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Abstract

We describe a method for learning an in-

cremental semantic grammar from data in

which utterances are paired with logical

forms representing their meaning. Work-

ing in an inherently incremental frame-

work, Dynamic Syntax, we show how

words can be associated with probabilistic

procedures for the incremental projection

of meaning, providing a grammar which

can be used directly in incremental prob-

abilistic parsing and generation. We test

this on child-directed utterances from the

CHILDES corpus, and show that it results

in good coverage and semantic accuracy,

without requiring annotation at the word

level or any independent notion of syntax.

1 Introduction

Human language processing has long been

thought to function incrementally, both in pars-

ing and production (Crocker et al., 2000; Fer-

reira, 1996). This incrementality gives rise to

many characteristic phenomena in conversational

dialogue, including unfinished utterances, inter-

ruptions and compound contributions constructed

by more than one participant, which pose prob-

lems for standard grammar formalisms (Howes et

al., 2012). In particular, examples such as (1) sug-

gest that a suitable formalism would be one which

defines grammaticality not in terms of licensing

strings, but in terms of constraints on the semantic

construction process, and which ensures this pro-

cess is common between parsing and generation.

(1) A: I burnt the toast.
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the CMCL’2013 anonymous reviewers for their constructive
criticism. This work was supported by the EPSRC, RISER
project (Ref: EP/J010383/1), and in part by the EU, FP7
project, SpaceBook (Grant agreement no: 270019).

B: But did you burn . . .

A: Myself? Fortunately not.

[where “did you burn myself?” if uttered by

the same speaker is ungrammatical]

One such formalism is Dynamic Syntax (DS)

(Kempson et al., 2001; Cann et al., 2005); it

recognises no intermediate layer of syntax, but

instead reflects grammatical constraints via con-

straints on the word-by-word incremental con-

struction of meaning, underpinned by attendant

concepts of underspecification and update.

Eshghi et al. (2013) describe a method for in-

ducing a probabilistic DS lexicon from sentences

paired with DS semantic trees (see below) repre-

senting not only their meaning, but their function-

argument structure with fine-grained typing infor-

mation. They apply their method only to an ar-

tificial corpus generated using a known lexicon.

Here, we build on that work to induce a lexi-

con from real child-directed utterances paired with

less structured Logical Forms in the form of TTR

Record Types (Cooper, 2005), thus providing less

supervision. By assuming only the availability of a

small set of general compositional semantic opera-

tions, reflecting the properties of the lambda calcu-

lus and the logic of finite trees, we ensure that the

lexical entries learnt include the grammatical con-

straints and corresponding compositional seman-

tic structure of the language. Our method exhibits

incrementality in two senses: incremental learn-

ing, with the grammar being extended and refined

as each new sentence becomes available; resulting

in an inherently incremental, probabilistic gram-

mar for parsing and production, suitable for use

in state-of-the-art incremental dialogue systems

(Purver et al., 2011) and for modelling human-

human dialogue.
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Figure 1: Incremental parsing in DS producing semantic trees: “John upset Mary”

2 Background

2.1 Grammar Induction and Semantics

We can view existing grammar induction meth-

ods along a spectrum from supervised to unsu-

pervised. Fully supervised methods take a parsed

corpus as input, pairing sentences with syntactic

trees and words with their syntactic categories, and

generalise over the phrase structure rules to learn

a grammar which can be applied to a new set of

data. Probabilities for production rules sharing a

LHS category can be estimated, producing a gram-

mar suitable for probabilistic parsing and disam-

biguation e.g. a PCFG (Charniak, 1996). While

such methods have shown great success, they pre-

suppose detailed prior linguistic information and

are thus inadequate as human grammar learning

models. Fully unsupervised methods, on the other

hand, proceed from unannotated raw data; they

are thus closer to the human language acquisition

setting, but have seen less success. In its pure

form —positive data only, without bias— unsu-

pervised learning is computationally too complex

(‘unlearnable’) in the worst case (Gold, 1967).

Successful approaches involve some prior learning

or bias (see (Clark and Lappin, 2011)) e.g. a set

of known lexical categories, a probability distri-

bution bias (Klein and Manning, 2005) or a semi-

supervised method with shallower (e.g. POS-tag)

annotation (Pereira and Schabes, 1992).

