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Abstract

In this paper, we introduce a syntax-based
sentence simplifier that models simplifi-
cation using a probabilistic synchronous
tree substitution grammar (STSG). To im-
prove the STSG model specificity we uti-
lize a multi-level backoff model with addi-
tional syntactic annotations that allow for
better discrimination over previous STSG
formulations. We compare our approach
to T3 (Cohn and Lapata, 2009), a re-
cent STSG implementation, as well as
two state-of-the-art phrase-based sentence
simplifiers on a corpus of aligned sen-
tences from English and Simple English
Wikipedia. Our new approach performs
significantly better than T3, similarly to
human simplifications for both simplicity
and fluency, and better than the phrase-
based simplifiers for most of the evalua-
tion metrics.

1 Introduction

Text simplification is aimed at reducing the read-
ing and grammatical complexity of text while re-
taining the meaning. Text simplification has ap-
plications for children, language learners, people
with disabilities (Carroll et al., 1998; Feng, 2008)
and in technical domains such as medicine (El-
hadad, 2006), and can be beneficial as a prepro-
cessing step for other NLP applications (Vickrey
and Koller, 2008; Miwa et al., 2010). In this paper
we introduce a new probabilistic model for sen-
tence simplification using synchronous tree sub-
stitution grammars (STSG).

Synchronous grammars can be viewed as simul-
taneously generating a pair of recursively related
strings or trees (Chiang, 2006). STSG grammar
rules contain pairs of tree fragments called ele-
mentary trees (Eisner, 2003; Cohn and Lapata,

2009; Yamangil and Shieber, 2010). The leaves
of an elementary tree can be either terminal, lex-
ical nodes or aligned nonterminals (also referred
to as variables or frontier nodes). Because ele-
mentary trees may have any number of internal
nodes structured in any way STSGs allow for more
complicated derivations not expressible with other
synchronous grammars.

To simplify an existing tree, an STSG gram-
mar is used as a tree transducer. Figure 1 shows
some example simplification STSG rules written
in transductive form. As a transducer the gram-
mar rules take an elementary tree and rewrite it as
the tree on the right-hand side of the rule. For ex-
ample, the first rule in Figure 1 would make the
transformation

S

VP1VP

ADVP

RB

occasionally

MD

may

NP0

S

VP1NP0,

,

ADVP

RB

sometimes

changing “may occasionally” to “sometimes ,” and
moving the noun phrase from the beginning of the
sentence to after the comma. The indices on the
nonterminals indicate alignment and transduction
continues recursively on these aligned nontermi-
nals until no nonterminals remain. In the example
above, transduction would continue down the tree
on the NP and VP subtrees. A probabilistic STSG
has a probability associated with each rule.

One of the key challenges in learning an STSG
from an aligned corpus is determining the right
level of specificity for the rules: too general and
they can be applied in inappropriate contexts; too
specific, and the rules do not apply in enough con-
texts. Previous work on STSG learning has regu-
lated the rule specificity based on elementary tree
depth (Cohn and Lapata, 2009), however, this ap-
proach has not worked well for text simplifica-
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S(NP0 VP(MD(may) ADVP(RB(occasionally))) VP1) → S(ADVP(RB(sometimes)) ,(,) NP0 VP1)
NP(NNS0) → NP(NNS0)

NP(JJ0 NNS1) → NP(JJ0 NNS1)
VP(VB0 PP(IN(in) NP1)) → VP(VB0 NP1)

VB(assemble), → VB(join)
JJ(small) → JJ(small)

NNS(packs) → NNS(packs)
NNS(jackals) → NNS(jackals)

Figure 1: Example STSG rules representing the maximally general set for the aligned trees in Figure 2.
The rules are written in transductive form. Aligned nonterminals are indicated by indices.

tion (Coster and Kauchak, 2011a). In this pa-
per, we take a different approach and augment the
grammar with additional information to increase
the specificity of the rules (Galley and McKeown,
2007). We combine varying levels of grammar
augmentation into a single probabilistic backoff
model (Yamangil and Nelken, 2008). This ap-
proach creates a model that uses specific rules
when the context has been previously seen in the
training data and more general rules when the con-
text has not been seen.

