DR(+ − X∗)) = λ. Therefore,

(−,− − −) ∈ TLDR(−−). Observe that for all

n 6= 2, it is the case that (−,+n) 6∈ TLDR(−−)
since DR is length-preserving.

Next consider x = − − −. To find its tails we

must know lcp(DR(−−−X∗)). DR(−−−X∗)
includes elements −−−− and + + ++ (mapped

from e.g. − − −− and − − −+, resp.), and

so again the longest common prefix is λ. There-

fore, (−,+ + ++) belongs to TLDR(−−−) and

(−,+n) 6∈ TLDR(+−) for all n 6= 3 since DR
preserves string lengths.

More generally for all distinct n,m ∈ N it

is the case that (−,+n+1) ∈ TLDR(−n) and

(−,+m) 6∈ TLDR(+−n) for all m 6= n + 1.

Therefore there are infinitely many distinct sets of

tails for functions conforming to (9), and thus no

DR pattern is subsequential.

A similar argument (omitted) establishes that

any DR pattern is not right subsequential. ���

On the other hand, DR is weakly determinis-

tic. We establish this for the case when the al-

phabet contains only {+,−}. In fact, DR is sim-

ply the composition of progressive harmony and

regressive harmony where only the dominant fea-

ture value spreads. Figure 4 shows a subsequen-

tial transducer TPHP describing a progressive har-

mony function where only [+] spreads. Observe

0,λ

1,λ

2,λ

−

+

+

C −

+, − :+

Figure 4: The subsequential transducer TPHP

which recognizes iterative, progressive harmony

where only the + value spreads.

that the transducer in Figure 4 is nearly identical

to TPH in Figure 2 without the opaque vowels and

the C symbol. The important difference is that in

Figure 2 there is a transition from state 1 to itself

which reads a [+] input and outputs a [−], but in

Figure 4, the transducer in state 1, upon reading

input [+] transitions to state 2 and writes out [+].
Let PHP denote the function TPHP computes.

Theorem 7 DR is weakly deterministic.

Proof We show that for all w ∈ {+,−}∗,

DR(w) =
←−−−
TPHP ◦

−−−→
TPHP (w).

Case 1. There exists 0 ≤ i ≤ |w| such that wi =
+. Then DR(w) = +|w|. It follows from the

definition of PHP that for all j ≥ i, wj =
+. Letting u = PHP (w)r , it follows that

u1 = +. Thus PHP (u) = +|w|. The reverse

of +|w| is clearly itself. Therefore, PHP r ◦
PHP (w) = +|w|.

Case 2. Case 1 does not hold. Then DR(w) =
−|w|. By definition, PHP (w) = −|w|.

Clearly then PHP r ◦ PHP (w) = −|w|.

Since DR =
←−−−
TPHP ◦

−−−→
TPHP , since

−−−→
TPHP and

←−−−
TPHP are alphabet-preserving, and since

−−−→
TPHP is

not length-increasing, the theorem is proved. ���

While, the proof of theorem 7 is limited to words

in {+,−}∗, we believe the extension to words in

{+,−, C,⊟,⊞}∗ is only challenging technically,

and not conceptually. For example, the definition

of DR harmony above in Equation 9 should be

more articulated so that, for instance, DR(−−⊟−
−+−−⊟−−) = −−⊟ + + + + + ⊟−−.

Stem-controlled analyses are similar to

dominant/recessive theories. Unlike domi-

nant/recessive theories, however, the vowels

which trigger harmony are the ones which belong

to the morphological stem. Table 4 illustrates

with stem boundaries indicated with #. What
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w SC(w)

a. +#−#− −−−
b. −# + #+ + + +
c. −#−#− −−−
d. −# + #− + + +

Table 4: Example mappings of underlying forms

(w) with three vowels given stem control theories

of vowel harmony. In each example, the middle

vowel is the only vowel in the stem.

happens when there is more than one stem vowel?

The stem precedence generalization (Baković,

2003) states that “an alternating affix vowel

always agrees with the adjacent vowel in the

stem to which the affix is attached.” Therefore

stem vowels themselves are not targets of the

harmony process. Consequently, underlying

/ − −# + − + −# + +/ would surface as

[+ + # +−+−#−−].
Since every underlying form is assumed

to contain a stem, the domain of SC har-

mony is X∗#X+#X∗. Then ∀w#u#v ∈
X∗#X+#X∗, it is the case that

SC(w) =














+|w|#u# +|v| if u1 = + ∧ u|u| = +

+|w|#u#−|v| if u1 = + ∧ u|u| = −

−|w|#u# +|v| if u1 = − ∧ u|u| = +

−|w|#u#−|v| if u1 = − ∧ u|u| = −
(10)

The analysis of SC is the same as DR; and so

the proofs are omitted.

