
MoL 13

The 13th Meeting on the Mathematics of Language

Proceedings

August 9, 2013
Sofia, Bulgaria



Production and Manufacturing by
Omnipress, Inc.
2600 Anderson Street
Madison, WI 53704 USA

c©2013 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 978-1-937284-65-7

ii



Introduction

The Mathematics of Language (MoL) special interest group traces its origins to a meeting held in October
1984 at Ann Arbor, Michigan. While MoL is among the oldest SIGs of the ACL, it is the first time that
the proceedings are produced by our parent organization. The first volume was published by Benjamins,
later ones became special issues of the Annals of Mathematics and Artificial Intelligence and Linguistics
and Philosophy, and for the last three occasions (really six years, since MoL only meets every second
year) we relied on the Springer LNCS series. Perhaps the main reason for this aloofness was that the
past three decades have brought the ascendancy of statistical methods in computational linguistics, with
the formal, grammar-based methods that were the mainstay of mathematical linguistics viewed with
increasing suspicion.

To make matters worse, the harsh anti-formal rhetoric of leading linguists relegated important attempts
at formalizing Government-Binding and later Minimalist theory to the fringes of syntax. Were it not
for phonology and morphology, where the incredibly efficient finite state methods pioneered by Kimmo
Koskenniemi managed to bridge the gap between computational practice and linguistic theory, and were
it not for the realization that the mathematical approach has no alternative in machine learning, MoL
could have easily disappeared from the frontier of research.

The current volume marks a time when we can begin to see the computational and the theoretical
linguistics camps together again. The selection of papers, while still strong on phonology (Heinz and
Lai, Heinz and Rogers) and morphology (Kornai et al.), extends well to syntax (Hunter and Dyer, Fowlie)
and semantics (Clark et al., Fernando). Direct computational concerns such as machine translation
(Martzoukos et al.), decoding (Corlett and Penn), and complexity (Berglund et al.) are now clearly
seen as belonging to the core focus of the field.

The 10 papers presented in this volume were selected by the Program Committee from 16 submissions.
We would like to thank the authors, the members of the Program Committee, and our invited speaker
for their contributions to the planning and execution of the workshop, and the ACL conference
organizers, especially Aoife Cahill and Qun Liu (workshops), and Roberto Navigli and Jing-Shin Chang
(publications) for their significant contributions to the overall management of the workshop and their
direction in preparing the publication of the proceedings.

András Kornai and Marco Kuhlmann (editors)
June 2013
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Abstract

We present three ways of inducing proba-
bility distributions on derivation trees pro-
duced by Minimalist Grammars, and give
their maximum likelihood estimators. We
argue that a parameterization based on lo-
cally normalized log-linear models bal-
ances competing requirements for mod-
eling expressiveness and computational
tractability.

1 Introduction

Grammars that define not just sets of trees or
strings but probability distributions over these ob-
jects have many uses both in natural language pro-
cessing and in psycholinguistic models of such
tasks as sentence processing and grammar ac-
quisition. Minimalist Grammars (MGs) (Stabler,
1997) provide a computationally explicit formal-
ism that incorporates the basic elements of one
of the most common modern frameworks adopted
by theoretical syntacticians, but these grammars
have not often been put to use in probabilistic set-
tings. In the few cases where they have (e.g. Hale
(2006)), distributions over MG derivations have
been over-parametrized in a manner that follows
straightforwardly from a conceptualization of the
derivation trees as those generated by a particu-
lar context-free grammar, but which does not re-
spect the characteristic perspective of the under-
lying MG derivation. We propose an alternative
approach with a smaller number of parameters that
are straightforwardly interpretable in terms that re-
late to the theoretical primitives of the MG formal-
ism. This improved parametrization opens up new
possibilities for probabilistically-based empirical
evaluation of MGs as a cognitive hypothesis about
the discrete primitives of natural language gram-
mars, and for the use of MGs in applied natural
language processing.

In Section 2 we present MGs and their equiv-
alence to MCFGs, which provides a context-
free characterization of MG derivation trees. We
demonstrate the problems with the straightforward
method of supplementing a MG with probabili-
ties that this equivalence permits in Section 3, and
then introduce our proposed reparametrization that
solves these problems in Section 4. Section 5 con-
cludes and outlines some suggestions for future re-
lated work.

2 Minimalist Grammars and Multiple
Context-Free Grammars

2.1 Minimalist Grammars

A Minimalist Grammar (MG) (Sta-
bler and Keenan, 2003)1 is a five-tuple
G = 〈Σ,Sel ,Lic,Lex ,c〉 where:

• Σ is a finite alphabet

• Sel (“selecting types”) and Lic (“licensing
types”) are disjoint finite sets which together
determine the set Syn (“syntactic features”),
which is the union of the following four sets:

selectors = {=f | f ∈ Sel}
selectees = { f | f ∈ Sel}
licensors = {+f | f ∈ Lic}
licensees = {-f | f ∈ Lic}

• Lex (“the lexicon”) is a finite subset of
Σ∗ × (selectors ∪ licensors)∗ × selectees ×
licensees∗

• c ∈ Sel is a designated type of completed ex-
pressions

(A sample lexicon is shown in Fig. 3 below.)

1We restrict attention here to MGs without head move-
ment as presented by Stabler and Keenan (2003). Weak gen-
erative capacity is unaffected by this choice (Stabler, 2001).
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Given an MG G, an expression is an ordered
binary tree with non-leaf nodes labeled by an ele-
ment of {<,>}, and with leaf nodes labeled by an
element of Σ∗ × Syn∗. We take elements of Lex
to be one-node trees, hence expressions. We often
write elements of Σ∗ × Syn∗ with the two com-
ponents separated by a colon (e.g. arrive : +d v).
Each application of one of the derivational opera-
tions MERGE and MOVE, defined below, “checks”
or deletes syntactic features on the expression(s)
to which it applies.

The head of a one-node expression is the ex-
pression’s single node; the head of an expression
[< e1 e2] is the head of e1; the head of an expres-
sion [> e1 e2] is the head of e2. An expression is
complete iff the only syntactic feature on its head
is a selectee feature c and there are no syntactic
features on any of its other nodes. Given an ex-
pression e, yield(e) ∈ Σ∗ is result of concatenat-
ing the leaves of e in order, discarding all syntactic
features.

CL(G) is the set of expressions generated
by taking the closure of Lex under the func-
tions MERGE and MOVE, defined in Fig. 1;
intuitive graphical illustrations are given in
Fig 2. The language generated by G is {s | ∃e ∈
CL(G) such that e is complete and yield(e) = s}.

An example derivation, using the grammar in
Fig. 3, is shown in Fig. 4. This shows both the
“history” of derivational operations — although
operations are not shown explicitly, all binary-
branching nodes correspond to applications of
MERGE and all unary-branching nodes to MOVE

— and the expression that results from each op-
eration. Writing instead only MERGE or MOVE

at each internal node would suffice to determine
the eventual derived expression, since these op-
erations are functions. A derivation tree is a
tree that uses this less redundant labeling: more
precisely, a derivation tree is either (i) a lexi-
cal item, or (ii) a tree [MERGE τ1 τ2] such that
MERGE(eval(τ1), eval(τ2)) is defined, or (iii) a
tree [MOVE τ ] such that MOVE(eval(τ)) is defined;
where eval is the “interpretation” function that
maps a derivation tree to an expression in the ob-
vious way. We define Ω(G) to be the set of all
derivation trees using the MG G.

An important property of the definition of
MOVE is that it is only defined on τ [+fα] if there
is a unique subtree of this tree whose (head’s) first
feature is -f . From this it follows that in any

pierre : d who : d -wh
marie : d will : =v =d t
praise : =d v ε : =t c
often : =v v ε : =t +wh c

Figure 3: A Minimalist Grammar lexicon. The
type of completed expressions is c.

>

who : <

ε : c >

marie : <

will : <

praise : ε :

<

ε : +wh c >

marie : <

will : <

praise : who : -wh

ε : =t +wh c

>

marie : <

will : t <

praise : who : -wh

<

will : =d t <

praise : who : -wh

will : =v =d t
<

praise : v who : -wh

praise : =d v who : d -wh

marie : d

Figure 4: An MG derivation of an embedded ques-
tion
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MERGE
(
e1[=f α], e2[f β]

)
=

{
[< e1[α] e2[β]] if e1[=f α] ∈ Lex

[> e2[β] e1[α]] otherwise

MOVE
(
e1[+f α]

)
= [> e2[β] e′1[α]]

where e2[-f β] is a unique subtree of e1[+f α]

and e′1 is like e1 but with e2[-f β] replaced by an empty leaf node ε : ε

Figure 1: Definitions of MG operations MERGE and MOVE. The first case of MERGE creates comple-
ments, the second specifiers. f ranges over Sel ∪ Lic; α and β range over Syn∗; and e[α] is an MG
expression whose head bears the feature-sequence α.

=f α

f β

MERGE

β

α

<

=f α f β

MERGE

β α

>

+f α

-f β

MOVE αβ

>

Figure 2: Graphical illustrations of definitions of MERGE and MOVE. Rectangles represent single-node
trees. Triangles represent either single-node trees or complex trees, but the second case of MERGE applies
only when the first case does not (i.e. when the =f α tree is complex).
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derivation of a complete expression, every inter-
mediate derived expression will have at most |Lic|
subtrees whose (head’s) first feature is of the form
-g for any g ∈ Lic.

2.2 Multiple Context-Free Grammars
Multiple Context-Free Grammars (MCFGs) (Seki
et al., 1991; Kallmeyer, 2010) are a mildly
context-sensitive grammar formalism in the sense
of Joshi (1985).2 They bring additional expressive
capacity over context-free grammars (CFGs) by
generalizing to allow nonterminals to categorize
not just single strings, but tuples of strings. For
example, while a CFG might categorize eats cake
as a VP and the boy as an NP, an MCFG could
categorize the tuple 〈says is tall,which girl〉 as a
VPWH (intuitively, a VP containing a WH which
will move out of it). Correspondingly, MCFG
production rules (construed as recipes for build-
ing expressions bottom-up) can specify not only,
for example, how to combine a string which is an
NP and a string which is a VP, but also how to
combine a string which is an NP with a tuple of
strings which is a VPWH. The CFG rule which
would usually be written ‘S → NP VP’ is shown
in (1) in a format that makes explicit the string-
concatenation operation; (2) uses this notation to
express an MCFG rule that combines an NP with
a VPWH to form a string of category Q, an em-
bedded question. (We often omit angle brackets
around one-tuples.) An example application of
this rule is shown in (3).

st :: S ⇒ s :: NP t :: VP (1)

t2st1 :: Q ⇒ s :: NP 〈t1, t2〉 :: VPWH (2)

which girl the boy says is tall :: Q ⇒
the boy :: NP 〈says is tall,which girl〉 :: VPWH

(3)

Every nonterminal in an MCFG derives (only) n-
tuples of strings, for some n known as the non-
terminal’s rank. In the examples above NP, VP,
S and Q are of rank 1, and VPWH is of rank 2.
A CFG is an MCFG where every nonterminal has
rank 1.

Michaelis (2001) showed that it is possible to
reformulate MGs in a way that uses categorized

2MCFGs are almost identical to Linear Context-Free
Rewrite Systems (Vijay-Shanker et al., 1987). Seki et al.
(1991) show that the two formalisms are weakly equivalent.

string-tuples, of the sort that MCFGs manipulate,
as derived structures (or expressions) instead of
trees. The “purpose” of the internal tree structure
that we assign to derived objects is, in effect, to
allow a future application of MOVE to break them
apart and rearrange their pieces, as illustrated in
Fig. 2. But since the placement of the syntactic
features on a tree determines the parts that will be
rearranged by a future application of MOVE (in any
derivation of a complete expression), we lose no
relevant information by splitting up a tree’s yield
into the components that will be rearranged and
then ignoring all other internal structure. Thus the
following tree:

+f α

-f β -g γ (4)

becomes a tuple of categorized strings (we will ex-
plain the 0 subscript shortly):〈

s : +f α , t : -f β , u : -g γ
〉

0

or, equivalently, a tuple of strings, categorized by
a tuple-of-categories:

〈s, t, u〉 :: 〈+f α,-f β,-g γ〉0 (5)

The order of the components is irrelevant except
for the first component, which contains the entire
structure’s head node; intuitively, this is the com-
ponent out of which the others move.

Based on this idea, Michaelis (2001) shows
how to construct, for any MG, a correspond-
ing MCFG whose nonterminals are tuples like
〈+f α,-f β,-g γ〉0 from above. The uniqueness
requirement in the definition of MOVE ensures that
we need only a finite number of such nontermi-
nals. The feature sequences that comprise the
MCFG nonterminals, in combination with the MG
operations, determine the MCFG production rules
in which each MCFG nonterminal appears. For
example, the arrangement of features on the tree
in (4) dictates that MOVE is the only MG opera-
tion that can apply to it; thus the internals of the
complex category in (5) correspondingly dictate
that the only MCFG production that takes (5) as
“input” (again, thinking right-to-left or bottom-up
as in (1) and (2)) is one that transforms it in ac-
cord with the effects of MOVE. If β = ε, then this

4



effect will be to transform the three-tuple into a
two-tuple as shown in (6), since the t-component
now has no remaining features and has therefore
reached its final position:

〈ts, u〉 :: 〈α,-g γ〉0 ⇒
〈s, t, u〉 :: 〈+f α,-f,-g γ〉0 (6)

This is analogous — modulo the presence of the
additional u : -g γ component — to the rule that
is used in the final step of the derivation in Fig. 5,
which is the MCFG equivalent of Fig. 4.

If, on the other hand, β 6= ε, then the t-
component will need to move again later in the
derivation, and so we keep it as a separated com-
ponent:

〈s, t, u〉 :: 〈α, β,-g γ〉0
⇒ 〈s, t, u〉 :: 〈+f α,-f β,-g γ〉0 (7)

The subscript 0 on the tuples above indi-
cates that the corresponding expressions are non-
lexical; for lexical expressions, the subscript is 1.
This information is not relevant to MOVE oper-
ations, but is crucial for distinguishing between
the complement and specifier cases of MERGE.
For example, in the simplest cases where no to-
be-moved subconstituents are present, the con-
structed MCFG must contain two rules corre-
sponding to MERGE as follows. (n matches either
1 or 0.)

st :: 〈α〉0 ⇒ s :: 〈=f α〉1 t :: 〈f〉n (8)

ts :: 〈α〉0 ⇒ s :: 〈=f α〉0 t :: 〈f〉n (9)

By similar logic, it is possible to construct
all the necessary MCFG rules corresponding to
MERGE and MOVE; see, for example, Stabler and
Keenan (2003, p.347) for (a presentation of the
MG operations that can also be straightforwardly
be read as) the general schemas that generate these
rules. One straightforward lexical/preterminal rule
is added for each lexical item in the MG, and
the MCFG’s start symbol is 〈c〉0.3 The resulting
MCFG is weakly equivalent to the original MG,
and strongly equivalent in the sense that one can
straightforwardly convert back and forth between
the two grammars’ derivation trees. The MCFG
equivalent of the MG in Fig. 3 is shown in Fig. 6
(ignoring the weights for now, which we come to
below).4

3We exclude 〈c〉1 on the simplifying assumption that the

who marie will praise :: 〈c〉0

〈marie will praise,who〉 :: 〈+wh c,-wh〉0

ε :: 〈=t +wh c〉1 〈marie will praise,who〉 :: 〈t,-wh〉0

〈will praise,who〉 :: 〈=d t,-wh〉0

will :: 〈=v =d t〉1 〈praise,who〉 :: 〈v,-wh〉0

praise :: 〈=d v〉1 who :: 〈d -wh〉1

marie :: 〈d〉1

Figure 5: The MG derivation from Fig. 4 illus-
trated with tuples of strings instead of trees as the
derived structures.

Notation. We define the above conversion pro-
cess to be an (invertible) function π from MGs to
MCFGs. That is, for an valid MG, G it holds that
π(G) is an equivalent MCFG and π−1(π(G)) =
G. By abuse of notation, we will use π as the func-
tion for converting from MG derivation trees to
equivalent MCFG derivation trees. By an MCFG
derivation tree we mean a tree like Fig. 5 but with
non-leaf nodes labelled only by nonterminals (not
tuples of strings). The derivation tree language of
an MCFG is thus a local tree language, just as for
a CFG; that of an MG is non-local but regular (Ko-
bele et al., 2007).

3 Distributions on Derivations

Assume a Minimalist Grammar, G. In this sec-
tion and the next, we will consider various ways of
defining probability distributions on the derivation
trees in Ω(G).5 The first approach, introduced in
Section 3.2, is conceptually straightforward but is
problematic in certain respects that we discuss in
Section 3.3. We present a different approach that
resolves these problems in Section 4.

We also consider the problem of estimating the
parameters of these distributions from a finite sam-
ple of training data, specified by a function f̃ :
Ω(G) → N, where f̃(τ) is the number of times
derivation τ occurs in the sample. To this end, it

MG has no lexical item whose only feature is the selectee c.
4This MCFG includes only the rules that are “reachable”

from the lexical items. For example, we leave aside rules
involving the nonterminal 〈=c v -wh〉0, even though the
schemas in Stabler and Keenan (2003) generate them.

5We use the terms derivation tree and derivation inter-
changeably.
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θERF

2/2 ε :: 〈=t +wh c〉1
95/95 ε :: 〈=t c〉1
97/97 will :: 〈=v =d t〉1
6/6 often :: 〈=v v〉1

97/97 praise :: 〈=d v〉1
95/192 marie :: 〈d〉1
97/192 pierre :: 〈d〉1
2/2 who :: 〈d -wh〉1

θERF

2/2 〈st, u〉 :: 〈+wh c,-wh〉0 ⇒ s :: 〈=t +wh c〉1 〈t, u〉 :: 〈t,-wh〉0
95/95 st :: 〈=d t〉0 ⇒ s :: 〈=v =d t〉1 t :: 〈v〉0
2/2 〈st, u〉 :: 〈=d t,-wh〉0 ⇒ s :: 〈=v =d t〉1 〈t, u〉 :: 〈v,-wh〉0
2/97 ts :: 〈c〉0 ⇒ 〈s, t〉 :: 〈+wh c,-wh〉0

95/97 st :: 〈c〉0 ⇒ s :: 〈=t c〉1 t :: 〈t〉0
95/95 ts :: 〈t〉0 ⇒ s :: 〈=d t〉0 t :: 〈d〉1
2/2 〈ts, u〉 :: 〈t,-wh〉0 ⇒ 〈s, u〉 :: 〈=d t,-wh〉0 t :: 〈d〉1

95/100 st :: 〈v〉0 ⇒ s :: 〈=d v〉1 t :: 〈d〉1
5/100 st :: 〈v〉0 ⇒ s :: 〈=v v〉1 t :: 〈v〉0
2/3 〈s, t〉 :: 〈v,-wh〉0 ⇒ s :: 〈=d v〉1 t :: 〈d -wh〉1
1/3 〈st, u〉 :: 〈v,-wh〉0 ⇒ s :: 〈=v v〉1 〈t, u〉 :: 〈v,-wh〉0

Figure 6: The MCFG produced from the MG in Fig. 3, as described in Section 2.2; with weights com-
puted by relative frequency estimation based on the naive parametrization, as described in Section 3.

will be useful to define the empirical distribution
on derivations to be p̃(τ) = f̃(τ)/

∑
τ ′ f̃(τ ′).

3.1 Stochastic MCFGs
As with CFGs, it is straightforward to imbue
an MCFG, H , with production probabilities and
thereby create a stochastic MCFG.6 In stochas-
tic MCFGs (as in CFGs) the probability of a non-
terminal rewrite in a derivation is conditionally in-
dependent of all other rewrite decisions, given the
non-terminal type. This formulation defines a dis-
tribution over MCFG derivations in terms of a ran-
dom branching process that begins with probabil-
ity 1 at the start symbol and recursively expands
frontier nodes N , drawing branching decisions
from the the conditional distribution p(· | N); the
process terminates when lexical items have been
produced on all frontiers.

If p(δ | N) is the probability that N rewrites as
δ and fτ (N ⇒ δ) is the number of times N ⇒ δ
occurs in derivation tree τ , then

p(τ) =
∏

(N⇒δ)∈H

p(δ | N)fτ (N⇒δ). (10)

With mild assumptions to ensure consistency (Chi,
1999), the p(τ)’s form a proper probability distri-
bution over all derivations in H .7

Because the derivation trees of the MG G stand
in a bijection with the derivation trees of the
MCFG π(G), stochastic MCFGs can be used to
define a distribution on MG derivations.

6Although MCFGs have a greater generative capacity
than CFGs, the statistical properties do not change at all, un-
less otherwise noted.

7The estimators that are based on empirical frequencies
in a derivation bank which we use in this paper will always
yield consistent estimates. Refer Chi (1999) for more detail.

3.2 The naive parametrization
The most straightforward way to parameterize a
stochastic MCFG uses individual parameters θδ|N
to represent each production probability, i.e., p(δ |
N)

.
= θδ|N . When applied to an MCFG that is

derived from an MG, we will refer to this as the
naive parametrization.

This is the parametrization used by Hale (2006)
to define a probability distribution over the deriva-
tions of MGs in order to explore the predictions
of an information-theoretic hypothesis concerning
sentence comprehension difficulty.

MLE. The arguably most standard technique for
setting the parameters of a probability distribution
is so that they maximize the likelihood of a sam-
ple of training data. In the naive parameterization,
the maximum likelihood estimate (MLE) for each
parameter θ̂ERF

δ|N is the empirical relative frequency
of the rewrite N ⇒ δ in the training data (Abney,
1997):

θ̂ERF
δ|N =

∑
τ f̃(τ)fπ(τ)(N ⇒ δ)∑

τ f̃(τ)
∑

(N⇒δ′)∈π(G) fπ(τ)(N ⇒ δ′)
.

3.3 Unfaithfulness to MGs
While the naive parameterization with MLE esti-
mation is simple, it is arguably a poor choice for
parameterizing distributions on MGs. The prob-
lem is that, relative to the independence assump-
tions encoded in the MG formalism, each step of
the MCFG derivation both conditions on and pre-
dicts “too much” structure. As a result, common-
alities across different applications of the same
MG operation are modeled independently and do
not share statistical strength. This arises because
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90 pierre will praise marie
5 pierre will often praise marie
1 who pierre will praise
1 who pierre will often praise

Figure 7: An artificial corpus of sentences deriv-
able from the grammars in Figures 3 and 6.

of the way the MCFG’s nonterminals multiply out
all relevant arrangements of features.8 We illus-
trate the problem with an example.

Consider the corpus in Fig. 7, where each sen-
tence is preceded by its frequency. Since each sen-
tence is assigned a unique derivation by our exam-
ple MG, this is equivalent to a treebank.

One reasonable statistical interpretation of the
first two lines is that a verb phrase comprises a
verb and an object 95% of the time, and comprises
the adverb often and another verb phrase 5% of
the time (since pierre will often praise marie has
two nested verb phrase constituents). The last two
lines provide an analogous pair of sentences in-
volving wh-movement of the object. A priori, one
would expect that the 95:5 relative frequency that
describes the presence of the adverb also applies
here; however, the ERF estimator will use 2:1 in-
stead. Why is this? The VP category in the MCFG
is “split” into two to indicate whether it has a wh-
feature inside it, and each has its own parameters.
We criticize this on the grounds that it is not in line
with our main goal of defining a distribution over
the derivations of the MG: from the perspective of
the MG, there is a sense in which it is “the same
instance” of MERGE that combines often with a
verb phrase, whether or not the verb phrase’s ob-
ject bears a -wh feature. In other words, the differ-
ences between the following two trees seem unre-
lated to the way in which they are both candidates
to be merged with often : =v v.

<

praise : v who : -wh

<

praise : v marie :

From the perspective of the MCFG, however, the
introduction of the adverb is mediated by expan-
sions of the nonterminal 〈v〉0 in cases without
object wh-movement, but by expansions of the
distinct nonterminal 〈v,-wh〉0 in cases with it.
Therefore the information about adverb inclusion
that is conveyed by the movement-free entries in

8Stabler (forthcoming) also discusses the sense in which
MCFG rules “miss generalizations” found in MGs.

the corpus is interpreted as only relevant to simi-
larly movement-free derivations. This can be seen
in the weights of the last four rules in Fig. 6, which
were computed by relative frequency estimation
on the basis of the corpus.

Relative to the underlying MG, the naive
parametrization has too many degrees of freedom:
the model is overparameterized and is capable of
capturing statistical distinctions that we have the-
oretical reasons to dislike. Of course, it is possi-
ble that VPs have meaningfully different distribu-
tions depending on whether or not they contain a
wh-feature; however, we would like a parameter-
ization that provides the flexibility to treat these
two different contexts as identical, as different, or
to share statistical strength between them in some
other way. In the next section we propose two
alternative parametrizations that provide this con-
trol.

4 Log-linear MCFGs

4.1 Globally normalized log-linear models
An alternative mechanism for inducing a distribu-
tion on Ω(G) that provides more control over in-
dependence assumptions is the globally normal-
ized log-linear model (also called a Markov ran-
dom field, undirected model, or Gibbs distribu-
tion). Unlike the model in the previous section,
log-linear models are not stochastic in nature—
they assign probabilities to structured objects, but
they do not rely on a random branching process
to do so. Rather, they use a d-dimensional vector
of feature functions Φ = 〈Φ1,Φ2, . . . ,Φd〉, where
Φi : Ω(G) → R, to extract features of the deriva-
tion, and a real-valued weight vector λ ∈ Rd.9

Together, Φ and λ define the score of a derivation
τ as a monotonic function of the weighted sum of
the feature values Φ1(τ), . . . ,Φd(τ):

sλ(τ) = exp(λ ·Φ(τ)).

Using this function, a Gibbs distribution on the
derivations in Ω(G) is

pλ(τ) =
sλ(τ)∑

τ ′∈Ω(G) sλ(τ ′)
, (11)

9The term feature here refers to functions of a derivation;
it should not be confused with the syntactic features dis-
cussed immediately above. However, in as much as syntactic
features characterize the steps in a derivation, it is natural that
they would play a central role in defining distributions over
derivations, and indeed, our proposed feature functions ex-
amine syntactic features almost exclusively.
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provided that the sum in the denominator is fi-
nite.10

Notice that (11) is similar to the formula for
a relative frequency, the difference being that we
use a derivation’s score sλ(τ) rather than its em-
pirical count. This use of scores provides a way
to express the kind of “missed similarities” we
discussed in Section 3.3 via the choice of feature
functions. Returning to the example from above,
in order to express the similarity between the two
adverb-introducing rules — one involving the non-
terminal 〈v〉0, the other involving 〈v,-wh〉0 —
we could define a particular feature function Φi

that maps a derivation to 1 if it contains either one
of these rules and 0 otherwise. Then, all else be-
ing equal, setting the corresponding parameter λi
to a higher value will increase the score sλ(τ),
and hence the probability pλ(τ), of any derivation
τ that introduces an adverb, with or without wh-
movement of the object.

MLE. As with the naive parameterization, the
the parameters λmay be set to maximize the (log)
likelihood of the training data, i.e.,

λ̂ = arg max
λ

n∏
i=1

pλ(τi)
f̃(τi)

= arg max
λ

n∑
i=1

f̃(τi) log pλ(τi)︸ ︷︷ ︸
=L [log likelihood]

. (12)

We remark that maximizing the log likelihood
of data in this parameterization is equivalent to
finding the distribution pλ(τ) in which the ex-
pected value of Φ(τ) is equal to the expected
value of the same under the empirical distribution
(i.e., under p̃(τ)) and whose entropy is maximized
(Della Pietra et al., 1997). This equivalence is par-
ticularly clear when the gradient of L (see (12))
with respect to λ is examined:

∇λL = Ep̃(τ)[Φ(τ)]− Epλ(τ)[Φ(τ)]. (13)

This form makes clear thatL achieves an optimum
when the expectations of Φ match under the two
distributions.11

10There are several conditions under which this is true. It
is trivially true if |Ω(G)| < ∞. When Ω is infinite, the de-
nominator may still be finite if features functions grow (su-
per) linearly with the derivation size in the limiting case as
the size tends to infinity. Then, if feature weights are nega-
tive, the denominator will either be equal to or bounded from
above by an infinite geometric series with a finite sum. Refer
to Goodman (1999) and references therein.

11While the maximizing point cannot generally be solved

4.2 Feature locality

Notice that the approach just outlined is extremely
general: the feature functions Φ can examine the
derivation trees as a whole. It is possible to define
features that pay attention to arbitrary or global
properties of a derivation. While such features
might in fact generalize well to new data — for ex-
ample, one could mimic a bigram language model
by including features counting bigrams in the
string that is generated by the derivation — these
are intuitively “bad” since they ignore the deriva-
tion’s structure. Furthermore, there is a substantial
practical downside to allowing unrestricted feature
definitions: features that do not “agree” with the
derivation structure make inference computation-
ally intractable. Specifically, finding the best most
probable derivation of a sentence with “global”
features is NP-hard (Koller and Friedman, 2009).

For these reasons, it is advantageous to require
that Φ decompose additively in terms of local fea-
ture functions, ϕ over the steps that make up a
derivation. For defining distributions under an MG
G, we will assume that feature functions decom-
pose over the productions in a derivation under the
MCFG projection π(G), i.e.,

Φ(τ) =
∑

(N⇒δ)∈π(τ)

ϕ (N ⇒ δ) .

Under the locality assumption, we may rewrite the
score sλ(τ) as∏

(N⇒δ)∈π(G)

(exp(λ ·ϕ(N ⇒ δ)))fπ(τ)(N⇒δ) .

This (partially) addresses the issue of computa-
tional tractability, enforces our intuition that the
score of a derivation tree should be a function of
scores of its component steps, and still gives us the
ability to avoid the overconditioning that we iden-
tified in Section 3.3.12

4.3 Locally normalized log-linear models

Even with our assumption of feature locality, find-
ing λ̂ remains challenging since the second term

for analytically, gradient based optimization techniques may
be effectively used to find it (and it is both guaranteed to exist
and guaranteed to be unique).

12We say that the issue of computational tractability is only
partially resolved because only certain operations — identi-
fying the most probable derivation of a string — are truly ef-
ficient. Computing the model’s normalization function, while
no longer NP-hard, still not practical.
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in (13) is difficult to compute.13 In this section we
suggest a parameterization that admits both effi-
cient ML estimation and retains the ability to use
feature functions to control the distribution.

To do so, we revisit the approach of defining
distributions on derivations in terms of a stochas-
tic process from Section 3.1, but rather than defin-
ing the branching distributions with independent
parameters for each MCFG nonterminal rewrite
type, we parameterize it in terms of locally nor-
malized log-linear models, also called a condi-
tional logit model (Murphy, 2012). Given an MG
G, a weight vector w ∈ Rd, and rule-local feature
functions ϕ as defined above,14 let the branching
probability

pw(δ | N)
.
=

exp(w ·ϕ(N ⇒ δ))∑
(N⇒δ′)∈π(G) exp(w ·ϕ(N ⇒ δ′))

.

Like the parametrization in Section 4.1, this
new parametrization is based on log-linear mod-
els and therefore allows us to express similarities
among derivational operations via choices of fea-
ture functions. However, rather than defining fea-
ture functions Φi on entire derivations, these fea-
tures can only “see” individual MCFG rules. Put
differently, the same technique we used in Sec-
tion 4.1 to define a probability distribution over the
entire set of derivations, is used here to define each
of the local conditional probability distributions
over the expansions of a single MCFG nontermi-
nal. Via the perspective familiar from stochastic
MCFGs, these individual conditional probability
distributions together define a distribution on the
entire set of derivations.

MLE. As with the previous two models, we can
set parametersw to maximize the likelihood of the
training data. Here, the global likelihood is ex-
pressed in terms of the probabilities of condition-
ally independent rewrite events, each defined in a
log-linear model:

Lc =
∑
τ

f̃(τ)
∑

(N⇒δ)∈π(τ)

fπ(τ)(N ⇒ δ) log pw(δ | N).

13Specifically, it requires computing expectations under all
possible derivations in Ω(π(G)) during each step of gradient
ascent, which requires polynomial space/time in the size of
the lexicon to compute exactly.

14The notational shift fromλ tow to emphasizes that these
two parameter vectors have very different semantics. The
former parameterizes potential functions in a globally nor-
malized random field while the later is used to determine a
family of conditional probability distributions used to define
a stochastic process.

Its gradient with respect to w is therefore

∇wLc =
∑
τ

f̃(τ)
∑

(N⇒δ)∈π(τ)

fπ(τ)(N ⇒ δ)
[

ϕ(N ⇒ δ)− Epw(δ′|N)
ϕ(N ⇒ δ′)

]
.

As with the globally normalized model, ∇wLc =
0 has no closed form solution; however, gradient-
based optimization is likewise effective. How-
ever, unlike (13), this gradient is straightforward to
compute since it requires summing only over the
different rewrites of each non-terminal category
during each iteration of gradient ascent, rather
than over all possible derivations in Ω(G)!

4.4 Example parameter estimation

In this section we compare the probability esti-
mates for productions in a stochastic MCFGs ob-
tained using the naive parameterization discussed
in Section 3.2 that conditions on “too much” infor-
mation and those obtained using locally normal-
ized log-linear models with grammar-appropriate
feature functions. Our very simple feature set con-
sists just of binary-valued feature functions that in-
dicate:

• whether a MERGE step, MOVE step, or a termi-
nating lexical-insertion step is being generated;

• what selector feature (in the case of MERGE

steps) or licensor feature (in the case of MOVE

steps) is being checked (e.g., +wh or =d or =v);
and

• what lexical item is used (e.g., marie : d or
ε : =t c), in the case of terminating lexical-
insertion steps.

Table 1 shows the values of some of these features
for a sample of the MCFG rules in Fig. 6.

Table 2 compares the production probabilities
estimated for last four rules in Fig. 6 using the
naive empirical frequency method and our recom-
mended log-linear approach with the features de-
fined as above.15 The presence or absence of a
-wh feature does not affect the log-linear model’s
probability of adding an adverb to a verb phrase,
in keeping with the perspective suggested by the
derivational operations of MGs.

15The log-linear parameters were optimized using a stan-
dard quasi-Newtonian method (Liu and Nocedal, 1989).

9



Table 1: Selected feature values for a sample of MCFG rules. The first four rules are the ones that
illustrated the problems with the naive parametrization in Section 3.3.

MCFG Rule ϕMERGE ϕ=d ϕ=v ϕ=t ϕMOVE ϕ+wh
st :: 〈v〉0 ⇒ s :: 〈=d v〉1 t :: 〈d〉1 1 1 0 0 0 0
st :: 〈v〉0 ⇒ s :: 〈=v v〉1 t :: 〈v〉0 1 0 1 0 0 0

〈s, t〉 :: 〈v,-wh〉0 ⇒ s :: 〈=d v〉1 t :: 〈d -wh〉1 1 1 0 0 0 0
〈st, u〉 :: 〈v,-wh〉0 ⇒ s :: 〈=v v〉1 〈t, u〉 :: 〈v,-wh〉0 1 0 1 0 0 0

st :: 〈c〉0 ⇒ s :: 〈=t c〉1 t :: 〈t〉0 1 0 0 1 0 0
ts :: 〈c〉0 ⇒ 〈s, t〉 :: 〈+wh c,-wh〉0 0 0 0 0 1 1

Table 2: Comparison of probability estimators.

MCFG Rule Naive p̂ Log-linear p̂
st :: 〈v〉0 ⇒ s :: 〈=d v〉1 t :: 〈d〉1 0.95 0.94
st :: 〈v〉0 ⇒ s :: 〈=v v〉1 t :: 〈v〉0 0.05 0.06

〈s, t〉 :: 〈v,-wh〉0 ⇒ s :: 〈=d v〉1 t :: 〈d -wh〉1 0.67 0.94
〈st, u〉 :: 〈v,-wh〉0 ⇒ s :: 〈=v v〉1 〈t, u〉 :: 〈v,-wh〉0 0.33 0.06

5 Conclusion and Future Work

We have presented a method for inducing a prob-
ability distribution on the derivations of a Min-
imalist Grammar in a way that remains faithful
to the way the derivations are conceived of in
this formalism, and for obtaining the maximum
likelihood estimate of its parameters. Our pro-
posal takes advantage of the MG-MCFG equiva-
lence in the sense that it uses the underlying prob-
abilistic branching process of a stochastic MCFG,
but avoids the problems of overparametrization
that come with the naive approach that reifies the
MCFG itself.

Our parameterization has several applications
worth noting. It provides a new way to compare
variants of the MG formalism that propose slightly
different sets of primitives (operations, types of
features, etc.) but are equivalent once transformed
into MCFGs. Examples of such variants include
the addition of an ADJOIN operation (Frey and
Gärtner, 2002), or replacing MERGE and MOVE

with a single feature-checking operation (Stabler,
2006; Hunter, 2011). Derivations using these dif-
ferent versions of the formalism often boil down
to the same string-concatenation operations and
will therefore be expressible using equivalent sets
of MCFG rules. The naive parametrization will
therefore not distinguish them, but in the same
way that our proposal above “respects” standard
MGs’ classification of MCFG rules according to

one set of derivational primitives, one could de-
fine feature vectors that respect different classifi-
cations.

Outside of MGs, the strategy is applicable to
any other formalisms whose derivations can be re-
cast as those of MCFGs, such as TAGs and CCGs.
More generally still, it could be applied to any
formalism whose derivation tree languages can be
characterized by a local tree grammar; in our case,
the relevant local tree language is obtained via a
projection from the regular tree language of MG
derivation trees.
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Christian Retoré, editors, Logical Aspects of Com-
putational Linguistics, volume 2099 of LNCS, pages
254–260. Springer, Berlin Heidelberg.

Edward P. Stabler. 2006. Sidewards without copying.
In Shuly Wintner, editor, Proceedings of The 11th
Conference on Formal Grammar, pages 157–170.
CSLI Publications, Stanford, CA.

Edward Stabler. forthcoming. Two models of min-
imalist, incremental syntactic analysis. Topics in
Cognitive Science.

K. Vijay-Shanker, David J. Weir, and Aravind K.
Joshi. 1987. Characterizing structural descriptions
produced by various grammatical formalisms. In
Proc. 25th Meeting of Assoc. Computational Lin-
guistics, pages 104–111.

11



Proceedings of the 13th Meeting on the Mathematics of Language (MoL 13), pages 12–20,
Sofia, Bulgaria, August 9, 2013. c©2013 Association for Computational Linguistics

Order and Optionality: Minimalist Grammars with Adjunction

Meaghan Fowlie
UCLA Linguistics

Los Angeles, California
mfowlie@ucla.edu

Abstract
Adjuncts are characteristically optional,
but many, such as adverbs and adjectives,
are strictly ordered. In Minimalist Gram-
mars (MGs), it is straightforward to ac-
count for optionality or ordering, but not
both. I present an extension of MGs, MGs
with Adjunction, which accounts for op-
tionality and ordering simply by keeping
track of two pieces of information at once:
the original category of the adjoined-to
phrase, and the category of the adjunct
most recently adjoined. By imposing a
partial order on the categories, the Adjoin
operation can require that higher adjuncts
precede lower adjuncts, but not vice versa,
deriving order.

1 Introduction

The behaviour of adverbs and adjectives has quali-
ties of both ordinary selection and something else,
something unique to that of modifiers. This makes
them difficult to model. Modifiers are generally
optional and transparent to selection while argu-
ments are required and driven by selection. In
languages with relatively strict word order, argu-
ments are strictly ordered, while modifiers may or
may not be. In particular, (Cinque, 1999) proposes
that adverbs, functional heads, and descriptive ad-
jectives are underlyingly uniformly ordered across
languages and models them by ordinary Merge or
selection. Such a model captures only the ordering
restrictions on these morphemes; it fails to cap-
ture their apparent optionality and transparency
to selection. I propose a model of these ordered
yet optional and transparent morphemes that intro-
duces a function Adjoin which operates on pairs
of categories: the original category of the modi-
fied phrase together with the category of the most
recently adjoined modifier. This allows the deriva-
tion to keep track of both the true head of the

phrase and the place in the Cinque hierarchy of
the modifier, preventing inverted modifier orders
in the absence of Move.

2 Minimalist Grammars

I formulate my model as a variant of Minimalist
Grammars (MGs), which are Stabler (1997)’s for-
malisation of Chomsky’s (1995) notion of feature-
driven derivations using the functions Merge and
Move. MGs are mildly context-sensitive, putting
them in the right general class for human lan-
guage grammars. They are also simple and intu-
itive to work with. Another useful property is that
the properties of well-formed derivations are eas-
ily separated from the properties of derived struc-
tures (Kobele et al., 2007). Minimalist Gram-
mars have been proposed in a number of vari-
ants, with the same set of well-formed derivations,
such as the string-generating grammar in Keenan
& Stabler (2003), the tree-generating grammars
in Stabler (1997) and Kobele et al (2007), and
the multidominant graph-generating grammar in
Fowlie (2011).

At the heart of each of these grammars is a
function that takes two derived structures and puts
them together, such as string concatenation or
tree/graph building. To make this presentation as
general as possible, I will simply call these func-
tions Com. I will give derived structures as strings
as (2003)’s grammar would generate them,1 but
this is just a place-holder for any derived structure
the grammar might be defined to generate.

Definition 2.1. A Minimalist Grammar is a five-
tuple G = 〈Σ, sel, lic,Lex ,M〉. Σ is a finite set
of symbols called the alphabet. sel∪lic are finite
sets of base features. Let F={+f,-f,=X,X|f∈

1Keenan & Stabler’s grammar also incorporates an addi-
tional element: lexical items are triples of string, features,
and lexical status, which allows derivation of Spec-Head-
Complement order. I will leave this out for simplicity, as it is
not relevant here.
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lic, X∈ sel} be the features. For ε the empty string,
Lex ⊆ Σ ∪ {ε} × F ∗ is the lexicon, and M is the
set of operations Merge and Move. The language
LG is the closure of Lex under M . A set C ⊆ F
of designated features can be added; these are the
types of complete sentences.

Minimalist Grammars are feature-driven,
meaning features of lexical items determine
which operations can occur and when. There are
two disjoint finite sets of features, selectional
features sel which drive the operation Merge
and licensing features lic which drive Move.
Merge puts two derived structures together; Move
operates on the already built structure. Each
feature has a positive and negative version, and
these features with their polarities make the set
F from which the feature stacks for Lexical
Items are drawn. In the course of the derivation
the features will be checked, or deleted, by the
operations Merge and Move.

Polarity→ Pos Neg
for Merge =X X X∈ sel
for Move +f -f f∈ lic

Table 1: Features

In order for a derivation to succeed, LIs must be
in the following form:

=A =B
+w +v

=Y        ...X -f -g -h...