2 Related Work

Our formulation is most closely related to the T3
model (Cohn and Lapata, 2009), which is also
based on the STSG formalism. T3 was devel-
oped for the related problem of text compression,
though it supports the full range of transforma-
tion operations required for simplification. We use
a modified version of their constituent alignment
and rule extraction algorithms to extract the ba-
sic STSG rules with three key changes. First, T3
modulates the rule specificity based on elemen-
tary tree depth, while we use additional grammar
annotations combined via a backoff model allow-
ing for a broader range of context discrimination.
Second, we learn a probabilistic model while T3
learns the rule scores discriminatively. T3’s dis-
criminative training is computationally prohibitive
for even modest sized training sets and a proba-
bilistic model can be combined with other proba-
bilities in a meaningful way. Third, our implemen-
tation outputs an n-best list which we then rerank
based on a trained log-linear model to select the
final candidate.

Zhu et al. (2010) suggest a probabilistic, syntax-
based approach to text simplification. Unlike the
STSG formalism, which handles all of the trans-
formation operations required for sentence simpli-
fication in a unified framework, their model uses
a combination of hand-crafted components, each

designed to handle a different transformation op-
eration. Because of this model rigidity, their sys-
tem performed poorly on evaluation metrics that
take into account the content and relative to other
simplification systems (Wubben et al., 2012).

Woodsend and Lapata (2011) introduce a quasi-
synchronous grammar formulation and pose the
simplification problem as an integer linear pro-
gram. Their model has similar representational ca-
pacity to an STSG, though the learned models tend
to be much more constrained, consisting of <1000
rules. With this limited rule set, it is impossible
to model all of the possible lexical substitutions
or to handle simplifications that are strongly con-
text dependent. This quasi-synchronous grammar
approach performed better than Zhu et al. (2010)
in a recent comparison, but still performed worse
than recent phrase-based approaches (Wubben et
al., 2012).

A number of other approaches exist that use
Simple English Wikipedia to learn a simplifica-
tion model. Yatskar et al. (2010) and Biran et
al. (2011) learn lexical simplifications, but do not
tackle the more general simplification problem.
Coster and Kauchak (2011a) and Wubben et al.
(2012) use a modified phrase-based model based
on a machine translation framework. We compare
against both of these systems. Qualitatively, we
find that phrasal models do not have the represen-
tative power of syntax-based approaches and tend
to only make small changes when simplifying.

Finally, there are a few early rule-based sim-
plification systems (Chandrasekar and Srinivas,
1997; Carroll et al., 1998) that provide motivation
for recent syntactic approaches. Feng (2008) pro-
vides a good overview of these.

3 Probabilistic Tree-to-Tree
Transduction

We model text simplification as tree-to-tree trans-
duction with a probabilistic STSG acquired from
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Figure 2: An example pair of constituent aligned trees generated by the constituent alignment algorithm.
Aligned constituents are indicated with a shared index number (e.g. NP2 is aligned to NP2).

a parsed, sentence-aligned corpus between normal
and simplified sentences. To learn the grammar,
we first align tree constituents based on an in-
duced word alignment then extract grammar rules
that are consistent with the constituent alignment.
To improve the specificity of the grammar we
augment the original rules with additional lexi-
cal and positional information. To simplify a sen-
tence based on the learned grammar, we generate
a finite-state transducer (May and Knight, 2006)
and use the transducer to generate an n-best list
of simplifications. We then rerank the n-best list
of simplifications using a trained log-linear model
and output the highest scoring simplification. The
subsections below look at each of these steps in
more detail. Throughout the rest of this paper, we
will refer to the unsimplified text/trees as normal
and the simplified variants as simple.

3.1 Rule Extraction

Given a corpus of pairs of trees representing nor-
mal and simplified sentences, the first step is to
extract a set of basic STSG production rules from
each tree pair. We used a modified version of the
algorithm presented by Cohn and Lapata (2009).
Due to space constraints, we only present here
a brief summary of the algorithm along with our
modifications to the original algorithm. See Cohn
and Lapata (2009) for more details.