Another point on the spectrum is lightly su-

pervised learning: providing information which

constrains learning but with little or no lexico-

syntactic detail. One possibility is the use of se-

mantic annotation, using sentence-level proposi-

tional Logical Forms (LF). It seems more cogni-

tively plausible, as the learner can be said to be

able to understand, at least in part, the meaning

of what she hears from evidence gathered from

(1) her perception of her local, immediate environ-

ment given appropriate biases on different patterns

of individuation of entities and relationships be-

tween them, and (2) helpful interaction, and joint

focus of attention with an adult (see e.g. (Saxton,

1997)). Given this, the problem she is faced with

is one of separating out the contribution of each

individual linguistic token to the overall meaning

of an uttered linguistic expression (i.e. decompo-

sition), while maintaining and generalising over

several such hypotheses acquired through time as

she is exposed to more utterances involving each

token.

This has been successfully applied in Combi-

natorial Categorial Grammar (CCG) (Steedman,

2000), as it tightly couples compositional seman-

tics with syntax (Zettlemoyer and Collins, 2007;

Kwiatkowski et al., 2010; Kwiatkowski et al.,

2012); as CCG is a lexicalist framework, grammar

learning involves inducing a lexicon assigning to

each word its syntactic and semantic contribution.

Moreover, the grammar is learnt incrementally, in

the sense that the learner collects data over time

and does the learning sentence by sentence.

Following this approach, Eshghi et al. (2013)

outline a method for inducing a DS grammar

from semantic LFs. This brings an added di-

mension of incrementality: not only is learning

sentence-by-sentence incremental, but the gram-

mar learned is inherently word-by-word incre-

mental (see section 2.2 below). However, their

method requires a higher degree of supervision

than (Kwiatkowski et al., 2012): the LFs assumed

are not simply flat semantic formulae, but full DS

semantic trees (see e.g. Fig. 1) containing infor-

mation about the function-argument structure re-
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quired for their composition, in addition to fine

grained type and formula annotations. Further,

they test their method only on artificial data cre-

ated using a known, manually-specified DS gram-

mar. In contrast, in this paper we provide an

approach which can learn from LFs without any

compositional structure information, and test it on

real language data; thus providing the first prac-

tical learning system for an explicitly incremental

grammar that we are aware of.

2.2 Dynamic Syntax (DS)

Dynamic Syntax (Kempson et al., 2001; Cann et

al., 2005) is a parsing-directed grammar formal-

ism, which models the word-by-word incremental

processing of linguistic input. Unlike many other

formalisms, DS models the incremental building

up of interpretations without presupposing or in-

deed recognising an independent level of syntactic

processing. Thus, the output for any given string

of words is a purely semantic tree representing

its predicate-argument structure; tree nodes cor-

respond to terms in the lambda calculus, deco-

rated with labels expressing their semantic type

(e.g. Ty(e)) and formula, with beta-reduction de-

termining the type and formula at a mother node

from those at its daughters (Figure 1).

These trees can be partial, containing unsatis-

fied requirements for node labels (e.g. ?Ty(e) is a

requirement for future development to Ty(e)), and

contain a pointer ♦ labelling the node currently

under development. Grammaticality is defined as

parsability: the successful incremental construc-

tion of a tree with no outstanding requirements (a

complete tree) using all information given by the

words in a sentence. The complete sentential LF

is then the formula decorating the root node – see

Figure 1. Note that in these trees, leaf nodes do

not necessarily correspond to words, and may not

be in linear sentence order; syntactic structure is

not explicitly represented, only the structure of se-

mantic predicate-argument combination.

2.2.1 Actions in DS

The parsing process is defined in terms of condi-

tional actions: procedural specifications for mono-

tonic tree growth. These include general structure-

building principles (computational actions), puta-

tively independent of any particular natural lan-

guage, and language-specific actions associated

with particular lexical items (lexical actions). The

latter are what we learn from data here.

Computational actions These form a small,

fixed set, which we assume as given here. Some

merely encode the properties of the lambda cal-

culus and the logical tree formalism itself, LoFT

(Blackburn and Meyer-Viol, 1994) – these we

term inferential actions. Examples include THIN-

NING (removal of satisfied requirements) and

ELIMINATION (beta-reduction of daughter nodes

at the mother). These actions are language-

independent, cause no ambiguity, and add no new

information to the tree; as such, they apply non-

optionally whenever their preconditions are met.