!"#$%&'()X
*'$+,-'$./

0-1$23-2%)4$"#,'$3
5-00)#'-%%$')6&7$

89$)4-'3#)#9-2%)-#)
3$0$1#3)-3)&4)
1"#$%&'()Y:))89-3)-3)
#9$)1&;<0$;$2#:

="19)3<$1-4-$')-3)$-#9$')6$'%$.)*=A,=B/)
&')6&7$.)*+w,+v/:))

>2)")#'".-#-&2"0)?@A"')4'";$5&'BC)#9$'$)-3)
;"D-;,;)&2$)3<$1-4-$'C)3&)#9$'$)5&,0.)A$)

"#);&3#)&2$)4$"#,'$)-2)#9-3)0-3#:)Figure 1: LI template

For example, 〈kick, =D=DV〉 takes a comple-
ment of category D, a specifier of category D, and
is itself a V. 〈which, =ND-wh〉 takes an N as com-
plement forming a D phrase, which will move be-
cause of feature wh.

Merge and Move are defined over expres-
sions: sequences of pairs 〈derived structure, fea-
ture stack〉. The first pair in the sequence can be
thought of as the “main” structure being built; the
remaining are waiting to move. An expression dis-
plays feature f just in case that feature is the first
feature in the feature stack of the first pair.

An MG essentially works as follows: Merge is a
binary operation driven by sel. It takes two expres-

sions and combines them into one just in case the
first expression displays =X and the second dis-
plays X for some X ∈ sel. Once the second ex-
pression is selected, it may still have features re-
maining; these are always negative licensing fea-
tures and mean that the second structure is going
to move. As such it is stored separately by the
derivation. When the matching positive licensing
feature comes up later in the derivation, the mov-
ing structure is combined again. This is Move.

Move also carries the requirement that for each
f∈lic there be at most one structure waiting
to move. This is the shortest move constraint
(SMC).2

Definition 2.2 (Merge). For α, β sequences of
negative lic features, s, t derived structures:3

Merge(〈s, =Xα〉 ::moverss, 〈t, Xβ〉::moverst) ={
(Com(s, t), α) :: moverss ·moverst if β = ε

(s, α) :: (t, β) :: moverss ·moverst if β 6= ε

Definition 2.3 (Move). For α, β, γ sequences
of negative lic features, s, t derived structures,
suppose ∃!〈t, β〉 ∈ movers such that β =
-fγ. Then: Move(〈s, +fα〉 ::movers) ={
〈Com(s, t), α〉 :: movers− 〈t, β〉 if γ = ε

〈s, α〉 :: 〈t, γ〉 :: movers− 〈t, β〉 if γ 6= ε

In this article I will make use of annotated
derivation trees, which are trees describing the
derivation. In addition to the name of the func-
tion, I (redundantly) include for clarity the derived
expressions in the form of strings and features, and
sometimes an explanation of why the function ap-
plied. For example, Figure 2 shows derivations
(unannotated and annotated) of the wolf with fea-
ture D.

Merge

the:=ND wolf:N

Merge
the wolf:D

the:=ND wolf:N

Figure 2: Unannotated and annotated derivation
trees

2The SMC is based on economy arguments in the linguis-
tic literature (Chomsky, 1995), but it is also crucial for a type
of finiteness: the valid derivation trees of an MG form a regu-
lar tree language (Kobele et al., 2007). The number of possi-
ble movers must be finite for the automaton to be finite-state.
The SMC could also be modified to allow up to a particular
(finite) number of movers for each f∈lic.

3:: adds an element to a list; · appends two lists; − re-
moves an element from a list.
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3 Cartography

The phenomena this model is designed to account
for are modifiers and other apparently optional
projections such as the following:

(1) a. The small ancient triangular green Irish pagan
metal artifact was lost.

b. *The metal green small artifact was lost.Adjec-
tives

c. Frankly, John probably once usually arrived
early.

d. *Usually, John early frankly once arrived prob-
ably. Adverbs

e. [DP
[DP

zhe
this

[NumP
[NumP

yi
one

[ClP
[ClP

zhi
CL

[NP
[NP

bi]]]
pen]]]

‘this pen’ Functional projections

These three phenomena can all display option-
ality, transparency to selection, and strict order-
ing. By transparency I mean that despite the inter-
vening modifiers, properties of the selected head
are relevant to selection. For example, in a classi-
fier language, the correct classifier selects a noun
even if adjectives intervene.

The hypothesis that despite their optionality
these projections are strictly ordered is part of syn-
tactic cartography (Rizzi, 2004). Cinque (1999,
2010) in particular proposes a universal hierar-
chy of functional heads that select adverbs in their
specifiers, yielding an order on both the heads and
the adverbs. He proposes a parallel hierarchy of
adjectives modifying nouns. These hierarchies are
very deep. The adverbs and functional heads in-
corporate 30 heads and 30 adverbs.

Cinque argues that the surprising univer-
sality of adverb order calls for explanation.
For example, Italian, English, Norwegian,
Bosnian/Serbo-Croatian, Mandarin Chinese,
and more show strong preferences for frankly
to precede (un)fortunately. These arguments
continue for a great deal more adverbs.4

(2) Italian
a. Francamente

Frankly
ho
have

purtroppo
unfortunately

una
a

pessima
bad

opinione
opinion

di
of

voi.
you

’Frankly I unfortunately have a very bad opin-
ion of you.’

b. *Purtroppo
Unfortuately

ho
have

francamente
frankly

una
a

pessima
bad

opinione
opinion

di
of

voi.
you

(3) English
a. Frankly, I unfortuately have a very bad opin-

ion of you

4Data from Cinque (1999)

b. ?Unfortunately I frankly have a very bad opin-
ion of you

(4) Norwegian
a. Per

Peter
forlater
leaves

[rerlig
[honestly

talt]
spoken]

[heldigvis]
[fortunately]

[nil]
[now]

selskapet.
the.party.

‘Frankly, Peter is fortunately leaving the party
now.’

b. *Per
Peter

forlater
leaves

[heldigvis]
[fortunately]

[rerlig
[honestly

talt]
spoken]

[nil]
[now]

selskapet.
the.party.

(5) Bosnian/Serbo-Croatian
a. lskreno,

Frankly,
ja
I

naialost
unfortunately

imam
have

jako
very

lose
bad

misljenje
opinion

o
of

vama
you.

Frankly, I unfortunately have a very bad opin-
ion of you.’

b. *Naialost,
unfortunately

ja
I

iskreno
frankly

imam
have

jako
very

lose
bad

misljenje
opinion

o
of

varna.
you.

(6) Mandarin Chinese
a. laoshi-shuo

Frankly,
wo
I

buxing
unfortunately

dui
to

tamen
them

you
have

pian-jian.
prejudice
’Honestly I unfortunately have prejudice
against them.’

b. *buxing
unfortunately

wo
I

laoshi-shuo
Frankly

dui
to

tamen
them

you
have

pian-jian.
prejudice

Supposing these hierarchies are indeed univer-
sal, the grammar should account for it. Moreover,
in addition to strictly ordered adjuncts, ideally a
model of adjunction should account for unordered
adjuncts as well. For example, English PPs are
unordered:

(7) a. The alliance officer shot Kaeli in the cargo
hold with a gun.

b. The alliance officer shot Kaeli with a gun in
the cargo hold.

It is not unusual to see this kind of asymme-
try, where right adjuncts are unordered but left ad-
juncts are ordered.

4 Previous approaches to adjunction

This section provides a brief overview of four ap-
proaches to adjunction. The first two are from
a categorial grammar perspective and account for
the optionality and, more or less, transparency to
selection; however, they are designed to model un-
ordered adjuncts. The other two are MG formal-
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isations of the cartographic approach. Since the
cartographic approach takes adjuncts to be regu-
lar selectors, unsurprisingly they account for or-
der, but not easily for optionality or transparency
to selection.

4.1 Categorial Grammar solutions

To account for the optionality and transparency, a
common solution is for a modifier to combine with
its modified phrase, and give the result the same
category as the original phrase. In traditional cate-
gorial grammars, a nominal modifier has category
N\N or N/N, meaning it combines with an N and
the result is an N.

Similarly, in MGs, an X-modifier has features
=XX: it selects an X and the resulting structure has
category feature X.

Merge
*the bad big wolf:D

the::=ND Merge
*bad big wolf:N

bad::=NN Merge
big wolf:N

big::=NN wolf::N

Figure 3: Traditional MG derivation of *the bad
big wolf

What this approach cannot account for is order-
ing. This is because the category of the new phrase
is the same regardless of the modifier’s place in the
hierarchy. That is, the very thing that accounts for
the optionality and the transparency of modifiers
(that the category does not change) is what makes
strict ordering impossible. Moreover, the modifier
is not truly transparent to selection: the modifier
in fact becomes the new head; it just happens to
share a category with the original head. This can
be seen in tree-generating grammars such as Sta-
bler (1997) (Figure 4).

Merge

〈 big, =NN〉 〈wolf, N〉

<

big wolf

Figure 4: Derivation tree and derived bare tree.
The < points to the head, big.

4.1.1 Frey & Gärtner
Frey & Gärtner (2002) propose an improved ver-
sion of the categorial grammar approach, one
which keeps the modified element the head, giv-

ing true transparency to selection. They do this by
asymmetric feature checking.

To the basic MG formalism a third polarity is
added for sel, ≈X. This polarity drives the added
function Adjoin. Adjoin behaves just like Merge
except that instead of cancelling both ≈X and X,
it cancels only ≈X, leaving the original X intact.
This allows the phrase to be selected or adjoined
to again by anything that selects or adjoins to X.
This model accounts for optionality and true trans-
parency: the modified element remains the head
(Figure 4.1.1).

Merge

〈big, ≈N〉 〈wolf, N〉

>

big wolf

Figure 5: Frey & Gärtner: derivation tree and de-
rived bare tree. The > points to the head, wolf.

Since this grammar is designed to model un-
ordered modifiers, illicit orders are also derivable
(Figure 6).

Merge
*the bad big wolf:D

the::=ND Merge
*bad big wolf:N

bad::≈N Merge
big wolf:N

big::≈N wolf::N

Figure 6: F & G derivation of *the bad big wolf

4.2 Selectional approach
A third approach is to treat adjuncts just like any
other selector. This is the approach taken by syn-
tactic cartography. Such an approach accounts
straightforwardly for order, but not for optional-
ity or transparency; this is unsurprising since the
phenomena I am modelling share only ordering re-
strictions with ordinary selection.

The idea is to take the full hierarchy of modi-
fiers and functional heads, and have each select the
one below it; for example, big selects bad but not
vice versa, and bad selects wolf. However, here
we are left with the question of what to do when
bad is not present, and the phrase is just the big
wolf. big does not select wolf.

4.2.1 Silent, meaningless heads
The first solution is to give each modifier and
functional head a silent, meaningless version that
serves only to tie the higher modifier to the lower.
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For example, we add to the lexicon a silent, mean-
ingless “size” modifier that goes where big and
small and other LIs of category S go.

• 〈 the, =S D〉 〈 ε, =S D〉
• 〈 big, =G S〉 〈 ε, =G S〉
• 〈 bad, =N G〉 〈 ε, =N G〉
• 〈 wolf, N〉

This solution doubles substantial portions of the
lexicon. Doubling is not computationally signif-
icant, but it does indicate a missing generalisa-
tion: somehow, it just happens that each of these
modifiers has a silent, meaningless doppelganger.
Relatedly, the ordering facts are epiphenomenal.
There is nothing forcing, say, D’s to always select
S’s. There is no universal principle predicting the
fairly robust cross-linguistic regularity.

Moreover, normally when something silent is in
the derivation, we want to say it is contributing
something semantically. Here these morphemes
are nothing more than a trick to hold the syntax
together. Surely we can do better.

4.2.2 Massive homophony

A second solution is for each morpheme in the
hierarchy to have versions that select each level
below it. For example, the has a version which
selects N directly, one that selects “goodness” ad-
jectives like bad, one that selects “size” adjectives
like big, and indeed one for each of the ten or so
levels of adjectives.

• 〈the, =SD〉 〈the, =GD〉 〈the, =SD〉 〈the, =ND〉
• 〈big, =GS〉 〈big, =NatS〉〈big, =NS〉
• 〈bad, =NatG〉 〈bad, =NG〉
• 〈Canadian, =NNat〉
• 〈wolf, N〉

This second solution lacks the strangeness of
silent, meaningless elements, but computationally
it is far worse. To compute this we simply use
Gauss’s formula for adding sequences of numbers,
since an LI at level i in a hierarchy has i versions.
For example, in the model above, the is at level
4 (counting from 0), and there are 4 versions of
the. For a lexicon Lex without these duplicated
heads, and a language with k hierarchies of depths
li for each 1 ≤ i ≤ k, adding the duplicated heads
increases the size of the lexicon. The increase is
bounded below by a polynomial function of the

depths of the hierarchies as follows:5

|Lex′| ≥
k∑

i=1

1/2(l2i + li) + |Lex|

5 Proposal

I propose a solution with three components: sets
of categories defined to be adjuncts of particular
categories, a partial order on sel, and a new oper-
ation Adjoin. The sets of adjuncts I base on Sta-
bler (2013). The partial order models the hierar-
chies of interest (e.g. the Cinque hierarchy); Ad-
join is designed to be sensitive to the order.

Adjoin operates on pairs of selectional features.
The first element is the category of the first thing
that was adjoined to, for example N. The second
element is the category of the most recently ad-
joined element, for example Adj3. Adjoin is only
defined if the new adjunct is higher in the hierar-
chy than the last adjunct adjoined.

I call these grammars Minimalist Grammars
with Adjunction (MGAs).

Definition 5.1. A Minimalist Grammar with
Adjunction is a six-tuple
G = 〈Σ, 〈sel,≥〉, ad, lic,Lex ,M〉. Σ is a finite
set called the alphabet. sel∪lic are finite sets of
base features, and 〈sel,≥〉 is a partial order. Let
F={+f,-f,=X,[X,Y]|f∈ lic, X,Y ∈ sel}.
ad : sel→ P(sel) maps categories to their
adjuncts. Lex ⊆ Σ ∪ {ε} × F ∗, and M is the set
of operations Merge, Move, and Adjoin. The
language LG is the closure of Lex under M . A
set C ⊆ sel of designated features can be added;
{[c, x]|c ∈ C, x ∈ sel, x ≥ c} are the types of
complete sentences.6

The differences between MGs defined above
and MGAs are: (1) in MGAs sel is partially or-
dered; (2) in MGs the negative polarity for X ∈
sel is just X; in MGAs it is the pair [X,X]; (3)
MGAs add a function: Adjoin; (4) MGAs define
some subsets of sel to be adjuncts of certain cate-
gories; (5) Merge is redefined for the new feature
pair polarity. (Move remains unchanged.)

5I say “bounded below” because this formula calculates
the increase to the lexicon assuming there is exactly one LI at
each level in the hierarchy. If there are more, each LI at level
i of a hierarchy has i versions as well.

6I have replaced all negative selectional features X with
pairs [X,X]. This is for ease of defining Adjoin and the new
Merge. Equivalently, LIs can start with category features X
as in a traditional MG, and Adjoin can build pairs. I chose
the formulation here because it halves the number of cases
for both Merge and Adjoin.
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For 〈A,≥〉 a partial order, a, b ∈ A are incom-
parable, written a||b, iff a 6≥ b and b 6≥ a.

To shorten the definition of Adjoin, I define a
function f adj which determines the output features
under Adjoin. If the adjunct belongs to the hi-
erarchy of adjuncts being tracked by the second
element of the feature pair, that second element
changes. If not, the feature pair is unchanged.

Definition 5.2. For W, X, Y, Z ∈ sel, W ∈ ad(Y) :

f adj([W, X], [Y, Z]) =


[Y, W] if W ≥ Z

[Y, Z] if W||Z
undefined otherwise

Notice that if Z and W are incomparable, no
record is kept of the feature (W) of the adjunct.
This is just like Frey & Gärtner’s asymmetric fea-
ture checking, and derives adjuncts that are un-
ordered with respect to each other. In Definition
5.3, I model languages like English in which gen-
erally unordered adjuncts, like PPs, appear to the
right, while ordered adjuncts, like adjectives, ap-
pear to the left. The rules could be easily modified
for different orderings. See Section 6 for further
discussion.

Definition 5.3 (Adjoin). For s, t derived
structures, γ, β ∈ {−f|f ∈ lic}∗,
α ∈ {+f,= X|f ∈ lic, X ∈ sel}∗ ,
W, X, Y, Z ∈ sel, W ∈ ad(Y),
C = fadj([W, X], [Y, Z]):
Adjoin(〈s, [W, X]αγ〉::mvrss,
〈t, [Y, Z]β〉 :: mvrst) =

〈Com(s, t), αC〉 :: mvrss ·mvrst

if γ, β = ε & W ≥ Z

〈Com(t, s), αC〉 :: mvrss ·mvrst

if γ, β = ε & W||Z
〈s, αC〉 :: 〈t, β〉 :: mvrss ·mvrst

if γ = ε, β 6= ε & W 6< Z

〈t, αC〉 :: 〈s, γ〉 :: mvrss ·mvrst

if γ 6= ε, β = ε & W 6< Z

〈ε, αC〉 :: 〈s, γ〉 :: 〈t, β〉 :: mvrss ·mvrst

if γ, β 6= ε & W 6< Z

The first case is for ordered adjuncts where nei-
ther the adjunct nor the adjoined-to phrase will
move (encoded in empty γ, β). The second is the
same but for unordered adjuncts, which will ap-
pear on the right. The last three cases are for mov-
ing adjunct, moving adjoined-to phrase, and both
moving, respectively. α is a sequence of positive
licensing features, which allows adjuncts to take

specifiers.
Merge needs a slight modification, to incorpo-

rate the paired categories. Notice that Merge is
interested only in the first element of the pair, the
“real” category.

Definition 5.4 (Merge). For α, β ∈ F ∗ , s, t
derived structures, X, Y ∈ sel:
Merge(〈s,=Xα〉 ::mvrss, 〈t, [X, Y]β〉::mvrst) ={

(Com(s, t), α) :: mvrss ·mvrst if β = ε

(s, α) :: (t, β) :: mvrss ·mvrst if β 6= ε

Move remains as in definition 2.3 above.

5.1 Examples

MGAs are most easily understood by example.
This first example demonstrates straightforward
applications of Adjoin that derive strictly-ordered
prenominal adjectives. The big bad wolf is deriv-
able because the derivation remembers that an N-
adjunct at level G in the hierarchy, 〈bad, [G,G]〉,
adjoined to the noun. It encodes this fact in the
second element of the pair [N,G]. Big is then able
to adjoin because it too is an N-adjunct and it is
higher in the hierarchy than bad (S>G). Finally,
the can be defined to select wolf directly.

Let sel = {D, G, M, N, P, C, T, V} and the partial
order ≥ on sel be such that D ≥ S ≥ G ≥ M ≥ N
and C ≥ T ≥ V

adjuncts = {〈N, {S, G, M, P, C}〉}
Lex = {〈bad, [G,G]〉, 〈big, [S,S]〉, 〈the,
=N[D,D]〉, 〈wolf, [N,N]〉, 〈woods, [N,N]〉,
〈in, =D[P,P]〉}

Merge
(the big bad wolf, [D,D])

(the, =N[D,D]) Adjoin
(big bad wolf, [N,S])

(since S≥G and S∈ad(N))

(big,[S,S]) Adjoin
(bad wolf, [N,G])

(since G≥N and G∈ad(N))

(bad,[G,G]) (wolf,[N,N])

Figure 7: Valid derivation of the big bad wolf

*Bad big wolf, on the other hand, is not deriv-
able without movement since the derivation re-
members that big, which is at level S in the hierar-
chy, has already been adjoined. bad, being lower
in the hierarchy, cannot adjoin.
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Adjoin
*bad big wolf
(since G < S)

(bad, [G,G]) Adjoin
(big wolf, [N,S])

(since S≥N and S∈ad(N))

(big, [S,S]) (wolf, [N,N])

Figure 8: Invalid derivation of *bad big wolf

This next example shows a right adjunct, a PP,
being adjoined to an NP. Since P||N – that is, no
hierarchical order is defined between N and P –
the PP adjoins to the right, but does not alter the
category of the noun.

Adjoin
〈wolf in the woods, [N, N]〉
since P ∈ad(N) and P||N

Merge
〈in the woods, [P, P]〉

〈in, = D[P, P]〉 Merge
〈the woods, [D, D]〉

〈the, =N[D, D]〉 〈woods, [N, N]〉

〈wolf, [N, N]〉

Figure 9: Right adjunction

6 Discussion and extensions

This model captures both the strict ordering of the
merge-only models and the optionality and trans-
parency to selection of the categorial approaches.
Cinque’s observation that there is a hierarchy of
functional heads and adverbs is modelled directly
by defining a hierarchy in the grammar itself. The
strict linear order falls out of the order imposed on
the selectional features and the definition of Ad-
join: adjunction is only defined when the hierar-
chy is respected. Optionality is the result of the
transitivity of orders: intervening adjuncts are not
necessary for a higher one to be adjoined. Trans-
parency to selection is modelled by the pairing of
the selectional features: the original category of
the modified element is preserved, and Merge can
see only that feature. The adjuncts are literally ig-
nored.

The cross-linguistic consistency of the orders
is accounted for by the claim that all human lan-
guages have the same partial order on sel. As such,
it does not have to be learned, but rather comes
with the grammar.

Computationally, this approach has an advan-
tage over the merge-only model with homophony

as the latter increases the size of the lexicon by
a polynomial function in the depths of the hierar-
chies of adjuncts, but the former does not.

6.1 Left and right adjuncts
As mentioned, I defined Adjoin to derive the
asymmetry observed between left and right ad-
juncts in many languages: left adjuncts such as
adverbs and descriptive adjectives are strictly or-
dered, while right adjuncts such as PPs and clauses
are not. This fact is derived by letting the presence
or absence of an ordering relation between the ad-
junct and modified category determine which case
of Adjoin applies. If there is an order, the usual
linear order will be calculated by Com, and the
place in the hierarchy is tracked. Otherwise, the
linear order is switched, and there is asymmetric
feature checking.

If this is not the effect desired, there are alterna-
tives. The simplest is to make the domain of the
function ad sel × {right, left}, specifying the sets
of right and left adjuncts. This allows for much
more flexibility, for good or ill. It does not de-
rive the asymmetry, but does allow ordered and
unordered adjuncts to appear on the same side of
the head, if such a pattern is desired. This is an
empirical question.

6.2 Selection and adjuncts
This model allows LIs that are in the set of ad-
juncts to be selected normally as arguments, since
adjuncts have categories of their own. For ex-
ample, Red Ridinghood was small is derivable by
allowing was to select 〈small, [S,S]〉: 〈was,
=S[V,V]〉. This is an improvement over models
that do not give adjuncts categories of their own,
such as Frey & Gärtner’s, but it is still lacking. In
this model, there will have to be massive dupli-
cation in the lexicon so that was can select every
adjective: 〈was, =S[V,V]〉, 〈was, =G[V,V]〉etc.

To solve this problem, we can take advantage
of the function ad, and define was to select any-
thing from a particular image under ad. Such a
model expands the definition of Merge to operate
not only on categories, but also on sets of cate-
gories. The model would look something like this:

Merge(〈was, =ad(N)[V,V]〉, 〈small, [S,S]〉)
is defined iff S∈ ad(N)

Because the set of features F is finite, allowing
Merge to be defined over subsets of F does not
change the finite properties of MGs. Merge could
in fact be allowed to be defined over any subset
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of F . I suggest this model because it is restricted:
only sets that exist for other reasons already can
be quantified over.

MGAs also allow adjuncts to select arguments
and license Move. For example, a preposition can
select a complement before becoming an adjunct
PP. Moreover, a functional projection such as Fo-
cus can Move a focused phrase into its specifier
from the main tree, or Topic can Merge a specifier.
The latter is a result of allowing positive polarity
features to follow the category pair. Recall that in
traditional MGs, an LI must be of the following
form for the derivation to succeed, where each pi

is a positive polarity feature, X, Y ∈ sel and each
fi ∈ lic:

(= Y(p1p2...pn))X(-f1-f2...-fm)

However, in MGAs, LIs of the following form
are possible if the LI will Adjoin, the crucial dif-
ference being the presence of pn+1...pk:

(= Y(p1p2...pn))[X, Y](pn+1...pk)(-f1-f2...-fm)

Figure 10 shows the end of a derivation in which
the mover briefly is an adjunct, and so the licensor,
the null Foc head. Its positive licensing feature
+focmoves to the front of the stack of the derived
structure’s features.

Suppose Foc ∈ ad(T) and Foc ≥ T.

Move
〈briefly she spoke, [T,Foc]〉

Adjoin
〈she spoke, +foc[T,Foc]〉, 〈briefly, -foc〉

〈ε, [Foc,Foc]+foc〉 Merge
〈she spoke, [T,T]〉, 〈briefly, -foc〉

Figure 10: Adjunct FocP with moved specifier.

6.3 Adjuncts of adjuncts

In natural language, adjuncts can also be adjoined
to, for example as in the very bad wolf. The func-
tion ad maps single categories to their adjuncts,
but it is not generally the case that, say, an adverb,
can only adjoin to certain adjectives. In order to
capture this fact without duplication in the lexi-
con, Adjoin, like Merge, can be extended to allow
subsets of F . Similarly to the Merge case, we can
restrict these subsets by requiring that they be the
image of a category under ad. For example:

〈frankly, [Fr,Fr]〉, 〈unfortunately, [Fo,Fo]〉, 〈allegedly,
[Al,Al]〉, 〈bad, [G,G]〉, 〈wolf, [N,N]〉∈ Lex
Fr ≥ Fo ≥ Al ≥ V, S ≥ G ≥ N, P
ad(N) = {S,G,P}
ad(V) = ad(S) = ad(G)= {Fr,Fo,Al}

Adjoin
〈unfortunately bad, [G,G]〉
(since Fo||G and Fo∈ad(G))

〈unfortunately, [Fo,Fo]〉 〈bad, [G,G]〉

Figure 11: Adjoining to an adjunct

Notice however that we are still missing a gen-
eralisation: S,G, and indeed all adjectives have
the same adjuncts. Now, this can be modelled by
calling this set ad(ad(N)). However, such a solu-
tion assumes a special status for N over many other
categories such as G: why ad(ad(N)) rather than
ad(ad(G))? I would argue that such a status would
reflect the reality of natural language. We can see
N and V behaving in special ways: both are at the
bottom of hierarchies, for example. However, as
far as I am aware, no such status exists in any
MGs. Formalising these observations is a matter
for further research.

6.4 Islandhood
Adjuncts have another classic property: island-
hood. Movement is not possible out of certain
types of adjuncts.

(8) a. You left [because your ex showed up]Adj
b. *Who did you leave [because showed

up]Adj?

Any approach that keeps Adjoin separate from
Merge introduces the option of stipulating the Ad-
junct Island Constraint (AIC), either as a separate
constraint on Adjoin, as Frey & Gärtner do, or by
simply not including moverss in the definition of
Adjoin, making the function undefined when the
adjunct carries movers. This is not very satisfy-
ing, though: better perhaps would be to derive it,
as Graf (2013) does. On the other hand, perhaps
not all adjuncts are islands. If beside is an ad-
junct in (9), it is not an adjunct island.

(9) Who are you sitting [beside ]Adjunct?

As always, islands must remain a matter for fur-
ther research.

7 Conclusion

I have presented a model of adjunction that ac-
counts for both the optionality and the strict or-
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dering of many adjuncts. MGAs accomplish this
by the simple expedience of keeping track of two
pieces of information at once: the original cate-
gory of the projecting phrase, and the category of
the most recent adjunct to adjoin. This allows Ad-
join to be defined to only apply when the next ad-
junct is not lower in a hierarchy than the last. At
the same time, Merge can see the original cate-
gory, and ignores the adjunct’s category.

I have also suggested some extensions of MGAs
to more efficiently account for adjuncts as the
second argument of Merge and Adjoin. These
involved quantification over categories, with the
added suggestion that the sets of categories in
question be restricted by the sets of adjuncts al-
ready defined.

Future directions for this research include not
only matters internal to the model, such as how
best to model adjuncts of adjuncts, but also
larger questions of the mathematical properties of
MGAs. MGAs are weakly equivalent to MGs,
since MGAs merely take existing ways to derive
certain strings and seek more efficient ways, which
capture more generalisations. If every adjunct in
the lexicon is replaced with the right set of selec-
tors, Adjoin does not need to be used. For exam-
ple, the adjectives in the MGA lexicon used in the
examples in Section 5.1 can be replaced by the ad-
jectives in either grammar from the selectional ap-
proaches in Section 4.2, and the same string set
can be generated.

Clearly MGs and MGAs are not strongly equiv-
alent: the derivation trees differ in that MGAs have
a function that is not present in MGs.

Because the possible configurations of features
remains finite, the derivation tree languages of
MGAs should prove to be regular, following Ko-
bele et al (2007)’s presentation: transition rules for
Adjoin need merely be added.

Also of interest are the subregular properties
of the derivation tree language. Although to my
knowledge such notions as tierwise strictly local
(Heinz et al., 2011) have not yet been formally
defined for tree languages, I conjecture that in
MGAs, Merge is tierwise strictly k-local, and Ad-
join is strictly k-local.
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Abstract

We study the complexity of uniform mem-
bership for Linear Context-Free Rewriting
Systems, i.e., the problem where we are
given a string w and a grammar G and are
asked whether w ∈ L(G). In particular,
we use parameterized complexity theory
to investigate how the complexity depends
on various parameters. While we focus
primarily on rank and fan-out, derivation
length is also considered.

1 Introduction

Linear Context-Free Rewriting Systems (LCFRS)
were introduced by Vijay-Shanker et al. (1987)
with the purpose of capturing the syntax of nat-
ural language.1 It is one of several suggested ways
of capturing Joshi’s concept of mildly context-
sensitive languages (Joshi, 1985). As such, it
strengthens the expressive power of context-free
grammars, while avoiding the full computational
complexity of context-sensitive grammars.

One of the defining features of mildly context-
sensitive languages is that they should be decid-
able in polynomial time. This is indeed true for ev-
ery language that can be generated by an LCFRS.
Unlike the case for context-free grammars, how-
ever, the universal or uniform membership prob-
lem for LCFRSs, where both the grammar and
the string in question are considered as input, is
known to be PSPACE-complete (Kaji et al., 1992),
making a polynomial time solution very improba-
ble.

The best known algorithms for the problem
have a running time of O(|G| · |w|f ·(r+1)), where
G is the grammar, w is the string, f is the fan-out
and r is the rank of the grammar (Seki et al., 1991;
Burden and Ljunglöf, 2005; Boullier, 2004). (For

1Seki et al. (1991) independently suggested the nearly
identical Multiple Context-Free Grammars.

a definition of fan-out and rank, see Section 2.)
Unlike the rank of a context-free grammar, the fan-
out and rank of an LCFRS cannot in general be re-
duced to some fixed constant. Increasing the fan-
out always gives more generative power, as does
increasing the rank while keeping the fan-out fixed
(Satta, 1998). The rank can be reduced to two, but
at the price of an exponential increase in the fan-
out.

Research into algorithms for LCFRS parsing
that are efficient enough for practical use is quite
active. For example, algorithms for restricted
cases are being studied, e.g., by Gómez-Rodrı́guez
et al. (2010), as well as rank reduction, primarily
in special cases, where the fan-out is not affected;
see, e.g., Sagot and Satta (2010).

This article is a first step towards a finer com-
putational complexity analysis of the membership
problem for LCFRSs. Specifically it asks the
question “could there exist an algorithm for the
uniform LCFRS membership problem whose run-
ning time is a fixed polynomial in |w| times an ar-
bitrary function in f and r?” By employing pa-
rameterized complexity theory, we show that such
an algorithm is very unlikely to be found. Fix-
ing the rank of the grammar to one, the mem-
bership problem, parameterized by the fan-out, is
W[SAT]-hard. Fixing the fan-out to two and tak-
ing the rank as the parameter, the problem is W[1]-
hard. Finally, if the fan-out, rank, and derivation
length are included in the parameter, the problem
is W[1]-complete. These results help guide future
work, suggesting other types of parameters and
grammar restrictions that may yield more favor-
able complexity results.

2 Preliminaries

For n ∈ N, we write [n] for {1, . . . , n} and [n]0
for {0} ∪ [n]. Given an alphabet Σ we write Σ∗

for all strings over Σ and Σ+ for all non-empty
strings. The empty string is denoted by ε.
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2.1 Linear context-free rewriting systems
Let Σ be an alphabet, x1, . . . , xn variables, and
w1, . . . , wk strings over Σ such that

w1 · · ·wk = α0 · xπ(1) · α1 · · ·xπ(n) · αn

for some permutation π and some strings
α0, . . . , αn ∈ Σ∗. Then define f as a function
over tuples of strings such that

f((x1, . . .), . . . , (. . . , xn)) = (w1, . . . , wk).

A function is linear regular if and only if it
can be described in this way. For example
f((x1), (x2)) = (a, bx2x1c) is linear regular, and
f((aaa), (bc)) = (a, bbcaaac).
Definition 2.1. A Linear Context-Free Rewriting
System is a tupleG = (N,Σ, F,R, S), whereN is
an alphabet of nonterminals, where each A ∈ N
has an associated fan-out #(A); S ∈ N is the
initial nonterminal with #(S) = 1; Σ is an al-
phabet of terminals; F is a set of linear regu-
lar functions; and R is a set of rules of the form
A → g(B1, . . . , Bn), where A,B1, . . . , Bn ∈ N
and g is a function in F of type

(Σ∗)#(B1) × · · · × (Σ∗)#(Bn) → (Σ∗)#(A).

For rules A → g(), where g has arity 0 and
g() = (α1, . . . , α#(A)), we often simply write
A→ (α1, . . . , α#(A)).

The rank of a rule is the number of nontermi-
nals on the right-hand side. The rank of G is the
maximal rank of any rule in R. The fan-out of G
is the maximal fan-out of any nonterminal in N .

The language generated by a nonterminal A is a
set of n-tuples, where n = #(A).
Definition 2.2. Let G = (N,Σ, F,R, S) be
a linear context-free rewriting system. Let
LA ⊆ (Σ∗)#(A) denote the tuples that a nontermi-
nal A ∈ N can generate. This is the smallest set
such that if A → f(B1, . . . , Bn) is in R then, for
all bi ∈ LBi where i ∈ [n], f(b1, . . . , bn) ∈ LA.
The language of G is L(G) = LS .

For i ∈ N, we write i-LCFRS for the class of
all LCFRSs of rank at most i and LCFRS(i) for
the class of all LCFRSs of fan-out at most i. We
also write i-LCFRS(j) for i-LCFRS∩LCFRS(j).

2.2 Parameterized complexity theory
We only reproduce the most central definitions of
parameterized complexity theory. For a more thor-
ough treatment, we refer the reader to (Downey
and Fellows, 1999; Flum and Grohe, 2006).

A parameterized problem is a language
L ⊆ Σ∗ × N, where Σ is a finite alphabet. The
second component is called the parameter. An al-
gorithm for L is fixed-parameter tractable if there
is a computable function f and a polynomial p
such that for every (x, k) ∈ Σ∗×N, the algorithm
decides in time f(k) · p(|x|) whether (x, k) ∈ L.
The problem of deciding L is fixed-parameter
tractable if there is such an algorithm. If so, L
belongs to the class FPT.

A parameterized problem L ⊆ Σ∗ × N
is fpt-reducible to another parameterized prob-
lem K ⊆ Γ∗ × N if there is a mapping
R : Σ∗ × N→ Γ∗ × N such that

1. for all (x, k) ∈ Σ∗ × N, we have (x, k) ∈ L
if and only if R(x, k) ∈ K,

2. there is a computable function f and a poly-
nomial p such that R(x, k) can be computed
in time f(k) · p(|x|), and

3. there is a computable function g such that for
every (x, k) ∈ Σ∗ × N, if R(x, k) = (y, k′),
then k′ ≤ g(k).

Note that several parameters may be combined
into one by taking their maximum (or sum).

The most commonly used hierarchy of parame-
terized complexity classes is the following.

FPT ⊆W[1] ⊆W[2] ⊆ · · · ⊆
⊆W[SAT] ⊆W[P] ⊆ XP

The classes W[1],. . . ,W[P] are defined using cir-
cuits or, alternatively, logic. None of the inclu-
sions is known to be strict, except that FPT is a
strict subclass of XP. It is widely believed, how-
ever, that each of them is strict. The class XP is
the class of all parameterized problems for which
there is a computable function f such that every
instance (x, k) can be decided in time |x|f(k).

2.3 Problems of interest

We know from Kaji et al. (1992) that the universal
membership problem for 1-LCFRSs is PSPACE-
complete. Satta (1992) has further shown that
LCFRS(2)-MEMBERSHIP is NP-hard.

We study the following decision problems,
where the symbol P is used to indicate what the
parameter is:

• P-LCFRS(j)-MEMBERSHIP, where j ∈ N
is the membership problem for LCFRS(j),
parameterized by the rank.
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• i-LCFRS(P)-MEMBERSHIP, where i ∈ N
is the membership problem for i-LCFRS, pa-
rameterized by the fan-out.
• P-LCFRS(P)-MEMBERSHIP is the mem-

bership problem for LCFRS parameterized
by the rank and the fan-out.
• SHORT P-LCFRS(P)-DERIVATION is the

membership problem for LCFRS parameter-
ized by the rank, the fan-out, and the deriva-
tion length.

Since there are algorithms that solve the member-
ship problem for LCFRSs with rank r and fan-out
t and string w in time |w|(r+1)t (see, e.g., (Seki
et al., 1991; Burden and Ljunglöf, 2005; Boul-
lier, 2004)), we can immediately conclude that
P-LCFRS(P)-MEMBERSHIP, as well as every
other parameterized membership problem men-
tioned above, belongs to XP.

3 Fixed rank grammars

The following theorem establishes a lower bound
for 1-LCFRSs parameterized by the fan-out.

Theorem 3.1. 1-LCFRS(P)-MEMBERSHIP is
W[SAT]-hard.

The proof of Theorem 3.1 is by reduction from
WEIGHTED MONOTONE SATISFIABILITY. Be-
fore we get into the actual proof, we discuss some
properties of this problem.

Definition 3.1. A monotone Boolean formula is a
Boolean formula that contains only conjunctions,
disjunctions, and variables. In particular, there are
no negations. An instance of WEIGHTED MONO-
TONE SATISFIABILITY is a pair (φ, k), where φ
is a monotone Boolean formula and k ∈ N. The
question is whether φ has a satisfying assignment
of weight k, i.e., an assignment that sets exactly
k of the variables that occur in φ to true. The pa-
rameter is k. WEIGHTED MONOTONE SATISFIA-
BILITY is W[SAT]-complete (Abrahamson et al.,
1993; Abrahamson et al., 1995; Downey and Fel-
lows, 1999).

We can view a monotone Boolean formula φ
as an unranked tree, where the root node corre-
sponds to the top level clause and the leaves corre-
spond to bottom level clauses, i.e., variable occur-
rences. The set pos(φ) of positions of φ is defined
as usual, consisting of strings of natural numbers
that indicate how to navigate to the clauses in a
tree representation of φ. We denote each subclause
of φ by Cs, where s ∈ pos(φ) is its position. Thus

φ = (((x1 ∧ (x2 ∨ x3)) ∨ x3 ∨ (x3 ∧ x4))∧
∧x2 ∧ ((x1 ∧ (x2 ∨ x4)) ∨ (x1 ∧ x3)))

Cε

C1

C11
C111

C112
C1121

C1122
C12

C13
C131

C132

C2

C3

C31
C311

C312
C3121

C3122

C32
C321

C322

Figure 1: A formula φ and its tree representa-
tion. Conjunctive clauses are round and disjunc-
tive rectangular. For example, C111 is the leftmost
occurrence of x1 and C13 the clause (x3 ∧ x4).

Cε denotes the whole of φ, while, e.g., Cijl is the
lth clause of the jth clause of the ith clause of φ.
See Figure 1 for an example. We use C for the set
of all clauses of φ and C∧, C∨, and CVar for the
sets of conjunctive, disjunctive, and bottom level
clauses, respectively. For all c ∈ CVar let Var(c)
denote the variable in c, and let Var(φ) denote the
set of all variables in φ.

Given a monotone Boolean formula φ and a
variable assignment ρ : Var(φ) → B, we de-
fine a verification tour for φ and ρ. Such a tour
moves through the tree representation of φ, start-
ing at the root node, and verifies that ρ satis-
fies φ. To this end, we first define the function
Next : pos(φ) → pos(φ) ∪ {True} as follows.
For the root clause let Next(ε) = True . For all
si ∈ pos(φ), where s ∈ N∗ and i ∈ N, if Cs ∈ C∧
and s(i + 1) ∈ pos(φ) let Next(si) = s(i + 1),
otherwise let Next(si) = Next(s).

A verification tour over φ, given a variable as-
signment ρ is constructed by the following proce-
dure. Set the initial position p = ε, then
• If Cp ∈ C∧ set p ← p1 (i.e., go to the first

subclause).
• If Cp ∈ C∨ set p ← pi for any i (i.e. non-

deterministically pick a subclause).
• IfCp ∈ CVar verify that ρ(Var(Cp)) = true .

If so, set p ← Next(p) and repeat. Other-
wise, the verification tour fails.

A verification tour succeeds if it reaches True .
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The following lemma can be proved by straight-
forward induction on the structure of φ.

Lemma 3.2. If a verification tour for φ and vari-
able assignment ρ succeeds, then ρ satisfies φ.

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. Let (φ, k) be an instance of
WEIGHTED MONOTONE SATISFIABILITY. Let
{x1, . . . , xn} be the variables that appear in φ. In
particular, n is the number of distinct variables.
Let m be the number of bottom level clauses.

Intuitively, the LCFRS we will construct will
guess a weight k variable assignment ρ and then
simulate a verification tour for φ and ρ.

Basically, we will use one nonterminal per
clause and use the structure of the grammar to sim-
ulate a verification tour. In order to verify that the
necessary bottom level clauses can all be satisfied
through the same k true variables, we will use the
input string to be parsed. The string w will con-
sist of bracketed sequences of m copies of each of
the n variables, i.e., w = [xm1 ] · · · [xmn ]. To un-
derstand the construction of the grammar, please
keep in mind that the only derivations that matter
are those generating this particular input string.

The grammar will guess which k variables
should be set to true and disregard the other vari-
ables. Technically, this is done by first letting a
nonterminal F generate a tuple of k + 1 strings
s0, . . . , sk such that each si consists of zero or
more of the bracketed sequences of variables to
be disregarded. The rest of the grammar generates
exactly k bracketed sequences that will be inter-
leaved with s0, . . . , sk. During the generation of
these k bracketed sequences it is nondeterministi-
cally verified that the corresponding truth assign-
ment satisfies φ.