Word-level alignments are learned using
Giza++ (Och and Ney, 2000) then tree nodes (i.e.
constituents) are aligned if: there exists at least
one pair of nodes below them that is aligned and
all nodes below them are either aligned to a node
under the other constituent or unaligned. Given
the constituent alignment, we then extract the
STSG production rules. Because STSG rules can

have arbitrary depth, there are often many possible
sets of rules that could be extracted from a pair
of trees.1 Following Cohn and Lapata (2009)
we extract the maximally general rule set from
an aligned pair of input trees that is consistent
with the alignment: the set of rules capable of
synchronously deriving the original aligned tree
pair consisting of rules with the smallest depth.
Figure 2 shows an example tree pair that has
been constituent aligned and Figure 1 shows the
extracted STSG rules.

We modify the constituent alignment algorithm
from Cohn and Lapata (2009) by adding the re-
quirement that if node b with parent a are both
aligned to node z and its parent y, we only align
the pairs (a, y) and (b, z), i.e. align the children
and align the parents. This eliminates a common
occurrence where too many associations are made
between a pair of preterminal nodes and their chil-
dren. For example, for the sentences shown in Fig-
ure 2 the word alignment contains “assemble”
aligned to “join”. Under the original definition
four aligned pairs would be generated:

VB

assemble

VB

join

but only two under our revised definition:

VB

assemble

VB

join

This revised algorithm reduces the size of the
alignment, decreasing the number of cases which
must be checked during grammar extraction while
preserving the intuitive correspondence.

1There is always at least one set of rules that can generate
a tree pair consisting of the entire trees.
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3.2 Grammar Generation
During the production rule extraction process, we
select the production rules that are most general.
More general rules allow the resulting transducer
to handle more potential inputs, but can also re-
sult in unwanted transformations. When generat-
ing the grammar, this problem can be mitigated by
also adding more specific rules.

Previous approaches have modulated rule speci-
ficity by incorporating rules of varying depth in
addition to the maximally general rule set (Cohn
and Lapata, 2009), though this approach can be
problematic. Consider the aligned subtrees rooted
at nodes (VP4, VP4) in Figure 2. An STSG learn-
ing algorithm that controls rule specificity based
on depth must choose between generating the rule:

VP(VB0 PP(IN(in) NP1))→ VP(VB0 NP1)

which drops the preposition, or a deeper rule that
includes the lexical leaves such as:

VP(VB(assemble) PP(IN(in) NP1))→ VP(VB(join) NP1)

or
VP(VB(assemble) PP(IN(in) NP(JJ0 NNS1)))→

VP(VB(join) NP(JJ0 NNS1))

If either of the latter rule forms is chosen, the
applicability is strongly restricted because of the
specificity and lexical requirement. If the former
rule is chosen and we apply this rule we could
make the following inappropriate transformation:

VP

PP

NP

NN

cafeteria

DT

the

IN

in

VB

eat

VP

NP

NN

cafeteria

DT

the

VB

eat

simplifying “eat in the cafeteria” to “eat the cafe-
teria”.

We adopt a different approach to increase the
rule specificity. We augment the production rules
and resulting grammar with several parse tree an-
notations shown previously to improve SCFG-
based sentence compression (Galley and McKe-
own, 2007) as well as parsing (Collins, 1999): par-
ent annotation, head-lexicalization, and annotation
with the part of speech of the head word.

Following Yamangil and Nelken (2008), we
learn four different models and combine them into
a single backoff model. Each model level in-
creases specificity by adding additional rule anno-
tations. Model 1 contains only the original pro-
duction rules. Model 2 adds parent annotation,

Model 3 adds the head child part of speech and
Model 4 adds head child lexicalization. The head
child was determined using the set of rules from
Collins (1999). Figure 3 shows the four different
model representations for the VP rule above.

3.3 Probability Estimation
We train each of the four models individually us-
ing maximum likelihood estimation over the train-
ing corpus, specifically:

p(s|n) =
count(s ∧ n)

count(n)

where s and n are tree fragments with that level’s
annotation representing the right and left sides of
the rule respectively.

During simplification, we start with the most
specific rules, i.e. Model 4. If a tree fragment
was not observed in the training data at that model
level, we repeatedly try a model level simpler until
a model is found with the tree fragment (Yamangil
and Nelken, 2008). We then use the probability
distribution given by that model. A tree fragment
only matches at a particular level if all of the anno-
tation attributes match for all constituents. If none
of the models contain a given tree fragment we in-
troduce a rule that copies the tree fragment with
probability one.