Other computational actions reflect the fun-

damental predictivity and dynamics of the DS

framework. For example, *-ADJUNCTION in-

troduces a single unfixed node with underspec-

ified tree position (replacing feature-passing or

type-raising concepts for e.g. long-distance depen-

dency); and LINK-ADJUNCTION builds a paired

(“linked”) tree corresponding to semantic con-

junction (licensing relative clauses, apposition and

more). These actions represent possible parsing

strategies and can apply optionally whenever their

preconditions are met. While largely language-

independent, some are specific to language type

(e.g. INTRODUCTION-PREDICTION in the form

used here applies only to SVO languages).

Lexical actions The lexicon associates words

with lexical actions; like computational actions,

these are sequences of tree-update actions in an

IF..THEN..ELSE format, and composed of ex-

plicitly procedural atomic tree-building actions

such as make (creates a new daughter node),

go (moves the pointer), and put (decorates the

pointed node with a label). Figure 2 shows an ex-

ample for a proper noun, John. The action checks

whether the pointed node (marked as ♦) has a re-

quirement for type e; if so, it decorates it with type

e (thus satisfying the requirement), formula John′

and the bottom restriction 〈↓〉⊥ (meaning that the

node cannot have any daughters). Otherwise the

action aborts, i.e. the word ‘John’ cannot be parsed

in the context of the current tree.

Graph-based Parsing & Generation These ac-

tions define the parsing process. Given a sequence

of words (w1, w2, ..., wn), the parser starts from

the axiom tree T0 (a requirement to construct a

complete propositional tree, ?Ty(t)), and applies

the corresponding lexical actions (a1, a2, . . . , an),
optionally interspersing computational actions.
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Action Input tree Output tree

John

IF ?Ty(e)
THEN put(Ty(e))

put(Fo(John′)
put(〈↓〉⊥)

ELSE ABORT

?Ty(t)

?Ty(e),
♦

?Ty(e → t)

‘John’
−→

?Ty(t)

Ty(e), ?Ty(e)
John′, 〈↓〉⊥,♦

?Ty(e → t)

Figure 2: Lexical action for the word ‘John’

T0

T1
intro

T2
pred

T3

link-adj

T4
*-adj

T5

john

abort

T6

john

“john”

T7

thin
T8

comp

T9

pred

T10

link-adj

T11

thin
T12

comp

T13

likes

abort

abort

“likes”

Figure 3: DS parsing as a graph: actions (edges) are transitions between partial trees (nodes).

This parsing process can be modelled as a di-

rected acyclic graph (DAG) rooted at T0, with par-

tial trees as nodes, and computational and lexi-

cal actions as edges (i.e. transitions between trees)

(Sato, 2011). Figure 3 shows an example: here,

intro, pred and *adj correspond to the computa-

tional actions INTRODUCTION, PREDICTION and

*-ADJUNCTION respectively; and ‘john’ is a lex-

ical action. Different DAG paths represent dif-

ferent parsing strategies, which may succeed or

fail depending on how the utterance is continued.

Here, the path T0−T3 will succeed if ‘John’ is the

subject of an upcoming verb (“John upset Mary”);

T0 − T4 will succeed if ‘John’ turns out to be a

left-dislocated object (“John, Mary upset”).

This incrementally constructed DAG makes up

the entire parse state at any point. The right-

most nodes (i.e. partial trees) make up the current

maximal semantic information; these nodes with

their paths back to the root (tree-transition actions)

make up the linguistic context for ellipsis and

pronominal construal (Purver et al., 2011). Given

a conditional probability distribution P (a|w, T )
over possible actions a given a word w and (some

set of features of) the current partial tree T , we can

parse probabilistically, constructing the DAG in a

best-first, breadth-first or beam parsing manner.

Generation uses exactly the same actions and

structures, and can be modelled on the same DAG

with the addition only of a goal tree; partial

trees are checked for subsumption of the goal

at each stage. The framework therefore inher-

ently provides both parsing and generation that

are word-by-word incremental and interchange-

able, commensurate with psycholinguistic results

(Lombardo and Sturt, 1997; Ferreira and Swets,

2002) and suitable for modelling dialogue (Howes

et al., 2012). While standard grammar formalisms

can of course also be used with incremental pars-

ing or generation algorithms (Hale, 2001; Collins

and Roark, 2004; Clark and Curran, 2007), their

string-based grammaticality and lack of inherent

parsing-generation interoperability means exam-

ples such as (1) remain problematic.