We use the following set of nonterminals:

{S, F} ∪ {Cs | s ∈ pos(φ) ∪ {True}}

For S, there is only one rule: S → fS(F ). The
function fS places brackets around the k vari-
ables that are guessed to be true, represented by
the strings t1, . . . , tk, and interleaves them with
the remaining variables, represented by the strings
s0, . . . , sk:

fS(s0, . . . , sk, t1, . . . , tk) = (s0[t1]s1 · · · [tk]sk)

The nonterminal F has rules F → fF,i,j(F ) for
all i ∈ [n] and j ∈ [k]0. These rules produce the
bracketed sequences of copies of the variables xi

to be disregarded, as can be seen from the corre-
sponding function:

fF,i,j(s0, . . . , sk, t1, . . . , tk) =

(s0, . . . , sj [x
m
i ], . . . , sk, t1, . . . , tk)

Moreover, there is a single rule

F → fF (Cε)

with

fF (t1, . . . , tk) = (ε, . . . , ε, t1, . . . , tk)

The rules for the nonterminals that represent
clauses differ according to the type of the clause,
i.e., if the nonterminal represents a conjunctive
clause, a disjunctive clause, or a variable. For each
conjunctive clause Cs there is exactly one rule,
representing a move to its first subclause. Here,
fid is the identity function.

Cs → fid (Cs1)

For every disjunctive clause Cs and every i such
that Csi is a subclause of Cs there is one rule.

Cs → fid (Csi)

For every bottom level clause, i.e., Cs ∈ CVar ,
every i ∈ [k] and every j ∈ [m] there is one rule.

Cs → fs,i,j(CNext(s))

Intuitively, such a rule corresponds to producing j
copies of the variable of clause Cs in component i
of the tuple and moving on to the next clause that
should be visited in a verification tour. This can be
seen from the corresponding function.

fs,i,j(t1, . . . , tk) = (t1, . . . ,Var(Cs)
jti, . . . , tk)

The reason that the function produces j copies of
the variable, rather than just one, is that it is un-
known beforehand how many times a bottom level
clause that represents that particular variable will
be visited. Thus the number of copies to be pro-
duced has to be guessed nondeterministically in
order to make sure that a total of m copies of each
variable set to true are eventually produced.

If there is a weight k satisfying assignment,
there will also be a verification tour that even-
tually reaches True when Next is called (by
Lemma 3.2). The single rule forCTrue simply pro-
duces a k-tuple of empty strings.

24



The reduction is polynomial and the fan-out of
the resulting grammar is 2k+1. Thus it is an FPT-
reduction. It remains to argue that the grammar
can produce w if and only if φ has a satisfying
assignment of weight k.

We first note that whatever tuple is derived from
F , the first k + 1 entries in the tuple consist of
bracketed sequences of the form [xml ]. If the
grammar can produce w, it follows that the tuple
(t1, . . . , tk) produced from Cε must be such that
each ti equalsm copies of the same variable name.

Any successful derivation of a string by the
grammar corresponds to a verification tour of φ
and the variable assignment that sets the variables
that appear in (t1, . . . , tk) to true and all other vari-
ables to false. Thus φ has a satisfying assignment
of weight k.

For the other direction, assume that φ has a sat-
isfying assignment of weight k. Then the grammar
can guess this assignment and a corresponding
successful verification tour, thus producingw.

Note that Theorem 3.1 can easily be strength-
ened to grammars with a binary terminal alphabet.
It is enough to represent each variable name by
a bitstring of length dlog2(m)e in the above re-
duction. We also note that Theorem 3.1 immedi-
ately implies that P-LCFRS(P)-MEMBERSHIP

is W[SAT]-hard.

4 Fixed fan-out grammars

We next turn to the case where the fan-out is fixed
to two, while the rank is treated as a parameter.

Theorem 4.1. P-LCFRS(2)-MEMBERSHIP is
W[1]-hard.

Proof. We reduce from k-CLIQUE, the problem of
deciding whether a given graph has a clique of size
k, with k as the parameter. This problem is known
to be W[1]-complete (Flum and Grohe, 2006). Let
G = (V,E) be an undirected graph. We assume,
without loss of generality, that V = {1, . . . , n}
and that an edge connecting nodes i, j ∈ V is rep-
resented as the ordered pair (i, j) such that i < j,
i.e., E ⊆ {(i, j) ∈ V × V | i < j}. To find out
whether G has a clique of size k we construct an
instance of the membership problem for LCFRSs.

The input alphabet is Σ = {0, 1}. Construct the
input string as

w = 0n10n10n1 · · · 10n︸ ︷︷ ︸
(3k + 2)(k − 1)/2 ones

.

The nonterminals are N = {A,E,C, S}, with S
being the initial nonterminal. The rules are the fol-
lowing.
{A→ 0i | i ∈ {1, . . . , n}}.
{E → 0n−i10n−j | (i, j) ∈ E}.
{C → (0i, 0n−i10i) | i ∈ {1, . . . , n}}.
Handling S is a bit more complex. Let

φ = k(k−1)/2, the number of edges in a k-clique.
Then the unique rule for S is:

S → f(E, . . . , E︸ ︷︷ ︸
φ

, C, . . . , C︸ ︷︷ ︸
2φ

, A, . . . , A︸ ︷︷ ︸
2k

).

Now we need to define f . Consider the following
application of f .

f(e1, . . . , eφ, (c1, ĉ1), . . . , (cφ, ĉφ),

(d1, d̂1), . . . , (dφ, d̂φ), a1, . . . , a2k).

The application above evaluates to the string

c1e1d11c2e2d21 · · ·
· · · 1cφeφdφ1a1θ1a21a3θ2a41s1a2k−1θka2k.

The substrings θ1 through θk are left to be de-
fined, and will contain all the ĉ and d̂ arguments
in a careful configuration derived from the struc-
ture of a clique. Let (π1, π

′
1), . . . , (πφ, π

′
φ) be the

lexicographically sorted sequence of edges in a
k-clique with nodes numbered 1 through k. For
example, (π1, π

′
1) = (1, 2), (π2, π

′
2) = (1, 3),

(πk, π
′
k) = (2, 3), and (πφ, π

′
φ) = (k − 1, k).

Then, for each l, find the longest subsequences
i1, . . . , ip and j1, . . . , jq of 1, . . . , φ for which
πi1 = · · · = πip = l and π′j1 = · · · = πjq = l, and
let θl = ĉi1 · · · ĉip d̂j1 · · · d̂jq .

This construction is simpler than it may at first
appear. Basically, the clique is found by generat-
ing k(k− 1)/2 copies of E, each of which will be
placed so that it has no choice but to generate an
edge in a k-clique. Looking at the first part of the
string, each 1cleldl1 must generate a string of the
form 10n10n1: el will generate some 0n−i10n−j ,
were (i, j) is an edge in G, which forces cl to gen-
erate 0i and dl to generate 0j . The trick is that cl
and dl yield the first string in a pair generated by
an instance of C. The other string in the pair de-
scribes the same number as the first, but in such
a way that it can be carefully placed in the lat-
ter part of the derivation string, thus forcing other
instances of the C nonterminal to pick the same
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node (number of zeros) to generate. These are
then placed in such a way that the edges picked by
the instances of E all belong to the same clique.
For example, for k = 3 the result of f will
be c1e1d11c2e2d21c3e3d31a1c1c2a21c3d11d2d3,
where the latter part ensures that c1 and c2 have
to pick the same node (lowest-numbered node in
the clique), as do c3 and d1, and d2 and d3.

5 Short derivations

In this section, we consider the length of deriva-
tions as an additional parameter. As usual, the
length of a derivation is the number of derivation
steps it consists of. (In a derivation of an LCFRS
(N,Σ, F,R, S), this is the same as the number of
applications of functions in F .)

Let G = (N,Σ, F,R, S) be an LCFRS in the
following. Consider the following problem:

Definition 5.1. An instance of the SHORT P-
LCFRS(P) DERIVATION problem consists of a
LCFRS G, some w ∈ Σ∗ and a constant d ∈ N.
The question asked is: can w be derived by G in
at most d steps? The parameter is k = d + r + f
where r is the maximum rank and f the maximum
fanout.

Lemma 5.1. SHORT P-LCFRS(P) DERIVA-
TION is W[1]-hard.

Proof. The W[1]-hardness of the problem follows
immediately from the reduction in the proof of
Theorem 4.1, since k-Clique is reduced to an in-
stance of LCFRS membership with O(k2) deriva-
tion steps, rank O(k2), and fixed fan-out.

We next demonstrate that SHORT P-
LCFRS(P) DERIVATION is in W[1] (and is
therefore W[1]-complete) by reducing to SHORT

CONTEXT-SENSITIVE DERIVATION, shown to
be W[1]-complete by Downey et al. (1994).
Let H = (NH ,ΣH , RH , SH) be an arbitrary
context-sensitive grammar in the following. A
context-sensitive grammar has nonterminals,
terminals and a starting nonterminal just like a
LCFRS, but the rules are of the form α → β for
strings α, β ∈ (ΣH ∪NH)∗ where 0 < |α| ≤ |β|.
A derivation starts with the string SH . A string
w · α · w′ can be turned into w · β · w′ in one
derivation step if (α, β) ∈ RH .

Definition 5.2. An instance of the SHORT

CONTEXT-SENSITIVE DERIVATION problem
consists of a context-sensitive grammar H , a

string w ∈ Σ∗H , and a constant dH ∈ N. The
question is: can w be derived by H in at most dH
steps? The parameter is dH .

We are now ready to prove membership in W[1]
by a FPT-reduction from (G,w, d) to (H,w, dH).

Lemma 5.2. The SHORT P-LCFRS(P)
DERIVATION problem is in W[1].

Proof. We can restrict ourselves to the case where
no nonterminal appears twice in a right-hand side
of any rule in G. This is because, e.g., a rule
of the form A → f(B,B) can be turned into
A → f(B,B′), using a fresh copy B′ of B that
has the same rules asB (except for having the left-
hand side B′ rather than B). Note that this modifi-
cation does not affect the parameter, and increases
the size of the grammar only polynomially.

The complete reduction is somewhat lengthy,
but the core intuition is very simple. The string
is kept the same, and a context-sensitive gram-
mar H is constructed such that L(H) = L(G).
H simulates G by maintaining a string serializa-
tion of the current “configuration” of G, walking
through the whole string rewriting the appropriate
non-terminal for every rule application in G. A
configuration of G can be viewed in this way,

aa • b • • • b • ba

A B A

where the derivation has, so far, generated some
terminal symbols (the lower-case letters), two in-
stances of the non-terminal A and one instance of
B. The configuration keeps track of where the
symbols generated by the non-terminals should
go in the string, so #(A) = 2, #(B) = 1,
and if (c, d) ∈ LA and e ∈ LB this derivation
can generate the final string aacbeddbcba. These
intermediary configurations are in H serialized
into strings of nonterminals, with a “nonterminal
marker” symbol in each position where a non-
terminal is referred to (i.e., H generates a symbol
stating “the ith string generated by instance j of
the nonterminal A goes here”). H then operates
like a Turing machine. A special nonterminal, the
rewriting head, picks a rule from G to apply, and
walks through the string replacing the nonterminal
markers that are affected by that rule. This proce-
dure is then repeated d times.

We start by illustrating the principles of the re-
duction by an example. Consider the grammar
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�Pr1,1→2XS,1,1� =⇒ �XA,1,2XA,2,2Pr1,1→2� =⇒ �XA,1,2XA,2,2R� =⇒ �XA,1,2RXA,2,2� =⇒
�RXA,1,2XA,2,2� =⇒ �Pr2,2→3XA,1,2XA,2,2�

∗
=⇒ �XA,1,3XB,1,3XA,2,3B2,3R�

∗
=⇒

�Pr2,3→4XA,1,3XB,1,3XA,2,3XB,2,3�
∗

=⇒ �XA,1,4XB,1,4XB,1,3XA,2,3XB,2,4XB,2,3R�
∗

=⇒
�Pr6,3→1XA,1,4XB,1,4XB,1,3XA,2,3XB,2,4XB,2,3�

∗
=⇒ �Pr3,4→1XA,1,4XB,1,4bXA,2,3XB,2,4b�

∗
=⇒

�Pr5,4→1aXB,1,4baXB,2,4b�
∗

=⇒ �aabaabR�
∗

=⇒ aabaab

Figure 2: A derivation in the context-sensitive grammar constructed to simulate an LCFRS. All steps in
the application of the first rule, r1 = S → f(A), are given, the rest is abbreviated.

G = ({S,A,B}, {a, b}, F,R, S) where F is

{f(x, y) = xy, ha() = (a, a), hb() = (b, b),
g((x, y), (x′, y′)) = (xx′, yy′)},

and R contains the following

r1 = S → f(A) r2 = A→ g(A,B)
r3 = A→ ha() r4 = A→ hb()
r5 = B → ha() r6 = B → hb()

Notice that L(G) = {ww | w ∈ {a, b}+}. We
now describe how H is constructed by the reduc-
tion, after which the more general description fol-
lows. A derivation in G starts with the nontermi-
nal S and must then apply r1. H is constructed
to start with the string �Pr1,1→2XS,1,1� (all these
symbols are nonterminals, H has the same termi-
nal alphabet as G). The symbols � and � mark
the beginning and end of the string. The nonter-
minal XS,1,1 is a “nonterminal marker” and de-
notes the location where the first string generated
by instance 1 of the nonterminal S is to be placed.
Since #(S) = 1 the first string is the only string
generated from S. The last subscript, the instance
number, is there to differentiate markers belong-
ing to different instances of the same nonterminal.
The rewriting head non-deterministically picks an
instance number for a round of rewriting (single
rule application) from a pool sufficiently large to
differentiate between the maximal number of non-
terminals (since the rank of G is at most k, no
more than k2 nonterminals can be generated in k
rule applications). Pr1,1→2 is the “rewriting head”,
the anchor for rule applications. The subscripts on
P determines that it will apply the rule r1, rewrit-
ing nonterminal markers corresponding to the left
hand side nonterminal of r1 which have instance
number 1. Applying the rule may create new non-
terminal markers, all of which get the instance
number 2, also determined by the subscript.

That is, the rules for Pr1,i→j in H will
be Pr1,i→jXS,1,i → XA,1,jXA,2,jPr1,i→j , for

i, j ∈ [2k2], and Pr1,i→jx → xPr1,i→j for all
other x 6= �. Pr5,i→jXB,1,i → aPr5,i→j is an-
other example of a rule corresponding to rule r5
of G. When a rewriting head hits � it is replaced
by a nonterminal R which reverses through the
string (with rules of the form xR → Rx for all
x 6= �), after which a new rewriting head is non-
deterministically picked using one of the rules in
{�R → �Pr,i→j | r ∈ R, i, j ∈ [2k2]}, after
which the string is rewritten once more. Finally,
there are rules � → ε, � → ε and R → ε, to
remove all nonterminals once rewriting has termi-
nated. A derivation is demonstrated in Figure 2.

By induction on the length of derivations, one
can show that L(H) = L(G). Now we need to
modify the construction slightly to ensure that H
can simulate d steps of G in dH steps.

Limiting steps in G. Construct a SHORT

P-LCFRS(P) DERIVATION instance (G′, w, d)
from (G,w, d) whereG′ is such that it cannot per-
form more than d derivation steps. Let

N ′ = {Ai | A ∈ N, i ∈ [d]},

and let

Ai → f(Bj1 , Cj2 , . . .) ∈ R′

for all A → f(B,C, . . .) ∈ R, i ∈ [d] and
j1 + j2 + · · · = i− 1. Then G′ = (N ′,Σ, R′, S1).
This reduction is somewhat heavy-handed, but is
in FPT since it leaves k unchanged and each rule
is replaced by less than kk rules (since d and the
rank of the grammar are part of the parameter k).

Deferring terminals. A problem in completing
the reduction from (G,w, d) to (H,w, dH) is that
the number of terminal symbolsG generates is not
in its parameter k. For example, G may contain
a rule like A → a · · · a, for an arbitrary num-
ber of as. Applying this rule may make the in-
termediary string H is operating on too long for
it to complete rewriting in dH steps. This can
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easily be fixed by a polynomial-time rewriting of
H . For any rule w → w′ in H such that w′ con-
tains at least one terminal, replace every maximal
substring α ∈ Σ∗ by a new nonterminal Tα, a
“terminal place-holder”.The rewriting head P and
reversal nonterminal R just walk over the place-
holders without changing them. Now add the rule
Tα → α for each Tα. For example, where a
rewriting head inH might have replacedXA,1,1 by
abcXB,1,1baXB,2,1cc it will now instead replace it
by TabcXB,1,1TbaXB,2,1Tcc, and can defer replac-
ing the place-holder nonterminals until the end.

Completing the reduction. Now we are ready
to put all the pieces together. Given the SHORT

P-LCFRS(P) DERIVATION instance (G,w, d),
apply the limiting steps reduction to construct
(G′, w, d′). Apply the rewriting construction to
G to get the context-sensitive grammar H . Now
L(H) equals the language G can generate in d
steps. Apply the deferring terminals construction
to H to get H ′. All that remains is to calcu-
late dH , the number of steps that H ′ may take.
For an FPT-reduction this number may only de-
pend on the parameter k of (G′, w, d′). Picking
dH = k5+103 is sufficient. Each rule inG′ gener-
ates less than k nonterminals (since the maximum
rank is at most k), each of which will generate
at most k markers in the derivation in H ′ (since
the fanout is at most k). The rule may in addi-
tion generate (k + 1)k terminal place-holders (the
k2 nonterminal markers and string ends separating
maximal terminal substrings). After k rule appli-
cations, without replacing terminal placeholders,
the intermediary string in a derivation in H is less
than k(k2+(k+1)k)+3 symbols long. Simulating
a rule application in H ′ entails walking the string
twice (forward and then reversing), and k rules are
applied, giving 2k(k(k2+(k+1)k)+3) steps. An-
other k(k+ 1) + 3 steps at the end replace the ter-
minal place-holders and remove markers and the
rewriting head. Adding things up we arrive at a
polynomial of degree 4 that can be rounded up to
k5 + 103.

Theorem 5.3. SHORT P-LCFRS(P) DERIVA-
TION is W[1]-hard.

Proof. This combines Lemmas 5.1 and 5.2.

The result of Theorem 5.3 also trivially applies
to another natural choice of parameters, the depth

of acyclic LCFRS, since they can naturally only
take a limited number of derivation steps.
Definition 5.3. A LCFRS is acyclic of depth d if d
is the smallest integer such that there is a function
φ : N → [d] such that for all A→ f(B1, . . . , Bn)
in R and i ∈ [n] it holds that φ(A) < φ(Bi).
Corollary. The membership problem for acyclic
LCFRS where the rank, fan-out, and depth are
taken as the parameter is W[1]-complete.

6 Discussion

We have shown that the 1-LCFRS(P)-
MEMBERSHIP problem is W[SAT]-hard, but
we have no upper bound, except for the trivial
XP membership. A conjecture of Pietrzak (2003)
may help explain the difficulty of finding such
an upper bound. It states that any parameterized
problem that has a property that Pietrzak calls
additive is either in FPT or not in W[P]. Basically,
additivity says that any number of instances,
sharing a parameter value, can in polynomial time
be combined into one big instance, with the same
parameter. While 1-LCFRS(P)-MEMBERSHIP

is not additive, it has subproblems that are. This
means that if Pietrzak’s conjecture is true (and
FPT 6= W[P]), then 1-LCFRS(P)-MEMBERSHIP

cannot belong to W[P].
While our results are mostly intractability re-

sults, we see them as a first step towards a more
finely grained understanding of the complexity of
LCFRS parsing. Ruling out simple parameteri-
zation by fan-out or rank as a road towards effi-
cient algorithms lets us focus on other possibili-
ties. Many possible parameterizations remain un-
explored. In particular, we conjecture that param-
eterizing by string length yields FPT membership.
In the search for features that can be used in algo-
rithm development, it may also be useful to inves-
tigate other formalisms, such as e.g., hypergraph
replacement and tree-walking transducers.
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Abstract

Timelines interpreting interval temporal
logic formulas are segmented into strings
which serve as semantic representations
for tense and aspect. The strings have
bounded but refinable granularity, suit-
able for analyzing (im)perfectivity, dura-
tivity, telicity, and various relations includ-
ing branching.

1 Introduction

A sentence in the simple past, such as (1a), ut-
tered at (speech) time S can be pictured as a time-
line (1b), describing an event E (Ernest explain-
ing) prior to S.

(1) a. Ernest explained.

b. E S (depicting E ≺ S)

We can view the event E in (1b) as an unbroken
point, wholly to the left of S, E≺ S. By contrast, in
the timeline (2a) for the progressive (2b), E splits
into three boxes, the middle of which contains also
a reference time R (Reichenbach, 1947).1

(2) a. E E,R E (depicting R @ E)

b. Ernest explaining

The relation of R inside E, R @ E, breaks E
apart, moving us away from conceptualizing E as
a point. Indeed, it has become common practice
in linguistic semantics since (Bennett and Partee,
1972) to evaluate temporal formulas at intervals,
rather than simply points. Interval temporal logics
are, however, notoriously more complex than or-
dinary (pointwise) temporal logics (Halpern and
Shoham, 1991; Marcinkowski and Michaliszyn,

1Boxes are drawn instead of the usual curly braces {, }
around the elements of a set to reinforce a reading of (1b) and
(2a) as comic strips, with time standing still within a box, but
between boxes, progressing from left to right.

2013). That said, for linguistic applications to
tense and aspect, the present paper derives strings
such as (1b) and (2a) from timelines for interval
temporal logic, in effect reducing these timelines
to finite models of ordinary temporal logic. This
reduction rests on certain assumptions that require
explanation and defense.

We begin with temporal formulas, which for the
sake of brevity, we hereafter call fluents. A fluent
such as E, R or S can occur as a whole, as E and
S do in (1b), or as segmented, as E does in (2a).
We formulate the notions of whole and segmented
model-theoretically in section 2, defining a map
ϕ 7→ ϕ◦ on fluents ϕ through which the picture
(2a) is sharpened to (3) with E◦ segmented.

(3) E◦ E◦,R E◦ (segmented E◦, whole R)

The map ϕ 7→ ϕ◦ is essentially a universal grinder
(the right half of an adjoint pair with a universal
packager, max)

whole
segmented

≈ count
mass

pointing to well-known “parallels between the
mass-count distinction in nominal systems and
the aspectual classification of verbal expressions”
(Bach, 1986a). The aspectual classification to
which the whole/segmented contrast pertains is
that of perfectives and imperfectives

whole
segmented

≈ perfective
imperfective

as opposed to Aktionsart. A variant of the
Aristotle-Ryle-Kenny-Vendler aspectual classes
(Dowty, 1979) which can be reduced to durativ-
ity and telicity (Comrie, 1976; Moens and Steed-
man, 1988; Pulman, 1997) is analyzed in section
3 through strings that arise naturally in the investi-
gation of grinding in section 2.

Some restraint on grinding is called for, as the
simplest strings are the most coarse-grained. Sec-
tion 4 enshrines this restraint as a principle, whilst
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accommodating refinements as required. The idea
is that strings can be refined by enlarging some
contextually supplied set X of (interesting) flu-
ents: the larger X is, the finer the grain becomes.
An inverse system of string functions πX indexed
by different finite sets X of fluents is constructed,
and applied for an account of relations between
strings as well as branching time. The relations
here go beyond the familiar order ≺ for tense,
stretching to the progressive and the perfect, from
a variety of perspectives.

2 Segmented versus whole fluents

Fix a set Φ of fluents. Fluents in Φ are interpreted
relative to a Φ-timeline, a triple A = 〈T,≺, |=〉
consisting of a linear order ≺ on a non-empty set
T of (temporal) points, and a binary relation |=
between intervals I (over ≺) and fluents ϕ ∈ Φ.
An interval is understood here to be a nonempty
subset I of T with no holes — i.e. t ∈ I whenever
t1 ≺ t ≺ t2 for some pair of points t1, t2 in I .2

I |= ϕ is pronounced “ϕ holds at I” or “I satisfies
ϕ” (in A).

A fluent ϕ is said to be A-segmented if for all
intervals I and I ′ such that I ∪ I ′ is an interval,
ϕ holds at I and at I ′ precisely if it does at their
union

I |= ϕ and I ′ |= ϕ ⇐⇒ I ∪ I ′ |= ϕ.

A simple way for a fluent ϕ to be A-segmented is
by holding at an interval I precisely if it holds at
all points of I

I |= ϕ ⇐⇒ (∀t ∈ I) {t} |= ϕ

in which case we say ϕ is A-pointed.3 A fluent is
A-singular if at most one interval satisfies it. Gen-
eralizing A-singular fluents, we call a fluent ϕ A-
whole if for all intervals I and I ′ such that I ∪ I ′
is an interval,

I |= ϕ and I ′ |= ϕ implies I = I ′.

That is, any number of intervals may satisfy a A-
whole fluent so long as no two form an interval.
A A-whole fluent ϕ defines a quantized predicate
(Krifka, 1998) insofar as no two distinct intervals
can satisfy ϕ if one is a subset of the other. But the

2Not much would be lost were we to take an interval I ,
as in (Halpern and Shoham, 1991), to be a pair of points t, t′

with t � t′, or, as in (Allen, 1983), t ≺ t′.
3For finite T , A-segmented is the same as A-pointed.

ban on pairs of intervals satisfying ϕ is wider un-
der A-wholeness. For example, over T = {1, 2}, a
fluent holding at exactly {1} and {2} is not whole,
even though {{1}, {2}} is quantized.

A-wholeness shares half of A-segmentedness: a
fluent ϕ is A-summable if for all intervals I and I ′

in A such that I ∪ I ′ is an interval,

I |= ϕ and I ′ |= ϕ implies I ∪ I ′ |= ϕ.

Apart from the restriction that I ∪ I ′ is an interval,
A-summability coincides with additivity in (Bach,
1981), illustrated in (4).

(4) Ed slept from 3 to 5pm, Ed slept from 4 to
6pm |− Ed slept from 3 to 6pm

The other half of A-segmentedness (differentiat-
ing it from A-wholeness) is the subinterval prop-
erty (Bennett and Partee, 1972), enjoyed by states
and activities.

(5) Ed slept from 3 to 6 |− Ed slept from 3 to 5

A fluent ϕ is A-subinterval-persistent (A-sip) if
for all intervals I and I ′ in A,

I ⊆ I ′ and I ′ |= ϕ implies I |= ϕ .

It is useful to associate with any fluent ϕ a fluent
ϕ◦ that holds precisely at subintervals of intervals
satisfying ϕ

I |= ϕ◦ ⇐⇒ (∃I ′ ⊇ I) I ′ |= ϕ .

We say ϕ is A-equivalent to ψ and write ϕ ≡A ψ
if for every interval I ,

I |= ϕ ⇐⇒ I |= ψ.

Clearly, ϕ is A-sip iff ϕ ≡A ϕ◦. Also, ϕ◦ is A-sip
and we can say more if ϕ is A-whole.

2.1 An adjoint pair
The map ϕ 7→ ϕ◦ is one half of a pair for break-
ing down and building up fluents. To describe the
other half, more definitions are helpful. Given a
fluent ϕ and a relation r between intervals, let us
form the modal fluent 〈r〉ϕ that holds at an interval
r-related to one satisfying ϕ

I |= 〈r〉ϕ ⇐⇒ (∃I ′) I r I ′ and I ′ |= ϕ.

Note ϕ◦ is just 〈⊆〉ϕ. Apart from ⊆, other useful
examples of relations r between intervals I and I ′

include full precedence ≺

I ≺ I ′ ⇐⇒ (∀t ∈ I)(∀t′ ∈ I ′) t ≺ t′
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and a relation m called meet in (Allen, 1983) and
abutment in (Hamblin, 1971).

I m I ′ ⇐⇒ I ≺ I ′ and I ∪ I ′ is an interval.

Now, let mi be the inverse of m

I mi I ′ ⇐⇒ I ′ m I

and max be a function on fluents that maps a fluent
ψ to its conjunction with ¬〈mi〉ψ and ¬〈m〉ψ

max(ψ) = ψ ∧ ¬〈mi〉ψ ∧ ¬〈m〉ψ.

Proposition 1.

(a) For all A-whole ϕ, ϕ◦ is A-segmented and
ϕ ≡A max(ϕ◦).

(b) For all A-segmented ψ, max(ψ) is A-whole
and ψ ≡A (max(ψ))◦.

As to the promised adjunction, let us agree to write
ϕA for the set of intervals satisfying ϕ

ϕA = {I | I |= ϕ}

(so ϕ ≡A ψ iff ϕA = ψA) from which we define
two pre-orders on fluents

ψ ⊆A ψ
′ ⇐⇒ ψA ⊆ ψ′A

ϕ ⊆A ϕ′ ⇐⇒ (∀I ∈ ϕA)(∃I ′ ∈ ϕ′A) I ⊆ I ′

that apply to A-segmented fluents ψ and A-whole
fluents ϕ respectively, for the equivalence

max(ψ) ⊆A ϕ ⇐⇒ ψ ⊆A ϕ◦

making max left (lower) adjoint to (of) ·◦.
Next, we turn to linguistic applications and the

correspondences

whole
segmented

≈ count
mass

≈ perfective
imperfective

.

The notion that imperfectives are mass and perfec-
tives count is argued in (Herweg, 1991), building
on (Galton, 1984; Galton, 1987) for a concept of
pofective event-type very close to that of A-whole
fluent above. Perfectives contrast with imperfec-
tives according to (6).

(6) a. viewed from outside, completed, closed

b. viewed from inside, ongoing, open-ended

Towards formalizing (6), let us say an interval I is
inside an interval I ′, written I @ I ′, if I ′ extends
to the left and also to the right of I

I @ I ′ ⇐⇒ (∃t′ ∈ I ′) {t′} ≺ I and

(∃t′′ ∈ I ′) I ≺ {t′′}

(called during in (Allen, 1983)). Next, we intro-
duce an A-whole fluent V for viewpoint to picture
a perfective view (6a) of E and an imperfective
view (6b) as (7a) and (7b) respectively.

(7) a. V◦ E,V◦ V◦ (depicting E @ V)

b. E◦ E◦,V E◦ (depicting V @ E)

The idea now is to spell out what strings such as
(7a) and (7b) mean.

2.2 Segmentations and strings
A segmentation (seg) is a sequence I = I1I2 · · · In
of intervals such that

Ii m Ii+1 for 1 ≤ i < n

or equivalently,

n⋃
i=1

Ii is an interval, and Ii ≺ Ii+1 for 1 ≤ i < n.

Given a sequence I = I1I2 · · · In of intervals and
an interval I , we write I↗ I to mean

I is a seg and I =
n⋃
i=1

Ii,

in which case we say I is a seg(mentation) of
I . We extend satisfaction |= to segs I1 · · · In and
strings α1 · · ·αm of finite subsets αi of Φ, requir-
ing that the lengths be the same and that Ii satisfy
every fluent in αi

I1 · · · In |= α1 · · ·αm ⇐⇒ n = m and

(∀ϕ ∈ αi) Ii |= ϕ for 1 ≤ i ≤ n.

For example, if E and V are A-singular (or just
A-whole)

(∃I) I |= E◦ E◦,V E◦ ⇐⇒ (∃I |= E)

(∃J |= V) J @ I.

Next, I |= s extends from a string s to a set L
of strings, with L holding at I if some string in L
does

I |= L ⇐⇒ (∃s ∈ L) I |= s.
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We then define ϕ to be A-segmentable as L if an
interval I in A satisfies ϕ iff every, or equivalently,
some seg of I satisfies L

I |= ϕ ⇐⇒ (∀I↗ I) I |= L

⇐⇒ (∃I↗ I) I |= L .

Proposition 2. If ϕ is A-summable, ϕ◦ is A-
segmentable as the infinite language

ϕ◦
+ = ϕ◦ + ϕ◦ ϕ◦ +

ϕ◦ ϕ◦ ϕ◦ + · · ·

of strings ϕ◦
n, n ≥ 1. Moreover, the following

five conditions are pairwise equivalent.

(i) ϕ is A-segmented

(ii) ϕ is A-segmentable as ϕ◦
+

(iii) ϕ is A-segmentable as ϕ +

(iv) ϕ is A-sip and A-summable

(v) ϕ ≡A max(ϕ)◦.

As for A-whole fluents, we bound the strings
in ϕ◦

+, adding ¬〈mi〉ϕ◦ to the initial boxes and
¬〈m〉ϕ◦ to the final boxes to form the language

L(ϕ) = ϕ◦,¬〈mi〉ϕ◦,¬〈m〉ϕ◦ +

ϕ◦,¬〈mi〉ϕ◦ ϕ◦
∗
ϕ◦,¬〈m〉ϕ◦ .

Proposition 3. The following conditions (i)-(iv)
are pairwise equivalent.

(i) ϕ is A-whole

(ii) ϕ ≡A max(ϕ◦)

(iii) ϕ is A-segmentable as L(ϕ)

(iv) I |= ϕ ϕ◦ + ϕ◦ ϕ for no seg I.

3 Durative and/or telic strings

For any integer n > 1, an interval may have a wide
variety of segmentations of length n, Propositions
2 and 3 notwithstanding. Even if

I |= V ∧ 〈A〉E,

a seg I1I2 of I need not satisfy

V◦, 〈⊇〉E V◦ + V◦ V◦, 〈⊇〉E

(as E may straddle the line between I1 and I2), and
if E is A-singular, the string

V◦ E,V◦ V◦

holds in only one out of a possible multitude of
segs of I with length 3. The choice of a seg can
be a delicate matter. A string of sets of fluents ex-
presses such a choice. The present section links
that choice to aspect, stepping from a fluent ϕ to
a set L of strings of finite sets of fluents, without
requiring that L hold at every seg of every interval
satisfying ϕ. That is, the account of aspect given
below makes essential use of the string represen-
tations over and above the fluents from which the
strings are formed. Fluents/intervals describe ob-
jective matters of fact; strings/segmentations em-
body, in addition, particular perspectives on these
matters.

A concrete linguistic illustration is provided by
the notion that some events are punctual — i.e.,
lacking in internal structure. (Comrie, 1976) dis-
cusses the example of cough, noting that “the
inherent punctuality of cough would restrict the
range of interpretations that can be given to im-
perfective forms of this verb” to an iterative read-
ing (of a series of coughs), as opposed to a single
cough, which he refers to as semelfactive. Comrie
concedes, however, that, in fact, one can imagine

a situation where someone is comment-
ing on a slowed down film which incor-
porates someone’s single cough, as for
instance in an anatomy lecture: here, it
would be quite appropriate for the lec-
turer to comment on the relevant part of
the film and now the subject is cough-
ing, even in referring to a single cough,
since the single act of coughing has now
been extended, and is clearly durative, in
that the relevant film sequence lasts for
a certain period of time. (page 43)

The earlier contention that coughing can only be
read iteratively suggests that the intervals spanned
by single coughs are too small for our “normal”
segmentations. These segmentations consist of
intervals too big for “punctual” events, leading
to a representation of a ϕ-semelfactive as 〈A〉ϕ
rather than say, (8), with a middle box ϕ◦ of in-
ternal structure supporting the progressive.

(8) ϕ◦,¬〈mi〉ϕ◦ ϕ◦ ϕ◦,¬〈m〉ϕ◦
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The special context provided above by an anatomy
lecture overturns this restriction, making (8) avail-
able after all. The punctual-durative distinction is
evidently not cast in stone. But just what is du-
rative? The simple proposal this section explores
is that what is durative is a string α1α2 · · ·αn of
sets αi of fluents with n ≥ 3. Between the first
box α1 and the last box αn is a string α2 · · ·αn−1

representing internal structure that, for n ≥ 3, is
non-empty.4

Apart from the length n of a string α1 · · ·αn,
there is also the matter of what fluents to box in
a string, describing the interior as well as the im-
mediate exterior of the situation the string repre-
sents. (The string in (8) is just an example to flesh
out or otherwise revise.) Of particular relevance
to temporal extent are any fluents chosen to mark
the boundaries of the situation. An example in (9)
is the fluent ψ which makes the string “telic” by
appearing in all its boxes negated, except for the
rightmost box, which it marks.

(9) ϕ◦,¬ψ ϕ◦,¬ψ ψ

Whether or not the intervals described by α1 and
αn count as part of the situation represented by the
string is independent of (10).

(10) a. α1 · · ·αn is durative if it has length n ≥ 3

b. α1 · · ·αn is telic if the negation of some
ψ in αn appears in αi for 1 ≤ i < n.

While (10a) says α1 · · ·αn has internal structure,
(10b) says α1 · · ·αn culminates in some fluent
ψ ∈ αn. (10b) is even more representational than
(10a) in that it depends not only on segmenting an
interval but on the choice of fluents we put into
a string describing that segmentation. As Krifka
notes, the telic-atelic distinction lies not “in the na-
ture of the object described, but in the description
applied to the object” as

one and the same event of running can
be described by running (i.e. by an atelic

4Segmentations of the full linear order T into 2 or 3 inter-
vals are central to the interpretation of event radicals in (Gal-
ton, 1987). A formal occurrence is defined there to be a pair
B,A of intervals such that either AB ↗ T or AIB ↗ T
where I is the complement T − (A ∪ B). The intuition is
that B is before, and A after the situation with temporal ex-
tent T − (A ∪ B). The first box α1 and last box αn of a
string α1 · · ·αn above (with n ≥ 3) represent final and initial
subintervals of B and A, respectively (constituting external
structure). The middle bit α2 · · ·αn−1 describes a segmen-
tation of T − (A ∪ B). Segs generalize formal occurrences,
elaborating on internal as well as external structure.

predicate) or by running a mile (i.e. a
telic, or delimited, predicate)

(Krifka, 1998, page 207).5 Krifka goes on to lo-
cate telicity not in objects but in sets P of objects
meeting the condition in (11a), based on a proper
part relation < on objects induced by a sum oper-
ation ⊕ according to (11b).

(11) a. P is quantized if there are no x, y ∈ P
such that x < y

b. x < y ⇐⇒ x 6= y and x⊕ y = y

Under (11), the predicate run a mile is quantized,
whereas the predicate run is not, even though one
and the same run may belong to both predicates.
But what about run to the post office? Surely, the
second half of any run to the post office is also a
run to the post office. A telic string may fail to
be quantized because its left boundary (inception)
has not been specified.

3.1 Subsumption and superposition
Some notation from (Fernando, 2004) will come
in handy in what follows. Given strings s and s′ of
sets, we say s subsumes s′ and write s� s′ if they
have the same length and are related component-
wise by inclusion

α1 · · ·αn � α′1 · · ·α′m ⇐⇒ n = m and

αi ⊇ α′i for 1 ≤ i ≤ n.

For instance,

ϕ,¬ψ ϕ,¬ψ ϕ,¬ψ ψ � ϕ ϕ ϕ .

We extend subsumption � to languages L existen-
tially (just as we did with |=)

s� L ⇐⇒ (∃s′ ∈ L) s� s′

so that a string s is durative iff s�
+ and telic

iff s � ¬ψ
+
ψ for some ψ. A binary operation

on strings of the same length complementing sub-
sumption � is superposition & obtained by com-
ponentwise union

α1 · · ·αn & α′1 · · ·α′n = (α1 ∪ α′1) · · · (αn ∪ α′n).

5Notice that the condition (10b) for telicity is not met by
(8), but by the string

ϕ◦,¬〈mi〉ϕ◦, 〈m〉ϕ◦ ϕ◦, 〈m〉ϕ◦ ϕ◦,¬〈m〉ϕ◦

provided 〈m〉ϕ◦ is understood to be the negation of ¬〈m〉ϕ◦.
An alternative to leaving ψ existentially quantified in (10b) is
to specify the fluent ψ and work with the notion of “culimi-
nating in ψ.”
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For instance, ϕ ϕ ϕ & ¬ψ ¬ψ ψ =

ϕ,¬ψ ϕ,¬ψ ϕ,ψ and for strings s and s′ of
the same length,

s� s′ ⇐⇒ s = s & s′

s & s′ = least �-upper bound of s and s′ .

We extend & to sets L and L′ of strings (of possi-
bly different lengths) by collecting superpositions
of strings from L and L′ of the same length

L & L′ = {s & s′ | s ∈ L, s′ ∈ L′

and length(s)=length(s′)}

(a regular language provided L and L′ are (Fer-
nando, 2004)). Notice that

{s}&{s′} = {s&s′} if length(s)= length(s′)

and the durative strings in L can be obtained by
superposing L with +

L& + = {s ∈ L | s�
+}.

3.2 Application to Aktionsart

Semelfactives, activities (= processes), achieve-
ments (= culminations) and accomplishments (=
culminated processes) are commonly differenti-
ated on the basis of durativity and telicity (Moens
and Steedman, 1988; Pulman, 1997).

(12) a. A semelfactive is non-durative and atelic

b. An activity is durative but atelic

c. An achievement is non-durative but telic

d. An accomplishment is telic and durative

Under the present approach based on strings, (12)
can be sharpened to (13).

(13) a. A ϕ-semelfactive � 〈⊃〉ϕ

b. A ϕ-activity � ϕ ϕ ϕ + (presupposing
ϕ is A-segmented)

c. A ψ-achievement � ¬ψ ψ

d. An accomplishment built from a ϕ-activity

culminating in ψ

� ϕ,¬ψ ϕ,¬ψ ϕ,¬ψ
+
ψ

(presupposing ϕ is A-segmented)

(Bach, 1986a) argues that processes are mass
and events are count, raising the question: how
does the A-segmented/whole opposition sit with
our account (13) of semelfactives, activities,
achievements and accomplishments? Bach’s pro-
cesses are the activities in (13b), represented by
the durative strings in the language ϕ + that a A-
segmented fluent ϕ is A-segmentable as. Where
A-whole fluents fit in (13) is, however, not im-
mediately obvious. But as pointed out by (Com-
rie, 1976) for coughs and by (Krifka, 1998) for
(mile-long) runs, there is an element of perspective
(over and above pure, objective facts) that makes
Aktionsart pliable. An achievement may, for in-
stance, be coerced into an accomplishment to in-
terpret the progressive in (14).

(14) The train was arriving when Anna went to or-
der a drink.

A seg II ′ satisfying an achievement ¬ψ ψ
might, for some segmentation I1I2I3 of I , be re-
fined to the seg I1I2I3I

′ satisfying an accomplish-
ment ϕ,¬ψ ϕ,¬ψ ϕ,¬ψ ψ with preparatory
process/activity ϕ ϕ ϕ , for some A-segmented
ϕ.

As representations, strings are slippery in a
way that fixed pairs A, I are not; a shorter string
might describe a larger interval than a longer string
does. Strings are not so much finished objects
as makeshift representations subject to refinement.
So should A-whole fluents go into these strings?
The simplest examples of A-whole-fluents are
A-singular fluents (harking back to Davidson’s
events as particulars). Conceptualizing event time
at some level of abstraction as an interval is rea-
son enough to form a fluent picking out that inter-
val. And with an A-singular fluent ϕ comes the A-
segmented fluent ϕ◦, and the fluents ¬〈mi〉ϕ◦ and
¬〈m〉ϕ◦ from which to form the language L(ϕ)
which ϕ is A-segmentable as (Proposition 3).