Two types of out-of-vocabulary problems can
occur and the strategy of adding copy rules pro-
vides robustness against both. In the first, an input
contains a tree fragment whose structure has never
been seen in training. In this case, copy rules allow
the structure to be reproduced, leaving the system
to make more informed changes lower down in the
tree. In the second, the input contains an unknown
word. This only affects transduction at the leaves
of the tree since at the lower backoff levels nodes
are not annotated with words. Adding copy rules
allows the program to retain, replace, or delete un-
seen words based only on the probabilities of rules
higher up for which it does have estimates. In both
cases, the added copy rules make sure that any in-
put tree will have an output.

3.4 Decoding and Reranking
Given a parsed sentence to simplify and the prob-
abilistic STSG grammar, the last step is to find the
most likely transduction (i.e. simplification) of the
input tree based on the grammar. To accomplish
this, we convert the STSG grammar into an equiv-
alent finite tree-to-tree transducer: each STSG
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Model 1: VP (VB0 PP (IN(in) NP1))→ VP (VB0 NP1)
Model 2: VPˆVP (VBˆVP0 PPˆVP (INˆPP (in) NPˆPP1))→ VPˆS (VBˆVP0 NPˆVP1)
Model 3: VP[VB]ˆVP (VBˆVP0 PP[NNS]ˆVP (INˆPP (in) NP[NNS]ˆPP1))→

VP[VB]ˆS (VBˆVP0 NP[NNS]ˆVP1)
Model 4: VP[VB-assemble]ˆVP (VB[assemble]ˆVP0 PP[NNS-packs]ˆVP (IN[in]ˆPP (in) NP[NNS-packs]ˆPP1))→

VP[VB-join]ˆS (VB[join]ˆVP0 NP[NNS-packs]ˆVP1)

Figure 3: The four levels of rule augmentation for an example rule ranging from Model 1 with no
additional annotations to Model 4 with all annotations. The head child and head child part of speech are
shown in square brackets and the parent constituent is annotated with ˆ.

grammar rule represents a state transition and is
weighted with the grammar rule’s probability. We
then use the Tiburon tree automata package (May
and Knight, 2006) to apply the transducer to the
parsed sentence. This yields a weighted regular
tree grammar that generates every output tree that
can result from rewriting the input tree using the
transducer. The probability of each output tree in
this grammar is equal to the product of the proba-
bilities of all rewrite rules used to produce it.

Using this output regular tree grammar and
Tiburon, we generate the 10,000 most probable
output trees for the input parsed sentence. We
then rerank this candidate list based on a log-linear
combination of features:

- The simplification probability based on the
STSG backoff model.

- The probability of the output tree’s yield, as
given by an n-gram language model trained on
the simple side of the training corpus using the
IRSTLM Toolkit (Federico et al., 2008).

- The probability of the sequence of the part of
speech tags in the output tree, as given by an n-
gram model trained on the part of speech tags of
the simple side of the training corpus.

- A two-sided length penalty decreasing the score
of output sentences whose length, normalized by
the length of the input, deviates from the training
corpus mean, found empirically to be 0.85.

The first feature represents the simplification like-
lihood based on the STSG grammar described
above. The next two features ensure that outputs
are well-formed according to the language used
in Simple English Wikipedia. Finally, the length
penalty is used to prevent both over-deletion and
over-insertion of out-of-source phrases. In addi-
tion, the length feature mean could be reduced or
increased to encourage shorter or longer simplifi-
cations if desired.

The weights of the log-linear model are opti-
mized using random-restart hill-climbing search
(Russell and Norvig, 2003) to maximize BLEU
(Papineni et al., 2002) on a development set.2

4 Experiment Setup

To train and evaluate the systems we used the data
set from Coster and Kauchak (2011b) consisting
of 137K aligned sentence pairs between Simple
English Wikipedia and English Wikipedia. The
sentences were parsed using the Berkeley Parser
(Petrov and Klein, 2007) and the word alignments
determined using Giza++ (Och and Ney, 2000).
We used 123K sentence pairs for training, 12K for
development and 1,358 for testing.