3 Method

Our task here is to learn an incremental DS gram-

mar; following Kwiatkowski et al. (2012), we

assume as input a set of sentences paired with

their semantic LFs. Eshghi et al. (2013) outline a

method for inducing DS grammars from semantic

DS trees (e.g. Fig. 1), in which possible lexical en-

tries are incrementally hypothesized, constrained

by subsumption of the target tree for the sentence.

Here, however, this structured tree information is

not available to us; our method must therefore con-

strain hypotheses via compatibility with the sen-

tential LF, represented as Record Types of Type

Theory with Records (TTR).

3.1 Type Theory with Records (TTR)

Type Theory with Records (TTR) is an exten-

sion of standard type theory shown useful in se-

mantics and dialogue modelling (Cooper, 2005;

Ginzburg, 2012). It is also used for representing
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non-linguistic context such as the visual percep-

tion of objects (Dobnik et al., 2012), suggesting

potential for embodied learning in future work.

Some DS variants have incorporated TTR as the

semantic LF representation (Purver et al., 2011;

Hough and Purver, 2012; Eshghi et al., 2012).

Here, it can provide us with the mechanism we

need to constrain hypotheses in induction by re-

stricting them to those which lead to subtypes of

the known sentential LF.

In TTR, logical forms are specified as record

types (RTs), sequences of fields of the form [ l : T ]
containing a label l and a type T . RTs can be wit-

nessed (i.e. judged true) by records of that type,

where a record is a sequence of label-value pairs

[ l = v ], and [ l = v ] is of type [ l : T ] just in case

v is of type T .

R1 :





l1 : T1

l2=a : T2

l3=p(l2) : T3



 R2 :

[

l1 : T1

l2 : T2′

]

R3 : []

Figure 4: Example TTR record types

Fields can be manifest, i.e. given a singleton

type e.g. [ l : Ta ] where Ta is the type of which

only a is a member; here, we write this using the

syntactic sugar [ l=a : T ]. Fields can also be de-

pendent on fields preceding them (i.e. higher) in

the record type – see R1 in Figure 4. Importantly

for us here, the standard subtyping relation ⊑ can

be defined for record types: R1 ⊑ R2 if for all

fields [ l : T2 ] in R2, R1 contains [ l : T1 ] where

T1 ⊑ T2. In Figure 4, R1 ⊑ R2 if T2 ⊑ T2′ , and

both R1 and R2 are subtypes of R3.

Following Purver et al. (2011), we assume

that DS tree nodes are decorated not with simple

atomic formulae but with RTs, and correspond-

ing lambda abstracts representing functions from

RT to RT (e.g. λr : [ l1 : T1 ].[ l2=r.l1 : T1 ] where

r.l1 is a path expression referring to the label l1
in r) – see Figure 5. The equivalent of conjunc-

tion for linked trees is now RT extension (concate-

nation modulo relabelling – see (Cooper, 2005;

Fernández, 2006)). TTR’s subtyping relation now

allows a record type at the root node to be in-

ferred for any partial tree, and incrementally fur-

ther specified via subtyping as parsing proceeds

(Hough and Purver, 2012).

We assume a field head in all record types, with

this corresponding to the DS tree node type. We

also assume a neo-Davidsonian representation of

♦, T y(t),







x=john : e
e=arrive : es
p=subj(e,x) : t
head=p : t







Ty(e),
[

x=john : e
head=x : e

]

Ty(e → t),
λr :

[

head : e
]

.






x=r.head : e
e=arrive : es
p=subj(e,x) : t
head=p : t







Figure 5: DS-TTR tree

predicates, with fields corresponding to the event

and to each semantic role; this allows all available

semantic information to be specified incrementally

via strict subtyping (e.g. providing the subj() field

when subject but not object has been parsed) – see

Figure 5 for an example.

3.2 Problem Statement

Our induction procedure now assumes as input:

• a known set of DS computational actions.

• a set of training examples of the form

〈Si, RTi
〉, where Si = 〈w1 . . . wn〉 is a sen-

tence of the language and RTi
– henceforth

referred to as the target RT – is the record

type representing the meaning of Si.

The output is a grammar specifying the possi-

ble lexical actions for each word in the corpus.