(Dowty, 1979) explores the hypothesis that

the different aspectual properties of the
various kinds of verbs can be explained
by postulating a single homogeneous
class of predicates – stative predicates
– plus three or four sentential operators
and connectives

(page 71). A simplified event-based reformulation
(15) of the Vendler classes in terms of Dowty’s
operators DO, BECOME and CAUSE is given in
(Rothstein, 2004), page 35.
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(15) states λe.P (e)

activities λe.(DO(P ))(e)

achievements λe.(BECOME(P ))(e)

accomplishments λe.∃e1, e2.[e = e1 ⊕S e2

∧(DO(P ))(e1) ∧ Cul(e) = e2]

Dowty’s CAUSE operator is reworked in (15) with
a sum operation ⊕S producing singular entities,
and a culmination function Cul. The resulting ac-
complishment e is the sum e1⊕S e2 of its prepara-
tory process (activity) e1 and culmination e2. To
bring (13) in line with (15), we put

DO(P ) ≈ P P P
+

BECOME(P ) ≈ ¬P P

and require that P be A-segmented. Defining

du(L) = L& +

cu(L,ψ) = (L& ¬ψ
+

) ψ

yields

P P P
+

= du( P
+

)

¬P P = cu( , P )

and for accomplishments as culiminated activities,

cu(du( ϕ +), ψ) = ϕ,¬ψ ϕ,¬ψ ϕ,¬ψ
+
ψ

= du( ϕ,¬ψ ) ψ .

Left out of (13) are the states in (15), which can
be compared to A-segmented fluents in the present
framework. As noted in (Dowty, 1986), one might
also require that stative fluents be inertial, for
which see (Fernando, 2008).

4 Desegmenting and branching time

Why segment an interval? The two reasons given
above are (1) to get a handle on durativity and
telicity, and (2) to unwind an interval fluent such
as E∧〈A〉R to a string E◦ E◦,R E◦ interpreted
against segmentations (i.e. finite timelines). Nei-
ther reason justifies grinding indefinitely. The
thrust of the present section is to leave segs as
coarse as possible, segmenting only if necessary,
leading to a notion of time that may branch.

4.1 Desegmenting via π

Quantifying the model A out of the notion of A-
segmentability and weakening the connection be-
tween intervals and segs, let us agree that a lan-
guage L depicts ϕ if for all models A, L is A-
satisfiable precisely if ϕ is

(∃ seg I) I |= L ⇐⇒ (∃ interval I) I |= ϕ.

Trivially, ϕ depicts ϕ, but there are more inter-
esting examples. Unwinding the modal operator
〈�〉 and conjunction ∧ in the fluent S ∧〈�〉ϕ,

ϕ S + ϕ S depicts S ∧ 〈�〉ϕ.

The language ϕ S + ϕ S reduces the infinite

language
∗
ϕ

∗
S
∗

depicting S ∧〈�〉ϕ to two
strings. This reduction illustrates the possibility
that under suitable assumptions on a language L
depicting ϕ, the strings in L can be simplified in
two ways:

(w1) any initial or final empty boxes can be
stripped off, and

(w2) all repeating blocks αn (for n ≥ 1) of a box
α can be compressed to α.

More precisely, we implement (w1) by a function
unpad defined on strings s by

unpad(s) =


unpad(s′) if s = s′ or

else s = s′

s otherwise

so that unpad(s) neither begins nor ends with .
For (w2), all blocks αn+1 in s are compressed in
bc(s) to α

bc(s) =


bc(αs′) if s = ααs′

α bc(βs′) if s = αβs′ with
α 6= β

s otherwise

so that if bc(s) = α1 · · ·αn then αi 6= αi+1 for i
from 1 to n − 1. We then compose bc with unpad
for π

π(s) = unpad(bc(s)).

One can check that

{π(s) | s ∈
∗
ϕ

∗
S
∗
} = ϕ S + ϕ S .
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Clearly, π(s) is never longer than s, and π(s) =
π(π(s)) for all strings s.

As for the “suitable assumptions” on L under
which L can be reduced to {π(s)|s ∈ L}, it is
helpful to consider the fluent R ∧ 〈@〉ϕ. Can we
unwind 〈@〉 in R,〈@〉ϕ ? Assuming ϕ◦ is A-
summable for all models A,

ϕ◦ R,ϕ◦ ϕ◦ depicts R ∧ 〈@〉ϕ.

Now, let us call a string s = α1 · · ·αn of sets αi
of fluents A-reducible if every fluent appearing in
two consecutive string positions αiαi+1 in s (for
some 1 ≤ i < n) is A-summable. (For exam-
ple, ϕ◦ R,ϕ◦ ϕ◦ is A-reducible, provided ϕ◦
is A-summable.) Let us say a seg I refines a seg
I1 · · · In if for all i from 1 to n, Ii is the union of
some subsequence of I.

Proposition 4. For any A-reducible string s, ev-
ery seg I that satisfies s refines some seg I′ that
satisfies π(s). Consequently, if for all s ∈ L, s is
A-reducible and π(s) ∈ L, then L is A-satisfiable
iff {π(s)|s ∈ L} is

(∃ seg I) I |= L ⇐⇒ (∃ seg I) I |= {π(s) |
s ∈ L}.

4.2 Relativizing π to a finite set X of fluents

Next, we fix a notion of bounded granularity
through a finite set X of fluents of interest, which
we can expand to refine granularity or contract to
coarsen granularity. An instructive example for
orientation is the representation of a calendar year
of twelve months as the string

smo = Jan Feb Mar · · · Dec

of length 12, or, were we also interested in days
d1,d2. . .,d31, the string

smo,dy = Jan,d1 Jan,d2 · · · Jan,d31

Feb,d1 · · · Dec,d31

of length 365 (for a non-leap year). Un-
like the points in the real line R, a box
can split, as Jan in smo does (30 times) to
Jan,d1 Jan,d2 · · · Jan,d31 in smo,dy, on in-

troducing days d1, d2,. . ., d31 into the picture.
Reversing direction and generalizing from mo =

{Jan,Feb,. . .Dec} to any set X of fluents, we de-
fine the function ρX on strings (of sets) to compo-
nentwise intersect with X

ρX(α1 · · ·αn) = (α1 ∩X) · · · (αn ∩X)

throwing out non-X’s from each box (keeping
only the elements of X) so that

ρmo(smo,dy) = Jan
31

Feb
28
· · · Dec

31
.

Next, we compose ρX and π for the function πX
mapping a string s of sets to

πX(s) = π(ρX(s)) = unpad(bc(ρX(s)))

so that for example,

πmo(smo,dy) = π( Jan
31

Feb
28
· · · Dec

31
)

= smo

and

π{E◦}( E◦ R,E◦ E◦ ) = π( E◦ E◦ E◦ )

= E◦ .

In general, a description sX of granularity X can
be refined to one sX′ of granularity X ′ ⊇ X pro-
vided πX maps sX′ to sX . More precisely, given
some large set Φ of fluents, let Fin(Φ) be the set
of finite subsets of Φ. A function f with domain
Fin(Φ) mapping X ∈ Fin(Φ) to a string f(X)
over the alphabet 2X is said to be π-consistent if
whenever X ⊆ X ′ ∈ Fin(Φ),

f(X) = πX(f(X ′)).

Let us write ILπ(Φ) for the set of all π-consistent
functions. “IL” here stands not for intensional
logic but for inverse limit — to be precise, the in-
verse limit of the restrictions of πX to (2X

′
)∗ for

X ⊆ X ′ ∈ Fin(Φ) (all computable by finite-
state transducers). That said, ILπ(Φ) is inten-
sional: time branches under the relation ≺Φ be-
tween f, f ′ ∈ ILπ(Φ) given by

f ≺Φ f ′ ⇐⇒ f 6= f ′ and (∀X ∈ Fin(Φ))

f(X) is a prefix of f ′(X)

(where s is a prefix of s′ if s′ = sŝ for some
possibly empty string ŝ). The intuition is that a
temporal moment comes with its past, and that
an f ∈ ILπ(Φ) encodes the moment that is X-
approximated, for each X ∈ Fin(Φ), by the last
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box in f(X), with past given by the remainder of
f(X) (leading to that box). More precisely, ≺Φ is
tree-like in the sense of (Dowty, 1979).

Proposition 5. ≺Φ is transitive and left linear: for
every f ∈ IL(Φ),

(∀f1 ≺Φ f)(∀f2 ≺Φ f) f1 ≺Φ f2 or

f2 ≺Φ f1 or f1 = f2.

Moreover, no element of ILπ(Φ) is ≺Φ-maximal.

Maximal chains, called histories in (Dowty, 1979),
figure prominently in possible worlds semantics.
While we can pick one out in ILπ(Φ) to represent
an actual history, it is far from obvious what sig-
nificance maximal ≺Φ-chains have in the present
framework, which is closer in spirit to situation
semantics (Bawise and Perry, 1983), updated in
(Cooper, 2005; Ginzburg, 2005).

Tha handbook chapter (Thomason, 1984) opens
with the declaration

Physics should have helped us to re-
alise that a temporal theory of a phe-
nomenon X is, in general, more than a
simple combination of two components:
the statics of X and the ordered set of
temporal instants. The case in which
all functions from times to world-states
are allowed is uninteresting; there are
too many such functions, and the the-
ory has not begun until we have begun
to restrict them. And often the princi-
ples that emerge from the interaction of
time with the phenomena seem new and
surprising.

For a non-empty set W of worlds, and a linearly
ordered set T of time instants, Thomason com-
pares T × W -frames, not unlike that in (Mon-
tague, 1973), unfavorably to tree-like frames, of
which ≺Φ above is an example, when paired with
a ⊆-maximal ≺Φ-chain. The crudeness of the
cartesian product × aside, one may ask where T
comes from, as Bach pointedly does in page 69 of
(Bach, 1981), to say nothing of W . The answer
from ILπ(Φ) involves strings formed from flu-
ents. The projective system (πX)X∈Fin(Φ) gives
for every finite subset X of Φ, a choice of X-
approximations in (2X)∗, including for X =
{e, e′} with e 6= e′, 13 strings sr corresponding
to the Allen interval relations r between intervals
e and e′ (Allen, 1983); see Table 1 (Fernando,

r ∈Allen sr ∈ (2{e,e
′})+

e = e′ e, e′

e s e′ e, e′ e′

e si e′ e, e′ e

e f e′ e′ e, e′

e fi e′ e e, e′

e d e′ e′ e, e′ e′

e di e′ e e, e′ e

e o e′ e e, e′ e′

e oi e′ e′ e, e′ e

e m e′ e e′

e < e′ e e′

e mi e′ e′ e

e > e′ e′ e

Table 1: The Allen relations in (2{e,e
′})+

2012). Under the projections πX , these strings
are most naturally viewed as indices for evalu-
ating an expression ϕ as an extension or deno-
tation, as prescribed by Carnap-Montague inten-
sions (Fernando, 2011). In (Bach, 1986b), an
event type such as KISSING induces a function
EXT(KISSING) that maps histories to subparts
that are temporal manifestations of KISSING,
treating input histories as indices and output mani-
festations as extensions. Under the current frame-
work, EXT(KISSING) can for any X ∈ Fin(Φ),
be given as a binary relation between strings in
(2X)∗ thatX-approximate indices and extensions.

5 Conclusion

Segmentations arise naturally in the view from
(Klein, 2009) that

The expression of time in natural lan-
guages relates a clause-internal tempo-
ral structure to a clause-external tem-
poral structure. The latter may shrink
to a single interval, for example, the
time at which the sentence is uttered; but
this is just a special case. The clause-
internal temporal structure may also be
very simple – it may be reduced to a sin-
gle interval without any further differen-
tiation, the ‘time of the situation’; but if
this ever happens, it is only a borderline
case. As a rule, the clause-internal struc-
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ture is much more complex. (page 75)

The simplest case described by the passage is il-
lustrated by the picture (16) of the clause-internal
event (or situation) time E preceding the clause-
external speech (utterance) time S.

(16) E S + E S depicting E∧〈≺〉S

Slightly more complicated is the picture (3) of
event time E with R inside it.

(3) E◦ E◦,R E◦ (segmented E◦, whole R)

Whereas E in (16) is unbroken and whole, the
“differentiation” in (3) puts E through a universal
grinder ·◦ described in section 2, alongside notions
of A-whole and A-segmented fluents, the contrast
between which surfaces in pairs such as (17) and
(18).

(17) Ernest was explaining 6|− Ernest explained

(18) Ernest was laughing |− Ernest laughed

The non-entailment (17) is clear from (19).

(19) Ernest was explaining when he was made to
stop.

To extract a rigorous account of (17) versus (18)
from the assumption that explaining is whole and
laughing is segmented (as fluents) would require
stepping beyond lexical/internal aspect (consid-
ered in sections 2 and 3 above) to grammati-
cal/external aspect, hinted at in (3), as well as
tense. Some details compatible with the present
approach can be found in (Fernando, 2008).6 Suf-
fice it to say that additional temporal parameters
from tense and aspect enlarge the set X of fluents
that, under the inverse limit ILπ(Φ) in section 4,
refines granularity. While we have taken pains to
show how to interpret a string of subsets of Φ in

6An alternative would be to follow along (Galton, 1984;
Galton, 1987). There are likely to be many ways to fill in
the details. In the case of the perfect, for instance, the basic
approach outlined here is, as far as I can tell, neutral between
extended now accounts (Pancheva, 2003) augmented with (7)

(7) a. V◦ E,V◦ V◦ (depicting E @ V)

b. E◦ E◦,V E◦ (depicting V @ E)

and consequent-state approaches (Moens and Steedman,
1988; Kamp and Reyle, 1993; Pulman, 1997) that might be
augmented with inertia (Dowty, 1986) and forces (Fernando,
2008).

a segmentation (essentially, a finite, ordered par-
tition of an interval from a Φ-timeline), no Φ-
timeline is used to define ILπ(Φ), resulting in a
notion of time that branches (away from any single
segmentation or timeline). There is sure to be junk
in ILπ(Φ) to throw out; but what use tense and
aspect might have for timelines not represented in
ILπ(Φ), I fail to see (apart from linking tempo-
rality up with other linguistic mechanisms such as
quantification). Work on tense and aspect has led
to extensions of ordinary temporal logic in three
directions.

(20) a. addition of temporal parameters (e.g. R)

b. expansion of points to intervals

c. recognition of events and states

Stringing together finite sets of fluents, we attend
to (20c) in sections 2 and 3 above, and to (20a)
in section 4, putting the distinction (20b) between
points and intervals down to the set X of fluents
under consideration.7
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Abstract

This paper develops a compositional
vector-based semantics of relative pro-
nouns within a categorical framework.
Frobenius algebras are used to formalise
the operations required to model the se-
mantics of relative pronouns, including
passing information between the relative
clause and the modified noun phrase, as
well as copying, combining, and discard-
ing parts of the relative clause. We de-
velop two instantiations of the abstract se-
mantics, one based on a truth-theoretic ap-
proach and one based on corpus statistics.

1 Introduction

Ordered algebraic structures and sequent calculi
have been used extensively in Computer Science
and Mathematical Logic. They have also been
used to formalise and reason about natural lan-
guage. Lambek (1958) used the ordered alge-
bra of residuated monoids to model grammatical
types, their juxtapositions and reductions. Rela-
tional words such as verbs have implicative types
and are modelled using the residuals to the monoid
multiplication. Later, Lambek (1999) simplified
these algebras in favour of pregroups. Here, there
are no binary residual operations, but each element
of the algebra has a left and a right residual.

In terms of semantics, pregroups do not natu-
rally lend themselves to a model-theoretic treat-
ment (Montague, 1974). However, pregroups are
suited to a radically different treatment of seman-
tics, namely distributional semantics (Schütze,
1998). Distributional semantics uses vector spaces
based on contextual co-occurrences to model the
meanings of words. Coecke et al. (2010) show
how a compositional semantics can be developed
within a vector-based framework, by exploiting
the fact that vector spaces with linear maps and

pregroups both have a compact closed categor-
ical structure (Kelly and Laplaza, 1980; Preller
and Lambek, 2007). Some initial attempts at im-
plementation include Grefenstette and Sadrzadeh
(2011a) and Grefenstette and Sadrzadeh (2011b).

One problem with the distributional approach is
that it is difficult to see how the meanings of some
words — e.g. logical words such as and, or, and
relative pronouns such as who, which, that, whose
— can be modelled contextually. Our focus in this
paper is on relative pronouns in the distributional
compositional setting.

The difficulty with pronouns is that the contexts
in which they occur do not seem to provide a suit-
able representation of their meanings: pronouns
tend to occur with a great many nouns and verbs.
Hence, if one applies the contextual co-occurrence
methods of distributional semantics to them, the
result will be a set of dense vectors which do
not discriminate between different meanings. The
current state-of-the-art in compositional distribu-
tional semantics either adopts a simple method to
obtain a vector for a sequence of words, such as
adding or mutliplying the contextual vectors of
the words (Mitchell and Lapata, 2008), or, based
on the grammatical structure, builds linear maps
for some words and applies these to the vector
representations of the other words in the string
(Baroni and Zamparelli, 2010; Grefenstette and
Sadrzadeh, 2011a). Neither of these approaches
produce vectors which provide a good representa-
tion for the meanings of relative clauses.

In the grammar-based approach, one has to as-
sign a linear map to the relative pronoun, for in-
stance a map f as follows:
−−−−−−−−−−−−−→
men who like Mary = f(−−→men,

−−−−−−→
like Mary)

However, it is not clear what this map should be.
Ideally, we do not want it to depend on the fre-
quency of the co-occurrence of the relative pro-
noun with the relevant basis vectors. But both
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of the above mentioned approaches rely heavily
on the information provided by a corpus to build
their linear maps. The work of Baroni and Zam-
parelli (2010) uses linear regression and approxi-
mates the context vectors of phrases in which the
target word has occurred, and the work of Grefen-
stette and Sadrzadeh (2011a) uses the sum of Kro-
necker products of the arguments of the target
word across the corpus.

The semantics we develop for relative pronouns
and clauses uses the general operations of a Frobe-
nius algebra over vector spaces (Coecke et al.,
2008) and the structural categorical morphisms of
vector spaces. We do not rely on the co-occurrence
frequencies of the pronouns in a corpus and only
take into account the structural roles of the pro-
nouns in the meaning of the clauses. The computa-
tions of the algebra and vector spaces are depicted
using string diagrams (Joyal and Street, 1991),
which depict the interactions that occur among the
words of a sentence. In the particular case of rel-
ative clauses, they visualise the role of the rela-
tive pronoun in passing information between the
clause and the modified noun phrase, as well as
copying, combining, and even discarding parts of
the relative clause.

We develop two instantiations of the abstract se-
mantics, one based on a truth-theoretic approach,
and one based on corpus statistics, where for the
latter the categorical operations are instantiated as
matrix multiplication and vector component-wise
multiplication. As a result, we will obtain the fol-
lowing for the meaning of a subject relative clause:

−−−−−−−−−−−−−→
men who like Mary = −−→men� (love×−−−→Mary)

The rest of the paper introduces the categorical
framework, including the formal definitions rel-
evant to the use of Frobenius algebras, and then
shows how these structures can be used to model
relative pronouns within the compositional vector-
based setting.

2 Compact Closed Categories and
Frobenius Algebras

This section briefly reviews compact closed cate-
gories and Frobenius algebras. For a formal pre-
sentation, see (Kelly and Laplaza, 1980; Kock,
2003; Baez and Dolan, 1995), and for an informal
introduction see Coecke and Paquette (2008).

A compact closed category has objects A,B;
morphisms f : A → B; a monoidal tensor A⊗ B

that has a unit I; and for each objectA two objects
Ar andAl together with the following morphisms:

A⊗Ar
εrA−→ I

ηr
A−→ Ar ⊗A

Al ⊗A
εlA−→ I

ηl
A−→ A⊗Al

These morphisms satisfy the following equalities,
sometimes referred to as the yanking equalities,
where 1A is the identity morphism on object A:

(1A ⊗ εlA) ◦ (ηlA ⊗ 1A) = 1A

(εrA ⊗ 1A) ◦ (1A ⊗ ηrA) = 1A

(εlA ⊗ 1A) ◦ (1Al ⊗ ηlA) = 1Al

(1Ar ⊗ εrA) ◦ (ηrA ⊗ 1Ar) = 1Ar

A pregroup is a partial order compact closed
category, which we refer to as Preg. This means
that the objects of Preg are elements of a par-
tially ordered monoid, and between any two ob-
jects p, q ∈ Preg there exists a morphism of type
p → q iff p ≤ q. Compositions of morphisms
are obtained by transitivity and the identities by
reflexivity of the partial order. The tensor of the
category is the monoid multiplication, and the ep-
silon and eta maps are as follows:

εrp = p · pr ≤ 1 ηrp = 1 ≤ pr · p
εlp = pl · p ≤ 1 ηlp = 1 ≤ p · pl

Finite dimensional vector spaces and linear
maps also form a compact closed category, which
we refer to as FVect. Finite dimensional vector
spaces V,W are objects of this category; linear
maps f : V → W are its morphisms with compo-
sition being the composition of linear maps. The
tensor product V ⊗W is the linear algebraic ten-
sor product, whose unit is the scalar field of vec-
tor spaces; in our case this is the field of reals R.
As opposed to the tensor product in Preg, the ten-
sor between vector spaces is symmetric; hence we
have a naturual isomorphism V ⊗W ∼= W ⊗ V .
As a result of the symmetry of the tensor, the two
adjoints reduce to one and we obtain the following
isomorphism:

V l ∼= V r ∼= V ∗

where V ∗ is the dual of V . When the basis vectors
of the vector spaces are fixed, it is further the case
that the following isomorphism holds as well:

V ∗ ∼= V

42



Elements of vector spaces, i.e. vectors, are rep-
resented by morphisms from the unit of tensor to
their corresponding vector space; that is−→v ∈ V is

represented by the morphism R
−→v−→ V ; by linear-

ity this morphism is uniquely defined when setting
1 7→ −→v .

Given a basis {ri}i for a vector space V , the ep-
silon maps are given by the inner product extended
by linearity; i.e. we have:

εl = εr : V ∗ ⊗ V → R

given by:∑
ij

cij ψi ⊗ φj 7→
∑
ij

cij〈ψi | φj〉

Similarly, eta maps are defined as follows:

ηl = ηr : R→ V ⊗ V ∗

and are given by:

1 7→
∑
i

ri ⊗ ri

A Frobenius algebra in a monoidal category
(C,⊗, I) is a tuple (X,∆, ι, µ, ζ) where, for X
an object of C, the triple (X,∆, ι) is an internal
comonoid; i.e. the following are coassociative and
counital morphisms of C:

∆: X → X ⊗X ι : X → I

Moreover (X,µ, ζ) is an internal monoid; i.e. the
following are associative and unital morphisms:

µ : X ⊗X → X ζ : I → X

And finally the ∆ and µmorphisms satisfy the fol-
lowing Frobenius condition:

(µ⊗ 1X) ◦ (1X ⊗∆) = ∆ ◦ µ = (1X ⊗ µ) ◦ (∆⊗ 1X)

Informally, the comultiplication ∆ decomposes
the information contained in one object into two
objects, and the multiplication µ combines the in-
formation of two objects into one.

Frobenius algebras were originally introduced
in the context of representation theorems for group
theory (Frobenius, 1903). Since then, they have
found applications in other fields of mathematics
and physics, e.g. in topological quantum field the-
ory (Kock, 2003). The above general categorical
definition is due to Carboni and Walters (1987). In

what follows, we use Frobenius algebras that char-
acterise vector space bases (Coecke et al., 2008).

In the category of finite dimensional vector
spaces and linear maps FVect, any vector space V
with a fixed basis {−→vi}i has a Frobenius algebra
over it, explicitly given by:

∆ :: −→vi 7→ −→vi ⊗−→vi ι :: −→vi 7→ 1

µ :: −→vi ⊗−→vj 7→ δij
−→vi ζ :: 1 7→

∑
i
−→vi

where δij is the Kronecker delta.
Frobenius algebras over vector spaces with or-

thonormal bases are moreover isometric and com-
mutative. A commutative Frobenius Algebra satis-
fies the following two conditions for σ : X⊗Y →
Y ⊗X , the symmetry morphism of (C,⊗, I):

σ ◦∆ = ∆ µ ◦ σ = µ

An isometric Frobenius Algebra is one that satis-
fies the following axiom:

µ ◦∆ = 1

The vector spaces of distributional models have
fixed orthonormal bases; hence they have isomet-
ric commutative Frobenius algebras over them.

The comultiplication ∆ of an isometric com-
mutative Frobenius Algebra over a vector space
encodes vectors of lower dimensions into vectors
of higher dimensional tensor spaces; this oper-
ation is referred to as copying. In linear alge-
braic terms, ∆(−→v ) ∈ V ⊗ V is a diagonal matrix
whose diagonal elements are weights of −→v ∈ V .
The corresponding multiplication µ encodes vec-
tors of higher dimensional tensor spaces into lower
dimensional spaces; this operation is referred to
as combining. For −→w ∈ V ⊗ V , we have that
µ(−→w ) ∈ V is a vector consisting only of the diag-
onal elements of −→w .

As a concrete example, take V to be a two di-
mensional space with basis {−→v1 ,−→v2}; then the ba-
sis of V ⊗V is {−→v1⊗−→v1 ,−→v1⊗−→v2 ,−→v2⊗−→v1 ,−→v2⊗−→v2}.
For a vector v = a−→v1 + b−→n2 in V we have:

∆(v) = ∆

(
a
b

)
=

(
a 0
0 b

)
= a−→v1⊗−→v1+b−→v2⊗−→v2

And for a matrix w = a−→v1 ⊗ −→v1 + b−→v1 ⊗ −→v2 +
c−→v2 ⊗−→v1 + d−→v2 ⊗−→v2 in V ⊗ V , we have:

µ(w) = µ

(
a b
c d

)
=

(
a
d

)
= a−→v1 + d−→v2
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3 String Diagrams

The framework of compact closed categories and
Frobenius algebras comes with a complete di-
agrammatic calculus that visualises derivations,
and which also simplifies the categorical and vec-
tor space computations. Morphisms are depicted
by boxes and objects by lines, representing their
identity morphisms. For instance a morphism
f : A → B, and an object A with the identity ar-
row 1A : A→ A, are depicted as follows:

f

A

B

A

The tensor products of the objects and mor-
phisms are depicted by juxtaposing their diagrams
side by side, whereas compositions of morphisms
are depicted by putting one on top of the other;
for instance the object A⊗B, and the morphisms
f ⊗ g and f ◦ h, for f : A → B, g : C → D, and
h : B → C, are depicted as follows:

f

A

B D

g

C f

A

B

h

C

A B

The ε maps are depicted by cups, η maps
by caps, and yanking by their composition and
straightening of the strings. For instance, the di-
agrams for εl : Al ⊗ A → I , η : I → A ⊗ Al and
(εl ⊗ 1A) ◦ (1A ⊗ ηl) = 1A are as follows:

Al

A Al
A

Al A Al = A

The composition of the ε and η maps with other
morphisms is depicted as before, that is by juxta-
posing them one above the other. For instance the
diagrams for the compositions (1Bl ⊗ f) ◦ εl and
ηl ◦ (1Al ⊗ f) are as follows:

B

f

A

Bl

Al A

f

B

As for Frobenius algebras, the diagrams for the
monoid and comonoid morphisms are as follows:

(µ, ζ) (∆, ι)

with the Frobenius condition being depicted as:

= =

The defining axioms guarantee that any picture de-
picting a Frobenius computation can be reduced to
a normal form that only depends on the number of
input and output strings of the nodes, independent
of the topology. These normal forms can be sim-
plified to so-called ‘spiders’:

=

· · ·

· · ·
···

···

In the category FVect, apart from spaces V,W ,
which are objects of the category, we also have
vectors −→v ,−→w . These are depicted by their repre-
senting morphisms and as triangles with a number
of strings emanating from them. The number of
strings of a triangle denote the tensor rank of the
vector; for instance, the diagrams for−→v ∈ V,

−→
v′ ∈

V ⊗W , and
−→
v′′ ∈ V ⊗W ⊗ Z are as follows:

V W WV ZV
Application of a linear map to a vector is de-

picted using composition of their corresponding
morphisms. For instance, for f : V → W and
−→v ∈ V , the application f(−→v ) is depicted by the

composition I
−→v−→ V

f−→W .

V

f

W
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Applications of the Frobenius maps to vectors
are depicted in a similar fashion; for instance

µ(−→v ⊗ −→v ) is the composition I ⊗ I
−→v ⊗−→v−→ V ⊗

V
µ−→ V and ι(−→v ) is the composition I

−→v−→
V

ι−→ I , depicted as follows:

V V

V

V

4 Vector Space Interpretations

The grammatical structure of a language is en-
coded in the category Preg: objects are grammat-
ical types (assigned to words of the language) and
morphisms are grammatical reductions (encoding
the grammatical formation rules of the language).
For instance, the grammatical structure of the sen-
tence “Men love Mary” is encoded in the assign-
ment of types n to the noun phrases “men” and
“Mary” and nr ⊗ s⊗ nl to the verb “love”, and in
the reduction map εln ⊗ 1s ⊗ εrn. The application
of this reduction map to the tensor product of the
word types in the sentence results in the type s:

(εln ⊗ 1s ⊗ εrn)(n⊗ (nr ⊗ s⊗ nl)⊗ n)→ s

To each reduction map corresponds a string dia-
gram that depicts the structure of reduction:

n nrsnl n
Men love Mary

In Coecke et al. (2010) the pregroup types and
reductions are interpreted as vector spaces and lin-
ear maps, achieved via a homomorphic mapping
from Preg to FVect. Categorically speaking, this
map is a strongly monoidal functor:

F : Preg→ FVect

It assigns vector spaces to the basic types as fol-
lows:

F (1) = I F (n) = N F (s) = S

and to the compound types by monoidality as fol-
lows; for x, y objects of Preg:

F (x⊗ y) = F (x)⊗ F (y)

Monoidal functors preserve the compact structure;
that is the following holds:

F (xl) = F (xr) = F (x)∗

For instance, the interpretation of a transitive verb
is computed as follows:

F (nr ⊗ s⊗ nl) = F (nr)⊗ F (s)⊗ F (nl) =

F (n)∗ ⊗ F (s)⊗ F (n)∗ = N ⊗ S ⊗N

This interpretation means that the meaning vector
of a transitive verb is a vector in N ⊗ S ⊗N .

The pregroup reductions, i.e. the partial order
morphisms of Preg, are interpreted as linear maps:
whenever p ≤ q in Preg, we have a linear map
f≤ : F (p) → F (q). The ε and η maps of Preg are
interpreted as the ε and η maps of FVect. For in-
stance, the pregroup reduction of a transitive verb
sentence is computed as follows:

F (εrn ⊗ 1s ⊗ εrn) = F (εrn)⊗ F (1s)⊗ F (εln) =

F (εn)∗ ⊗ F (1s)⊗ F (εn)∗ = εN ⊗ 1S ⊗ εN

The distributional meaning of a sentence is ob-
tained by applying the interpretation of the pre-
group reduction of the sentence to the tensor prod-
uct of the distributional meanings of the words
in the sentence. For instance, the distributional
meaning of “Men love Mary” is as follows:

F (εrn ⊗ 1s ⊗ εln)(
−−→
Men⊗

−−→
love⊗−−−→Mary)

This meaning is depictable via the following string
diagram:

N NSN N

Men love Mary

The next section applies these techniques to the
distributional interpretation of pronouns. The in-
terpretations are defined using: ε maps, for appli-
cation of the semantics of one word to another; η
maps, to pass information around by bridging in-
termediate words; and Frobenius operations, for
copying and combining the noun vectors and dis-
carding the sentence vectors.

5 Modelling Relative Pronouns

In this paper we focus on the subject and object
relative pronouns, who(m), which and that. Ex-
amples of noun phrases with subject relative pro-
nouns are “men who love Mary”, “dog which ate
cats”. Examples of noun phrases with object rela-
tive pronouns are “men whom Mary loves”, “book
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that John read”. In the final example, “book” is the
head noun, modified by the relative clause “that
John read”. The intuition behind the use of Frobe-
nius algebras to model such cases is the following.
In “book that John read”, the relative clause acts
on the noun (modifies it) via the relative pronoun,
which passes information from the clause to the
noun. The relative clause is then discarded, and
the modified noun is returned. Frobenius algebras
provide the machinery for all of these operations.

The pregroup types of the relative pronouns are
as follows:

nrnsln (subject)
nrnnllsl (object)

These types result in the following reductions:

nr s nl nn nr n sl n

Subject Rel-Pr Verb Object

nr s nlnn nr n nll sl
Object Rel-Pr Subject Verb

The meaning spaces of these pronouns are com-
puted using the mechanism described above:

F (nrnsln) = F (nr)⊗ F (n)⊗ F (sl)⊗ F (n)

= N ⊗N ⊗ S ⊗N
F (nrnnllsl) = F (nr)⊗ F (n)⊗ F (nll)⊗ F (sl)

= N ⊗N ⊗N ⊗ S
The semantic roles that these pronouns play are

reflected in their categorical vector space mean-
ings, depicted as follows:

Subj:

N N S N

Obj:

N N SN

with the following corresponding morphisms:
Subj: (1N ⊗ µN ⊗ ζS ⊗ 1N ) ◦ (ηN ⊗ ηN )
Obj: (1N ⊗ µN ⊗ 1N ⊗ ζS) ◦ (ηN ⊗ ηN )

The diagram of the meaning vector of the sub-
ject relative clause interacting with the head noun
is as follows:

N S N NN N NN S

Subject Rel-Pronoun Verb Object

The diagram for the object relative clause is:

N S NNN N NN S

Object Rel-Pronoun Subject Verb

These diagrams depict the flow of information in
a relative clause and the semantic role of its rel-
ative pronoun, which 1) passes information from
the clause to the head noun via the η maps; 2) acts
on the noun via the µ map; 3) discards the clause
via the ζ map; and 4) returns the modified noun
via 1N . The ε maps pass the information of the
subject and object nouns to the verb and to the rel-
ative pronoun to be acted on. Note that there are
two different flows of information in these clauses:
the ones that come from the grammatical structure
and are depicted by εmaps (at the bottom of the di-
agrams), and the ones that come from the semantic
role of the pronoun and are depicted by η maps (at
the top of the diagrams).

The normal forms of these diagrams are:

N S N NN

Subject Verb Object

N S N NN

Subject Verb Object

Symbolically, they correspond to the following
morphisms:

(µN ⊗ ιS ⊗ εN )
(−−−−→

Subject⊗−−→Verb⊗−−−→Object
)

(εN ⊗ ιS ⊗ µN )
(−−−−→

Subject⊗−−→Verb⊗−−−→Object
)

The simplified normal forms will become useful in
practice when calculating vectors for such cases.

6 Vector Space Instantiations

In this section we demonstrate the effect of the
Frobenius operations using two example instan-
tiations. The first — which is designed perhaps
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as a theoretical example rather than a suggestion
for implementation — is a truth-theoretic account,
similar to Coecke et al. (2010) but also allow-
ing for degrees of truth. The second is based on
the concrete implementation of Grefenstette and
Sadrzadeh (2011a).

6.1 Degrees of Truth
Take N to be the vector space spanned by a set
of individuals {−→n i}i that are mutually orthogo-
nal. For example, −→n 1 represents the individual
Mary, −→n 25 represents Roger the dog, −→n 10 rep-
resents John, and so on. A sum of basis vec-
tors in this space represents a common noun; e.g.
−−→man =

∑
i
−→n i, where i ranges over the basis vec-

tors denoting men. We take S to be the one dimen-
sional space spanned by the single vector

−→
1 . The

unit vector spanning S represents truth value 1, the
zero vector represents truth value 0, and the inter-
mediate vectors represent degrees of truth.

A transitive verb w, which is a vector in the
space N ⊗ S ⊗N , is represented as follows:

w :=
∑
ij

−→n i ⊗ (αij
−→
1 )⊗−→n j

if −→n i w’s −→n j with degree αij , for all i, j.
Further, since S is one-dimensional with its

only basis vector being
−→
1 , the transitive verb can

be represented by the following element ofN⊗N :∑
ij

αij
−→n i⊗−→n j if −→n i w’s−→n j with degree αij

Restricting to either αij = 1 or αij = 0 provides
a 0/1 meaning, i.e. either −→n i w’s −→n j or not.
Letting αij range over the interval [0, 1] enables
us to represent degrees as well as limiting cases
of truth and falsity. For example, the verb “love”,
denoted by love, is represented by:∑
ij

αij
−→n i⊗−→n j if −→n i loves−→n jwith degreeαij

If we take αij to be 1 or 0, from the above we
obtain the following:∑

(i,j)∈Rlove

−→n i ⊗−→n j

where Rlove is the set of all pairs (i, j) such that
−→n i loves −→n j .

Note that, with this definition, the sentence
space has already been discarded, and so for this

−−−−−−−−−−−−−−−−−→
Subject who Verb Object :=

(µN ⊗ εN )
(−−−−→

Subject⊗−−→Verb⊗−−−→Object
)

=

(µN ⊗ εN )

∑
k∈K

−→n k ⊗(
∑
ij

αij
−→n i⊗−→n j)⊗

∑
l∈L

−→n l


=

∑
ij,k∈K,l∈L

αijµN (−→n k ⊗−→n i)⊗ εN (−→n j ⊗−→n l)

=
∑

ij,k∈K,l∈L
αijδki

−→n iδjl

=
∑

k∈K,l∈L
αkl
−→n k

Figure 1: Meaning computation with a subject rel-
ative pronoun

instantiation the ι map, which is the part of the
relative pronoun interpretation designed to discard
the relative clause after it has acted on the head
noun, is not required.

For common nouns
−−−−→
Subject =

∑
k∈K
−→n k and

−−−→
Object =

∑
l∈L
−→n l, where k and l range over

the sets of basis vectors representing the respec-
tive common nouns, the truth-theoretic meaning of
a noun phrase modified by a subject relative clause
is computed as in Figure 1. The result is highly in-
tuitive, namely the sum of the subject individuals
weighted by the degree with which they have acted
on the object individuals via the verb. A similar
computation, with the difference that the µ and ε
maps are swapped, provides the truth-theoretic se-
mantics of the object relative clause:

∑
k∈K,l∈L

αkl
−→n l

The calculation and final outcome is best under-
stood with an example.

Now only consider truth values 0 and 1. Con-
sider the noun phrase with object relative clause
“men whom Mary loves” and takeN to be the vec-
tor space spanned by the set of all people; then the
males form a subspace of this space, where the ba-
sis vectors of this subspace, i.e. men, are denoted
by −→ml, where l ranges over the set of men which
we denote byM . We set “Mary” to be the individ-
ual
−→
f 1, “men” to be the common noun

∑
l∈M
−→ml,
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−−−−−−−−−−−−−−−→
men whom Mary loves :=

(εN ⊗ µN )

−→f 1 ⊗ (
∑

(i,j)∈Rlove

−→
f i ⊗−→mj)⊗

∑
l∈M

−→ml


=

∑
l∈M,(i,j)∈Rlove

εN (
−→
f 1 ⊗

−→
f i)⊗ µ(−→mj ⊗−→ml)

=
∑

l∈M,(i,j)∈Rlove

δ1iδjl
−→mj

=
∑

(1,j)∈Rlove|j∈M

−→mj

Figure 2: Meaning computation for example ob-
ject relative clause

and “love” to be as follows:

∑
(i,j)∈Rlove

−→
f i ⊗−→mj

The vector corresponding to the meaning of “men
whom Mary loves” is computed as in Figure 2.
The result is the sum of the men basis vectors
which are also loved by Mary.

The second example involves degrees of truth.
Suppose we have two females Mary

−→
f 1 and Jane−→

f 2 and four men −→m1,
−→m2,
−→m3,
−→m4. Mary loves

−→m1 with degree 1/4 and −→m2 with degree 1/2; Jane
loves −→m3 with degree 1/5; and −→m4 is not loved. In
this situation, we have:

Rlove = {(1, 1), (1, 2), (2, 3)}

and the verb love is represented by:

1/4(
−→
f 1⊗−→m1)+1/2(

−→
f 1⊗−→m2)+1/5(

−→
f 2⊗−→m3)

The meaning of “men whom Mary loves” is com-
puted by substituting an α1,j in the last line of Fig-
ure 2, resulting in the men whom Mary loves to-
gether with the degrees that she loves them:

∑
(1,j)∈Rlove|j∈M

α1j
−→mj = 1/4−→m1 + 1/2−→m2

“men whom women love” is computed as fol-

lows, where W is the set of women:∑
k∈W,l∈M,(i,j)∈Rlove

αijεN (
−→
f k ⊗

−→
f i)⊗ µ(−→mj ⊗−→ml)

=
∑

k∈W,l∈M,(i,j)∈Rlove

αijδkiδjl
−→mj

=
∑

(i,j)∈Rlove|i∈W,j∈M

αij
−→mj

= 1/4−→m1 + 1/2−→m2 + 1/5−→m3

The result is the men loved by Mary or Jane to-
gether with the degrees to which they are loved.

6.2 A Concrete Instantiation
In the model of Grefenstette and Sadrzadeh
(2011a), the meaning of a verb is taken to be “the
degree to which the verb relates properties of its
subjects to properties of its object”. Clark (2013)
provides some examples showing how this is an
intuitive defintion for a transitive verb in the cat-
egorical framework. This degree is computed by
forming the sum of the tensor products of the sub-
jects and objects of the verb across a corpus, where
w ranges over instances of the verb:

verb =
∑
w

(
−→
sbj⊗−→obj)w

Denote the vector space of nouns by N ; the above
is a matrix in N ⊗ N , depicted by a two-legged
triangle as follows:

N N
The verbs of this model do not have a sentence

dimension; hence no information needs to be dis-
carded when they are used in our setting, and so no
ιmap appears in the diagram of the relative clause.
Inserting the above diagram in the diagrams of the
normal forms results in the following for the sub-
ject relative clause (the object case is similar):

N N NN

Subject Verb Object

The abstract vectors corresponding to such dia-
grams are similar to the truth-theoretic case, with
the difference that the vectors are populated from
corpora and the scalar weights for noun vectors
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are not necessarily 1 or 0. For subject and object
noun context vectors computed from a corpus as
follows:
−−−−→
Subject =

∑
k

Ck
−→n k

−−−→
Object =

∑
l

Cl
−→n l

and the verb a linear map:

Verb =
∑
ij

Cij
−→n i ⊗−→n j

computed as above, the concrete meaning of a
noun phrase modified by a subject relative clause
is as follows:∑

kijl

CkCijClµN (−→n k ⊗−→n i)εN (−→n j ⊗−→n l)

=
∑
kijl

CkCijClδki
−→n kδjl

=
∑
kl

CkCklCl
−→n k

Comparing this to the truth-theoretic case, we see
that the previous αkl are now obtained from a cor-
pus and instantiated to CkCklCl. To see how the
above expression represents the meaning of the
noun phrase, decompose it into the following:∑

k

Ck
−→n k �

∑
kl

CklCl
−→n l

Note that the second term of the above, which is
the application of the verb to the object, modifies
the subject via point-wise multiplication. A simi-
lar result arises for the object relative clause case.