Theorem 8 SC is neither left nor right subsequen-

tial.

Theorem 9 SC is weakly deterministic.

We believe there is a difference between DR

and SG: we conjecture that SG is not weakly de-

terministic. To get an intuition why, consider

the two subsequential transducers A and B in

Figure 5. Limiting our attention to the domain

{+−n}∪{+−n
⊟}∪{λ}, the composition

←−
B ◦
−→
A

equals SG. This is possible because these func-

tions make use of an additional symbol [ ?−], indi-

cating a minus value whose left context matches

the environment to become [+].

Table 5 illustrates the role the additional symbol

plays in the derivation. We are doubtful that it is

possible to decompose SG into a left and right de-

terministic function where the left function is pro-

0,λ 1,λ 2,λ
+ ⊟

−: ?−
A

0,λ

1,+

2,+

⊟

?− :+

?− :−

?− :+

B

Figure 5: Two subsequential transducers such that
←−
B ◦

−→
A = SG. The symbol [ ?−] indicates a

[−] which would undergo harmony provided no

opaque vowel occurs downstream.

w +−−−⊟ +−−−
−→
A (w) + ?− ?− ?−⊟ + ?− ?− ?−

←−
B ◦
−→
A (w) +−−−⊟ + + ++

Table 5: Illustrations of the role of [ ?−] in the de-

terministic decomposition of SG=
←−
B ◦
−→
A .

hibited from marking up its output in any way (ei-

ther with extra symbols or with a length-increasing

coding trick).

7 Conclusion

The first suggestion that phonological processes

have a tighter computational bound than “being

regular” may come from (Mohri, 1997), buried on

page 279. He writes without elaboration or cita-

tion “Most phonological and morphological rules

correspond to p-subsequential relations.” This

study suggests that Mohri’s assessment is largely

correct, though the complete picture is more com-

plicated than Mohri’s offhand comment indicates.

The more complicated picture with respect

to vowel harmony is expressed in Figure 6,

which summarizes this paper’s contributions.

Traditional directional theories of vowel har-

mony express simpler generalizations than

dominant/recessive/stem-control theories. It is

our opinion that future work will likely show

that even the weakly deterministic boundary

surely separates the pathological patterns from the

attested ones.
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Non-regular Regular

Weakly deterministic

Left
Subsequential

Right
Subsequential

× PH × RH

× DR

× SC

× SG

× MR

??

Figure 6: Hierarchies of transductions with the results of this paper shown. PH=progressive harmony,

RH=regressive harmony, DR=dominant/recessive harmony, SC=stem control harmony, SG=sour grapes

harmony, and MR=majority rules harmony.

Although the harmony patterns in this paper are

all describable with same-length relations, we de-

liberately chose not to focus on the special prop-

erties same-length relations engender. This is

largely because there are phonological processes

such as epenthesis and deletion which are not

same-length, and we would like our conclusions

to hold for all phonological patterns. Nonetheless,

future work which explores the same-lengthness

aspect may lead to some interesting insights. One

reviewer of this paper conjectured, for example,

that if the same-length relations were coded as lan-

guages that they would then be k-reversible (An-

gluin, 1982).

With respect to learnability, total subsequential

functions are identifiable in the limit from posi-

tive data (Oncina et al., 1993), though this algo-

rithm appears to require data points unavailable

in natural language corpora (Gildea and Jurafsky,

1996). Investigating subclasses of subsequential

functions which cover attested phonological pat-

terns may thus not only better characterize possi-

ble phonologies, but may also provide insights for

learning (Chandlee and Koirala, 2013).

Finally, we believe Elgot and Mezei’s theorem

can shed new light on the old problem of abstract-

ness in phonology (Hyman, 1970), and suspect a

hierarchy of complexity depending on how much

markup (either new symbols or with a length-

increasing function) needs to be introduced in the

intermediate alphabet to order to decompose a reg-

ular function into left and right subsequential ones.

Computational work whose results should be more

carefully investigated with this in mind include

Kempe (2000) and Crespi Reghizzi and San Pietro

(2012).
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