Given our data-driven approach, we take a prob-

abilistic view: we take this grammar as associat-

ing each word w with a probability distribution θw

over lexical actions. In principle, for use in pars-

ing, this distribution should specify the posterior

probability p(a|w, T ) of using a particular action

a to parse a word w in the context of a particular

partial tree T . However, here we make the sim-

plifying assumption that actions are conditioned

solely on one feature of a tree, the semantic type

Ty of the currently pointed node; and that actions

apply exclusively to one such type (i.e. ambiguity

of type implies multiple actions). This simplifies

our problem to specifying the probability p(a|w).
In traditional DS terms, this is equivalent to as-

suming that all lexical actions have a simple IF

clause of the form IF ?Ty(X); this is true of

most lexical actions in existing DS grammars (see

Fig. 2), but not all. Our assumption may there-

fore lead to over-generation – inducing actions

which can parse some ungrammatical strings – we

must rely on the probabilities learned to make such
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parses unlikely, and evaluate this in Section 4.

Given this, our focus here is on learning the THEN

clauses of lexical actions: sequences of DS atomic

actions such as go, make, and put (Fig. 2), but now

with attendant posterior probabilities. We will

henceforth refer to these sequences as lexical hy-

potheses. We first describe how we construct lexi-

cal hypotheses from individual training examples;

we then show how to generalise over these, while

incrementally estimating corresponding probabil-

ity distributions.

3.3 Hypothesis construction

DS is strictly monotonic: actions can only extend

the current (partial) tree Tcur, deleting nothing ex-

cept satisfied requirements. Thus, we can hypoth-

esise lexical actions by incrementally exploring

the space of all monotonic, well-formed exten-

sions T of Tcur, whose maximal semantics R is

a supertype of (extendible to) the target RT (i.e.

R ⊑ RT ). This gives a bounded space described

by a DAG equivalent to that of section 2.2.1: nodes

are trees; edges are possible extensions; paths start

from Tcur and end at any tree with LF RT . Edges

may be either known computational actions or

new lexical hypotheses. The space is further con-

strained by the properties of the lambda-calculus

and the modal tree logic LoFT (not all possible

trees and extensions are well-formed).1

Hypothesising increments In purely semantic

terms, the hypothesis space at any point is the pos-

sible set of TTR increments from the current LF

R to the target RT . We can efficiently compute

and represent these possible increments using a

type lattice (see Figure 6),2 which can be con-

structed for the whole sentence before processing

each training example. Each edge is a RT R repre-

senting an increment from one RT, Rj , to another,

Rj+1, such that Rj ∧ RI = Rj+1 (where ∧ rep-

resents record type intersection (Cooper, 2005));

possible parse DAG paths must correspond to

some path through this lattice.

Hypothesising tree structure These DAG paths

can now be hypothesised with the lattice as a con-

straint: hypothesising possible sequences of ac-

1We also prevent arbitrary type-raising by restricting the
types allowed, taking the standard DS assumption that noun
phrases have semantic type e (rather than a higher type as in
Generalized Quantifier theory) and common nouns their own
type cn, see Cann et al. (2005), chapter 3 for details.

2Clark (2011) similarly use a concept lattice relating
strings to their contexts in syntactic grammar induction.

Ri : []

R11 :
[

a : b
]

R12 :
[

c : d
]

R12 :
[

e : f
]

R21 :

[

a : b
c : d

]

R22 :

[

a : b
e : f

]

R22 :

[

c : d
e : f

]

RT :





a : b
c : d
e : f





Figure 6: RT extension hypothesis lattice

tions which extend the tree to produce the required

semantic increment, while the increments them-

selves constitute a search space of their own which

we explore by traversing the lattice.

The lexical hypotheses comprising these DAG

paths are divide into two general classes: (1) tree-

building hypotheses, which hypothesise appropri-

ately typed daughters to compose a given node;

and (2) content hypotheses, which decorate leaf

nodes with appropriate formulae from Ri (non-

leaf nodes then receive their content via beta-

reduction/extension of daughters).

Tree-building can be divided into two general

options: functional decomposition (corresponding

to the addition of daughter nodes with appropri-

ate types and formulae which will form a suitable

mother node by beta-reduction); and type exten-

sion (corresponding to the adjunction of a linked

tree whose LF will extend that of the current tree,

see Sec. 3.1 above). The availability of the former

is constrained by the presence of suitable depen-

dent types in the LF (e.g. in Fig. 5, p = subj(e, x)
depends on the fields with labels x and e, and

could therefore be hypothesised as the body of a

function with x and/or e as argument). The latter is

more generally available, but constrained by shar-

ing of a label between the resulting linked trees.

Figure 7 shows an example: a template for

functional decomposition hypotheses, extending a

node with some type requirement ?Ty(X) with

daughter nodes which can combine to satisfy that

requirement – here, of types Y and Y → X.