As an example, suppose that N has two dimen-
sions with basis vectors −→n 1 and −→n 2, and consider
the noun phrase “dog that bites men”. Define the
vectors of “dog” and “men” as follows:
−→
dog = d1

−→n 1+d2
−→n 2

−−→men = m1
−→n 1+m2

−→n 2

and the matrix of “bites” by:
b11
−→n 1⊗−→n 2+b12

−→n 1⊗−→n 2+b21
−→n 2⊗−→n 1+b22

−→n 2⊗−→n 2

Then the meaning of the noun phrase becomes:
−−−−−−−−−−−−→
dog that bites men :=

d1b11m1
−→n 1 + d1b12m2

−→n 1 + d2b21m1
−→n 2

+ d2b22m2
−→n 2 = (d1

−→n 1 + d2
−→n 2)�

((b11m1 + b12m2)−→n 1 + (b21m1 + b22m2)−→n 2)

Using matrix notation, we can decompose the sec-
ond term further, from which the application of the
verb to the object becomes apparent:(

b11 b12

b21 b22

)
×
(
m1

m2

)

Hence for the whole clause we obtain:

−→
dog� (bites×−−→men)

Again this result is highly intuitive: assuming
that the basis vectors of the noun space represent
properties of nouns, the meaning of “dog that bites
men” is a vector representing the properties of
dogs, which have been modified (via multiplica-
tion) by those properties of individuals which bite
men. Put another way, those properties of dogs
which overlap with properties of biting things get
accentuated.

7 Conclusion and Future Directions

In this paper, we have extended the compact cate-
gorical semantics of Coecke et al. (2010) to anal-
yse meanings of relative clauses in English from
a vector space point of view. The resulting vec-
tor space semantics of the pronouns and clauses
is based on the Frobenius algebraic operations on
vector spaces: they reveal the internal structure, or
what we call anatomy, of the relative clauses.

The methodology pursued in this paper and the
Frobenius operations can be used to provide se-
mantics for other relative pronouns and also other
closed-class words such as prepositions and deter-
miners. In each case, the grammatical type of the
word and a detailed analysis of the role of these
words in the meaning of the phrases in which they
occur would be needed. In some cases, it may be
necessary to introduce a linear map to represent
the meaning of the word, for instance to distin-
guish the preposition on from in.

The contribution of this paper is best demon-
strated via the string diagrammatic representations
of the vector space meanings of these clauses. A
noun phrase modified by a subject relative clause,
which before this paper was depicted as follows:

N S N NN N NN S

Subject Rel-Pronoun Verb Object

will now include the internal anatomy of its rela-
tive pronoun:
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N S N NN N NN S

Subject Rel-Pronoun Verb Object

This internal structure shows how the information
from the noun flows through the relative pronoun
to the rest of the clause and how it interacts with
the other words. We have instantiated this vector
space semantics using truth-theoretic and corpus-
based examples.

One aspect of our example spaces which means
that they work particularly well is that the sen-
tence dimension in the verb is already discarded,
which means that the ι maps are not required (as
discussed above). Another feature is that the sim-
ple nature of the models means that the µmap does
not lose any information, even though it takes the
diagonal of a matrix and hence in general throws
information away. The effect of the ι and µ maps
in more complex representations of the verb re-
mains to be studied in future work.

On the practical side, what we offer in this paper
is a method for building appropriate vector repre-
sentations for relative clauses. As a result, when
presented with a relative clause, we are able to
build a vector for it, only by relying on the vector
representations of the words in the clause and the
grammatical role of the relative pronoun. We do
not need to retrieve information from a corpus to
be able to build a vector or linear map for the rela-
tive pronoun, neither will we end up having to dis-
card the pronoun and ignore the role that it plays in
the meaning of the clause (which was perhaps the
best option available before this paper). However,
the Frobenius approach and our claim that the re-
sulting vectors are ‘appropriate’ requires an empir-
ical evaluation. Tasks such as the term definition
task from Kartsaklis et al. (2013) (which also uses
Frobenius algebras but for a different purpose) are
an obvious place to start. More generally, the sub-
field of compositional distributional semantics is
a growing and active one (Mitchell and Lapata,
2008; Baroni and Zamparelli, 2010; Zanzotto et
al., 2010; Socher et al., 2011), for which we argue
that high-level mathematical investigations such
as this paper, and also Clarke (2008), can play a
crucial role.
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Abstract

Attested and ‘pathological’ vowel har-

mony patterns are studied in the context of

subclasses of regular functions. The anal-

ysis suggests that the computational com-

plexity of phonology can be reduced from

regular to weakly deterministic.

1 Introduction

The expressivity of ordered rewrite-rule grammars

for phonology (Chomsky and Halle, 1968, hence-

forth SPE) and two-level phonology (Kosken-

niemi, 1983) are exactly the class of regular re-

lations (Johnson, 1972; Kaplan and Kay, 1994;

Beesley and Kartunnen, 2003). Since SPE-style

grammars can express virtually any phonologi-

cal generalization, it follows that the generaliza-

tions themselves are regular, even if they are rep-

resented with other formalisms (such as OT gram-

mars).

This result can be interpreted cognitively as

establishing a universal property of phonological

patterns: humanly possible phonological patterns

are regular. If correct, this would mean, for ex-

ample, that humanly possible syntactic patterns

which are nonregular are not humanly possible

phonological patterns (Heinz and Idsardi, 2011;

Lai, 2012; Heinz and Idsardi, 2013).

Recent research suggests that stronger univer-

sals than “being regular” can be established for

phonology. It has been shown that segmental

phonotactic patterns are star-free (Heinz et al.,

2011), as are virtually all stress patterns (Rogers

et al., to appear), and the semantics of two-level

rules appear to ensure that these mappings have

star-free-like properties, provided the contexts to

the rules are star-free (Yli-Jyrä and Koskenniemi,

2006).1

1There are multiple ways to generalize the class of star-
free regular sets to regular relations (Benedikt et al., 2001) so

This paper examines the hypothesis that subse-

quentiality is a necessary property of phonologi-

cal patterns by studying theories of iterative vowel

harmony. Informally, a function is left (right) sub-

sequential if there is a finite-state transducer de-

scribing the function which processes strings from

left to right (right to left) deterministically on the

input. We use the term ‘subsequentiality’ to mean

either left or right subsequential.

Previous work has found that synchronically at-

tested metathesis patterns and partial reduplica-

tion patterns are either left or right subsequen-

tial (Chandlee et al., 2012; Chandlee and Heinz,

2012). Also Gainor et al. (2012) show that the

vowel harmony generalizations in Nevins (2010)

are also left or right subsequential mappings.

Gainor et al.’s analysis, while insightful, is in-

complete since Nevin’s theory of vowel harmony

invokes underspecification and other theories of

vowel harmony do not. Phonological underspec-

ification is explained in section 3. The linguis-

tic generalizations examined in this paper come

from two types of theories of vowel harmony

patterns in linguistics which do not use under-

specification: traditional directional theories and

dominant/recessive/stem-control theories.

We prove that subsequentiality separates di-

rectional theories from logically possible but

‘pathological’ vowel harmony patterns (Wil-

son 2003). (This claim was also made by

Gainor et al. without proof.) It is also

shown that dominant/recessive/stem-control theo-

ries posit generalizations which are neither left nor

right subsequential, but which are weakly deter-

ministic. Informally, this means that these gen-

eralizations can be decomposed into a left sub-

sequential and right subsequential function with-

out the left-subsequential function marking up its

output in any special way. We conjecture this is

it would be interesting to determine more exactly the nature
of such two-level rules.
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not the case for the pathological patterns. Since

subsequential and weakly deterministic functions

are proper subclasses of regular relations, these

results suggest concretely how the computational

complexity of phonology established by earlier re-

searchers can be improved.

Mathematical and phonological preliminaries

are given in sections 2 and 3, respectively. Sec-

tions 4, 5, and 6 consider the vowel harmony pat-

terns with respect to the regular and subsequential

boundaries. and weakly deterministic boundaries,

respectively. Section 7 concludes.

2 Preliminaries

2.1 Regular relations and functions

If X denotes a finite alphabet then X∗ and Xn

denotes the sets of all finite strings and the set of

all strings of length n over X, respectively. The

length of a string w is |w|. The unique string of

length zero is denoted λ. A string w of length k
can be written w1w2 · · ·wk, where wi is the ith
letter of w. The reverse of a string w = w1 · · ·wk

is wr = wk · · ·w1. For finite alphabets X and Y ,

a relation is a subset of X∗×Y ∗. If R is a relation,

the reverse relation Rr = {(xr, yr) | (x, y) ∈ R}.
Note the reverse relation is not the inverse rela-

tion. A relation R is length-preserving iff for all

(x, y) ∈ R it is the case that |x| = |y|. It is

length-increasing iff there exists (x, y) ∈ R such

that |x| < |y|.

Any relation R ⊆ X∗ × Y ∗ is a function iff

for all x ∈ X∗, there is at most y ∈ Y ∗ such

that (x, y) ∈ R. In this case, we often write R :
X∗ → Y ∗. For two functions f : X∗ → Y ∗ and

g : Y ∗ → Z∗, the composition of f and g is a

function h : X∗ → Z∗ such that h(x) = g(f(x)).
We write h = g ◦ f .

For all x ∈ X∗, the prefixes of x are Pr(x) =
{u ∈ X∗ | ∃v ∈ X∗ such that x = uv}. For any

set L ⊆ X∗, the longest common prefix of L is

lcp(L) = w ⇔ w ∈
⋂

x∈L

Pr(x) ∧

(

∀w′ ∈
⋂

x∈L

Pr(x)
)[

|w′| ≤ |w|
]

(1)

Regular relations are those describable by

finite-state transducers (FSTs).2 A finite-state

transducer T is a tuple (Q,X, Y, I, F, δ) where

2In the algebraic theory of automata, these are called ra-
tional relations (Berstel, 1979; Sakarovitch, 2009).

Q is a finite set of states, X and Y are finite al-

phabets, I, F ⊆ Q are the initial and final states,

respectively, and δ ⊆ Q × X∗ × Y ∗ × Q is

the transition function. For all FSTs, the transi-

tion function δ is recursively extended to δ∗ in the

usual way. The relation that a finite state trans-

ducer T = (Q,X, Y, I, F, δ) recognizes/accepts/-

generates is

R(T ) =
{

(x, y) ∈ X∗ × Y ∗ | (∃qi ∈ I)

(qf ∈ F )
[

(qi, x, y, qf ) ∈ δ∗
]

}

.
(2)

Let RR denote the class of regular relations. This

class is closed under concatenation, Kleene clo-

sure, union, composition, and inversion, but not

intersection or complement.

A subsequential transducer is a tuple

(Q, q0,X, Y, σ, δ), where Q is a finite set of

states, X and Y are finite alphabets, q0 ∈ Q is

the initial state, and σ ⊆ Q × Y ∗ is the output

function. Informally, subsequential transducers

are weighted acceptors that are deterministic on

the input, and where the weights are strings and

multiplication is concatenation.

Formally, the transition function δ ⊆ Q×X ×
Y ∗ ×Q is deterministic:

(q, a, u, r), (q, a, v, s) ∈ δ ⇒ u = v ∧ r = s .

The transition function δ is also recursively ex-

tended to δ∗. The relation that a subsequen-

tial transducer T = (Q, q0,X, Y, σ, δ) recog-

nizes/accepts/generates is

R(t) =
{

(x, yz) ∈ X∗ × Y ∗ | (∃q ∈ F )

[

(q0, x, y, q) ∈ δ∗ ∧ z = σ(q)
]

}

.
(3)

Since subsequential transducers are deterministic,

the relations they recognize are functions.

Functions recognized by subsequential trans-

ducers are called left subsequential. A function

f is right subsequential iff its reverse f r is left

subsequential. Observe that for all w ∈ X∗, the

image of a right subsequential function f of w can

be calculated by reversing w, processing the result

with the subsequential transducer T recognizing

f r, and then reversing the result. Formally,

(∀w ∈ X∗)[f(w) = T (wr)r]. (4)

However, there is another way to state the above

without the reversing function (·r). This is to rec-

ognize that f(w) can be computed by applying T
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to w from right to left, instead of from left to right.

When T processes w right to left, we write
←−
T (w)

and when T processes w left to right, we write
−→
T (w). Then we can restate Equation 4 as

(∀w ∈ X∗)[f(w) =
←−
T (w)]. (5)

Let LSF and RSF denote the class of left and

right subsequential functions, respectively.

Theorem 1 (Mohri 1997) The following hold:

1. LSF,RSF ( RR.

2. RSF r = LSF .

3. LSF and RSF are incomparable.

There are some relevant subclasses and gen-

eralizations of subsequentiality. A subsequential

transduction T is sequential iff for all q ∈ Q, it

is the case that σ(q) = λ.3 Mohri (1997) gen-

eralizes subsequentiality to p-subsequentiality (al-

lowing up to p outputs for each input), preserving

many important properties. Mohri’s generaliza-

tions are important here because there are likely

to be a bounded number of exceptions, or optional

forms, in actual vowel harmony systems that fall

outside the purview of the 1-subsequential anal-

ysis presented here, but which would presumably

not fall outside a p-subsequential analysis (not pre-

sented here).

Elgot and Mezei proved the following.

Theorem 2 (Elgot and Mezei 1965) Let

T : X∗ → Y ∗ be a function. Then T ∈ RR
iff there exists L : X∗ → Z∗ ∈ LSF , and

R : Z∗ → Y ∗ ∈ RSF with X ⊆ Z such that

T = R ◦ L.

What this decomposition means is that the com-

putation of T (x) = y can be accomplished by

(1) reading x sequentially from left to right with a

subsequential transducer, which transforms it into

a word z possibly marking it up with additional

symbols; (2) reading the resulting word z from

right to left with another subsequential transducer

and writing from right to left the final output y. As

their proof makes clear, this decomposition of T
is possible because the alphabet Z may be strictly

3Sakarovitch (2009) prefers the term ‘sequential’ for sub-
sequential functions and the term ’pure sequential’ for se-
quential functions. While his arguments are reasonable (pp.
651-2), we adopt the more widely adopted terminology.

larger than X, and so z can be marked-up with ad-

ditional symbols which carry additional informa-

tion.4

Finally, we review one important property of

subsequential transducers and regular sets. For

any function f : X∗ → Y ∗ and x ∈ X∗, let the

tails of x in f be defined as

TLf (x) =
{

(y, v) | f(xy) = uv ∧

u = lcp(f(xX∗))
}

.
(6)

Every subsequential transducer T computing a

function f admits a canonical form, where the

states of T are in one-to-one correspondence with

TLf (x) for all x ∈ X∗.

Theorem 3 (Oncina et al. 1993) f ∈ LSF ⇔
{TLf (x) | x ∈ X∗} has finite cardinality.

This theorem is the functional counterpart to the

Myhill/Nerode relation. Recall that for any set of

strings L, the tails of a word w with respect to L
is defined as TLL(w) = {u | wu ∈ L}. This

relation partitions the set of all logically possible

strings into a finite set of equivalence classes iff

the set L is regular. These equivalence classes are

the basis for constructing the smallest determinis-

tic acceptor for a regular language.

Similarly, in the construction of the canonical

subsequential transducer for a left subsequential

function, the states correspond to the sets of tails

defined in (6) above. There is a rich literature on

subsequential functions (Elgot and Mezei, 1965;

Berstel, 1979; Oncina et al., 1993; Mohri, 1997;

Roche and Schabes, ; Sakarovitch, 2009).

2.2 Weak Determinism

Here we introduce the notion of weak determin-

ism. Informally, these are regular functions which

decompose into left and right subsequential func-

tions as in Elgot and Mezei’s theorem but without

the mark-up given by the intermediate, larger al-

phabet. Thus, they are not necessarily determinis-

tic, but they are “more” deterministic than regular

functions where Elgot and Mezei decomposition

requires the intermediate mark-up.

While the mark-up can be accomplished by

introducing new symbols (as done in Elgot and

4Berstel (1979) provides an updated proof. This
book is out of print but the first four chapters are
available for download at http://www-igm.

univ-mlv.fr/˜berstel/LivreTransductions/

LivreTransductions.html. The theorem and proof
begin on page 117 in the online version and on page 126 in
the printed version.
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X∗

X∗

Z∗ X∗

T

L′ = h ◦ L

L

R

R′ = R ◦ h−1

h

h−1

Figure 1: Decompositions of regular function T
with X ⊆ Z .

Mezei’s proof), for any alphabet with at least two

symbols, the mark-up can also be accomplished

by coding these new symbols as strings formed

over the original alphabet.5 Figure 1 illustrates.

Let X be a finite alphabet containing the symbols

{a, b}. Consider any alphabet-preserving regular

function T : X∗ → X∗. By Elgot and Mezei’s

theorem, there exists left subsequential L : X∗ →
Z∗ and right subsequential R : Z∗ → X∗ with

X ⊆ Z such that T = R ◦ L. Let h : Z∗ → X∗

be a function which encodes each word w in Z∗

by coding each symbol in w as follows. Assume

some enumeration of the symbols in Z and the

rewrite the nth symbol of Z as abna. For exam-

ple if Z = {a, b, c} and w = cab then h(w) =
abbaaaaba. It is not difficult to verify that h is

length-increasing and that both h and h−1 are sub-

sequential functions. Letting R′ = R ◦ h−1 and

L′ = h ◦ L, it follows that T = R′ ◦ L′ and that

both R′ and L′ have domain and co-domain X∗.

For this reason, it is not sufficient to require that

the decomposition be alphabet-preserving (i.e.

Z = X) to avoid any mark-up. It is also neces-

sary that the first factor L not be length-increasing.

This is because the only way to unambiguously en-

code a larger alphabet into a smaller one is with

length-increasing functions (like h in the above

example).

Definition 1 A regular function T is weakly de-

terministic iff there exists L : X∗ → X∗ ∈ LSF ,

and R : X∗ → X∗ ∈ RSF such that L is not

length-increasing and T = R ◦ L. The class of

weakly deterministic functions is denoted WD.

The corollary below is immediate from this def-

inition and Elgot and Mezei’s theorem.

Corollary 1 LSF,RSF ⊆WD ⊆ RR.

5We are indebted to an anonymous reviewer for this im-
portant observation.

noun genitive gloss

a. ip ip-in rope

b. el el-in and

c. son son-un end

d. pul pul-un stamp

Table 1: Examples illustrating a fragment of the

Vowel harmony from Turkish (Nevins 2010:32).

(a)

w f(w)

/ip-un/ [ip-in]
/el-un/ [el-in]

/son-un/ [son-un]
/pul-un/ [pul-un]

. . .

(b)

w f(w)

/−C+C/ [−C−C]

/C+C+C/ [C+C+C]
. . .

Table 2: Examples showing fragments of the

phonological function describing Turkish back

harmony assuming the underlying genitive mor-

pheme is /-un/.

The vowel harmony analysis below is sufficient to

go a step further and demonstrate a separation be-

tween LSF, RSF on one side and WD on the other.

We conjecture that one unattested ‘pathological’

vowel harmony patterns separates WD from RR.

3 Vowel Harmony

Vowel harmony is a pattern wherein vowels assim-

ilate with respect to some feature. Table 1 shows

two allomorphs of the genitive suffix, [-in] and [-

un]. The allomorph is predictable based on the

front/back dimension of the preceding vowel: if

the preceding vowel is front then [-in] occurs, but

if it is back then [-un] occurs. (Turkish also has

rounding harmony, which is not shown here.)

Phonological analysis conceives of the phono-

logical grammar as a function which maps an

abstract lexical representation (the ‘underlying

form’) to a more concrete—but still abstract—

phonological representation (the ‘surface form’)

(Hyman, 1975; Kenstowicz, 1994; Hayes, 2009).

Phonological transcriptions, like the ones in Ta-

ble 1, represent surface forms.

To illustrate, consider a simple phonological

analysis of the Turkish forms above, which posits

the underlying form of the genitive suffix to be

/-un/ and a mapping f which derives the surface

forms as shown in Table 2(a). Table 2(b) describes

the mapping only in terms of the relevant details

where [+] indicates [+ back] vowels, [−] indi-
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cates [−back] vowels, and C consonants.

Nevins’ (2010) analysis of vowel harmony uti-

lizes underspecification. We illustrate this concept

ostensively with the Turkish example above. In-

stead of positing the underlying form of the suffix

to be either /-in/ or /-un/, underspecification the-

ory would posit it to be /-Vn/ where V is high,

unrounded vowel unspecified for backness. In

Nevins’ theory, underlying vowels which have fea-

ture specifications can spread those features only

to vowels unspecified for those features. Under-

specification is not congruent with research in Op-

timality Theory (Prince and Smolensky, 2004),

which, by the principle of the rich base, requires

every underlying form to be considered (includ-

ing those where every vowel is fully specified).

Gainor et al. (2012) show that the iterative map-

pings Nevins describes are subsequential, but this

does not address those theories (like OT) which

may not consider underlying forms to permit un-

derspecification. All the vowel harmony patterns

considered in this paper do not admit any under-

specification whatsoever.

A traditional view of vowel harmony analyzes

vowel harmony patterns as either instances of

progressive harmony (PH) or regressive harmony

(RH). Informally, progressive harmony means the

value of a feature can be thought to spread from

left to the right (as in the Turkish example above).

Conversely, regressive harmony can be thought of

as spreading from right to left. This is illustrated

with examples (a-d) in Table 3.

Other theories of vowel harmony reject that di-

rectionality is a primitive of the theory and argue

that vowel harmony is either dominant/recessive

(DR) or stem-controlled (SC) (Baković, 2000;

Krämer, 2003) (see also (Archangeli and Pulley-

blank, 1994)). Dominant/recessive theories ana-

lyze vowel harmony patterns by postulating that a

particular feature value of a harmonizing feature

is the dominant one. The DR function in Table 3

identifies the [+] value as the dominant one; so

any underlying representation containing the har-

monizing feature with the value [+] will surface

so that the harmonizing feature in all vowels will

also be [+]. Stem-controlled analyses are similar

to dominant-recessive theories, however the fea-

ture that spreads is determined not by its value but

instead by the morphological position of the vowel

to which the feature belongs (for instance, is the

vowel in a stem or affix?).

An additional complication is that variations

of the above functions are introduced by neu-

tral vowels, which never undergo harmony. They

come in two kinds: transparent vowels which per-

mit features to spread through them, and opaque

vowels, which block the spread of harmony, but

trigger their own harmony domain. Some effects

of neutral vowels are shown in rows (e-f) in Ta-

ble 3. (Symbols [⊟] and [⊖] are [−F] vowels that

are opaque and transparent, respectively. Likewise

we use [⊞] and [⊕] to denote opaque and transpar-

ent vowels which are [+F].)

Additionally, the phonological literature in-

cludes discussion of logically possible, unattested

and unnatural vowel harmony patterns that are

predicted by classical approaches to vowel har-

mony in OT. These patterns include sour grapes

(SG) (Padgett, 1995; Wilson, 2003) and major-

ity rules (MR) (Lombardi, 1999; Baković, 2000).

Informally, SG is like progressive harmony ex-

cept that vowels only harmonize if every vowel

is guaranteed to harmonize. For example, if an

opaque vowel occurs after the trigger, no non-

neutral vowel harmonizes with the trigger. Ma-

jority Rules instantiates the following rule: If the

number of segments with αF is greater than the

number of segments with −αF , then segments

with αF are the triggers of harmony and segments

with −αF are the targets and undergo change.

Because phonologists consider SG and MR to be

bizarre, they are referred to as ‘pathologies’ (Wil-

son, 2003; Wilson, 2004; Finley, 2008) and it is a

strike against a theory if it predicts the existence

of either SG or MR.

Henceforth, let X = Y = {+,−, C,⊟,⊞}.
These symbols represent equivalence classes of a

partition of the phonemic inventory of any lan-

guage which exhibits progressive harmony for the

feature F . The symbols + and − represent the

classes of all harmonizing vowels which are +F
and −F , respectively. Phonemes invisible to har-

mony are in the C class; this includes consonants

and transparent vowels. The symbol ⊞ (⊟) refers

to opaque vowels which are +F (−F ), which

block the spread of −F (+F ), and which begins a

new harmonic domain spreading +F (−F ).

The vowel harmony mappings in this paper are

all, in fact, same-length relations. Furthermore,

they are sequential. These additional properties

do not appear to be shared by other phonological

processes. Epenthesis and deletion are common
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w PH(w) RH(w) DR(w) SG(w) MR(w)

a. /+ −−/ [+ + +] [−−−] [+ + +] [+ + +] [−−−]

b. /− + +/ [−−−] [+ + +] [+ + +] [−−−] [+ + +]

c. /− −−/ [−−−] [−−−] [− −−] [−−−] [−−−]

d. /− +−/ [−−−] [−−−] [+ + +] [−−−] [−−−]

e. /+ −⊟/ [+ + ⊟] [−−⊟] [+ + ⊟] [+−⊟] [−−⊟]

f. /+ ⊖−/ [+⊖+] [−⊖−] [+ ⊖+] [+⊖+] [−⊖−]

Table 3: Example mappings of underlying forms (w) given by progressive harmony (PH), regressive har-

mony (RH), dominant/recessive harmony (DR), sour grapes harmony (SG), and majority rules harmony

(MR). Symbols [+] indicates a [+F] vowel and [−] indicates a [−F] vowel where “F” is the feature

harmonizing. Symbols [⊟] and [⊖] are [−F] vowels that are opaque and transparent, respectively.

cross-linguistically, and the metathesis patterns

analyzed by Chandlee and Heinz (2012) are not

sequential (though they are subsequential). For

this reason, we keep the analysis focused at the

level of subsequentiality.

4 The regular boundary

In this section we show that the regular boundary

is sufficient to distinguish the pathological Major-

ity Rules pattern from the attested progressive and

regressive harmony patterns.

Formally, MR functions can be defined as fol-

lows. Let |w|+F and |w|−F denote the number of

participating vowels (i.e. non transparent vowels)

which are +F and −F , respectively, in w ∈ X∗.

Then we define a Majority Rules Harmony pattern

as any same-length function which at a minimum

obeys the following:

MR(w) =

{

+|w| if |w|+F > |w|−F

−|w| if |w|−F > |w|+F
(7)

The result below seems to be widely known (see

Riggle (2004, chapter 7, section 5)) though we

have not been able to find a proof in print.

Theorem 4 Majority Rules is not regular.

Proof By way of contradiction, suppose that MR
is a regular relation. Since regular relations are

closed under inverse, so is MR−1. The image of a

regular set under a regular relation is also a regular

set (see Roche and Schabes (, pp. 41-43)). There-

fore, MR−1(+∗) is a regular set. Since regular

sets are closed under intersection, it follows that

MR−1(+∗)∩ (+∗−∗) is regular as well. Call this

set S.

However, S is in fact not a regular set. Since

MR is length preserving, for all odd k ∈ N, it

0,λ

1,λ

2,λ

−,⊟

+,⊞
⊞⊟

C C, −, ⊟, + :−

C, +, ⊞, − :+

Figure 2: A subsequential transducer which rec-

ognizes iterative, progressive harmony.

is the case that MR(+k) ∩ (+∗−∗) = +m−n

where 0 ≤ m,n ≤ k and m + n = k and m > n.

Furthermore, for all for all odd k, it is the case

that TLS(+k), includes −n for all n < k − 1
but excludes −n for all n > k + 1. Thus there is

a distinct Nerode-equivalence class for each odd

k, and hence S is not a regular set, and therefore

MR is not a regular relation. ���

On the other hand, progressive and regressive

harmony are regular; in fact, subsequential. For

concreteness we analyze a canonical progressive

harmony pattern which includes neutral vowels.

The subsequential transducer TPH in Figure 2

faithfully captures the PH function. Labels on the

transitions are interpreted as in Beesley and Kar-

tunnen (2003): commas delimit multiple transi-

tions; the label x:y means x is the input and y the

output; absence of a colon means the input and

output are identical. The rightmost symbol inte-

rior to a state is the output of the σ function.

While TPH presupposes languages have opaque

vowels, it can be modified as needed to remove

this assumption without losing subsequentiality. If

a language has no opaque vowels, those transi-

tions can be removed. Since any subgraph of the

transducer shown in Figure 2 is also subsequen-
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tial, this establishes the left subsequentiality of it-

erative, progressive harmony patterns without un-

derspecification.6

As for iterative regressive harmony patterns,

they are simply the reverse of iterative progres-

sive patterns. In other words, for all w ∈ Σ∗,

RH(w) =
←−−
TPH .

5 The subsequential boundary

In this section we show that while the regular

boundary is not sufficient to separate the patho-

logical Sour Grapes pattern from attested harmony

patterns, the subsequential boundary is sufficient.

Padgett (1995) defines Sour Grapes Harmony

as “Either all features must spread, or none

will. . . ” For concreteness, consider a progressive

Sour Grapes pattern. The form +−−− would be

mapped to ++++ as in progressive harmony, but

the form + − −⊟ is mapped to + − −⊟ because

the opaque vowel will not become +F , and so the

spreading process grumpily chooses not to spread

at all. Therefore, a progressive Sour Grapes Har-

mony pattern is defined as any length-preserving

function which at a minimum includes the follow-

ing mappings for all n ∈ N:

SG(+−n) = ++n∧SG(+−n
⊟) = +−n

⊟ (8)

There is a finite state transducer which describes

this fragment of the SG function, shown in Fig-

ure 3. As a total function, for SG to be regular, it

is important that the image of the complement of

∪n∈N{+−
n} ∪n∈N {+ −

n
⊟} under SG also be

regular. Pictorially, this would mean that the frag-

ment shown in Figure 3 is a subgraph of the full

SG pattern. Crucially, however, there can also be

no transition from state 2 bearing the input symbol

⊟ that can lead (even eventually) to a final state.

We now prove the main theorem of this paper.

Theorem 5 SG is neither left nor right subse-

quential.

Proof We show that, for all distinct n,m ∈ N,

the tails of +−n is not the same as the tails of

+−m. This immediately implies that the canon-

ical left subsequential transducer would have in-

finitely many states, and hence that any SG pattern

meeting Equation 8 is not left subsequential.

6It is true that TPH does not model progressive harmony
patterns where transparent vowels can trigger harmony. It
is not difficult to modify TPH to accommodate this without
sacrificing subsequentiality.

0 1 2

3 4

+ −:+

−

⊟

−:+

−

Figure 3: A non-deterministic transducer which

recognizes a fragment of SG harmony.

To illustrate, consider x = +−. Since SG(+−
X∗) includes elements +++ and +−⊟ (mapped

from e.g. + − − and + − ⊟, resp.), it fol-

lows that lcp(SG(+ − X∗)) = +. Therefore,

(−,++) ∈ TLSG(+−). Observe that (−,+n) 6∈
TLSG(+−) for all n 6= 2 since SG is length-

preserving.

More generally it is the case that (−,+n+1) ∈
TLSG(+−n) and (−,+m) 6∈ TLSG(+−n) for all

m 6= n + 1. Therefore there are infinitely many

distinct sets of tails for functions conforming to

(8), and thus no SG pattern is subsequential.

A similar argument (omitted) establishes that

any SG pattern is not right subsequential. ���

Consequently, the subsequential boundary sepa-

rates SG and MR from PH and RH.

6 The weakly deterministic boundary

As mentioned earlier, the dominant/recessive and

stem-control theories of vowel harmony reject the

directionality generalizations inherent in the PH

and RH mappings. If these theories are correct,

then it is important to see what boundary (if any)

separates MR and SG from vowel harmony pat-

terns described with dominant/recessive and stem-

control based generalizations. We show that the

mappings these theories posit are, like SG, not

subsequential. However, we believe there is an

interesting complexity difference between SG on

the one hand and DR and SC on the other. In par-

ticular, we show that DR and SC are weakly de-

terministic. We conjecture that SG is not weakly

deterministic and provide the intuition behind this

conjecture, though its proof currently escapes us.

A dominant/recessive analysis of vowel har-

mony says if the word contains the dominant value

of the harmonizing feature, then other vowels in

the word take on the dominant value for this fea-

ture. For example, if the [+] value for harmoniz-

ing feature F is the dominant one and an under-
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lying representation contains a vowel specified as

+F, then all other non-neutral vowels in the word

will be realized as +F as well.

Therefore, we can define a function as dom-

inant/recessive as any length-preserving function

which includes the following mappings:

∀w ∈ {+,−}∗,

DR(w) =

{

+|w| if (∃ 0 ≤ i ≤ |w|)[wi = +]

−|w| otherwise

(9)

The next two theorems establish that DR har-

mony is properly weakly deterministic.

Theorem 6 DR is neither left nor right subse-

quential.

Proof The proof is similar to the one for SG. We

show that, for all distinct n,m ∈ N, the tails of−n

is not the same as the tails of −m.

Consider first x = −−. To find its tails we must

know lcp(DR(− − X∗)). Since DR(− − X∗)
includes elements − − − and + + + (mapped

from e.g. − − − and − − +, resp.), it fol-

lows that lcp(DR(+ − X∗)) = λ. Therefore,

(−,− − −) ∈ TLDR(−−). Observe that for all

n 6= 2, it is the case that (−,+n) 6∈ TLDR(−−)
since DR is length-preserving.

Next consider x = − − −. To find its tails we

must know lcp(DR(−−−X∗)). DR(−−−X∗)
includes elements −−−− and + + ++ (mapped

from e.g. − − −− and − − −+, resp.), and

so again the longest common prefix is λ. There-

fore, (−,+ + ++) belongs to TLDR(−−−) and

(−,+n) 6∈ TLDR(+−) for all n 6= 3 since DR
preserves string lengths.

More generally for all distinct n,m ∈ N it

is the case that (−,+n+1) ∈ TLDR(−n) and

(−,+m) 6∈ TLDR(+−n) for all m 6= n + 1.

Therefore there are infinitely many distinct sets of

tails for functions conforming to (9), and thus no

DR pattern is subsequential.

A similar argument (omitted) establishes that

any DR pattern is not right subsequential. ���

On the other hand, DR is weakly determinis-

tic. We establish this for the case when the al-

phabet contains only {+,−}. In fact, DR is sim-

ply the composition of progressive harmony and

regressive harmony where only the dominant fea-

ture value spreads. Figure 4 shows a subsequen-

tial transducer TPHP describing a progressive har-

mony function where only [+] spreads. Observe

0,λ

1,λ

2,λ

−

+

+

C −

+, − :+

Figure 4: The subsequential transducer TPHP

which recognizes iterative, progressive harmony

where only the + value spreads.

that the transducer in Figure 4 is nearly identical

to TPH in Figure 2 without the opaque vowels and

the C symbol. The important difference is that in

Figure 2 there is a transition from state 1 to itself

which reads a [+] input and outputs a [−], but in

Figure 4, the transducer in state 1, upon reading

input [+] transitions to state 2 and writes out [+].
Let PHP denote the function TPHP computes.

Theorem 7 DR is weakly deterministic.

Proof We show that for all w ∈ {+,−}∗,

DR(w) =
←−−−
TPHP ◦

−−−→
TPHP (w).

Case 1. There exists 0 ≤ i ≤ |w| such that wi =
+. Then DR(w) = +|w|. It follows from the

definition of PHP that for all j ≥ i, wj =
+. Letting u = PHP (w)r , it follows that

u1 = +. Thus PHP (u) = +|w|. The reverse

of +|w| is clearly itself. Therefore, PHP r ◦
PHP (w) = +|w|.

Case 2. Case 1 does not hold. Then DR(w) =
−|w|. By definition, PHP (w) = −|w|.

Clearly then PHP r ◦ PHP (w) = −|w|.

Since DR =
←−−−
TPHP ◦

−−−→
TPHP , since

−−−→
TPHP and

←−−−
TPHP are alphabet-preserving, and since

−−−→
TPHP is

not length-increasing, the theorem is proved. ���

While, the proof of theorem 7 is limited to words

in {+,−}∗, we believe the extension to words in

{+,−, C,⊟,⊞}∗ is only challenging technically,

and not conceptually. For example, the definition

of DR harmony above in Equation 9 should be

more articulated so that, for instance, DR(−−⊟−
−+−−⊟−−) = −−⊟ + + + + + ⊟−−.

Stem-controlled analyses are similar to

dominant/recessive theories. Unlike domi-

nant/recessive theories, however, the vowels

which trigger harmony are the ones which belong

to the morphological stem. Table 4 illustrates

with stem boundaries indicated with #. What
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w SC(w)

a. +#−#− −−−
b. −# + #+ + + +
c. −#−#− −−−
d. −# + #− + + +

Table 4: Example mappings of underlying forms

(w) with three vowels given stem control theories

of vowel harmony. In each example, the middle

vowel is the only vowel in the stem.

happens when there is more than one stem vowel?

The stem precedence generalization (Baković,

2003) states that “an alternating affix vowel

always agrees with the adjacent vowel in the

stem to which the affix is attached.” Therefore

stem vowels themselves are not targets of the

harmony process. Consequently, underlying

/ − −# + − + −# + +/ would surface as

[+ + # +−+−#−−].
Since every underlying form is assumed

to contain a stem, the domain of SC har-

mony is X∗#X+#X∗. Then ∀w#u#v ∈
X∗#X+#X∗, it is the case that

SC(w) =














+|w|#u# +|v| if u1 = + ∧ u|u| = +

+|w|#u#−|v| if u1 = + ∧ u|u| = −

−|w|#u# +|v| if u1 = − ∧ u|u| = +

−|w|#u#−|v| if u1 = − ∧ u|u| = −
(10)

The analysis of SC is the same as DR; and so

the proofs are omitted.

Theorem 8 SC is neither left nor right subsequen-

tial.

Theorem 9 SC is weakly deterministic.

We believe there is a difference between DR

and SG: we conjecture that SG is not weakly de-

terministic. To get an intuition why, consider

the two subsequential transducers A and B in

Figure 5. Limiting our attention to the domain

{+−n}∪{+−n
⊟}∪{λ}, the composition

←−
B ◦
−→
A

equals SG. This is possible because these func-

tions make use of an additional symbol [ ?−], indi-

cating a minus value whose left context matches

the environment to become [+].

Table 5 illustrates the role the additional symbol

plays in the derivation. We are doubtful that it is

possible to decompose SG into a left and right de-

terministic function where the left function is pro-

0,λ 1,λ 2,λ
+ ⊟

−: ?−
A

0,λ

1,+

2,+

⊟

?− :+

?− :−

?− :+

B

Figure 5: Two subsequential transducers such that
←−
B ◦

−→
A = SG. The symbol [ ?−] indicates a

[−] which would undergo harmony provided no

opaque vowel occurs downstream.

w +−−−⊟ +−−−
−→
A (w) + ?− ?− ?−⊟ + ?− ?− ?−

←−
B ◦
−→
A (w) +−−−⊟ + + ++

Table 5: Illustrations of the role of [ ?−] in the de-

terministic decomposition of SG=
←−
B ◦
−→
A .

hibited from marking up its output in any way (ei-

ther with extra symbols or with a length-increasing

coding trick).

7 Conclusion

The first suggestion that phonological processes

have a tighter computational bound than “being

regular” may come from (Mohri, 1997), buried on

page 279. He writes without elaboration or cita-

tion “Most phonological and morphological rules

correspond to p-subsequential relations.” This

study suggests that Mohri’s assessment is largely

correct, though the complete picture is more com-

plicated than Mohri’s offhand comment indicates.

The more complicated picture with respect

to vowel harmony is expressed in Figure 6,

which summarizes this paper’s contributions.

Traditional directional theories of vowel har-

mony express simpler generalizations than

dominant/recessive/stem-control theories. It is

our opinion that future work will likely show

that even the weakly deterministic boundary

surely separates the pathological patterns from the

attested ones.
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Non-regular Regular

Weakly deterministic

Left
Subsequential

Right
Subsequential

× PH × RH

× DR

× SC

× SG

× MR

??

Figure 6: Hierarchies of transductions with the results of this paper shown. PH=progressive harmony,

RH=regressive harmony, DR=dominant/recessive harmony, SC=stem control harmony, SG=sour grapes

harmony, and MR=majority rules harmony.

Although the harmony patterns in this paper are

all describable with same-length relations, we de-

liberately chose not to focus on the special prop-

erties same-length relations engender. This is

largely because there are phonological processes

such as epenthesis and deletion which are not

same-length, and we would like our conclusions

to hold for all phonological patterns. Nonetheless,

future work which explores the same-lengthness

aspect may lead to some interesting insights. One

reviewer of this paper conjectured, for example,

that if the same-length relations were coded as lan-

guages that they would then be k-reversible (An-

gluin, 1982).

With respect to learnability, total subsequential

functions are identifiable in the limit from posi-

tive data (Oncina et al., 1993), though this algo-

rithm appears to require data points unavailable

in natural language corpora (Gildea and Jurafsky,

1996). Investigating subclasses of subsequential

functions which cover attested phonological pat-

terns may thus not only better characterize possi-

ble phonologies, but may also provide insights for

learning (Chandlee and Koirala, 2013).

Finally, we believe Elgot and Mezei’s theorem

can shed new light on the old problem of abstract-

ness in phonology (Hyman, 1970), and suspect a

hierarchy of complexity depending on how much

markup (either new symbols or with a length-

increasing function) needs to be introduced in the

intermediate alphabet to order to decompose a reg-

ular function into left and right subsequential ones.

Computational work whose results should be more

carefully investigated with this in mind include

Kempe (2000) and Crespi Reghizzi and San Pietro

(2012).
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Abstract

This paper shows how factored finite-

state representations of subregular lan-

guage classes are identifiable in the limit

from positive data by learners which are

polytime iterative and optimal. These rep-

resentations are motivated in two ways.

First, the size of this representation for

a given regular language can be expo-

nentially smaller than the size of the

minimal deterministic acceptor recogniz-

ing the language. Second, these rep-

resentations (including the exponentially

smaller ones) describe actual formal lan-

guages which successfully model natural

language phenomenon, notably in the sub-

field of phonology.

1 Introduction

In this paper we show how to define certain sub-

regular classes of languages which are identifiable

in the limit from positive data (ILPD) by efficient,

well-behaved learners with a lattice-structured hy-

pothesis space (Heinz et al., 2012). It is shown

that every finite set of DFAs defines such an ILPD

class. In this case, each DFA can be viewed as

one factor in the description of every language in

the class. This factoring of language classes into

multiple DFA can provide a compact, canonical

representation of the grammars for every language

in the class. Additionally, many subregular classes

of languages can be learned by the above methods

including the Locally k-Testable, Strictly k-Local,

Piecewise k-Testable, and Strictly k-Piecewise

languages (McNaughton and Papert, 1971; Rogers

and Pullum, 2011; Rogers et al., 2010). From a

linguistic (and cognitive) perspective, these sub-

regular classes are interesting because they appear

to be sufficient for modeling phonotactic patterns

in human language (Heinz, 2010; Heinz et al.,

2011; Rogers et al., to appear).