We compared our system (SimpleTT – simple
tree transducer) to three other simplification ap-
proaches:

T3: Another STSG-based approach (Cohn and La-
pata, 2009). Our approach shares similar con-
stituent alignment and rule extraction algorithms,
but our approach differs in that it is generative
instead of discriminative, and T3 increases rule
specificity by increasing rule depth, while we em-
ploy a backoff model based on grammar augmen-
tation. In addition, we employ n-best reranking
based on a log-linear model that incorporates a
number of additional features.

The code for T3 was obtained from the au-
thors.3 Due to performance limitations, T3 was
only trained on 30K sentence pairs. T3 was run on
the full training data for two weeks, but it never
terminated and required over 100GB of memory.
The slow algorithmic step is the discriminative
training, which cannot be easily parallelized. T3
was tested for increasing amounts of data up to

2BLEU was chosen since it has been used successfully in
the related field of machine translation, though this approach
is agnostic to evaluation measure.

3http://staffwww.dcs.shef.ac.uk/
people/T.Cohn/t3/
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30K training pairs and the results on the automatic
evaluation measures did not improve.

Moses-Diff: A phrase-based approach based on
the Moses machine translation system (Koehn et
al., 2007) that selects the simplification from the
10-best output list that is most different from the
input sentence (Wubben et al., 2012). Moses-Diff
has been shown to perform better than a number
of recent syntactic systems including Zhu et al.
(2010) and Woodsend and Lapata (2011).

Moses-Del: A phrase-based approach also based
on Moses which incorporates phrasal deletion
(Coster and Kauchak, 2011b). The code was ob-
tained from the authors.

For an additional data point to understand the
benefit of the grammar augmentation, we also
evaluated a deletion-only system previously used
for text compression and a variant of that sys-
tem that included the grammar augmentation de-
scribed above. K&M is a synchronous context
free grammar-based approach (Knight and Marcu,
2002) and augm-K&M adds the grammar aug-
mentation along with the four backoff levels.

There are currently no standard evaluation met-
rics for text simplification. Following previous
work (Zhu et al., 2010; Coster and Kauchak,
2011b; Woodsend and Lapata, 2011; Wubben
et al., 2012) we evaluated the systems using
automatic metrics to analyze different system
characteristics and human evaluations to judge the
system quality.

Automatic Evaluation
- BLEU (Papineni et al., 2002): BLEU measures

the similarity between the system output and a
human reference and has been used successfully
in machine translation. Higher BLEU scores are
better, indicating an output that is more similar
to the human reference simplification.

- Oracle BLEU: For each test sentence we gener-
ate the 1000-best output list and greedily select
the entry with the highest sentence-level BLEU
score. We then calculate the BLEU score over
the entire test set for all such greedily selected
sentences. The oracle score provides an analy-
sis of the generation capacity of the model and
gives an estimate of the upper bound on the
BLEU score attainable through reranking.

- Length ratio: The ratio of the length of the orig-
inal, unsimplified sentence and the system sim-
plified sentence.

Human Evaluation
Following previous work (Woodsend and Lapata,
2011; Wubben et al., 2012) we had humans judge
the three simplification systems and the human
simplifications from Simple English Wikipedia
(denoted SimpleWiki)4 based on three metrics:
simplicity, fluency and adequacy. Simplicity mea-
sures how simple the output is, fluency measures
the quality of the language and grammatical cor-
rectness of the output, and adequacy measures
how well the content is preserved. For the flu-
ency experiments, the human evaluators were just
shown the system output. For simplicity and ade-
quacy, in addition to the system output, the orig-
inal, unsimplified sentence was also shown. All
metrics were scored on a 5-point Likert scale with
higher indicating better.

We used Amazon’s Mechanical Turk (MTurk)5

to collect the human judgements. MTurk has been
used by many NLP researchers, has been shown
to provide results similar to other human annota-
tors and allows for a large population of annotators
to be utilized (Callison-Burch and Dredze, 2010;
Gelas et al., 2011; Zaidan and Callison-Burch,
2011).