Specific instantiations are limited to a finite set of

types: e.g. X = e → t and Y = e is allowed,

but higher types for Y are not. We implement

these constraints by packaging together permitted

sequences of tree updates as macros, and using

these macros to hypothesise DAG paths commen-

surate with the lattice.

Finally, semantic content decorations (as se-
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IF ?Ty(X)
THEN make(〈↓0〉); go(〈↓0〉)

put(?Ty(Y )); go(〈↑〉)
make(〈↓1〉); go(〈↓1〉)
put(?Ty(Y → X)); go(↑)

ELSE ABORT

Figure 7: Tree-building hypothesis

quences of put operations) are hypothesised for

the leaf nodes of the tree thus constructed; these

are now determined entirely by the tree structure

so far hypothesised and the target LF RT .

3.4 Probabilistic Grammar Estimation

This procedure produces, for each training sen-

tence 〈w1 . . . wn〉, all possible sequences of ac-

tions that lead from the axiom tree T0 to a tree

with the target RT as its semantics. These must

now be split into n sub-sequences, hypothesising

a set of word boundaries to form discrete word hy-

potheses; and a probability distribution estimated

over this (large) word hypothesis space to provide

a grammar that can be useful in parsing. For this,

we apply the procedure of Eshghi et al. (2013).

For each training sentence S = 〈w1 . . . wn〉,
we have a set HT of possible Hypothesis Tuples

(sequences of word hypotheses), each of the form

HTj = 〈hj
1 . . . h

j
n〉, where h

j
i is the word hypoth-

esis for wi in HTj . We must estimate a prob-

ability distribution θw over hypotheses for each

word w, where θw(h) is the posterior probability

p(h|w) of a given word hypothesis h being used to

parse w. Eshghi et al. (2013) define an incremen-

tal version of Expectation-Maximisation (Demp-

ster et al., 1977) for use in this setting.

Re-estimation At any point, the Expectation

step assigns each hypothesis tuple HTj a proba-

bility based on the current estimate θ′w:

p(HTj|S) =
n
∏

i=1

p(hj
i |wi) =

n
∏

i=1

θ′wi
(hj

i ) (2)

The Maximisation step then re-estimates
p(h|w) as the normalised sum of the probabilities
of all observed tuples HTj which contain h,w:

θ′′w(h) =
1

Z

∑

{j|h,w∈HTj}

n
∏

i=1

θ′wi
(hj

i ) (3)

where Z is the appropriate normalising constant

summed over all the HTj’s.

Incremental update The estimate of θw is now
updated incrementally at each training example:

the new estimate θN
w is a weighted average of the

previous estimate θN−1
w and the new value from

the current example θ′′w from equation (3):

θN
w (h) =

N − 1

N
θN−1
w (h) +

1

N
θ′′w(h) (4)

λe.not(aux|do(v|have(pro|he, det|a(x,n|hat(x)), e), e), e)
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
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





e=have : es

p3=not(e) : t

p2=do-aux(e) : t

r :





x : e

p=hat(x) : t

head=x : e





x2=ǫ(r.head,r) : e

x1=he : e

p1=object(e,x2) : t

p=subject(e,x1) : t

head=e : es


























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

Figure 8: Conversion of LFs from FOL to TTR.

For the first training example, a uniform distribu-

tion is assumed; when subsequent examples pro-

duce new previously unseen hypotheses these are

assigned probabilities uniformly distributed over a

held-out probability mass.

4 Experimental Setup

Corpus We tested our approach on a section

of the Eve corpus within CHILDES (MacWhin-

ney, 2000), a series of English child-directed ut-

terances, annotated with LFs by Kwiatkowski et

al. (2012) following Sagae et al. (2004)’s syntactic

annotation. We convert these LFs into semanti-

cally equivalent RTs; e.g. Fig 8 shows the conver-

sion to a record type for “He doesn’t have a hat”.

Importantly, our representations remove all

part-of-speech or syntactic information; e.g. the

subject, object and indirect object predicates func-

tion as purely semantic role information express-

ing an event’s participants. This includes e.g.

do-aux(e) in (8), which is taken merely to rep-

resent temporal/aspectual information about the

event, and could be part of any word hypothesis.