2 Preliminaries

For any function f and element a in the domain of

f , we write f(a)↓ if f(a) is defined, f(a)↓= x if

it is defined for a and its value is x, and f(a) ↑
otherwise. The range of f , the set of values f

takes at elements for which it is defined, is denoted

range(f).

Σ∗ and Σk denote all sequences of any finite

length, and of length k, over a finite alphabet Σ.

The empty string is denoted λ. A language L is a

subset of Σ∗.

For all x, y belonging to a partially-ordered set

(S,≤), if x ≤ z and y ≤ z then z is an upper

bound of x and y. For all x, y ∈ S, the least upper

bound (lub) x⊔ y = z iff x ≤ z, y ≤ z, and for all

z′ which upper bound x and y, it is the case that

z ≤ z′. An upper semi-lattice is a partially ordered

set (S,≤) such that every subset of S has a lub. If

S is finite, this is equivalent to the existence of

x ⊔ y for all x, y ∈ S.

A deterministic finite-state automaton (DFA) is

a tuple (Q,Σ, Q0, F, δ). The states of the DFA are

Q; the input alphabet is Σ; the set of initial states

is Q0; the final states are F ; and δ : Q× Σ → Q

is the transition function.

We admit a set of initial states solely to accom-

modate the empty DFA, which has none. Deter-

ministic automata never have more than one ini-

tial state. We will assume that, if the automaton is

non-empty, then Q0 = {q0};

The transition function’s domain is extended to

Q× Σ∗ in the usual way.

The language of a DFA A is

L(A)
def
= {w ∈ Σ∗ | δ(q0, w)↓∈ F}.

A DFA is trim iff it has no useless states:

(∀q ∈ Q)[ ∃w, v ∈ Σ∗ |
δ(q0, w)↓= q and δ(q, v)↓∈ F ].
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Every DFA can be trimmed by eliminating useless

states from Q and restricting the remaining com-

ponents accordingly.

The empty DFA isA∅ = (∅,Σ,∅,∅,∅). This

is the minimal trim DFA such that L(A∅) = ∅.

The DFA product of A1 = (Q1,Σ, Q01, F1, δ1)
and A2 = (Q2,Σ, Q02, F2, δ2) is

⊗(A1,A2) = (Q,Σ, Q0, F, δ)

where Q = Q1 × Q2, Q0 = Q01 × Q02,

F = F1 × F2 and

(∀q ∈ Q)(∀σ ∈ Σ)
[

δ
(

(q1, q2), σ
) def

= (δ1(q1, σ), δ2(q2, σ))
]

The DFA product of two DFA is also a DFA. It

is not necessarily trim, but we will generally as-

sume that in taking the product the result has been

trimmed, as well.

The product operation is associative and com-

mutative (up to isomorphism), and so it can be ap-

plied to a finite set S of DFA, in which case we

write
⊗

S =
⊗

A∈S A (letting
⊗

{A} = A). In

this paper, grammars are finite sequences of DFAs
~A = 〈A1 · · · An〉 and we also use the

⊗

nota-

tion for the product of a finite sequence of DFAs:
⊗

~A
def
=

⊗

A∈ ~A
A and L( ~A)

def
= L

(
⊗

~A
)

. Se-

quences are used instead of sets in order to match

factors in two grammars. Let DFA denote the

collection of finite sequences of DFAs.

Theorem 1 is well-known.

Theorem 1 Consider a finite set S of DFA. Then

L
(
⊗

A∈S A
)

=
⋂

A∈S L(A).

An important consequence of Theorem 1 is that

some languages are exponentially more com-

pactly represented by their factors. The grammar
~A = 〈A1 · · · An〉 has

∑

1≤i≤n card(Qi) states,

whereas the trimmed
⊗

~A can have as many as
∏

1≤i≤n card(Qi) ∈ Θ(max1≤i≤n(card(Qi))
n)

states. An example of such a language is given

in Section 4, Figures 1 and 2.

2.1 Identification in the limit

A positive text T for a language L is a total

function T : N → L ∪ {#} (# is a ‘pause’)

such that range(T ) = L (i.e., for every w ∈ L

there is at least one n ∈ N for which w =
T (n)). Let T [i] denote the initial finite sequence

T (0), T (1) . . . T (i − 1). Let SEQ denote the set

of all finite initial portions of all positive texts for

all possible languages. The content of an element

T [i] of SEQ is

content(T [i])
def
=

{w ∈ Σ∗ | (∃j ≤ i− 1)[T (j) = w]}.

In this paper, learning algorithms are programs:

φ : SEQ → DFA. A learner φ identifies in the

limit from positive texts a collection of languages

L if and only if for all L ∈ L, for all positive texts

T for L, there exists an n ∈ N such that

(∀m ≥ n)[φ(T [m]) = φ(T [n])] and L(T [n]) = L

(see Gold (1967) and Jain et al. (1999)). A class of

languages is ILPD iff it is identifiable in the limit

by such a learner.

3 Classes of factorable-DFA languages

In this section, classes of factorable-DFA lan-

guages are introduced. The notion of sub-DFA is

central to this concept. Pictorially, a sub-DFA is

obtained from a DFA by removing zero or more

states, transitions, and/or revoking the final status

of zero or more final states.

Definition 1 For any DFA A = (Q,Σ, Q0, F, δ),
a DFA A′ = (Q′,Σ′, Q′

0, F
′, δ′) is sub-DFA of A,

written A′ ⊑ A, if and only if Q′ ⊆ Q, Σ ⊆ Σ′,

Q′
0 ⊆ Q0, F ′ ⊆ F , δ′ ⊆ δ.

The sub-DFA relation is extended to grammars

(sequences of DFA). Let ~A = 〈A1 · · · An〉 and
~A′ = 〈A′

1 · · · A
′
n〉.

Then ~A′ ⊑ ~A ⇔ (∀0 ≤ i ≤ n)[A′
i ⊑ Ai].

Clearly, if A′ ⊑ A then L(A′) ⊆ L(A).
Every grammar ~A determines a class of lan-

guages: those recognized by a sub-grammar of ~A.

Our interest is not in L( ~A), itself. Indeed, this will

generally be Σ∗. Rather, our interest is in identi-

fying languages relative to the class of languages

recognizable by sub-grammars of ~A.

Definition 2 Let G( ~A)
def
= {~B | ~B ⊑ ~A}, the class

of grammars that are sub-grammars of ~A.

Let L( ~A)
def
= {L( ~B) | ~B ⊑ ~A}, the class of lan-

guages recognized by sub-grammars of ~A.

A class of languages is a factorable-DFA class

iff it is L( ~A) for some ~A.

The set G( ~A) is necessarily finite, since ~A is, so

every class L( ~A) is trivially ILPD by a learning

algorithm that systematically rules out grammars

that are incompatible with the text, but this naı̈ve

algorithm is prohibitively inefficient. Our goal is
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to establish that the efficient general learning algo-

rithm given by Heinz et al. (2012) can be applied

to every class of factorable-DFA languages, and

that this class includes many of the well-known

sub-regular language classes as well as classes that

are, in a particular sense, mixtures of these.

4 A motivating example

This section describes the Strictly 2-Piecewise lan-

guages, which motivate the factorization that is

at the heart of this analysis. Strictly Piecewise

(SP) languages are characterized in Rogers et al.

(2010) and are a special subclass of the Piecewise

Testable languages (Simon, 1975).

Every SP language is the intersection of a finite

set of complements of principal shuffle ideals:

L ∈ SP
def
⇐⇒ L =

⋂

w∈S

[SI(w)], S finite

where

SI(w)
def
= {v ∈ Σ∗ | w = σ1 · · · σk and

(∃v0, . . . , vk ∈ Σ∗)[v = v0 · σ1 · v1 · · · σk · vk]}

So v ∈ SI(w) iff w occurs as a subsequence of v

and L ∈ SP iff there is a finite set of strings for

which L includes all and only those strings that

do not include those strings as subsequences. We

say that L is generated by S. It turns out that SP is

exactly the class of languages that are closed under

subsequence.

A language is SPk iff it is generated by a set of

strings each of which is of length less than or equal

to k. Clearly, every SP language is SPk for some

k and SP =
⋃

1≤k∈N[SPk].

If w ∈ Σ∗ and |w| = k, then SI(w) = L(Aw)
for a DFA Aw with no more than k states. For

example, if k = 2 and Σ = {a, b, c} and, hence,

w ∈ {a, b, c}2
, then the minimal trim DFA recog-

nizing SI(w) will be a sub-DFA (in which one of

the transitions from the σ1 state has been removed)

of one of the three DFA of Figure 1.

Figure 1 shows ~A = 〈Aa, Ab, Ac〉, where Σ =
{a, b, c} and each Aσ is a DFA accepting Σ∗

whose states distinguish whether σ has yet oc-

curred. Figure 2 shows
⊗

~A.

Note that every SP2 language over {a, b, c} is

L( ~B) for some ~B ⊑ ~A. The class of grammars

of G( ~A) recognize a slight extension of SP2 over

{a, b, c} (which includes 1-Reverse Definite lan-

guages as well).

Observe that 6 states are required to describe ~A
but 8 states are required to describe

⊗

~A. Let ~AΣ

be the sequence of DFA with one DFA for each

letter in Σ, as in Figure 1. As card(Σ) increases

the number of states of ~AΣ is 2 × card(Σ) but

the number of states in
⊗

~AΣ is 2card(Σ). The

number of states in the product, in this case, is ex-

ponential in the number of its factors.

The Strictly 2-Piecewise languages are cur-

rently the strongest computational characteriza-

tion1 of long-distance phonotactic patterns in hu-

man languages (Heinz, 2010). The size of the

phonemic inventories2 in the world’s languages

ranges from 11 to 140 (Maddieson, 1984). English

has about 40, depending on the dialect. With an al-

phabet of that size ~AΣ would have 80 states, while
⊗

~AΣ would have 240 ≈ 1 × 1012 states. The

fact that there are about 1011 neurons in human

brains (Williams and Herrup, 1988) helps moti-

vate interest in the more compact, parallel repre-

sentation given by ~AΣ as opposed to the singular

representation of the DFA
⊗

~AΣ.

5 Learning factorable classes of

languages

In this section, classes of factorable-DFA lan-

guages are shown to be analyzable as finite lattice

spaces. By Theorem 6 of Heinz et al. (2012), ev-

ery such class of languages can be identified in the

limit from positive texts.

Definition 3 (Joins) Let

A = (Q,Σ, Q0, F, δ),
A1 = (Q1,Σ, Q01, F1, δ1) ⊑ A

and

A2 = (Q2,Σ, Q02, F2, δ2) ⊑ A.

The join of A1 and A2 is

A1⊔A2
def
= (Q1∪Q2,Σ, Q01∪Q02, F1∪F2, δ1∪δ2).

Similarly, for all ~A = 〈A1 · · · An〉 and ~B =
〈B1 · · · Bn〉 ⊑ ~A, ~C2 = 〈C1 · · · Cn〉 ⊑ ~A, the join

of and ~B and ~C is ~B ⊔ ~C
def
= 〈B1 ⊔ C1 · · · Bn ⊔ Cn〉.

Note that the join of two sub-DFA of A is also a

sub-DFA of A. Since G( ~A) is finite, binary join

suffices to define join of any set of sub-DFA of a

given DFA (as iterated binary joins). Let
⊔

[S] be

the join of S, a set of sub-DFAs of some A (or ~A).

1See Heinz et al. (2011) for competing characterizations.
2The mental representations of speech sounds are called

phonemes, and the phonemic inventory is the set of these rep-
resentations (Hayes, 2009).
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Figure 1: The sequence of DFA ~A = 〈Aa, Ab, Ac〉, where Σ = {a, b, c} and each Aσ accepts Σ∗ and

whose states distinguish whether σ has yet occurred.
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Figure 2: The product
⊗

〈Aa, Ab, Ac〉.
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Lemma 1 The set of sub-DFA of a DFA A, or-

dered by ⊑, ({B | B ⊑ A},⊑), is an upper semi-

lattice with the least upper bound of a set of S sub-

DFA of A being their join.

Similarly the set of sub-grammars of a grammar
~A, ordered again by⊑, ({~B ⊑ ~A},⊑), is an upper

semi-lattice with the least upper bound of a set of

sub-grammars of ~A being their join.3

This follows from the fact that Q1 ∪Q2 (similarly

F1 ∪F2 and δ1 ∪ δ2) is the lub of Q1 and Q2 (etc.)

in the lattice of sets ordered by subset.

5.1 Paths and Chisels

Definition 4 LetA = (Q,Σ, {q0}, F, δ) be a non-

empty DFA and w = σ0σ1 · · · σn ∈ Σ∗.

If δ(q0, w)↓, the path of w in A is the sequence

π(A, w)
def
=

〈

(q0, σ0), . . . , (qn, σn), (qn+1, λ)
〉

where (∀0 ≤ i ≤ n)[qi+1 = δ(qi, σi)].

If δ(q0, w)↑ then π(A, w)↑.

If π(A, w)↓, let Qπ(A,w) denote set of states it

traverses, δπ(A,w) denote the the transitions it tra-

verses, and let Fπ(A,w) = {qn+1}.

Next, for any DFA A, and any w ∈ L(A), we

define the chisel of w given A to be the sub-DFA

of A that exactly encompasses the path etched out

in A by w.

Definition 5 For any non-empty DFA A =
(Q,Σ, {q0}, F, δ) and all w ∈ Σ∗, if w ∈ L(A),
then the chisel of w given A is the sub-DFA

CA(w) = (Qπ(A,w),Σ, {q0}, Fπ(A,w), δπ(A,w)).

If w 6∈ L(A), then CA(w) = A∅.

Consider any ~A = 〈A1 · · · An〉 and any word

w ∈ Σ∗. The chisel of w given ~A is C ~A
(w) =

〈CA1
(w) · · ·CAn

(w)〉.

Observe that CA(w) ⊑ A for all words w and all

A, and that CA(w) is trim.

Using the join, the domain of the chisel is ex-

tended to sets of words: C ~A
(S) =

⊔

w∈S C ~A
(w).

Note that {C ~A
(w) | w ∈ Σ∗} is finite, since

{~B | ~B ⊑ ~A} is.

Theorem 2 For any grammar ~A, let C( ~A) =
{C ~A

(S) | S ⊆ Σ∗}. Then (C( ~A),⊑) is an up-

per semi-lattice with the lub of two elements given

by the join ⊔.

3These are actually complete finite lattices, but we are in-
terested primarily in the joins.

Proof This follows immediately from the finite-

ness of {C ~A
(w) | w ∈ Σ∗} and Lemma 1. ���

Lemma 2 For all A = (Q,Σ, Q0, F, δ), there is

a finite set S ⊂ Σ∗ such that
⊔

w∈S CA(w) = A.

Similarly, for all ~A = 〈A1 · · · An〉, there is a finite

set S ⊂ Σ∗ such that C ~A
(S) = ~A.

Proof If A is empty, then clearly S = ∅ suffices.

Henceforth consider only nonempty A.

For the first statement, let S be the set of uσv

where, for each q ∈ Q and for each σ ∈ Σ,

δ(q0, u) ↓= q and δ(δ(q, σ), v) ↓∈ F such that

uσv has minimal length. By construction, S is fi-

nite. Furthermore, for every state and every transi-

tion in A, there is a word in S whose path touches

that state and transition. By definition of ⊔ it fol-

lows that CA(S) = A.

For proof of the second statement, for each Ai

in ~A, construct Si as stated and take their union. ���

Heinz et al. (2012) define lattice spaces. For an

upper semi-lattice V and a function f : Σ∗ → V

such that f and ⊔ are (total) computable, (V, f) is

called a Lattice Space (LS) iff, for each v ∈ V ,

there exists a finite D ⊆ range(f) with
⊔

D = v.

Theorem 3 For all grammars ~A = 〈A1 · · · An〉,
(C( ~A), C ~A

) is a lattice space.

Proof For all ~A′ ∈ C( ~A), by Lemma 2, there is a

finite S ⊆ Σ∗ such that
⊔

w∈S C ~A
(w) = ~A′. ���

For Heinz et al. (2012), elements of the lat-

tice are grammars. Likewise, here, each grammar
~A = 〈A1 · · · An〉 defines a lattice whose elements

are its sub-grammars. Heinz et al. (2012) associate

the languages of a grammar v in a lattice space

(V, f) with {w ∈ Σ∗ | f(w) ⊑ v}. This definition

coincides with ours: for any element ~A′ of C( ~A)
(note ~A′ ⊑ ~A), a word w belongs to L( ~A′) if and

only if C ~A
(w) is a sub-DFA of ~A′. The class of

languages of a LS is the collection of languages

obtained by every element in the lattice. For ev-

ery LS (C( ~A), C ~A
), we now define a learner φ ac-

cording to the construction in Heinz et al. (2012):

∀T ∈ SEQ, φ(T ) =
⊔

w∈content(T ) C ~A
(w).

Let L(C( ~A),C ~A
) denote the class of languages

associated with the LS in Theorem 3. Accord-

ing to Heinz et al. (2012, Theorem 6), the learner

φ identifies L(C( ~A),CvA) in the limit from posi-

tive data. Furthermore, φ is polytime iterative,
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i.e can compute the next hypothesis in polytime

from the previous hypothesis alone, and opti-

mal in the sense that no other learner converges

more quickly on languages in L
(C( ~A),CG)

. In ad-

dition, this learner is globally-consistent (every

hypothesis covers the data seen so far), locally-

conservative (the hypothesis never changes unless

the current datum is not consistent with the cur-

rent hypothesis), strongly-monotone (the current

hypothesis is a superset of all prior hypotheses),

and prudent (it never hypothesizes a language that

is not in the target class). Formal definitions of

these terms are given in Heinz et al. (2012) and can

also be found elsewhere, e.g. Jain et al. (1999).

6 Complexity considerations

The space of sub-grammars of a given sequence of

DFAs is necessarily finite and, thus, identifiable in

the limit from positive data by a naı̈ve learner that

simply enumerates the space of grammars. The

lattice learning algorithm has better efficiency be-

cause it works bottom-up, extending the grammar

minimally, at each step, with the chisel of the cur-

rent string of the text. The lattice learner never

explores any part of the space of grammars that

is not a sub-grammar of the correct one and, as it

never moves down in the lattice, it will skip much

of the space of grammars that are sub-grammars of

the correct one. The space it explores will be mini-

mal, given the text it is running on. Generalization

is a result of the fact that in extending the gram-

mar for a string the learner adds its entire Nerode

equivalence class to the language.

The time complexity of either learning or recog-

nition with the factored automata may actually be

somewhat worse than the complexity of doing so

with its product. Computing the chisel of a string

w in the product machine of Figure 2 is Θ(|w|),
while in the factored machine of Figure 1 one must

compute the chisel in each factor and its complex-

ity is, thus, Θ(|w| card(Σ)k−1). But Σ and k are

fixed for a given factorization, so this works out to

be a constant factor.

Where the factorization makes a substantial dif-

ference is in the number of features that must

be learned. In the factored grammar of the

example, the total number of states plus edges

is Θ(kcard(Σ)k−1), while in its product it is

Θ(2(card(Σ)k−1)). This represents an exponential

improvement in the space complexity of the fac-

tored grammar.

Every DFA can be factored in many ways, but

the factorizations do not necessarily provide an

asymptotically significant improvement in space

complexity. The canonical contrast is between

sequences of automata 〈A1, . . . ,An〉 that count

modulo some sequence of mi ∈ N. If the

mi are pairwise prime, the product will require
∏

1≤i≤n[mi] = Θ((maxi[mi])
n) states. If on the

other hand, they are all multiples of each other it

will require just Θ(maxi[mi]).

7 Examples

The fact that the class of SP2 languages is effi-

ciently identifiable in the limit from positive data

is neither surprising or new. The obvious ap-

proach to learning these languages simply accu-

mulates the set of pairs of symbols that occur as

subsequences of the strings in the text and builds a

machine that accepts all and only those strings in

which no other such pairs occur. This, in fact, is

essentially what the lattice learner is doing.

What is significant is that the lattice learner pro-

vides a general approach to learning any language

class that can be captured by a factored grammar

and, more importantly, any class of languages that

are intersections of languages that are in classes

that can be captured this way.

Factored grammars in which each factor recog-

nizes Σ∗, as in the case of Figure 1, are of par-

ticular interest. Every sub-Star-Free class of lan-

guages in which the parameters of the class (k, for

example) are fixed can be factored in this way.4 If

the parameters are not fixed and the class of lan-

guages is not finite, none of these classes can be

identified in the limit from positive data at all.5 So

this approach is potentially useful at least for all

sub-Star-Free classes. The learners for non-strict

classes are practical, however, only for small val-

ues of the parameters. So that leaves the Strictly

Local SLk and Strictly Piecewise SPk languages

as the obvious targets.

The SLk languages are those that are deter-

mined by the substrings of length no greater than

k that occur within the string (including endmark-

4We conjecture that there is a parameterized class of lan-
guages that is equivalent to the Star-Free languages, which
would make that class learnable in this way as well.

5For most of these classes, including the Definite,
Reverse-Definite and Strictly Local classes and their super
classes, this is immediate from the fact that they are super-
finite. SP, on the other hand, is not super-finite (since it
does not include all finite languages) but nevertheless, it is
not IPLD.
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ers). These can be factored on the basis of those

substrings, just as the SPk languages can, although

the construction is somewhat more complex. (See

the Knuth-Morris-Pratt algorithm (Knuth et al.,

1977) for a way of doing this.) But SLk is a case in

which there is no complexity advantage in factor-

ing the DFA. This is because every SLk language

is recognized by a DFA that is a Myhill graph:

with a state for each string of Σ<k (i.e., of length

less than k). Such a graph has Θ(card(Σ)k−1)
states, asymptotically the same as the number of

states in the factored grammar, which is actually

marginally worse.

Therefore, factored SLk grammars are not, in

themselves, interesting. But they are interesting as

factors of other grammars. Let (SL + SP)k,l (resp.

(LT + SP)k,l, (SL + PT)k,l) be the class of lan-

guages that are intersections of SLk and SPl (resp.

LTk and SPl, SLk and PTl) languages. Where

LT (PT) languages are determined by the set of

substrings (subsequences) that occur in the string

(see Rogers and Pullum (2011) and Rogers et al.

(2010)).

These classes capture co-occurrence of lo-

cal constraints (based on adjacency) and long-

distance constraints (based on precedence). These

are of particular interest in phonotactics, as they

are linguistically well-motivated approaches to

modeling phonotactics and they are sufficiently

powerful to model most phonotactic patterns. The

results of Heinz (2007) and Heinz (2010) strongly

suggest that nearly all segmental patterns are

(SL + SP)k,l for small k and l. Moreover, roughly

72% of the stress patterns that are included in

Heinz’s database (Heinz, 2009; Phonology Lab,

2012) of patterns that have been attested in nat-

ural language can be modeled with SLk grammars

with k ≤ 6. Of the rest, all but four are LT1 + SP4

and all but two are LT2 + SP4. Both of these last

two are properly regular (Wibel et al., in prep).

8 Conclusion

We have shown how subregular classes of lan-

guages can be learned over factored representa-

tions, which can be exponentially more compact

than representations with a single DFA. Essen-

tially, words in the data presentation are passed

through each factor, “activating” the parts touched.

This approach immediately allows one to natu-

rally “mix” well-characterized learnable subreg-

ular classes in such a way that the resulting lan-

guage class is also learnable. While this mixing is

partly motivated by the different kinds of phono-

tactic patterns in natural language, it also suggests

a very interesting theoretical possibility. Specifi-

cally, we anticipate that the right parameterization

of these well-studied subregular classes will cover

the class of star-free languages. Future work could

also include extending the current analysis to fac-

toring stochastic languages, perhaps in a way that

connects with earlier research on factored HMMs

(Ghahramani and Jordan, 1997).

Acknowledgments

This paper has benefited from the insightful com-

ments of three anonymous reviewers, for which

the authors are grateful. The authors also thank

Jie Fu and Herbert G. Tanner for useful discus-

sion. This research was supported by NSF grant

1035577 to the first author, and the work was com-

pleted while the second author was on sabbatical at

the Department of Linguistics and Cognitive Sci-

ence at the University of Delaware.

References

Zoubin Ghahramani and Michael I. Jordan. 1997. Fac-
torial hidden markov models. Machine Learning,
29(2):245–273.

E.M. Gold. 1967. Language identification in the limit.
Information and Control, 10:447–474.

Bruce Hayes. 2009. Introductory Phonology. Wiley-
Blackwell.

Jeffrey Heinz, Chetan Rawal, and Herbert G. Tan-
ner. 2011. Tier-based strictly local constraints for
phonology. In Proceedings of the 49th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 58–64, Portland, Oregon, USA, June. As-
sociation for Computational Linguistics.

Jeffrey Heinz, Anna Kasprzik, and Timo Kötzing.
2012. Learning with lattice-structured hypothesis
spaces. Theoretical Computer Science, 457:111–
127, October.

Jeffrey Heinz. 2007. The Inductive Learning of
Phonotactic Patterns. Ph.D. thesis, University of
California, Los Angeles.

Jeffrey Heinz. 2009. On the role of locality in learning
stress patterns. Phonology, 26(2):303–351.

Jeffrey Heinz. 2010. Learning long-distance phono-
tactics. Linguistic Inquiry, 41(4):623–661.

70



Sanjay Jain, Daniel Osherson, James S. Royer, and
Arun Sharma. 1999. Systems That Learn: An In-
troduction to Learning Theory (Learning, Develop-
ment and Conceptual Change). The MIT Press, 2nd
edition.

Donald Knuth, James H Morris, and Vaughn Pratt.
1977. Fast pattern matching in strings. SIAM Jour-
nal on Computing, 6(2):323–350.

Ian Maddieson. 1984. Patterns of Sounds. Cambridge
University Press, Cambridge, UK.

Robert McNaughton and Seymour Papert. 1971.
Counter-Free Automata. MIT Press.

UD Phonology Lab. 2012. UD phonology lab
stress pattern database. http://phonology.

cogsci.udel.edu/dbs/stress. Accessed
December 2012.

James Rogers and Geoffrey Pullum. 2011. Aural pat-
tern recognition experiments and the subregular hi-
erarchy. Journal of Logic, Language and Informa-
tion, 20:329–342.

James Rogers, Jeffrey Heinz, Gil Bailey, Matt Edlef-
sen, Molly Visscher, David Wellcome, and Sean
Wibel. 2010. On languages piecewise testable in the
strict sense. In Christian Ebert, Gerhard Jäger, and
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Abstract

We present Minimum Description Length
techniques for learning the structure of
weighted languages. MDL is already
widely used both for segmentation and
classification tasks, and here we show it
can be used to formalize further important
tools in the descriptive linguists’ toolbox,
including the distinction between acciden-
tal and systematic gaps in the data, the de-
tection of ambiguity, the selective discard-
ing of data, and the merging of categories.

Introduction

The Minimum Description Length (MDL, see Ris-
sanen 1978) framework is primarily about data
compression: if we are given some data D, our
goal is to find a modelM, and a correction term
E , such that the model output and the correction
term together describe the data, and transmitting
M and E takes fewer bits than transmitting any
competingM′ and E ′.

From the very beginning, starting with Pān. ini,
linguists have put a premium on brevity. The hope
is that the shortest theory is the best theory (see
Vitanyi and Li 2000), at least if we are willing
to posit a theory of Universal Grammar (UG) that
will let us specifyM briefly, since we can assume
UG to be amortized over many languages.

In this paper we study the problem of com-
pressing weighted languages by presenting them
via weighted finite state automata (WFSA). The
theoretical approach we discuss here has a long
history: the founding paper of Kolmogorov com-
plexity, Solomonoff (1964), already studied the
problem of inferring a grammar from data, and
Grünwald (1996) uses MDL to infer CFGs from
corpora, there conceived of as long strings over a
finite alphabet. It is fair to say that this theory has
not had much impact on computational practice,

where grammatical inference is dominated by the
standard n-gram based language modeling meth-
ods, see Jelinek (1997) for an excellent summary
of the basic ideas and techniques, most of which
are still in wide use.

While the two approaches may coincide in cer-
tain cases (see Grünwald 1996), and in theory n-
gram models are just a special case of the general
WFSA, in practice they are divided by a funda-
mental difference in modeling unseen data. From
an engineering standpoint, Church et al (2007) are
entirely right in saying:

No matter how much data we have, we
never have enough. Nothing has zero
probability.

Linguists, starting perhaps with Chomsky (1965),
draw a bright line between accidentally and sys-
tematically missing data, and would prefer to re-
strict backoff techniques to the accidental gaps.
The distinction is often lost in applied work, be-
cause the models need to be built in a noisy envi-
ronment, where frequent typos like *teh and simi-
lar performance errors can easily overwhelm gen-
uine items like boisterous or mopeds by an order
of magnitude or even more. In the eyes of many
linguists, this observation alone is sufficient to rob
probabilistic models of grammatical content, since
this makes it impossible to define a single thresh-
old g such that all and only strings with weight
greater than g are grammatical.

Aside from this subtle but important distinc-
tion between accidental and systematic gaps, both
kinds of language modeling can be cast in the
same formal terms: we fit a model M that min-
imizes some function E (typically, the squared
sum) of the error E . Obviously, the more pa-
rameters M has, the better fit we can obtain.
Much of contemporary computational linguistics
follows the route of training simple models such
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as Hidden Markov Models (HMMs) and proba-
bilistic context-free grammars (PCFGs) with very
many parameters, and stops adding more only
when compressing the memory footprint is of
paramount importance. As (Church et al., 2007)
notes, applications like the contextual speller of
Microsoft Office simply could not ship without
keeping the language model within reasonable
size limits. In such cases, we are quite willing to
trade in E for gains in the size M ofM, and con-
siderations of optimizing the sum of the two are
simply irrelevant.

In contrast, our strategy is to search for model
which measures both M and E in bits, and opti-
mizes the sum M + E, not because we put such
a premium on data compression, but rather be-
cause we follow in Pān. ini’s footsteps. Our goal is
finding structural models capable of distinguish-
ing structurally excluded (ungrammatical) strings
like furiously sleep ideas green colorless from low
probability but grammatical strings like colorless
green ideas sleep furiously (Pereira, 2000). For
this more ambitious goal comparing models with
different number of parameters is a key issue, and
this is precisely where MDL is helpful.

The rest of this Introduction provides the basic
definitions, notation, and terminology, all fairly
standard except for the use of Moore rather than
Mealy machines – the significance of this choice
will be discussed in Section 2. In Section 1
we bring a fundamental idea of signal process-
ing, quantization error, to bear on the problem
of model selection, illustrating the issue on a real
example, the proquant system of Hungarian. In
Section 2 we show how one of the most power-
ful tools at disposal of the linguist, ambiguity, can
be detected by MDL, bringing another standard
idea, signal to noise ratio to bear. In Section 3
we discuss another real example, Hungarian mor-
photactics, and show that two methods widely (but
shamefacedly) used in practice, discarding data
and merging descriptive categories, can be used
on a principled basis within MDL. Our goal is
to show that by consistent application of MDL
principles we can automatically set up the kind
of models that linguists would set up. Ultimately,
both man and machine work toward the same goal,
optimization of grammar elegance or, what is the
same, brevity.

Definition 1. Given some finite alphabet Σ, a
weighted language p over this alphabet is defined

as a mapping p : Σ∗ → R taking non-negative val-
ues such that

∑
α∈Σ∗ p(α) = 1. This is less gen-

eral than the standard notion of noncommutative
power series with weights taken in arbitrary semir-
ings (Eilenberg 1974, Salomaa 1978) but will suf-
fice here. The stringset {α|p(α) > 0} is called the
support of p and will be denoted by S(p).
Definition 2. Given two weighted languages
p and q, we say the Kullback-Leibler (KL)
approximation error Q of q relative to p is∑

α∈S(q) p(α) log(p(α)/q(α)). The entropy of p
is defined as −

∑
α∈S(p) p(α) log(p(α)).

Definition 3. A WFSAM is defined by a square
transition matrix M whose element mij give the
probability of transition from state i to state j, an
emission list h that gives a string hi ∈ Σ∗ for each
i 6= 0, and an acceptance vector ~awhose i-th com-
ponent is 1 if i is an accepting state and 0 other-
wise. There is a unique initial state which starts
the state numbering at 0, and we permit states with
empty outputs. Rows of M must sum to 1. Thus
we have defined WFSA as normalized probability-
weighted nondeterministic Moore machines.
Definition 4. The weight a WFSA assigns to a
generation path is the product of the weights on
the edges traversed, and the weight it assigns to a
string α is the sum of the weights assigned to all
paths that generate α.

1 Quantization error

The notions of quantization error and quantiza-
tion noise, while well known in the signal pro-
cessing literature (for a monographic treatment,
see Widrow and Kollár 2008), and widely used
in speech processing (Makhoul et al., 1985), have
had little impact on language processing. Yet
MDL description of even the simplest weighted
language brings up a significant problem that can-
not be addressed without approximation.

Let p be a non-computable real number between
0 and 1, and let us define the language A as con-
taining only two strings, a and b, with probability
p and 1 − p respectively. Since p is incompress-
ible, the only way Alice can send A to Bob is by
sending all bits of p. By Alice sending only the
first n bits, Bob obtains a language An that ap-
proximatesA with error of 2−n. Since sending the
strings {a, b} has only a small constant cost, the
overall MDL cost is dominated by the error term
E, which is just as incompressible as the original
p was.
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As long as the weights themselves are treated
as information objects of arbitrary capacity, there
is no way out of this conundrum (de Leeuw 1956).
On the other hand, the weighted languages we en-
counter in practice are generally abstracted from
gigaword or smaller corpora, and as such their in-
herent precision is less than 32 bits. For weighted
languages with finite support (corpora and lan-
guage models without smoothing) p is simply a
list containing strings and probabilities. The cost
of transmitting this list comes from two sources:
the cost of transmitting the probabilities, and the
cost of transmitting the strings. As a first approx-
imation, let us assume the two are independent, a
matter we shall return to in Section 2.

We begin by investigating the inherent
cost/error tradeoff of transmitting a discrete
probability distribution {pj |1 ≤ j ≤ k} by
uniform quantization to b bits. We divide the unit
interval in n = 2b equal parts. For our theorems
we will use a value b large enough so that we
have pj ≥ 2−(b−2) for all j, leaving at least the
first 4 bins empty. Usually 32 bits suffice for
this, and as we shall see shortly, often a lot fewer
are truly needed, though standard modeling tools
like SRILM often use 64-bit quantities. For each
probability, Alice sends b bits (the bin number).
Bob, who knows b, reconstructs a value based on
the center of the bin.

Since this process does not guarantee that the
reconstructed values sum to 1, Bob takes the ad-
ditional step of renormalizing these values: if∑
qi = r, he will use q = qi/r instead of the

qi that were transmitted by Alice. When b is large,
the pi will be distributed uniformly mod 2−b. In
this case, the expected values E(pi − qi) are zero
for all i, so E(

∑
qi) =

∑
E(qi) =

∑
E(pi) =

E(
∑
pi) = 1 or, in other words, E(r) = 1. Since

Var(r − 1) =
∑

i Var(pi − qi) = k/12n2 is on
the order 1/n2, in the following estimate we can
safely ignore the effects of renormalization. By
Definition 2, the KL approximation error is

Q =
n−1∑
i=0

∑
i/n≤pj≤(i+1)/n

pj∆(pij) (1)

where ∆(pij) = log(2npj/(2i + 1)) is the dif-
ference between the logarithms of the actual pj
and the centerpoint of the interval [i/n, (i+ 1)/n)
where pj falls. In absolute value, this is maximal
when pj is at the lower end of this interval, where
∆(pij) is log(2i+1

2i ). Using the standard estimate

log(1 + x) ≤ x this will be less than 1
2i ≤ 1/8

since i ≥ 4 . Since the ∆(pij) are now estimated
uniformly, and the pj sum to 1, we obtain

Theorem 1. The approximation error Qn of uni-
form quantization into n bins [i/n, (i+1)/n) such
that the first 4 bins are empty satisfies

Qn ≤
1

8 log 2
∼ 0.18 (2)

bits independent of n (the computation was in base
e rather than base 2, hence the factor log 2). With
growing n the number of bins that remain empty
will grow, and the estimate 1

2i of ∆ can be im-
proved accordingly.

Theorem 1 of course gives just an upper bound,
and a rather crude one, the expected value of Qn
is considerably less. Instead of using the max
value ∆(pij) we can consider the expected abso-
lute value, which is log(1 + 1

2i)/n, so equation (2)
could be reformulated as

E(Qn) ≤ 1

8n log 2
(3)

It is evident from the foregoing that the crux of
the matter are the small pi values, and at any rate,
there can only be a handful of relatively large val-
ues, since the sum is 1. Experience shows that
probabilities obtained from corpora span many or-
ders of magnitude, which justifies the use of a log
scale. Instead of the simple uniform quantization
of Theorem 1, we will use a two-parameter quan-
tization scheme, whereby first log pj are cut off at
−C, and the rest, which are on the (−C, 0) inter-
val, are sorted in n = 2b bins ‘b-bit quantization’.

In effect, all probabilities below e−C are as-
sumed to be below measurement precision, and
the log of the rest are uniformly quantized. We
experimented with two simple techniques: repre-
senting the class (−∞,−C) with a very low fixed
value (10−50) or with one set to e−2C based on
the parameter C of the encoding. As there was
no appreciable difference (which is not surprising
given limx→0 x log x = 0), from here on we sim-
ply speak of zero weights for weights below e−C .

We emphasize that ‘being below measurement
precision’ is not the same as ‘being zero’ in the
above sense. First, in any corpus of size N the
smallest number we can measure is 1/N , yet we
know that further strings that were not in our
sample are not necessarily probability zero. It
is therefore common to reserve a small fraction,
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∅ a akár bár egyvala más másvala minden se vala
hány 72383 9502 2432 55 21 4584
hogy 7781539 213687 3173 1839 4570 123 4138 31873
hol 117231 399052 1037 9845 16066 16009 20521 34081
honnan 24777 18628 296 1205 2482 1321 627 4274
honnét 1598 1197 12 25 78 33 23 236
hová 17589 21073 486 1753 1 5073 1 1859 2249 3966
hova 17360 10591 309 1166 1788 1381 2105 3036
ki 1309618 1464744 3933 60923 884 814 308508 165230 221175
meddig 11879 8171 189 225 74 252
mely 761277 1586913 166 74262 3 4 40601
melyik 68051 47564 1996 34477 2 939 48274
mennyi 76429 25805 657 1415 517 96184
mi 1626013 1303820 6500 52480 1337 161 275773 355690
miért 251120 20672 58 205 4 1810 13552
mikor 173652 555325 679 33516 15892 11288 206 18235
milyen 343643 38921 8217 68033 1618 1 55603 81155

Table 1: Frequencies of proquants in the Hungarian Webcorpus

generally 1-5% of the probability mass, to un-
seen events, and use calculated numbers, instead
of measured values, to smooth the distribution.
Unfortunately, the engineering philosophy behind
the various backoff schemes (which often utilize
MDL stopping criteria both in speech and lan-
guage modeling, see e.g. Shinoda and Watanabe
2000, Seymore and Rosenfeld 1996) is diametri-
cally opposed to the the method of inquiry pre-
ferred by linguists, whose primary interest is with
generalization, i.e. with models that make falsifi-
able predictions, rather than furnishing descriptive
statistics. In particular, negative generalizations,
that something is forbidden by some rule of gram-
mar, are just as interesting from their standpoint as
positive generalizations. But how do we express a
negative generalization?
Definition 5. A string will be deemed ungrammat-
ical or structurally excluded iff every generation
path includes at least one zero weight in the above
sense.

If scores from different sources are multiplied
together, the use of zero weights as markers of
ungrammaticality is implicit in the semantics of
WFSA.1 Still, there are significant difficulties in
implementing the idea. If we want to maintain
the commonsensical assumption that *teh is not
a word (has zero unigram weight) and also ac-
count for the data that makes it the 34,174th most
common string in English text, we will need to

1We owe this observation to an anonymous MOL referee.

model typos. Once we learn that the log price of
the /the/teh/ substitution is about -9.8, we can pre-
dict not just the frequency of teh, but also those
of weatehr, otehr, tehy, tehre, tehft, and so forth,
without adding these to the lexicon. Since such a
model is based on computed frequencies of letter
substitution and exchange rather than on the typos
directly, the engineer has to give up the enterprise
of building the entire language model in a single
sweep directly on the data.

At the same time, the linguist has to give up
the attractive simplicity of ‘zero weight iff un-
grammatical’: the misspelling model will assign
a low but nonzero weight to everything, and if
this model is compiled together with a unigram
model that contains only grammatical words, the
simple world-view of Definition 5 will no longer
work. Rather, we will have to say that it is zero
weight in the grammatical subautomaton (visible
only prior to getting compiled together with the se-
mantic, spelling, stylistic, and possibly other sub-
automata) that defines grammaticality. We have
to build an explicit noise model to make sense of
the raw data, but this is not particularly surprising
from the perspective of other sciences like astron-
omy where noise reduction is common practice.

The specific contribution of the MDL approach
is that zero weights in the model are a lot
cheaper than using low probabilities would be: the
paradigm encourages both sparseness and struc-
tural decomposition. But before we can establish
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these points in Sections 2 and 3, we need to as-
similate another piece of computational practice,
the use of log probabilities. When quantization is
uniform on the log scale, the expected value of the
binning error is no longer zero, given our assump-
tion of uniformity on the linear scale, but rather

−C log i
n∫

−C log i+1
n

ex − e−C
i+0.5

n dx ∼ C3/8n3 (4)

which yields an expected r ∼ kC3/8n3, still neg-
ligible compared to the bound given in Theorem 2,
which is obtained by methods similar to those used
above.

Theorem 2. For C, n sufficiently large for the
first 4 bins to remain empty, the approximation
error LCn of log-uniform quantization with cutoff
−C into n = 2b bins [−C(i + 1)/n,−Ci/n) is
bounded by

LCn ≤
C

2n log 2
(5)

and the expected value E(LCn ) is bounded by
C2/4n2 log 2.

Figure 1: Error of log-scale uniform quantization

Let us see on an example how these error
bounds compare to values obtained numerically.
Our first example will explore what we will call,
for want of a better name, the proquant system
of Hungarian that covers both pro-forms (pro-
nouns, proadjectives, proadverbials) and quan-
tifiers. Given the prefixes a-, minden-, vala-,
egyvala-, másvala-, se-, akár-, más-, bár- and

zero, and suffixes -ki, -mi, -hol, -hogy, -hova,
etc. we can create forms such as valaki ‘some-
one’, valami ‘something’, akárki ‘anyone’, sehol
‘nowhere’ and so on. Clearly, many of what we
call prefixes and suffixes could be analyzed fur-
ther, e.g. másvala as más+vala, but we don’t want
to prejudge the issue by presenting a maximally
detailed analysis.