We randomly selected 100 sentences from the
test set where all three systems made some change
to the input sentence. We chose sentences where
all three systems made a change to focus on the
quality of the simplifications made by the systems.
For each sentence we collected scores from 10
judges, for each of the systems, for each of the
three evaluation metrics (a total of 100*10*3*3 =
9000 annotations). The scores from the 10 judges
were averaged to give a single score for each sen-
tence and metric. Judges were required to be
within the U.S. and have a prior acceptance rate
of 95% or higher.

5 Results

Automatic evaluation
Table 1 shows the results of the automatic eval-
uation metrics. SimpleTT performs significantly
better than T3, the other STSG-based model, and
obtains the second highest BLEU score behind
only Moses-Del. SimpleTT has the highest oracle
BLEU score, indicating that the syntactic model of
SimpleTT allows for more diverse simplifications

4T3 was not included in the human evaluation due to the
very poor quality of the output based on both the automatic
measures and based on a manual review of the output.

5https://www.mturk.com/
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System BLEU Oracle Length
Ratio

SimpleTT 0.564 0.663 0.849
Moses-Diff 0.543 –∗ 0.960
Moses-Del 0.605 0.642 0.991

T3 0.244 –∗∗ 0.581
K&M 0.406 0.602 0.676

augm-K&M 0.498 0.609 0.826
corpus mean – – 0.85

Table 1: Automatic evaluation scores for all sys-
tems tested and the mean values from the training
corpus. ∗Moses-Diff uses the n-best list to choose
candidates and therefore is not amenable to oracle
scoring. ∗∗T3 only outputs the single best simpli-
fication.

than the phrase-based models and may be more
amenable to future reranking techniques. Sim-
pleTT also closely matches the in-corpus mean
of the length ratio seen by human simplifications,
though this can be partially explained by the length
penalty in the log-linear model.

Moses-Del obtains the highest BLEU score, but
accomplishes this with only small changes to the
input sentence: the length of the simplified sen-
tences are only slightly different from the original
(a length ratio of 0.99). Moses-Diff has the low-
est BLEU score of the three simplification systems
and while it makes larger changes than Moses-
Del it still makes much smaller changes than Sim-
pleTT and the human simplifications.

T3 had significant problems with over-deleting
content as indicated by the low length ratio which
resulted in a very low BLEU score. This issue
has been previously noted by others when using
T3 for text compression (Nomoto, 2009; Marsi et
al., 2010).

The two deletion-only systems performed
worse than the three simplification systems. Com-
paring the two systems shows the benefit of the
grammar augmentation: augm-K&M has a signif-
icantly higher BLEU score than K&M and also
avoided the over-deletion that occurred in the orig-
inal K&M system. The additional specificity of
the rules allowed the model to make better deci-
sions for which content to delete.

Human evaluation
Table 2 shows the human judgement scores for
the simplification approaches for the three differ-
ent metrics averaged over the 100 sentences and
Table 3 shows the pairwise statistical significance
calculations between each system based on a two-

simplicity fluency adequacy
SimpleWiki 3.45 3.93 3.42
SimpleTT 3.55 3.80 3.09
Moses-Diff 3.07 3.64 3.91
Moses-Del 3.19 3.74 3.86

Table 2: Human evaluation scores on a 5-point
Likert scale averaged over 100 sentences.

tailed paired t-test. Overall, SimpleTT performed
well with simplicity and fluency scores that were
comparable to the human simplifications. Sim-
pleTT was too aggressive at removing content, re-
sulting in lower adequacy scores. This phenom-
ena was also seen in the human simplifications and
may be able to be corrected in future variations by
adjusting the sentence length target.

The human evaluations highlight the trade-off
between the simplicity of the output and the
amount of content preserved. For simplicity, Sim-
pleTT and the human simplifications performed
significantly better than both the phrase-based sys-
tems. However, simplicity does come with a cost;
both SimpleTT and the human simplifications re-
duced the length of the sentences by 15% on aver-
age. This content reduction resulted in lower ad-
equacy than the phrase-based systems. A similar
trade-off has been previously shown for text com-
pression, balancing content versus the amount of
compression (Napoles et al., 2011).