From this corpus we selected 500 short

utterance-record type pairs. The minimum utter-

ance length in this set is 1 word, maximum 7,

mean 3.7; it contains 1481 word tokens of 246

types, giving a type:token ratio of 6.0). We use the

first 400 for training and 100 for testing; the test

set also has a mean utterance length of 3.7 words,

and contains only words seen in training.

Evaluation We evaluate our learner by compar-

ing the record type semantic LFs produced using

the induced lexicon against the gold standard LFs,

calculating precision, recall and f-score using a

method similar to Allen et al. (2008).
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Coverage % Precision Recall F-Score

Top-1 59 0.548 0.549 0.548

Top-2 85 0.786 0.782 0.782

Top-3 92 0.854 0.851 0.851

Table 1: Results: parse coverage & accuracy using

the top N hypotheses induced in training.

Each field has a potential score in the range

[0,1]. A method maxMapping(R1, R2) con-

structs a mapping from fields in R1 to those in R2

to maximise alignment, with fields that map com-

pletely scoring a full 1, and partially mapped fields

receiving less, depending on the proportion of the

R1 field’s representation that subsumes its mapped

R2 field;e.g. a unary predicate field in RT2 such

as
[

p=there(e) : t
]

could score a maximum of

3 - 1 for correct type t, 1 for correct predicate

there and 1 for the subsumption of its argument

e; we use the total to normalise the final score.

The potential maximum for any pair is therefore

the number of fields in R1 (including those in em-

bedded record types). So, for hypothesis H and

goal record type G, with NH and NG fields re-

spectively:

(5) precision = maxMapping(H,G)/NH

recall = maxMapping(H,G)/NG

5 Results

Table 1 shows that the grammar learned achieves

both good parsing coverage and semantic accu-

racy. Using the top 3 lexical hypotheses induced

from training, 92% of test set utterances receive a

parse, and average LF f-score reaches 0.851.

We manually inspected the learned lexicon for

instances of ambiguous words to assess the sys-

tem’s ability to disambiguate (e.g. the word ‘’s’

(is) has three different senses in our corpus: (1)

auxiliary, e.g. “the coffee’s coming”; (2) verb

predicating NP identity, e.g. “that’s a girl”; and

(3) verb predicating location, e.g. “where’s the

pencil”). From these the first two were in the top

3 hypotheses (probabilities p=0.227 and p=0.068).

For example, the lexical entry learned for (2) is

shown in Fig. 9.

However, less common words fared worse: e.g.

the double object verb ‘put’, with only 3 tokens,

had no correct hypothesis in the top 5. Given suffi-

cient frequency and variation in the token distribu-

tions, our method appears successful in inducing

the correct incremental grammar. However, the

complexity of the search space also limits the pos-

sibility of learning from larger record types, as the

space of possible subtypes used for hypothesising

IF ?Ty(e → t)
THEN make(〈↓0〉); go(〈↓0〉)

put(?Ty(e))
go(〈↑0〉)
make(〈↓1〉); go(〈↓1〉)
put(Ty(e → (e → t)))
put(Fo(
λr1 :

[

head : e
]

λr2 :
[

head : e
]

.
















x1=r1.head : e

x2=r2.head : e

e=eq : es

p1=subj(e,x2) : t

p2=obj(e,x1) : t

head=e : t

















))

put(〈↓〉⊥)
ELSE ABORT

Figure 9: Action learned for second sense of ‘is’

tree structure grows exponentially with the num-

ber of fields in the type. Therefore, when learning

from longer, more complicated sentences, we may

need to bring in further sources of bias to constrain

our hypothesis process further (e.g. learning from

shorter sentences first).

6 Conclusions

We have outlined a novel method for the induc-

tion of a probabilistic grammar in an inherently in-

cremental and semantic formalism, Dynamic Syn-

tax, compatible with dialogue phenomena such

as compound contributions and with no indepen-

dent level of syntactic phrase structure. Assum-

ing only general compositional mechanisms, our

method learns from utterances paired with their

logical forms represented as TTR record types.

Evaluation on a portion of the CHILDES corpus

of child-directed dialogue utterances shows good

coverage and semantic accuracy, which lends sup-

port to viewing it as a plausible, yet idealised, lan-

guage acquisition model.

Future work planned includes refining the

method outlined above for learning from longer

utterances, and then from larger corpora e.g. the

Groningen Meaning Bank (Basile et al., 2012),

which includes more complex structures. This will

in turn enable progress towards large-scale incre-

mental semantic parsers and allow further investi-

gation into semantically driven language learning.
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