In a corpus of over 40 million sentences (Hun-
garian Webcorpus, Halácsy et al. 2004) we ob-
served the frequencies in Table 1. Many of these
proquant forms take inflectional suffixes (case,
number, etc.), and the numbers presented here al-
ready include these, so that the 814 occurrences of
másvalaki include forms like másvalakivel ‘with
someone else’, másvalakinek ‘to someone else’
etc. If we think of the (stemmed) Hungarian vo-
cabulary as a weighted language h, the set of
prefixes (suffixes) as an unweighted language Pre
(resp. Suff), the data is a sample from S(h)∩
Pre·Suff with the weights renormalized. Alto-
gether, we have 121 nonzero values plus 39 ze-
ros, the entropy of the distribution is H = 3.677.
Figure 1 plots the log of the observed quantiza-
tion noise as a function of the number of bits b and
the cutoff −C. Notice that once C is sufficiently
large, no further gains are made by increasing it
further. As expected from Theorem 2, the log of
the error is roughly linear in b = log2 n (the ob-
served values are of course better than the bounds).

Definition 6. The inherent noise of a dataset D
is the KL approximation error between a random
subsample and its complement.

Ideally, we would want to compare another sam-
ple D′ to D, but in many cases launching a com-
parable data collection effort is simply not feasi-
ble, and we must content ourselves with the sim-
ple procedure suggested by this definition. By ran-
domly cutting the 40m sentence corpus on which
the proquant dataset is based in 10m sentence parts
and computing the KL divergence between any
two, we obtain numbers in the 7-8·10−5 range,
which means it makes little sense to approximate
D with better precision than 10−5. How to handle
the singular cases when some qj becomes 0 (as
happens with half of the hapaxes when we cut the
sample in two) is an issue we defer to Section 3.

Since the smallest pj in this data is about
5·10−8, by taking C = 20 we guarantee that no
log probability is less than the cutoff point −C.
Trivial ‘list’ automata consisting of an initial state,
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a final state, and a separate Mealy arc (or Moore
state) for each of the 121 nonzero observations al-
ready generate a weighted language within the in-
herent noise of the data at 10 bits, where the KL
divergence is at 8 ·10−6. At 12 bits, the divergence
is below 1.4 · 10−6, and at 16 bits, below 5 · 10−9.
As we shall see in the next Section, the MDL size
of these models, between 2k and 7k bits, is domi-
nated by factors unrelated to the precision b of the
encoding.

Figure 2: Model fit to observed probabilities

Figure 2 shows the 80 largest observed proquant
probabilities (in black) in descending order, and
the probabilities of the same strings as computed
from several models. The 10 and 12-bit list au-
tomata are not plotted, as the computed values are
graphically indistinguishable from the observed
values, the rest will be discussed in the text.

2 Detecting ambiguity

Before turning to the actual MDL learning pro-
cess, let us summarize what we have for the Hun-
garian proquant system so far. We have a weighted
language of about 120 strings. When transmit-
ting a weighted automaton, Alice is sending not
strings and weights, but rather weight-labeled arcs
and string-labeled states of a WFSA. In Defini-
tion 3 we used Moore machines, but in the liter-
ature Mealy automata, where inputs/outputs and
weights are both tied to arcs are more common
(see e.g. Mohri 2009). The rationale for preferring
Moore over Mealy in the MDL context is that no
gains can be obtained from joint compression of
strings and probabilities (even though Mealy ma-
chines couple the two), while sharing of strings

has very significant impact on MDL length, as we
shall see shortly. For the simple ‘list’ automata
this means adding extra states in the middle of a
Mealy arc, and we need to take some precautions
to guarantee that the representation is just as com-
pact as it would be for a Mealy machine.

Let us now see in some detail how compact
these encodings can get. With s states, and b bits
for probability, an arc requires 2 log2 s + b bits.
However, Bob can reasonably assume that Alice
is only sending trimmed machines, with states that
cannot be reached from the initial state or with no
path to an accepting state already removed. There-
fore, if Bob sees a state with no outbound path
he supplies an outgoing arc, with probability 1, to
the final state – such arcs need not be sent by Al-
ice to begin with. Similarly, Bob can assume that
all states except for the last one are non-accepting,
and Alice will transmit information only to over-
ride this default when needed.

As for emissions, in a Moore machine each state
emits a string (but no guarantees that different
states emit different strings), so Alice needs to en-
code the strings somehow. If we assume that there
is a character table shared between Alice and Bob,
e.g. the character frequencies of Hungarian, with
entropy H , encoding a string α costs simply |α|H
bits. (We could take this also to be a case of trans-
mitting a weighted language, but we assume that
the cost of transmitting this language can be amor-
tized over many WFSA that deal with Hungarian.)

b l M cs ca KL Hq

1 121 5210 4306 904 2.1883 6.833
2 121 5386 4306 1080 1.1207 3.487
3 121 5507 4306 1201 0.268 2.889
4 121 5628 4306 1322 0.041436 4.044
5 121 5749 4306 1443 0.016117 3.424
6 121 5870 4306 1564 0.002409 3.667
7 121 5991 4306 1685 0.000676 3.653
8 121 6112 4306 1806 0.000288 3.647
9 121 6233 4306 1927 5.905e-5 3.681
10 121 6354 4306 2048 8.003e-6 3.678
11 121 6475 4306 2169 3.999e-6 3.678
12 121 6596 4306 2290 1.387e-6 3.678
16 121 7080 4306 2774 4.660e-9 3.676

Table 2: List models with character-based string
encoding

Table 2 summarizes the relevant values for the triv-
ial models where each weight gets its own train-
able parameter. b is the number of bits, l is the
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number of trainable parameters (weights associ-
ated to arcs), ca is the cost of transmitting the arcs.
Note that this is less than l(b+2 log2 s), because of
the redundancy assumptions shared by Alice and
Bob. cs is the cost of transmitting the emissions,
and the total model cost is M = ca + cs. We
would, ideally, also need to add to M a dozen bits
or so to encode the major parameters of the cod-
ing scheme itself, such as the values b = 10 and
C = 20, but these turn out to be negligible com-
pared to the basic cost. Also, these major param-
eters are shared across the alternatives we com-
pare, so whatever we do to minimize M will not
be affected by uniformly adding (or uniformly ig-
noring) this constant cost. KL gives the KL di-
vergence between the model and the training data.
This measures the expected extra message length
per arc weight, so that the error residual E is k
times this value, where k is the number of values
being modeled. We emphasize that k = l only
in the listing format, where all values are treated
as independent – in the ‘hub’ model we shall dis-
cuss shortly l is only 26 (10 prefix and 16 suffix
weights) but k is still 121.

The main components of the total MDL cost,
M , l ·KL, l(KL+Hq), and the totalM+l(KL+
Hq) are plotted on Figure 3.

Figure 3: MDL cost components

All models with b ≥ 10 are within the inter-
nal noise of the data, and it takes over 6kb to de-
scribe such a model. However, the bulk of these
bits come from encoding the output strings char-
acter by character – if we assume that Alice and
Bob share a morpheme table, the results improve
a great deal, by over 3,600 bits. If the system rec-
ognizes what we already anticipated in Table 1,

that each string can be expressed as the concate-
nation of a prefix and suffix, encoding the strings
becomes drastically cheaper. Using MDL for seg-
mentation is a well-explored area (see in particular
Goldsmith 2001, Creutz and Lagus 2002, 2005),
and we are satisfied by pointing out that using
the morphemes in the first row and column of
Table 1 we drastically reduce cs, to about 708
bits, below the cost ca of encoding the probabil-
ities. The 3-bit list model providing the MDL op-
timum (dark blue in Figure 2) requires 1,900 bits
with this string encoding, and is noticeably better
than the SRILM bigram/trigram (turquoise) which
takes around 12kb.

By encoding the emissions in a more clever
fashion, we have not changed the structure of the
model: the same states are still linked by the
same arcs carrying the same probabilities, it is just
the state labels that are now encoded differently.
When expressed as a Mealy automaton, a listing
of probabilities corresponds to a two-state WFSA
with as many arcs as we have list elements (in our
case, 121), while the arrangement of Table 1 is
suggestive of a different model, one with 10 prefix
arcs from the initial state to a central ‘hub’ state,
and 16 suffix arcs from this hub to the final state.

We have trained such ‘hub’ models using KL,
Euclidean (L2), and absolute value (L1) minimiza-
tion techniques. Of these, direct minimization of
KL divergence works best, obtaining 0.325 bits at
b = 10, and 0.298 at b = 12 (red and green in Fig-
ure 2). While the difference, about 0.027 bits, is
still perceptible compared to the noise level, with
a signal to noise ratio (SNR) of 8 dB, it simply
does not amortize over the 26 model probabilities
we need to encode. Adding 2 bits for encoding one
value requires a total of adding 52 bits to our spec-
ification ofM, while the gain of the error residual
E, computed over the 121 observed values, is just
2.074 bits. In short, there is not much to be gained
by going from 10 to 12 bits, and we need to look
elsewhere for further compression.
Definition 7. For a weighted language p a model
transform X is learnable in principle (LIP) if (i)
both M and X(M) are part of the hypothesis
space and (ii) the total MDL cost of describing p
by X(M) is significantly below that of describing
p byM.

In a critical sense, LIP is weaker than MDL learn-
ability, since the space itself can be very large, and
testing all hypothetical transforms X that fit the
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bill may not be feasible. The difference between
LIP and practical MDL learnability is precisely the
difference between existence proofs and construc-
tive proofs. Our interest here is with the former:
our goal is to demonstrate that structurally sound
models are LIP. So far, we have seen that struc-
turally valid segmentations can be effectively ob-
tained by MDL. Our next task is to show that am-
biguity is LIP.

As linguists, we know that the weakest point of
the hub model is that hogy, accounting for almost
40% of the data, is not just a proquant ‘how’ but
also a subordinating conjunction ‘that’. To encode
this ambiguity, we add another arc emitting hogy
directly. Table 3 compares list models (lines 1-
3, emissions encoded over morphemes rather than
characters), simple hub models (lines 4-6), and
hub models with this extra arc (lines 7-9).

b l M cs ca KLe5 M+E

3 121 1907 705 1202 26800 2289
10 121 2754 705 2049 0.8 3199
12 121 2999 705 2290 0.14 3441
3 26 473 81 392 42343 1305
10 26 662 81 581 32593 1201
12 26 716 81 635 29827 1249
3 27 480 81 400 23094 1052
10 27 676 81 596 11268 1161
12 27 733 81 652 10022 1198

Table 3: Hub models with/out ambiguous hogy

As can be seen from the table, the best model
again takes only 3 bits, but must include the ex-
tra parameter for handling the ambiguity of hogy.
To learn this, at least in principle, without relying
on the human knowledge that drove the heuristic
search, consider the leading terms of the KL error.
Arranging the pi log(pi/qi) in order of decreasing
absolute value we obtain mi 0.0192; minden+ki
0.0175; a+mely 0.0169; mely -0.0147; a+mikor
0.0135; hogy -0.0128; and so forth. Of all the 121
strings we may consider for direct emission, only
hogy is worth adding a separate arc for. Further, if
we repeat the process, adding a second direct arc
never results in sufficient entropy gain compared
to adding hogy alone.

To summarize, list models can approximate the
original data within its inherent noise level, but
incur a very significant MDL cost, even if they
use an efficient string encoding because they keep
many parameters, see the first three lines of Ta-
ble 3 above. The hub models, which build struc-
ture similar to the one used in the string encoding,

recognizing prefixes and suffixes for what they are,
are far more compact, at 470-730 bits, even though
they have a KL error of about .1-.4 bits. Finally,
the hub+ambiguity model, with 27 parameters, re-
duces the total MDL cost to 1052 bits, less than
half of the best list model.

Currently we lack the kind of detailed under-
standing of the description length surface over
the WFSA×stringencoding space that would let
us say with absolute certainty that e.g. the hub
model with ambiguous hogy is the global mini-
mum, and we cannot muster the requisite com-
putational power to exhaustively search the space
of all WFSA with 27 arcs or less. Further gains
could quite possibly made with even cruder quan-
tization, e.g. to n = 6 levels (powers of 2 are
convenient, but not essential for the model), or by
bringing in non-uniform quantization.

On the one hand, we are virtually certain that
the only encoding of emissions worth studying
is the morpheme-based one, since the economy
brought by this is tremendous, 3,600 bits over the
proquants alone, and no doubt further gains else-
where, as we extend the scope to other words that
contain the same morphemes – in this regard, our
findings simply confirm what Goldsmith, Creutz,
Lagus, and others have already demonstrated. On
the other hand, finding the right segmentation is
only the first step, we also need a good model of
the tactics. As we said at the beginning, the en-
coding of arcs and probabilities can to a signifi-
cant extent be independent of the encoding of the
emissions. Here the remarkable fact is that a bet-
ter emission model could to a large extent drive the
search for structuring the WFSA itself.

Given a segmentation of a string α = α1α2, the
hypothesis space includes both a single arc from
some r to some t where we emit α, or the con-
catenation of two arcs r → s and s → t with s
and t emitting α1 and α2 respectively. This brings
in a bit of ambiguity in regards to the distribution
of the probabilities, for if α had weight p the new
arcs could be assigned any values p1, p2 as long as
p1p2 = p, at least if the sum of outgoing proba-
bilities from s remains 1. If s has no other arcs
outgoing than s → t this forces p1 = p, but if
we collapse the intermediate states from several
bimorphemic words, there is room for joint opti-
mization. In our example, collapsing all interme-
diate states in a single ‘hub’ halves the MDL cost.
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3 Decomposition

For our next example we consider Hungarian
stem-internal morphotactics. The Analytic Dic-
tionary of Hungarian (Kiss et al 2011) provides,
for each stem like beleilleszt ‘fit in’ an analysis
like preverb+root+suffix wherein bele is one of a
closed set of Hungarian preverbal particles, ill is
the root, and eszt is a verb-forming suffix. There
are six analytic categories: Stem S; sUffix U ;
Preverb P ; root E; Modified M ; and foreIgn I;
so that each stem gets mapped on a string over
Σ = {S,U, P,E,M, I}. We have two weighted
languages: the tYpe-weighted language Y where
each string is counted as many times as there are
word types corresponding to it (so that e.g. for
SUU we have 3,739 stems from ábrándozik ‘day-
dream’ to zuhanyozó ‘shower stall’, and the tOken-
weighted language O where the same pattern has
weight 18,739,068 because these words together
appeared that many times in the Hungarian Web-
corpus (Halácsy et al., 2004).

Since the inherent noise of O is about 0.0474
bits, we are interested in automata that approxi-
mate it within this limit. This is easily achieved
with HMM-like WFSA that have arcs between any
two states, using b = 11 bits or more, the smallest
requiring only 781 bits. For Y the inherent noise is
less, 0.011 bits, and the complete graph architec-
ture, which only has 49 parameters (6 states, plus
arcs from an initial state and arcs to a final state) is
not capable of getting this close to the data, with
the best models, from b = 11 onwards, remain-
ing at KL distance 0.3. The two languages differ
quite markedly in other respects as well, as can be
seen from the fact that the character entropy of O
is 0.933, that of Y is 1.567. Type frequency is not
a good predictor of token frequency: the KL ap-
proximation error of O relative to Y is 2.11 bits.

An important aspect of the MDL calculus is the
treatment of the singularities which arise when-
ever some of the qi in Definition 2 are 0. In the
case at hand, we find both types that are not at-
tested in the corpus, and tokens whose type was
not listed in the Analytic Dictionary, a situation
that would theoretically render it impossible to
compute the KL divergence in either direction. In
practice, tokens with no dictionary type are either
collected in a single ‘unknown’ type or are silently
discarded. Both techniques have merit. The catch-
all ‘unknown’ type can simply be assumed to fol-
low the distribution of the known types, so a model

that captures the data enshrined in the dictionary
should, at least in principle, be also ideal for the
data not seen by the lexicographer. Surprises may
of course lurk in the unseen data, but as long as
coverage is high, say P (unseen)≤ 0.05, surprises
will really be restricted to this 5% of the unseen,
or what is the same, will be at order P 2. In general
we may consider two distributions {pi} and {qi}
as in Definition 2, and compute P =

∑
qi=0 pi,

the proportion of q-singular data in p.

Theorem 3. The total cost L of transmitting an
item from the p-distribution is bound by

L ≤ (1−P )(KL(p, q)+Hq)+P (1+log2 n) (6)

Proof We use, with probability (1 − P ), the q-
based codebook: this will have cost Hq plus the
modeling loss KL(p, q). In the remaining cases
(probability P ) we should use a codebook based
on the q-singular portion of p, but we resort to uni-
form coding at cost log2 n, where n is the number
of singular cases. We need to transmit some infor-
mation as to which codebook is used: this requires
an extra H(P, 1 − P ) ≤ P bits – collecting these
terms gives (6). 2

Theorem 3 gives a principled basis for discard-
ing data within the MDL framework: when P is
small, the second term of (6) can be absorbed in
the noise. To give an example, consider the uni-
gram frequencies listed in columns fO and fY of
Table 4. Some letters are quite rare, in particu-
lar, I makes up less than 0.06% of O and 0.013%
of Y . Columns KLO and KLY show the KL di-
vergence of O and Y from models obtained by by
discarding words containing the letter in question,
columns PO and PY show the weight of the strings
that are getting discarded.

fO PO KLO fY PY KLY
S .7967 .9638 4.7887 .5342 .9122 3.5092
U .1638 .1464 0.2284 .3443 .5699 1.2174
M .0083 .0103 0.0149 .0255 .0623 0.0928
E .0114 .0141 0.0205 .0331 .0804 0.1209
P .0198 .0248 0.0362 .0623 .1531 0.2397
I .0001 .0001 0.0002 .0006 .0010 0.0006

Table 4: Divergence caused by discarding data

In the case of Y , only I can be discarded while
keeping below the inherent noise of the data, but
for O we have three other symbols M, E, and P,
that could be removed. Further, removing both let-
ters M,E only produces a KL loss of 0.036 bits;
removing M, I a loss of 0.015 bits; E, I 0.021
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bits; P, I 0.036 bits; and even removing all three
of M,E, I only 0.036 bits.

Figure 4: MS merge-split model

In the case of I , again as linguists we under-
stand quite well what discarding this data means:
we are excluding foreign stems. This is quite jus-
tified, not because foreign words like paperback,
pacemaker or baseball are in any way inferior, but
because their internal analysis is not transparent to
the Hungarian reader (it is telling that the editors
of the Analytic Dictionary coded the stem bound-
ary in paper+back but not in base+ball).

Discarding M , a category that differs from S
only in that the stem undergoes some automatic
morphophonological change such as vowel eli-
sion, is also a sensible step in that the fundamen-
tal morphotactics are not at all affected by these
changes, but how is this learnable, even in princi-
ple? Here we introduce another model transform
called XY merge-split composed of two steps: first
we replace all letters (or strings) X by Y and train
a model, and next we split up the emission states
of Y in the merged model to X and Y -emissions
according to the relative proportions of X and Y
in the original data.

For LIP, the key observation is that models con-
structed by XY merge-split have a transmission
cost composed of two parts, the length of the
smaller merged model (given in black in Figure 2),
plus transmitting the pairX,Y and the probability
of the split, which is exactly the cost of a single
arc, even though the actual split model will have
many more arcs (given in red in Figure 4). Once
this is taken into account, we can systematically
investigate all 6·5 merge-split possibilities. The
results confirm the educated linguistic guess quite

remarkably. The best compression rates are ob-
tained by merging I with any of the minor cate-
gories or, if I is already discarded or merged in,
merging M into S. The smallest O model before
these steps took 781 bits, this is now reduced to
502 bits. If we start by discarding I , and merging
M to S afterwards, this can be reduced to 349 bits.
In the end we merge the morphophonologically af-
fected forms with the ones not so affected not be-
cause our training as linguists tells us we should
do this, but because that is what brevity demands.

4 Conclusions

In this paper we have developed an MDL-based
framework for structure detection based on simple
notions mostly borrowed from signal processing:
quantization noise, inherent noise level, and cut-
offs. Standard n-gram models fare rather poorly
compared either in size or in model accuracy to
the WFSA results obtained here: for example on
the morphotactics data a straight SRILM trigram
model has over 200 parameters and has KL diver-
gence 1.09 bits. Most of the 64 bits per n-gram
parameter are wasted (if we assume only 12 bits
per parameter, the WFSA we use requires only
49 parameters and gets within 0.03 bits of the ob-
served data) and further, the general-purpose back-
off scheme built into SRILM just makes matters
worse.

Similarly, on the proquant data an SRILM bi-
gram model has 175 parameters (including the
26 unigram weights but excluding the backoff
weights), yet it is farther from the data at 64 bits
resolution than our best 27-parameter model at 3
bits. More important, the bigram structure of the
proquant data has to be hand-fed into the standard
model, while the MDL approach can discover this,
together with other linguistically relevant observa-
tions such that hogy was ambiguous.

This is not to say that n-gram models are no
longer competitive, for our current MDL meth-
ods, based on a simulated annealing learner, use
too much CPU and will not scale to the gigaword
regime without much further work. Yet if for-
mal grammar and information theory are to get to-
gether again, as (Pereira, 2000) suggests, we must
direct effort towards recapitulating linguistic prac-
tice, including the ‘dirty’ parts such as discarding
data strategically. The main thrust of the work pre-
sented here is that the data manipulation methods
that are the stock in trade of the descriptive linguist
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are LIP, and Universal Grammar is simply a short
list of the permissible model transformations in-
cluding path duplication for ambiguity, state merg-
ing for position class effects, and merge-split for
collapsing categories.
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Abstract

In this paper we investigate the theoretical
causes of the disparity between the theo-
retical and practical running times for the
A∗ algorithm proposed in Corlett and Penn
(2010) for deciphering letter-substitution
ciphers. We argue that the difference seen
is due to the relatively low entropies of the
probability distributions of character tran-
sitions seen in natural language, and we
develop a principled way of incorporat-
ing entropy into our complexity analysis.
Specifically, we find that the low entropy
of natural languages can allow us, with
high probability, to bound the depth of the
heuristic values expanded in the search.
This leads to a novel probabilistic bound
on search depth in these tasks.

1 Introduction

When working in NLP, we can find ourselves
using algorithms whose worst-case running time
bounds do not accurately describe their empiri-
cally determined running times. Specifically, we
can often find that the algorithms that we are us-
ing can be made to run efficiently on real-world
instances of their problems despite having theo-
retically high running times. Thus, we have an ap-
parent disparity between the theoretical and prac-
tical running times of these algorithms, and so we
must ask why these algorithms can provide results
in a reasonable time frame. We must also ask to
what extent we can expect our algorithms to re-
main practical as we change the downstream do-
mains from which we draw problem instances.

At a high level, the reason such algorithms can
work well in the real world is that the real world
applications from which we draw our inputs do
not tend to include the high complexity inputs. In
other words, our problem space either does not

cover all possible inputs to the algorithm, or it
does, but with a probability distribution that gives
a vanishingly small likelihood to the “hard” inputs.
Thus, it would be beneficial to incorporate into our
running time analysis the fact that our possible in-
puts are restricted, even if only restricted in rela-
tive frequency rather than in absolute terms.

This means that any running time that we ob-
serve must be considered to be dependent on the
distribution of inputs that we expect to sample
from. It probably does not come as a surprise that
any empirical analysis of running time carries with
it the assumption that the data on which the tests
were run are typical of the data which we expect
to see in practice. Yet the received wisdom on the
asymptotic complexity of algorithms in computa-
tional linguistics (generally what one might see
in an advanced undergraduate algorithms curricu-
lum) has been content to consider input only in
terms of its size or length, and not the distribution
from which it was sampled. Indeed, many algo-
rithms in NLP actually take entire distributions as
input, such as language models. Without a more
mature theoretical understanding of time complex-
ity, it is not clear exactly what any empirical run-
ning time results would mean. A worst-case com-
plexity result gives a guarantee that an algorithm
will take no more than a certain number of steps
to complete. An average-case result gives the ex-
pected number of steps to complete. But an empir-
ical running time found by sampling from a distri-
bution that is potentially different from what the
algorithm was designed for is only a lesson in how
truly different the distribution is.

It is also common for the theoretical study of
asymptotic time complexity in NLP to focus on
the worst-case complexity of a problem or algo-
rithm rather than an expected complexity, in spite
of the existence for now over 20 years of methods
for average-case analysis of an algorithm. Even
these, however, often assume a uniform distribu-
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tion over input, when in fact the true expectation
must consider the probability distribution that we
will draw the inputs from. Uniform distributions
are only common because we may not know what
the distribution is beforehand.

Ideally, we should want to characterize the run-
ning time of an algorithm using some known prop-
erties of its input distribution, even if the precise
distribution is not known. Previous work that at-
tempts this does exist. In particular, there is a vari-
ant of analysis referred to as smoothed analysis
which gives a bound on the average-case running
time of an algorithm under the assumption that all
inputs are sampled with Gaussian measurement er-
ror. As we will argue in Section 2, however, this
approach is of limited use to us.

We instead approach the disparity of theoretical
and practical running time by making use of statis-
tics such as entropy, which are taken from the in-
put probability distributions, as eligible factors in
our analysis of the running time complexity. This
is a reasonable approach to the problem, in view of
the numerous entropic studies of word and charac-
ter distributions dating back to Shannon.

Specifically, we analyze the running time of the
A∗ search algorithm described in Corlett and Penn
(2010). This algorithm deciphers text that has
been enciphered using a consistent letter substitu-
tion, and its running time is linear in the length of
the text being deciphered, but theoretically expo-
nential in the size of the input and output alpha-
bets. This naı̈ve theoretical analysis assumes that
characters are uniformly distributed, however. A
far more informative bound is attainable by mak-
ing reference to the entropy of the input. Be-
cause the algorithm takes a language model as one
of its inputs (the algorithm is guaranteed to find
the model-optimal letter substitution over a given
text), there are actually two input distributions: the
distribution assumed by the input language model,
and the distribution from which the text to be de-
ciphered was sampled. Another way to view this
problem is as a search for a permutation of letters
as the outcomes of one distribution such that the
two distributions are maximally similar. So our
informative bound is attained through reference to
the cross-entropy of these two distributions.

We first formalize our innate assumption that
these two distributions are similar, and build an
upper bound for the algorithm’s complexity that
incorporates the cross-entropy between the two

distributions. The analysis concludes that, rather
than being exponential in the length of the input or
in the size of the alphabets, it is merely exponen-
tial in the cross-entropy of these two distributions,
thus exposing the importance of their similarity.
Essentially, our bound acts as a probability distri-
bution over the necessary search depth.

2 Related Work

The closest previous work to the analysis pre-
sented here is the use of smoothed analysis to ex-
plain the tractable real-world running time of a
number of algorithms with an exponential worst-
case complexity. These algorithms include the
simplex algorithm, as described by Spielman and
Teng (2004), the k-means clustering algorithm, as
described by Arthur et al. (2009) and others. As
in our current approach, smoothed analysis works
by running a general average-case analysis of the
algorithms without direct knowledge of the distri-
bution from which the problem inputs have been
drawn. The assumption made in smoothed anal-
ysis is that every input has been read with some
Gaussian measurement error. That is, in a typi-
cal worst-case analysis, we may have an adversary
choose any input for our algorithm, after which we
must calculate how bad the resulting running time
might be, but in a smoothed analysis, the adver-
sary gives us input by placing it into the real world
so that we may measure it, and this measurement
adds a small error drawn from a Gaussian dis-
tribution to the problem instance. The point of
smoothed analysis is to find the worst average-case
running time, under these conditions, that the ad-
versary can subject us to. Thus the analysis is an
average case, subject to this error, of worst cases.
In the papers cited above, this method of analysis
was able to drop running times from exponential
to polynomial.

It is unfortunate that this approach does not
readily apply to many of the algorithms that we
use in NLP. To see why this is, simply note that
we can only add a small Gaussian error to our in-
puts if our inputs themselves are numerical. If the
inputs to our algorithms are discrete, say, in the
form of strings, then Gaussian errors are not mean-
ingful. Rather, we must ask what sort of error we
can expect to see in our inputs, and to what extent
these errors contribute to the running time of our
algorithms. In the case of decipherment, “error”
is committed by substituting one character for an-
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other consistently.

The strongest known result on the search com-
plexity of A∗ is given in Pearl (1984). This work
found that, under certain assumptions, a bound on
the absolute error between the heuristic used and
the true best cost to reach the goal yields a polyno-
mial worst-case depth for the search. This happens
when the bound is constant across search instances
of different sizes. On the other hand, if the relative
error does not have this constant bound, the search
complexity can still be exponential. This analy-
sis assumes that the relative errors in the heuristic
are independent between nodes of the search tree.
It is also often very difficult even to calculate the
value of a heuristic that possesses such a bound,
as it might involve calculating the true best cost,
which can be as difficult as completely solving a
search problem instance (Korf et al., 2001). Thus,
most practical heuristics still give rise to theoreti-
cally exponential search complexities in this view.

In Korf and Reid (1998) and Korf et al. (2001),
on the other hand, several practical problems are
treated, such as random k-SAT, Rubik’s cubes, or
sliding tile puzzles, which are not wholly unlike
deciphering letter substitution puzzles in that they
calculate permutations, and therefore can assume,
as we do, that overall time complexity directly cor-
responds to the number of nodes visited at differ-
ent depths in the search tree that have a heuris-
tic low enough to guarantee node expansion. But
their analysis assumes that it is possible to both es-
timate and use a probability distribution of heuris-
tic values on different nodes of the search graph,
whereas in our task, this distribution is very dif-
ficult to sample because almost every node in the
search graph has a worse heuristic score than the
goal does, and would therefore never be expanded.
Without an accurate idea of what the distribution
of the heuristic is, we cannot accurately estimate
the complexity of the algorithm. On the other
hand, their analysis makes no use of any estimates
of the cost of reaching the goal, because the prac-
tical problems that they consider do not allow for
particularly accurate estimates. In our treatment,
we find that the cost to reach the goal can be esti-
mated with high probability, and that this estimate
is much less than the cost of most nodes in the
search graph. These different characteristics allow
us to formulate a different sort of bound on the
search complexity for the decipherment problem.

3 The Algorithm

We now turn to the algorithm given in Corlett and
Penn (2010) which we will investigate, and we ex-
plain the model we use to find our bound.

The purpose of the algorithm is to allow us to
read a given ciphertext C which is assumed to
be generated by putting an unknown plaintext P
through an unknown monoalphabetic cipher.

We will denote the ciphertext alphabet as Σc

and the plaintext alphabet as Σp. Given any string
T , we will denote n(T ) as the length of T . Fur-
thermore, we assume that the plaintext P is drawn
from some string distribution q. We do not assume
q to be a trigram distribution, but we do require it
to be a distribution from which trigrams can be
calculated (e.g, a 5-gram corpus will in general
have probabilities that cannot be predicted using
the associated trigrams, but the associated trigram
corpus can be recovered from the 5-grams).

It is important to realize in the algorithm de-
scription and analysis that q may also not be
known exactly, but we only assume that it exists,
and that we can approximate it with a known tri-
gram distribution p. In Corlett and Penn (2010),
for example, p is the trigram distribution found us-
ing the Penn treebank. It is assumed that this is a
good approximation for the distribution q, which
in Corlett and Penn (2010) is the text in Wikipedia
from which ciphers are drawn. As is common
when dealing with probability distributions over
natural languages, we assume that both p and q
are stationary and ergodic, and we furthermore as-
sume that p is smooth enough that any trigram that
can be found in any string generated by q occurs in
p (i.e., we assume that the cross entropyH(p, q) is
finite).

The algorithm works in a model in which, for
any run of the algorithm, the plaintext string P
is drawn according to the distribution q. We do
not directly observe P , but instead its encoding
using the cipher key, which we will call πT . We
observe the ciphertext C = π−1

T (P ). We note that
πT is unknown, but that it does not change as new
ciphertexts are drawn.

Now, the way that the algorithm in Corlett and
Penn (2010) works is by searching over the pos-
sible keys to the cipher to find the one that maxi-
mizes the probability of the plaintext according to
the distribution p. It does so as follows.

In addition to the possible keys to the cipher,
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weakened cipher keys called partial solutions are
added to the search space. A partial solution of
size k (denoted as πk) is a section of a possible full
cipher key which is only defined on k character
types in the cipher. We consider the character
types to be fixed according to some preset order,
and so the k fixed letters in πk do not change
between different partial solutions of size k.

Given a partial solution πk, a string πn(C)
k (C)

is defined whose probability we use as an upper
bound for the probability of the plaintext when-
ever the true solution to the cipher contains πk
as a subset. The string π

n(C)
k (C) is the most

likely string that we can find that is consistent
with C on the letters fixed by πk. That is, we
define the set Πk so that S ∈ Πk iff whenever
si and ci are the characters at index i in S and
C, then si = πk(ci) if ci is fixed in πk. Note
that if ck is not fixed in πk, we let si take any
value. We extend the partial character function
to the full string function πn(C)

k on Σn(C)
c so that

π
n(C)
k (C) = argmax(S∈Πk)probp(S).

In Corlett and Penn (2010), the value πn(C)
k (C)

is efficiently computed by running it through
the Viterbi algorithm. That is, given C, p and
πk, a run of the Viterbi algorithm is set up in
which the letter transition probabilities are those
that are given in p. In order to describe the
emission probabilities, suppose that we partition
the ciphertext alphabet Σc into two sets Σ1 and
Σ2, where Σ1 is the set of ciphertext letters fixed
by πk. For any plaintext letter y ∈ Σp, if there
is a ciphertext letter x ∈ Σ1 such that y → x is
a rule in πk, then the emission probability that y
will be seen as x is set to 1, and the probability
that y will be seen as any other letter is set to 0.
On the other hand, if there is no rule y → x in
πk for any ciphertext letter x, then the emission
probability associated with y is uniform over the
letters x ∈ Σ2 and 0 for the letters x ∈ Σ1.

The search algorithm described in Corlett and
Penn (2010) uses the probability of the string
π
n(C)
k (C), or more precisely, the log probabil-

ity −logprobp(πn(C)
k (C)), as an A∗ heuristic over

the partial solutions πk. In this search, an edge
is added from a size k partial solution πk to a
size k + 1 partial solution πk+1 if πk agrees with
πk+1 wherever it is defined. The score of a node

πk is the log probability of its associated string:
−logprobp(πn(C)

k (C)). We can see that if πk has
an edge leading to πk+1, then Πk+1 ⊂ Πk, so that
−logprobp(πn(C)

k+1 (C)) ≥ −logprobp(πn(C)
k (C)).

Thus, the heuristic is nondecreasing. Moreover,
by applying the same statement inductively we can
see that any full solution to the cipher that has πk
as a subset must have a score at least as great as
that of πk. This means that the score never over-
estimates the cost of completing a solution, and
therefore that the heuristic is admissible.

4 Analysis

The bound that we will prove is that for any k > 0
and for any δ, ε > 0, there exists an n ∈ N such
that if the length n(C) of the cipher C is at least
n, then with probability at least 1 − δ, the search
for the key to the cipher C requires no more than
2n·(H(p,q)+ε) expansions of any partial solution of
size k to complete. Applying the same bound over
every size k of partial solution will then give us
that for any δ, ε > 0, there exists a n0 > 0 such
that if the length n(C) of the cipher C is at least
n, then with probability at least 1 − δ, the search
for the key to the cipher C requires no more than
2n(H(p,q)+ε) expansions of any partial solution of
size greater than 0 to complete (note that there is
only one partial solution of size 0).

Let π∗ be the solution that is found by the
search. This solution has the property that it is the
full solution that induces the most probable plain-
text from the cipher, and so it produces a plaintext
that is at least as likely as that of the true solution
P . Thus, we have that −logprobp(π∗n(C)(C)) ≤
−logprobp(πn(C)

T (C)) = −logprobp(P ).
We find our bound by making use of the fact that

an A∗ search never expands a node whose score
is greater than that of the goal node π∗. Thus, a
partial solution πk is expanded only if

−logprobp(πn(C)
k (C)) ≤ −logprobp(π∗n(C)(C)).

Since

−logprobp(π∗n(C)(C)) ≤ −logprobp(P ),

we have that πk is expanded only if

−logprobp(πn(C)
k (C)) ≤ −logprobp(P ).

So we would like to count the number of solutions
satisfying this inequality.
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We would first like to approximate the value of
−logprobp(P ), then. But, since P is drawn from
an ergodic stationary distribution q, this value
will approach the cross entropy H(p, q) with high
probability: for any δ1, ε1 > 0, there exists an
n1 > 0 such that if n(C) = n(P ) > N1, then

| − logprobp(P )/n(C)−H(p, q)| < ε1

with probability at least 1 − δ1. In this case, we
have that −logprobp(P ) < n(C)(H(p, q) + ε1).

Now, if k is fixed, and if πk and π′k are two dif-
ferent size k partial solutions, then πk and π′k must
disagree on at least one letter assignment. Thus,
the sets Πk and Π′k must be disjoint. But then we
also have that πn(C)

k (C) 6= π
n(C)′
k (C). Therefore,

if we can find an upper bound for the size of the
set

{S ∈ Σn(C)
p |S = π

n(C)
k (C) for some πk},

we will have an upper bound on the number of
times the search will expand any partial solution
of size k. We note that under the previous assump-
tions, and with probability at least 1− δ1, none of
these strings can have a log probability larger than
n(C)(H(p, q) + ε1).

For any plaintext string C drawn from q, we let
aPb be the substring of P between the indices a
and b. Similarly, we let aSb be the substring of
S = π

n(C)
k (C) between the indices a and b.

We now turn to the proof of our bound: Let
δ, ε > 0 be given. We give the following three
bounds on n:

(a) As stated above, we can choose n1 so that for
any string P drawn from q with length at least
n1,

| − logprobp(P )/n(P )−H(p, q)| < ε1/2

with probability at least 1− δ/3.

(b) We have noted that if k is fixed then any two
size k partial solutions must disagree on at
least one of the letters that they fix. So if we
have a substring aPb of P with an instance of
every letter type fixed by the partial solutions
of size k, then the substrings aSb of S must
be distinct for every S ∈ {S ∈ Σn(C)

p |S =
π
n(C)
k (C) for some πk}. Since q is ergodic,

we can find an n2 such that for any string P
drawn from q with length at least n2, every

letter fixed in πk can be found in some length
n2 substring P2 of P , with probability at least
1− δ/3.

(c) By the Lemma below, there exists an n′ > 0
such that for all partial solutions πk, there ex-
ists a trigram distribution rk on the alphabet
Σp such that if S = π

n(C)
k (C) and b − a =

n > n′, then∣∣∣∣−logprob(aSb)n
−H(p, rk)

∣∣∣∣ < ε/4

with a probability of at least 1− δ/3.

Let n = max(n1, n2, n
′). Then, the probability

of any single one of the properties in (a), (b) or (c)
failing in a string of length at least n is at most δ/3,
and so the probability of any of them failing is at
most δ. Thus, with a probability of at least 1−δ, all
three of the properties hold for any string P drawn
from q with length at least n. Let P be drawn from
q, and suppose n(P ) > n. Let aPb be a length n
substring of P containing a token of every letter
type fixed by the size k partial solutions.

Suppose that πk is a partial solution such that
−logprobp(πn(C)

k (C)) ≤ n(P )(H(p, q) + ε/2).
Then, letting S = π

n(C)
k (C), we have that if

˛̨̨̨
−logprob(S)

n(P )
−H(p, rk)

˛̨̨̨
< ε/4

and ˛̨̨̨
−logprob(aSb)

n
−H(p, rk)

˛̨̨̨
< ε/4

it follows that˛̨̨̨
−logprob(S)

n(P )
+
logprob(aSb)

n

˛̨̨̨
≤
˛̨̨̨
−logprob(S)

n(P )
−H(p, rk)

˛̨̨̨
+

˛̨̨̨
−H(p, rk)− logprob(aSb)

n

˛̨̨̨
≤ ε/4 + ε/4 = ε/2

But then,

− logprob(aSb)
n

<
−logprob(S)

n(P )
+ ε/2

≤ n(P )(H(p, q) + ε/2)
n(P )

+ ε/2

= H(p, q) + ε.
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So, for our bound we will simply need to find the
number of substrings aSb such that

− log probp(aSb) < n(H(p, q) + ε).

Letting IH(aSb) = 1 if −logprobp(aSb) <
n(H(p, q) + ε) and 0 otherwise, the number of
strings we need becomesX
aSb∈Σ

n(C)
p

IH(aSb) = 2n·(H(p,q)+ε)
X

aSb∈Σ
n(C)
p

IH(aSb)2
−n·(H(p,q)+ε)

<2n·(H(p,q)+ε)
X

aSb∈Σ
n(C)
p

IH(aSb)probp(aSb)

(since − log probp(aSb) < n(H(p, q) + ε)

implies probp(aSb) > 2−n·(H(p,q)+ε))

≤ 2n·(H(p,q)+ε)
X

aSb∈Σ
n(C)
p

probp(aSb)

= 2n·(H(p,q)+ε)

Thus, we have a bound of 2n·(H(p,q)+ε) on
the number of substrings of length n satisfying
− log probp(aSb) < n(H(p, q) + ε). Since we
know that with probability at least 1− δ, these are
the only strings that need be considered, we have
proven our bound. �

4.1 Lemma:

We now show that for any fixed k > 0
and δ′, ε′ > 0, there exists some n′ > 0
such that for all partial solutions πk, there
exists a trigram distribution rk on the al-
phabet Σp such that if S = π

n(C)
k (C) and

b − a = n > n′, |−logprob(aSb)
n − H(p, rk)| < ε′

with a probability of at least 1− δ′.

Proof of Lemma: Given any partial solution πk,
it will be useful in this section to consider the
strings S = π

n(C)
k (C) as functions of the plain-

text P rather than the ciphertext C. Since C =
π−1
T (P ), then, we will compose πn(C)

k and π−1
T

to get πn(C)′
k (P ) = π

n(C)
k (π−1

T (P )). Now, since
πT is derived from a character bijection between
Σc and Σp, and since πn(C)

k fixes the k character
types in Σc that are defined in πk, we have that
π
n(C)′
k fixes k character types in Σp. Let ΣP1 be

the set of k character types in Σp that are fixed by
π
n(C)′
k , and let ΣP2 = Σp \ΣP1 . We note that ΣP1

and ΣP2 do not depend on which πk we use, but
only on k.

Now, any string P which is drawn from q
can be decomposed into overlapping substrings

by splitting it whenever it has see two adjacent
characters from ΣP1 . When we see a bigram in
P of this form, say, y1y2, we split P so that both
the end of the initial string and the beginning of
the new string are y1y2. Note that when we have
more than two adjacent characters from ΣP1 we
will split the string more than once, so that we get
a series of three-character substrings of P in our
decomposition. As a matter of bookkeeping we
will consider the initial segment to begin with two
start characters s with indices corresponding to 0
and −1 in P . As an example, consider the string

P = friends, romans, countrymen, lend me
your ears

Where ΣP1 = {‘ ’, ‘, ’, ‘a’, ‘y’}. In this case,
we would decompose P into the strings ‘ssfriends,
’, ‘, romans, ’, ‘, countrymen, ’, ‘, lend me ’, ‘e y’,
‘ your e’ and ‘ ears’.