For fluency, SimpleTT again scored similarly to
the human simplifications. SimpleTT performed
significantly better than Moses-Diff and slightly
better than Moses-Del, though the difference was
not statistically significant.

As an aside, Moses-Del performs slightly bet-
ter than Moses-Diff overall. They perform simi-
larly on adequacy and Moses-Del performs better
on simplicity and Moses-Diff performs worse rel-
ative to the other systems on fluency.

Qualitative observations
SimpleTT tended to simplify by deleting prepo-
sitional, adjective, and adverbial phrases, and by
truncating conjunctive phrases to one of their con-
juncts. This often resulted in outputs that were
syntactically well-formed with only minor infor-
mation loss, for example, it converts

“The Haiti national football team is the na-
tional team of Haiti and is controlled by the
Fédération Hatı̈enne de Football.”

to
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Simplicity
SimpleWiki Moses-Diff Moses-Del

SimpleTT ⇐⇐⇐ ⇐⇐⇐
SimpleWiki ⇐⇐⇐ ⇐⇐⇐
Moses-Diff ⇑

Fluency
SimpleWiki Moses-Diff Moses-Del

SimpleTT ⇐
SimpleWiki ⇐⇐⇐ ⇐
Moses-Diff

Adequacy
SimpleWiki Moses-Diff Moses-Del

SimpleTT ⇑⇑ ⇑⇑⇑ ⇑⇑⇑
SimpleWiki ⇑⇑⇑ ⇑⇑⇑
Moses-Diff

Table 3: Pairwise statistical significance test re-
sults between systems for the human evaluations
based on a paired t-test. The number of arrows de-
notes significance with one, two and three arrows
indicating p < 0.05, p < 0.01 and p < 0.001
respectively. The direction of the arrow points to-
wards the system that performed better.

“The Haiti national football team is the na-
tional football team of Haiti.”

which only differs from the human reference by
one word.

SimpleTT also produces a number of interesting
lexical and phrasal substitutions, including:

football striker → football player
football defender → football player
in order to → to
known as → called
member → part

T3, on the other hand, tended to over-delete con-
tent, for example simplifying:

“In earlier times, they frequently lived on the
outskirts of communities, generally in squalor.”

to just

“A lived”.

As we saw in the automatic evaluation results,
the phrase-based systems tended to make fewer
changes to the input and those changes it did make
tended to be more minor. Moses-Diff was more
aggressive about making changes, though it was
more prone to errors since the simplifications cho-
sen were more distant from the input sentence than
other options in the n-best list.

6 Conclusions and Future work

In this paper, we have introduced a new prob-
abilistic STSG approach for sentence simplifica-
tion, SimpleTT. We improve upon previous STSG
approaches by: 1) making the model probabilistic
instead of discriminative, allowing for an efficient,
unified framework that can be easily interpreted
and combined with other information sources, 2)
increasing the model specificity using four levels
of grammar annotations combined into a single
model, and 3) incorporating n-best list reranking
combining the model score, language model prob-
abilities and additional features to choose the fi-
nal output. SimpleTT performs significantly better
than previous STSG formulations for text simpli-
fication. In addition, our approach was rated by
human judges similarly to human simplifications
in both simplicity and fluency and it scored bet-
ter than two state-of-the-art phrase-based sentence
simplification systems along many automatic and
human evaluation metrics.

There are a number of possible directions for
extending the capabilities of SimpleTT and related
systems. First, while some sentence splitting can
occur in SimpleTT due to sentence split and merge
examples in the training data, SimpleTT does not
explicitly model this. Sentence splitting could be
incorporated as another probabilistic component
in the model (Zhu et al., 2010). Second, in this
work, like many previous researchers, we assume
Simple English Wikipedia as our target simplic-
ity level. However, the difficulty of Simple En-
glish Wikipedia varies across articles and there are
many domains where the desired simplicity varies
depending on the target consumer. In the future,
we plan to explore how varying algorithm param-
eters (for example the length target) affects the
simplicity level of the output. Third, one of the
benefits of SimpleTT and other probabilistic sys-
tems is they can generate an n-best list of can-
didate simplifications. Better reranking of output
sentences could close this gap across all these sys-
tems, without requiring deep changes to the under-
lying model.
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