Let M be the set of all substrings that can be
generated in this way by decomposing strings P
which are drawn from q. Since the end of any
string m ∈M contains two adjacent characters in
ΣP1 and since the presence of two adjacent char-
acters in ΣP1 signals a position at which a string
will be decomposed into segments, we have that
the set M is prefix-free. Every string m ∈ M
is a string in Σp, and so they will have probabili-
ties probq(m) in q. It should be noted that for any
m ∈ M the probability probq(m) may be differ-
ent from the trigram probabilities predicted by q,
but will instead be the overall probability in q of
seeing the string m.

For any pair T, P of strings, let #(T, P ) be the
number of times T occurs in P . Since we as-
sume that the strings drawn from q converge to
the distribution q, we have that for any δ3, ε3 >
0 and any n4 > 0, there exists an n3 > 0
such that for any substring P3 of P of length
at least n3, where P is drawn from q, and for
any m ∈ M of length at most n4, the number
|#(m,P )/len(P3) − probq(m)| < ε3 with prob-
ability greater than 1− δ3.

Now suppose that for some P drawn from q
we have a substring aPb of P such that aPb =
m,m ∈ M . If S = π

n(C)′
k (P ), consider the sub-

string aSb of S. Recall that the string function
π
n(C)′
k can map the characters in P to S in one

of two ways: if a character xi ∈ ΣP1 is found at
index i in P , then the corresponding character in S

88



is πk(xi). Otherwise, xi is mapped to whichever
character yi in ΣP maximizes the probability in p
of S given πn(C)′

k (xi−2)πn(C)′
k (xi−1)yi. Since the

values of πn(C)′
k (xi−2), πn(C)′

k (xi−1) and yi are in-
terdependent, and since πn(C)′

k (xi−2) is dependent
on its previous two neighbors, the value that yi
takes may be dependent on the values taken by
π
n(C)′
k (xj) for indices j quite far from i. How-

ever, we see that no dependencies can cross over
a substring in P containing two adjacent charac-
ters in ΣP1 , since these characters are not trans-
formed by πn(C)′

k in a way that depends on their
neighbors. Thus, if aPb = m ∈ M , the endpoints
of aPb are made up of two adjacent characters in
ΣP1 , and so the substring aSb of S depends only
on the substring aPb of P . Specifically, we see that

aSb = π
n(C)′
k (aPb).

Since we can decompose any P into overlap-
ping substrings m1,m2, . . . ,mt in M , then, we
can carry over this decomposition into S to break
S into π

n(C)′
k (m1), πn(C)′

k (m2), . . . , πn(C)′
k (mt).

Note that the score generated by S in
the A∗ search algorithm is the sum∑

1≤i≤ logprobp(yi−2yi−1yi), where yi is
the ith character in S. Also note that ev-
ery three-character sequence yi−2yi−1yi
occurs exactly once in the decomposition
π
n(C)′
k (m1), πn(C)′

k (m2), . . . , πn(C)′
k (mt). Since

for anym the number of occurrences of πn(C)′
k (m)

in S under this decomposition will be equal to the
number of occurrences of m in P , we have that

−logprobp(S) =
X

1≤i≤n(P )

logprobp(yi−2yi−1yi)

=
X

m∈M

#(m,P ) · (−logprobp(π
n(C)′
k (m))).

Having finished these definitions, we can
now define the distribution rk. In princi-
ple, this distribution should be the limit of
the frequency of trigram counts of the strings
S = π

n(C)′
k (P ), where n(P ) approaches infin-

ity. Given a string S = π
n(C)′
k (P ), where P

is drawn from q, and given any trigram y1y2y3

of characters in Σp, this frequency count is
#(y1y2y3,S)

n(P ) . Breaking S into its component sub-

strings π
n(C)′
k (m1), πn(C)′

k (m2), . . . , πn(C)′
k (mt),

as we have done above, we see that any instance
of the trigram y1y2y3 in S occurs in exactly one of

the substrings πn(C)′
k (mi), 1 ≤ i ≤ t. Grouping

together similar mis, we find

#(y1y2y3, S)

n(P )
=

tP
i=1

#(y1y2y3, π
n(C)′
k (mi))

n(P )

=

P
m∈M

#(y1y2y3, π
n(C)′
k (m)) ·#(m,P )

n(P )

As n(P ) approaches infinity, we find that #(m,P )
n(P )

approaches probq(m), and so we can write

probrk (y1y2y3) =
X

m∈M

#(y1y2y3, π
n(C)′
k (m))probq(m).

Since 0 ≤
∑

m∈M #(y1y2y3, π
n(C)′
k (m))probq(m)

when P is sampled from q we have that

X
y1y2y3

probrk (y1y2y3)

=
X

y1y2y3

X
m∈M

#(y1y2y3, π
n(C)′
k (m))probq(m)

= lim
n(P )→∞

X
y1y2y3

X
m∈M

#(y1y2y3, π
n(C)′
k (m))

#(m,P )

n(P )

= lim
n(P )→∞

X
m∈M

X
y1y2y3

#(y1y2y3, π
n(C)′
k (m))

#(m,P )

n(P )

= lim
n(P )→∞

X
m∈M

(n(π
n(C)′
k (m))− 2)#(m,P )

n(P )

= lim
n(P )→∞

X
m∈M

(n(m)− 2)#(m,P )

n(P )

= lim
n(P )→∞

n(P )

n(P )
= 1,

so we have that probrk is a valid probability distri-
bution. In the above calculation we can rearrange
the terms, so convergence implies absolute conver-
gence. The sum

∑
y1y2y3

#(y1y2y3, π
n(C)′
k (m))

gives (n(πn(C)′
k (m)) − 2) because there is one

trigram for every character in πn(C)′
k (m), less two

to compensate for the endpoints. However, since
the different m overlap by two in a decomposition
from P , the sum (n(m) − 2)#(m,P ) just gives
back the length n(P ), allowing for the fact that
the initial m has two extra start characters.

Having defined rk, we can now find the value of
H(p, rk). By definition, this term will be
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X
y1y2y3

−logprobp(y1y2y3)probrk (y1y2y3)

=
X

y1y2y3

−logprobp(y1y2y3)
X

m∈M

#(y1y2y3, π
n(C)′
k (m))probq(m)

=
X

m∈M

X
y1y2y3

−logprobp(y1y2y3)#(y1y2y3, π
n(C)′
k (m))probq(m)

=
X

m∈M

−logprobp(m)probq(m).

Now, we can finish the proof of the Lemma.
Holding k fixed, let δ′, ε′ > 0 be given. Since we
have assumed that p does not assign a zero proba-
bility to any trigram generated by q, we can find a
trigram x1x2x3 generated by q whose probability
in p is minimal. Let X = −logprobp(x1x2x3),
and note that probp(x1x2x3) > 0 implies
X < ∞. Since we know by the argu-
ment above that when P is sampled from q,

limn(P )→∞(
∑

m∈M
(nπ

n(C)′
k (m)−2)·#(m,P )

n(P ) ) = 1,
we have that∑

m∈M
(nπn(C)′

k (m)− 2)probq(m) = 1.

Thus, we can choose n4 so that

∑
m∈M,n(m)≤n4

(nπn(C)′
k (m)− 2)probq(m)

> 1− ε′/4X.

Let Y = |{m ∈ M,n(m) ≤ n4}|, and choose
n′ such that if P is sampled from q and aPb is a
substring of P with length greater than n′, then
with probability at least 1 − δ′, for every m ∈ M
we will have that

˛̨̨̨
#(m, aPb)

n(aPb)
− probq(m)

˛̨̨̨
< ε′/4XY (n4 − 2).

Let πk be any partial solution of length k, and let
rk be the trigram probability distribution described
above. Then let P be sampled from q, and let S =
π
n(C)
k (C) = π

n(C)′
k (P ), and let a, b be indices of

S such that b − a = n > n′. Finally, we will
partition the set M as follows: we let M ′ be the
set {m ∈M |n(n) ≤ n4} andM ′′ be the set {m ∈
M |n(m) > n4}. Thus, we have that

˛̨̨̨
−logprob(aSb)

n
−H(p, rk)

˛̨̨̨
=

˛̨̨̨
˛
P

m∈M #(m, aPb)(−logprobp(π
n(C)′
k (m))

n

−
X

m∈M

probq(m) · (−logprobp(π
n(C)′
k (m))

˛̨̨̨
˛ .

Grouping the terms of these sums into the index
sets M ′ and M ′′, we find that this value is at most

˛̨̨̨
˛ X
m∈M′

„
#(m, aPb)

n
− probq(m)

«
(−logprobp(π

n(C)′
k (m))

˛̨̨̨
˛

+

˛̨̨̨
˛ X
m∈M′′

„
#(m, aPb)

n
− probq(m)

«
(−logprobp(π

n(C)′
k (m))

˛̨̨̨
˛

Furthermore, we can break up the sum over the
index M ′′ to bound this value by

˛̨̨̨
˛ X
m∈M′

„
#(m, aPb)

n
− probq(m)

«
(−logprobp(π

n(C)′
k (m))

˛̨̨̨
˛

+

˛̨̨̨
˛ X
m∈M′′

#(m, aPb)

n
(−logprobp(π

n(C)′
k (m))

˛̨̨̨
˛

+

˛̨̨̨
˛ X
m∈M′′

probq(m)(−logprobp(π
n(C)′
k (m))

˛̨̨̨
˛

Now, for any m ∈ M , we have that
the score −logprobp(πn(C)′

k (m) equals∑
1≤i≤n(m)−2−logprobp(yiyi+1yi+2), where yi

is the character at the index i in π
n(C)′
k (m).

Taking the maximum possible values for
−logprobp(yiyi+1yi+2), we find that this sum is
at most (n(m)− 2)X . Applying this bound to the
previous formula, we find that it is at most

˛̨̨̨
˛ X
m∈M′

„
#(m, aPb)

n
− probq(m)

«
(n(m)− 2)X

˛̨̨̨
˛

+

˛̨̨̨
˛ X
m∈M′′

#(m, aPb)

n
(n(m)− 2)X

˛̨̨̨
˛

+

˛̨̨̨
˛ X
m∈M′′

probq(m) · (n(m)− 2)X

˛̨̨̨
˛ .

We can bound each of these three terms separately.
Looking at the first sum in this series, we find that
with probability at least 1− δ′,
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˛̨̨̨
˛ X
m∈M′

„
#(m, aPb)

n
− probq(m)

«
(n(m)− 2)X

˛̨̨̨
˛ (*)

≤
X

m∈M′

˛̨̨̨
#(m, aPb)

n
− probq(m)̨̨̨̨ (n(m)− 2)X

≤
X

m∈M′

˛̨̨̨
ε′

4(n4 − 2)XY

˛̨̨̨
· (n(m)− 2)X

≤
X

m∈M′

˛̨̨̨
ε′

4Y

˛̨̨̨

=
ε′

4Y

X
m∈M′

1 =
ε′

4Y
Y = ε/4.

In order to bound the second sum, we make use
of the fact that

∑
m∈M #(m, aPb)(n(m) − 2) =

n(aPb) = n to find that once again, with probabil-
ity greater than 1− δ′,

˛̨̨̨
˛ X
m∈M′′

#(m, aPb)

n
(n(m)− 2)X

˛̨̨̨
˛

≤
X

m∈M′′

˛̨̨̨
#(m, aPb)

n
(n(m)− 2)X

˛̨̨̨
.

Since M ′′ = M −M ′, this value isX
m∈M

˛̨̨̨
#(m, aPb)

n
(n(m)− 2)X

˛̨̨̨

−
X

m∈M′

˛̨̨̨
#(m, aPb)

n
(n(m)− 2)X

˛̨̨̨

=X −
X

m∈M′

˛̨̨̨
#(m, aPb)

n
(n(m)− 2)X

˛̨̨̨
.

This value can further be split into

=X−
X

m∈M′

˛̨̨̨„
#(m, aPb)

n
+(1−1)probq(m)

«
(n(m)−2)X

˛̨̨̨

≤X −

 X
m∈M′

|probq(m)(n(m)− 2)X|

−
X

m∈M′

˛̨̨̨
#(m, aPb)

n
− probq(m)

˛̨̨̨
(n(m)− 2)X

!

Using our value for the sum in (*), we find that
this is

=X −
X

m∈M′

|probq(m)(n(m)− 2)X|

+
X

m∈M′

˛̨̨̨
#(m, aPb)

n
− probq(m)

˛̨̨̨
(n(m)− 2)X

≤X −
X

m∈M′

|probq(m)(n(m)− 2)X|+ ε′

4
,

Using our definition of n4, we can further bound
this value by

=X

 
1−

X
m∈M′

probq(m)(n(m)− 2)

!
+
ε′

4

<X

„
1−

„
1− ε′

4X

««
+
ε′

4

=X
ε′

4X
+
ε′

4
=
ε′

2
.

Finally, we once again make use of the definition
of n4 to find that the last sum is

˛̨̨̨
˛ X
m∈M′′

probq(m) · (n(m)− 2)X

˛̨̨̨
˛

=
X

m∈M′′

probq(m) · (n(m)− 2)X

= X
X

m∈M′′

probq(m) · (n(m)− 2)

< X
ε′

4X

=
ε′

4
.

Adding these three sums together, we get

ε′

4
+
ε′

2
+
ε′

4
= ε′.

Thus,
∣∣∣−logprob(aSb)

n −H(p, rk)
∣∣∣ < ε′ with prob-

ability greater than 1− δ′, as required. �

5 Conclusion

In this paper, we discussed a discrepancy between
the theoretical and practical running times of cer-
tain algorithms that are sensitive to the entropies
of their input, or the entropies of the distributions
from which their inputs are sampled. We then
used the algorithm from Corlett and Penn (2010)
as a subject to allow us to investigate ways to
talk about average-case complexity in light of
this discrepancy. Our analysis was sufficient
to give us a bound on the search complexity
of this algorithm which is exponential in the
cross-entropy between the training distribution
and the input distribution. Our method in effect
yields a probabilistic bound on the depth of the
search heuristic used. This leads to an exponen-
tially smaller search space for the overall problem.

We must note, however, that our analysis does
not fully reconcile the discrepancy between the
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theoretical and practical running time for this
algorithm. In particular, our bound still does not
explain why the number of search nodes expanded
by this algorithm tends to converge on one per
partial solution size as the length of the string
grows very large. As such, we are interested in
further studies as to how to explain the running
time of this algorithm. It is our opinion that this
can be done by refining our description of the sets
Πk to exclude strings which cannot be considered
by the algorithm. Not only would this allow us
to reduce the overall number of strings we would
have to count when determining the bound, but
we would also have to consider fewer strings
when determining the value of n′. Both changes
would reduce the overall complexity of our bound.

This general strategy may have the potential to
illuminate the practical time complexities of ap-
proximate search algorithms as well.
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Abstract

The consistency method has been estab-
lished as the standard strategy for extract-
ing high quality translation rules in statis-
tical machine translation (SMT). However,
no attention has been drawn to why this
method is successful, other than empiri-
cal evidence. Using concepts from graph
theory, we identify the relation between
consistency and components of graphs that
represent word-aligned sentence pairs. It
can be shown that phrase pairs of interest
to SMT form a sigma-algebra generated
by components of such graphs. This con-
struction is generalized by allowing seg-
mented sentence pairs, which in turn gives
rise to a phrase-based generative model. A
by-product of this model is a derivation of
probability mass functions for random par-
titions. These are realized as cases of con-
strained, biased sampling without replace-
ment and we provide an exact formula for
the probability of a segmentation of a sen-
tence.

1 Introduction

A parallel corpus, i.e., a collection of sentences in
a source and a target language, which are trans-
lations of each other, is a core ingredient of ev-
ery SMT system. It serves the purpose of training
data, i.e., data from which translation rules are ex-
tracted. In its most basic form, SMT does not re-
quire the parallel corpus to be annotated with lin-
guistic information, and human supervision is thus
restricted to the construction of the parallel corpus.

The extraction of translation rules is done by ap-
propriately collecting statistics from the training

data. The pioneering work of (Brown et al., 1993)
identified the minimum assumptions that should
be made in order to extract translation rules and
developed the relevant models that made such ex-
tractions possible.

These models, known as IBM models, are based
on standard machine learning techniques. Their
output is a matrix of word alignments for each sen-
tence pair in the training data. These word align-
ments provide the input for later approaches that
construct phrase-level translation rules which may
(Wu, 1997; Yamada and Knight, 2001) or may not
(Och et al., 1999; Marcu and Wong, 2002) rely on
linguistic information.

The method developed in (Och et al., 1999),
known as the consistency method, is a simple yet
effective method that has become the standard way
of extracting (source, target)-pairs of phrases as
translation rules. The development of consistency
has been done entirely on empirical evidence and
it has thus been termed a heuristic.

In this work we show that the method of (Och
et al., 1999) actually encodes a particular type of
structural information induced by the word align-
ment matrices. Moreover, we show that the way in
which statistics are extracted from the associated
phrase pairs is insufficient to describe the underly-
ing structure.

Based on these findings we suggest a phrase-
level model in the spirit of the IBM models. A key
aspect of the model is that it identifies the most
likely partitions, rather than alignment maps, asso-
ciated with appropriately chosen segments of the
training data. For that reason, we provide a gen-
eral construction of probability mass functions for
partitions and, in particular, an exact formula for
the probability of a segmentation of a sentence.
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2 Definition of Consistency

In this section we provide the definition of consis-
tency, which was introduced in (Och et al., 1999),
refined in (Koehn et al., 2003), and we follow
(Koehn, 2009) in our description. We start with
some preliminary definitions.

Let S = s1...s|S| be a source sentence, i.e., a
string that consists of consecutive source words;
each word si is drawn from a source language vo-
cabulary and i indicates the position of the word
in S. The operation of string extraction from the
words of S is defined as the construction of the
string s = si1 ...sin from the words of S, with
1 ≤ i1 < ... < in ≤ |S|. If i1, ..., in are consecu-
tive, which implies that s is a substring of S, then
s is called a source phrase and we write s ⊆ S.
As a shorthand we also write sin

i1
for the phrase

si1 ...sin . Similar definitions apply to the target
side and we denote by T, tj and t a target sen-
tence, word and phrase respectively.

Let (S = s1s2...s|S|, T = t1t2...t|T |) be a sen-
tence pair and let A denote the |S|×|T |matrix that
encodes the existence/absence of word alignments
in (S, T ) as

A(i, j) =

{
1, if si and tj are aligned
0, otherwise,

(1)

for all i = 1, ..., |S| and j = 1, ..., |T |. Un-
aligned words are allowed. A pair of strings (s =
si1 ...si|s| , t = tj1 ...tj|t|) that is extracted from
(S, T ) is termed consistent with A, if the follow-
ing conditions are satisfied:

1. s ⊆ S and t ⊆ T .

2. ∀k ∈ {1, ..., |s|} such that A(ik, j) = 1, then
j ∈ {j1, ..., j|t|}.

3. ∀l ∈ {1, ..., |t|} such that A(i, jl) = 1, then
i ∈ {i1, ..., i|s|}.

4. ∃k ∈ {1, ..., |s|} and ∃l ∈ {1, ..., |t|} such
that A(ik, jl) = 1.

Condition 1 guarantees that (s, t) is a phrase
pair and not just a pair of strings. Condition 2 says
that if a word in s is aligned to one or more words
in T , then all such target words must appear in t.
Condition 3 is the equivalent of Condition 2 for the
target words. Condition 4 guarantees the existence
of at least one word alignment in (s, t).

For a sentence pair (S, T ), the set of all consis-
tent pairs with an alignment matrix A is denoted

by P (S, T ). Figure 1(a) shows an example of a
sentence pair with an alignment matrix together
with all its consistent pairs.

In SMT the extraction of each consistent pair
(s, t) from (S, T ) is followed by a statistic
f(s, t;S, T ). Typically f(s, t;S, T ) counts the oc-
currences of (s, t) in (S, T ). By considering all
sentence pairs in the training data, the translation
probability is constructed as

p(t|s) =

∑
(S,T ) f(s, t;S, T )∑

(S,T )

∑
t′ f(s, t′;S, T )

, (2)

and similarly for p(s|t). Finally, the entries of the
phrase table consist of all extracted phrase pairs,
their corresponding translation probabilities and
other models which we do not discuss here.

3 Consistency and Components

For a given sentence pair (S, T ) and a fixed word
alignment matrix A, our aim is to show the equiva-
lence between consistency and connectivity prop-
erties of the graph formed by (S, T ) and A. More-
over, we explain that the way in which measure-
ments are performed is not compatible , in princi-
ple, with the underlying structure. We start with
some basic definitions from graph theory (see for
example (Harary, 1969)).

Let G = (V,E) be a graph with vertex set V
and edge set E. Throughout this work, vertices
represent words and edges represent word align-
ments, but the latter will be further generalized in
Section 4. A subgraph H = (V ′, E′) of G is a
graph with V ′ ⊆ V , E′ ⊆ E and the property
that for each edge in E′, both its endpoints are in
V ′. A path in G is a sequence of edges which con-
nect a sequence of distinct vertices. Two vertices
u, v ∈ V are called connected if G contains a path
from u to v. G is said to be connected if every pair
of vertices in G is connected.

A connected component, or simply component,
of G is a maximal connected subgraph of G. G
is called bipartite if V can be partitioned in sets
VS and VT , such that every edge in E connects a
vertex in VS to one in VT . The disjoint union of
graphs, or simply union, is an operation on graphs
defined as follows. For n graphs with disjoint ver-
tex sets V1, ..., Vn (and hence disjoint edge sets),
their union is the graph (∪n

i=1Vi,∪n
i=1Ei).

Consider the graph G whose vertices are the
words of the source and target sentences, and
whose edges are induced by the non-zero entries
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Figure 1: (a) Left: Sentence pair with an alignment matrix. Dots indicate existence of word alignments.
Right: All consistent pairs. (b) The graph representation of the matrix in (a), and the sets generated by
components of the graph. Dark shading indicates consistency.

of the matrix A. There are no edges between
any two source-type vertices nor between any two
target-type vertices. Moreover, the source and tar-
get language vocabularies are assumed to be dis-
joint and thus G is bipartite. The set of all com-
ponents of G is defined as C1 and let k denote its
cardinality, i.e., |C1| = k. From the members of
C1 we further construct sets C2, ..., Ck as follows:
For each i, 2 ≤ i ≤ k, any member of Ci is formed
by the union of any i distinct members of C1. In
other words, any member of Ci is a graph with i
components and each such component is a mem-
ber of C1. The cardinality of Ci is clearly

(
k
i

)
, for

every i, 1 ≤ i ≤ k.
Note that Ck = {G}, since G is the union of

all members of C1. Moreover, observe that C∗ =
∪k

i=1Ci is the set of graphs that can be generated
by all possible unions of G’s components. In that
sense

C = {∅} ∪ C∗ (3)

is the power set of G. Indeed we have |C| = 1 +∑k
i=1

(
k
i

)
= 2k as required.1

Figure 1(b) shows the graph G and the associ-
ated sets Ci of (S, T ) and A in Figure 1(a). Note
the bijective correspondence between consistent

1Here we used the fact that for any set X with |X| =
n, the set of all subsets of X , i.e., the power set of X , has
cardinality

Pn
i=0

`
n
i

´
= 2n.

pairs and the phrase pairs that can be extracted
from the vertices of the members of the sets Ci.
This is a consequence of consistency Conditions 2
and 3, since they provide the sufficient conditions
for component formation.

In general, if a pair of strings (s, t) satisfies the
consistency Conditions 2 and 3, then it can be ex-
tracted from the vertices of a graph in Ci, for some
i. Moreover, if Conditions 1 and 4 are also satis-
fied, i.e., if (s, t) is consistent, then we can write

P (S, T ) =
k⋃

i=1

{
(SH , TH) : H ∈ Ci,

SH ⊆ S, TH ⊆ T
}
,
(4)

where SH denotes the extracted string from the
source-type vertices of H , and similarly for TH .
Having established this relationship, when refer-
ring to members of C, we henceforth mean either
consistent pairs or inconsistent pairs. The latter
are pairs (SH , TH) for some H ∈ C such that at
least either SH 6⊆ S or TH 6⊆ T .

The construction above shows that phrase pairs
of interest to SMT are part of a carefully con-
structed subclass of all possible string pairs that
can be extracted from (S, T ). The power set C
of G gives rise to a small, possibly minimal, set
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in which consistent and inconsistent pairs can be
measured.1 In other words, since C is (by con-
struction) a sigma-algebra, the pair (C1, C) is a
measurable space. Furthermore, one can construct
a measure space (C1, C, f), with an appropriately
chosen measure f : C → [0,∞).

Is the occurrence-counting measure f of Sec-
tion 2 a good choice? Fix an ordering for Ci, and
let Ci,j denote the jth member of Ci, for all i,
1 ≤ i ≤ k. Furthermore, let δ(x, y) = 1, if x = y
and 0, otherwise. We argue by contradiction that
the occurrence-counting measure

f(H) =
∑

{H′: H′∈C, H′ is consistent}

δ(H,H ′), (5)

fails to form a measure space. Suppose that more
than one component of G is consistent, i.e., sup-
pose that

1 <

k∑
j=1

f(C1,j) ≤ k. (6)

By construction of C, it is guaranteed that

1 = f(G) = f(Ck,1) = f(∪k
j=1 C1,j). (7)

The members of C1 are pairwise disjoint, because
each of them is a component of G. Thus, since f is
assumed to be a measure, sigma-additivity should
be satisfied, i.e., we must have

f(∪k
j=1 C1,j) =

k∑
j=1

f(C1,j) > 1, (8)

which is a contradiction.
In practice, the deficiency of using eq. 5 as

a statistic could possibly be explained by the
fact that the so-called lexical weights are used as
smoothing.

4 Consistency, Components and
Segmentations

In Section 3 the only relation that was assumed
among source (target) words/vertices was the or-
der of appearance in the source (target) sentence.
As a result, the graph representation G of (S, T )
and A was bipartite. There are several, linguisti-
cally motivated, ways in which a general graph can
be obtained from the bipartite graph G. We ex-
plain that the minimal linguistic structure, namely

1See Appendix for definitions.

sentence segmentations, can provide a generaliza-
tion of the construction introduced in Section 3.

Let X be a finite set of consecutive integers. A
consecutive partition of X is a partition of X such
that each part consists of integers consecutive in
X . A segmentation σ of a source sentence S is a
consecutive partition of {1, ..., |S|}. A part of σ,
i.e., a segment, is intuitively interpreted as a phrase
in S. In the graph representation G of (S, T ) and
A, a segmentation σ of S is realised by the ex-
istence of edges between consecutive source-type
vertices whose labels, i.e., word positions in S, ap-
pear in the same segment of σ. The same argument
holds for a target sentence and its words; a target
segmentation is denoted by τ .

Clearly, there are 2|S|−1 possible ways to seg-
ment S and, given a fixed alignment matrix A,
the number of all possible graphs that can be con-
structed is thus 2|S|+|T |−2. The bipartite graph
of Section 3 is just one possible configuration,
namely the one in which each segment of σ con-
sists of exactly one word, and similarly for τ . We
denote this segmentation pair by (σ0, τ0).

We now turn to extracting consistent pairs in
this general setting from all possible segmenta-
tions (σ, τ) for a sentence pair (S, T ) and a fixed
alignment matrix A. As in Section 3, we con-
struct graphs Gσ,τ , associated sets Cσ,τ

i , for all i,
1 ≤ i ≤ kσ,τ , and Cσ,τ , for all (σ, τ). Consistent
pairs are extracted in lieu of eq. 4, i.e.,

P σ,τ (S, T ) =
kσ,τ⋃
i=1

{
(SH , TH) : H ∈ Cσ,τ

i ,

SH ⊆ S, TH ⊆ T
}
, (9)

and it is trivial to see that

{(S, T )} ⊆ P σ,τ (S, T ) ⊆ P (S, T ), (10)

for all (σ, τ). Note that P (S, T ) = P σ0,τ0(S, T )
and, depending on the details of A, it is possible
for other pairs (σ, τ) to attain equality. Moreover,
each consistent pair in P (S, T ) can be be extracted
from a member of at least one Cσ,τ .

We focus on the sets Cσ,τ
1 , i.e., the components

of Gσ,τ , for all (σ, τ). In particular, we are inter-
ested in the relation between P (S, T ) and Cσ,τ

1 ,
for all (σ, τ). Each consistent H ∈ Cσ0,τ0 can
be converted into a single component by appropri-
ately forming edges between consecutive source-
type vertices and/or between consecutive target-
type vertices. The resulting component will evi-
dently be a member of Cσ,τ

1 , for some (σ, τ). It
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is important to note that the conversion of a con-
sistent H ∈ Cσ0,τ0 into a single component need
not be unique; see Figure 2 for a counterexam-
ple. Since (a) such conversions are possible for
all consistent H ∈ Cσ0,τ0 and (b) P (S, T ) =
P σ0,τ0(S, T ), it can be deduced that all possible
consistent pairs can be traced in the sets Cσ,τ

1 , for
all (σ, τ). In other words, we have:

P (S, T ) =
⋃
σ,τ

{
(SH , TH) : H ∈ Cσ,τ

1 ,

SH ⊆ S, TH ⊆ T
}
. (11)

The above equation says that by taking sen-
tence segmentations into account, we can recover
all possible consistent pairs, by inspecting only the
components of the underlying graphs.

It would be interesting to investigate the re-
lation between measure spaces (Cσ,τ

1 , Cσ,τ , fσ,τ )
and different configurations for A. We leave that
for future work and focus on the advantages pro-
vided by eq. 11.
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Figure 2: A graph with three components (top),
and four possible conversions into a single compo-
nent by forming edges between contiguous words.

5 Towards a phrase-level model that
respects consistency

The aim of this section is to exploit the relation
established in eq. 11 between consistent pairs and
components of segmented sentence pairs. It was
also shown in Section 2 that the computation of the
translation models is inappropriate to describe the
underlying structure. We thus suggest a phrase-
based generative model in the spirit of the IBM
word-based models, which is compatible with the
construction of the previous sections.

5.1 Hidden variables
All definitions from the previous sections are car-
ried over, and we introduce a new quantity that is
associated with components. Let Gσ,τ and Cσ,τ

1 ,
for some (σ, τ) be as in Section 4, then the set
K is defined as follows: Each member of K is
a pair of (source, target) sets of segments that cor-
responds to the pair of (source, target) vertices of
a consistent member of Cσ,τ

1 . In other words, K is
a bisegmentation of a pair of segmented sentences
that respects consistency.

Figure 3 shows three possible ways to con-
struct consistent graphs from (S, T ) = (s4

1, t
6
1),

σ = {{1, 2}, {3}, {4}} ≡ {x1, x2, x3} and τ =
{{1}, {2, 3, 4}, {5}, {6}} ≡ {y1, y2, y3, y4}. In
each case the exact alignment information is un-
known and we have:

(a) K =
{ (

{x1}, {y1}
)
,

(
{x2}, {y2}

)
,(

{x3}, {y3, y4}
) }

.

(b) K =
{ (

{x1, x2}, {y1, y2, y3}
)
,(

{x3}, {y4}
)}

.

(c) K =
{ (

{x1}, {y3, y4}
)
,(

{x2, x3}, {y1, y2}
)}

.
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Figure 3: Three possible ways to construct con-
sistent graphs for (s4

1, t
6
1) and a given segmenta-

tion pair. Exact word alignment information is un-
known.

In the proposed phrase-level generative model
the random variables whose instances are σ, τ and
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K are hidden variables. As with the IBM mod-
els, they are associated with the positions of words
in a sentence, rather than the words themselves.
Alignment information is implicitly identified via
the consistent bisegmentation K.

Suppose we have a corpus that consists of pairs
of parallel sentences (S, T ), and let fS,T denote
the occurrence count of (S, T ) in the corpus. Also,
let lS = |S| and lT = |T |. The aim is to maximize
the corpus log-likelihood function

` =
∑
S,T

fS,T log pθ(T |S)

=
∑
S,T

fS,T log
∑

σ,τ,K

pθ(T, σ, τ, K|S), (12)

where σ, τ and K are hidden variables parameter-
ized by a vector θ of unknown weights, whose val-
ues are to be determined. The expectation max-
imization algorithm (Dempster et al., 1977) sug-
gests that an iterative application of

θn+1 = arg max
θ

∑
S,T

fS,T

∑
σ,τ,K

pθn(σ, τ,K|S, T )×

log pθ(T, σ, τ, K|S),
(13)

provides a good approximation for the maximum
value of `. As with the IBM models we seek prob-
ability mass functions (PMFs) of the form

pθ(T, σ, τ, K|S) = pθ(lT |S)pθ(σ, τ,K|lT , S)×
pθ(T |σ, τ,K, lT , S),

(14)

and decompose further as

pθ(σ, τ,K|lT , S) = pθ(σ, τ |lT , S)pθ(K|σ, τ, lT , S)
(15)

A further simplification of pθ(σ, τ |lT , S) =
pθ(σ|S)pθ(τ |lT ) may not be desirable, but will
help us understand the relation between θ and the
PMFs. In particular, we give a formal description
of pθ(σ|S) and then explain that pθ(K|σ, τ, lT , S)
and pθ(T |σ, τ,K, lT , S) can be computed in a
similar way.

5.2 Constrained, biased sampling without
replacement

The probability of a segmentation given a sentence
can be realised in two different ways. We first pro-
vide a descriptive approach which is more intu-
itive, and we use the sentence S = s4

1 as an ex-

ample whenever necessary. The set of all possi-
ble segments of S is denoted by seg(S) and triv-
ially |seg(S)| = |S|

(
|S| + 1

)
/2. Each segment

x ∈ seg(S) has a nonnegative weight θ(x|lS) such
that ∑

x∈seg(S)

θ(x|lS) = 1. (16)

Suppose we have an urn that consists of
|seg(S)| weighted balls; each ball corresponds to
a segment of S. We sample without replacement
with the aim of collecting enough balls to form a
segmentation of S. When drawing a ball x we si-
multaneously remove from the urn all other balls
x′ such that x ∩ x′ 6= ∅. We stop when the urn
is empty. In our example, let the urn contain 10
balls and suppose that the first draw is {1, 2}. In
the next draw, we have to choose from {3}, {4}
and {3, 4} only, since all other balls contain a ‘1’
and/or a ‘2’ and are thus removed. The sequence
of draws that leads to a segmentation is thus a path
in a decision tree. Since σ is a set, there are |σ|!
different paths that lead to its formation. The set
of all possible segmentations, in all possible ways
that each segmentation can be formed, is encoded
by the collection of all such decision trees.

The second realisation, which is based on the
notions of cliques and neighborhoods, is more
constructive and will give rise to the desired PMF.
A clique in a graph is a subset U of the vertex set
such that for every two vertices u, v ∈ U , there ex-
ists an edge connecting u and v. For any vertex u
in a graph, the neighborhood of u is defined as the
set N(u) = {v : {u, v} is an edge}. A maximal
clique is a clique U that is not a subset of a larger
clique: For each u ∈ U and for each v ∈ N(u) the
set U ∪ {v} is not a clique.

Let G be the graph whose vertices are all seg-
ments of S and whose edges satisfy the condition
that any two vertices x and x′ form an edge iff
x ∩ x′ = ∅; see Figure 4 for an example. G es-
sentially provides a compact representation of the
decision trees discussed above.

It is not difficult to see that a maximal clique
also forms a segmentation. Moreover, the set of all
maximal cliques in G is exactly the set of all pos-
sible segmentations for S. Thus, pθ(σ|S) should
satisfy

pθ(σ|S) = 0, if σ is not a clique in G, (17)

and ∑
σ

pθ(σ|S) = 1, (18)
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Figure 4: The graph whose vertices are the seg-
ments of s4

1 and whose edges are formed by non-
overlapping vertices.

where the sum is over all maximal cliques in G.
In our example pθ

(
{ {1}, {1, 2} }|S

)
= 0, be-

cause there is no edge connecting segments {1}
and {1, 2} so they are not part of any clique.

In order to derive an explicit formula for
pθ(σ|S) we focus on a particular type of paths
in G. A path is called clique-preserving, if ev-
ery vertex in the path belongs to the same clique.
Our construction should be such that each clique-
preserving path has positive probability of occur-
ring, and all other paths should have probability
0. We proceed with calculating probabilities of
clique-preserving paths based on the structure of
G and the constraint of eq. 16.

The probability pθ(σ|S) can be viewed as
the probability of generating all clique-preserving
paths on the maximal clique σ in G. Since
σ is a clique, there are |σ|! possible paths that
span its vertices. Let σ = {x1, ..., x|σ|},
and let π denote a permutation of {1, ..., |σ|}.
We are interested in computing the probabil-
ity qθ(xπ(1), ..., xπ(|σ|)) of generating a clique-
preserving path xπ(1), ..., xπ(|σ|) in G. Thus,

pθ(σ|S) = pθ({x1, ..., x|σ|}|S)

=
∑
π

qθ(xπ(1), ..., xπ(|σ|))

=
∑
π

qθ(xπ(1)) qθ(xπ(2)|xπ(1))× ...

...× qθ(xπ(|σ|)|xπ(1), ..., xπ(|σ|−1)).
(19)

The probabilities qθ(·) can be explicitly calcu-
lated by taking into account the following ob-
servation. A clique-preserving path on a clique

σ can be realised as a sequence of vertices
xπ(1), ..., xπ(i), ..., xπ(|σ|) with the following con-
straint: If at step i − 1 of the path we are at ver-
tex xπ(i−1), then the next vertex xπ(i) should be a
neighbor of all of xπ(1), ..., xπ(i−1). In other words
we must have

xπ(i) ∈ Nπ,i ≡
i−1⋂
l=1

N(xπ(l)). (20)

Thus, the probability of choosing xπ(i) as the next
vertex of the path is given by

qθ(xπ(i)|xπ(1), ..., xπ(i−1)) =
θ(xπ(i)|lS)∑

x∈Nπ,i

θ(x|lS)
,

(21)
if xπ(i) ∈ Nπ,i and 0, otherwise. When choosing
the first vertex of the path (the root in the deci-
sion tree) we have Nπ,1 = seg(S), which gives
qθ(xπ(1)) = θ(xπ(1)|lS), as required. Therefore
eq. 19 can be written compactly as

pθ(σ|S) =

 |σ|∏
i=1

θ(xi|lS)

 ∑
π

1
Qθ(σ, π;S)

,

(22)
where

Qθ(σ, π;S) =
|σ|∏
i=1

∑
x∈Nπ,i

θ(x|lS) . (23)

The construction above can be generalized in
order to derive a PMF for any random variable
whose values are partitions of a set. Indeed, by al-
lowing the vertices of G to be a subset of a power
set, and keeping the condition of edge formation
the same, probabilities of clique-preserving paths
can be calculated in the same way. Figure 5 shows
the graph G that represents all possible instances of
K with (S, T ) = (s4

1, t
5
1), σ =

{
{1, 2}, {3}, {4}

}
and τ =

{
{1}, {2, 3, 4}, {5}

}
. Again each maxi-

mal clique is a possible consistent bisegmentation.
In order for this model to be complete, one

should solve the maximization step of eq. 13 and
calculate the posterior pθn(σ, τ,K|S, T ). We are
not bereft of hope, as relevant techniques have
been developed (see Section 6).

6 Related Work

To our knowledge, this is the first attempt to inves-
tigate formal motivations behind the consistency
method.
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Figure 5: Similar to Figure 4 but for consistent
bisegmentations with (S, T ) = (s4

1, t
5
1) and a

given segmentation pair (see text). For clarity, we
show the phrases that are formed from joining con-
tiguous segments in each pair, rather than the seg-
ments themselves.

Several phrase-level generative models have
been proposed, almost all relying on multinomial
distributions for the phrase alignments (Marcu and
Wong, 2002; Zhang et al., 2003; Deng and Byrne
2005; DeNero et al., 2006; Birch et al., 2006).
This is a consequence of treating alignments as
functions rather than partitions.

Word alignment and phrase extraction via In-
version Transduction Grammars (Wu, 1997), is a
linguistically motivated method that relies on si-
multaneous parsing of source and target sentences
(DeNero and Klein, 2010; Cherry and Lin 2007;
Neubig et al., 2012).

The partition probabilities we introduced in
Section 5.2 share the same tree structure discussed
in (Dennis III, 1991), which has found applica-
tions in Information Retrieval (Haffari and Teh,
2009).

7 Conclusions

We have identified the relation between consis-
tency and components of graphs that represent
word-aligned sentence pairs. We showed that
phrase pairs of interest to SMT form a sigma-
algebra generated by components of such graphs,
but the existing occurrence-counting statistics are
inadequate to describe this structure. A general-
ization of our construction via sentence segmenta-
tions lead to a realisation of random partitions as
cases of constrained, biased sampling without re-

placement. As a consequence, we derived an exact
formula for the probability of a segmentation of a
sentence.

Appendix: Measure Space

The following standard definitions can be found
in, e.g., (Feller, 1971). Let X be a set. A collection
B of subsets of X is called a sigma-algebra if the
following conditions hold:

1. ∅ ∈ B.

2. If E is in B, then so is its complement X \E.

3. If {Ei} is a countable collection of sets in B,
then so is their union ∪iEi.

Condition 1 guarantees that B is non-empty and
Conditions 2 and 3 say that B is closed under com-
plementation and countable unions respectively.
The pair (X, B) is called a measurable space.

A function f : B → [0,∞) is called a measure
if the following conditions hold:

1. f(∅) = 0.

2. If {Ei} is a countable collection of pairwise
disjoint sets in B, then

f(∪iEi) =
∑

i

f(Ei).

Condition 2 is known as sigma-additivity. The
triple (X, B, f) is called a measure space.
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1 Abstract

Context-free grammars have been a cornerstone
of theoretical computer science and computational
linguistics since their inception over half a century
ago. Topic models are a newer development in ma-
chine learning that play an important role in doc-
ument analysis and information retrieval. It turns
out there is a surprising connection between the
two that suggests novel ways of extending both
grammars and topic models. After explaining this
connection, I go on to describe extensions which
identify topical multiword collocations and auto-
matically learn the internal structure of named-
entity phrases.

The adaptor grammar framework is a non-
parametric extension of probabilistic context-free
grammars (Johnson et al., 2007), which was ini-
tially intended to allow fast prototyping of mod-
els of unsupervised language acquisition (John-
son, 2008), but it has been shown to have applica-
tions in text data mining and information retrieval
as well (Johnson and Demuth, 2010; Hardisty et
al., 2010). We’ll see how learning the referents of
words (Johnson et al., 2010) and learning the roles
of social cues in language acquisition (Johnson et
al., 2012) can be viewed as a kind of topic mod-
elling problem that can be reduced to a grammat-
ical inference problem using the techniques de-
scribed in this talk.
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