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Abstract

We introduce a lexicalized reordering
model for hierarchical phrase-based ma-
chine translation. The model scores mono-
tone, swap, and discontinuous phrase ori-
entations in the manner of the one pre-
sented by Tillmann (2004). While this
type of lexicalized reordering model is a
valuable and widely-used component of
standard phrase-based statistical machine
translation systems (Koehn et al., 2007), it
is however commonly not employed in hi-
erarchical decoders.

We describe how phrase orientation prob-
abilities can be extracted from word-
aligned training data for use with hierar-
chical phrase inventories, and show how
orientations can be scored in hierarchi-
cal decoding. The model is empirically
evaluated on the NIST Chinese→English
translation task. We achieve a signifi-
cant improvement of +1.2 %BLEU over
a typical hierarchical baseline setup and
an improvement of +0.7 %BLEU over a
syntax-augmented hierarchical setup. On
a French→German translation task, we
obtain a gain of up to +0.4 %BLEU.

1 Introduction

In hierarchical phrase-based translation (Chiang,
2005), a probabilistic synchronous context-free
grammar (SCFG) is induced from bilingual train-
ing corpora. In addition to continuous lexical
phrases as in standard phrase-based translation,
hierarchical phrases with usually up to two non-
terminals are extracted from the word-aligned par-
allel training data.

Hierarchical decoding is typically carried out
with a parsing-based procedure. The parsing al-
gorithm is extended to handle translation candi-

dates and to incorporate language model scores
via cube pruning (Chiang, 2007). During decod-
ing, a hierarchical translation rule implicitly spec-
ifies the placement of the target part of a sub-
derivation which is substituting one of its non-
terminals in a partial hypothesis. The hierarchical
phrase-based model thus provides an integrated re-
ordering mechanism. The reorderings which are
being conducted by the hierarchical decoder are
a result of the application of SCFG rules, which
generally means that there must have been some
evidence in the training data for each reordering
operation. At first glance one might be tempted to
believe that any additional designated phrase ori-
entation modeling would be futile in hierarchical
translation as a consequence of this. We argue
that such a conclusion is false, and we will pro-
vide empirical evidence in this work that lexical-
ized phrase orientation scoring can be highly ben-
eficial not only in standard phrase-based systems,
but also in hierarchical ones.

The purpose of a phrase orientation model is
to assess the adequacy of phrase reordering dur-
ing search. In standard phrase-based translation
with continuous phrases only and left-to-right hy-
pothesis generation (Koehn et al., 2003; Zens and
Ney, 2008), phrase reordering is implemented by
jumps within the input sentence. The choice of the
best order for the target sequence is made based
on the language model score of this sequence and
a distortion cost that is computed from the source-
side jump distances. Though the space of admis-
sible reorderings is in most cases contrained by a
maximum jump width or coverage-based restric-
tions (Zens et al., 2004) for efficiency reasons,
the basic approach of arbitrarily jumping to un-
covered positions on source side is still very per-
missive. Lexicalized reordering models assist the
decoder in taking a good decision. Phrase-based
decoding allows for a straightforward integration
of lexicalized reordering models which assign
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different scores depending on how a currently
translated phrase has been reordered with respect
to its context. Popular lexicalized reordering mod-
els for phrase-based translation distinguish three
orientation classes: monotone, swap, and discon-
tinuous (Tillmann, 2004; Koehn et al., 2007; Gal-
ley and Manning, 2008). To obtain such a model,
scores for the three classes are calculated from the
counts of the respective orientation occurrences in
the word-aligned training data for each extracted
phrase. The left-to-right orientation of phrases
during phrase-based search can be easily deter-
mined from the start and end positions of con-
tinuous phrases. Approximations may need to be
adopted for the right-to-left scoring direction.

The utility of phrase orientation models in stan-
dard phrase-based translation is plausible and has
been empirically established in practice. In hierar-
chical phrase-based translation, some other types
of lexicalized reordering models have been inves-
tigated recently (He et al., 2010a; He et al., 2010b;
Hayashi et al., 2010; Huck et al., 2012a), but
in none of them are the orientation scores condi-
tioned on the lexical identity of each phrase in-
dividually. These models are rather word-based
and applied on block boundaries. Experimental
results obtained with these other types of lexical-
ized reordering models have been very encourag-
ing, though.

There are certain reasons why assessing the ad-
equacy of phrase reordering should be useful in
hierarchical search:

• Albeit phrase reorderings are always a result
of the application of SCFG rules, the decoder
is still able to choose from many different
parses of the input sentence.

• The decoder can furthermore choose from
many translation options for each given
parse, which result in different reorderings
and different phrases being embedded in the
reordering non-terminals.

• All other models only weakly connect an em-
bedded phrase with the hierarchical phrase it
is placed into, in particular as the set of non-
terminals of the hierarchical grammar only
contains two generic non-terminal symbols.

We therefore investigate phrase orientation mod-
eling for hierarchical translation in this work.

2 Outline

The remainder of the paper is structured as fol-
lows: We briefly outline important related pub-
lications in the following section. We subse-
quently give a summary of some essential aspects
of the hierarchical phrase-based translation ap-
proach (Section 4). Phrase orientation modeling
and a way in which a phrase orientation model can
be trained for hierarchical phrase inventories are
explained in Section 5. In Section 6 we introduce
an extension of hierarchical search which enables
the decoder to score phrase orientations. Empiri-
cal results are presented in Section 7. We conclude
the paper in Section 8.

3 Related Work

Hierarchical phrase-based translation was pro-
posed by Chiang (2005). He et al. (2010a) inte-
grated a maximum entropy based lexicalized re-
ordering model with word- and class-based fea-
tures. Different classifiers for different rule pat-
terns are trained for their model (He et al.,
2010b). A comparable discriminatively trained
model which applies a single classifier for all types
of rules was developed by Huck et al. (2012a).
Hayashi et al. (2010) explored the word-based re-
ordering model by Tromble and Eisner (2009) in
hierarchical translation.

For standard phrase-based translation, Galley
and Manning (2008) introduced a hierarchical
phrase orientation model. Similar to previous ap-
proaches (Tillmann, 2004; Koehn et al., 2007), it
distinguishes the three orientation classes mono-
tone, swap, and discontinuous. However, it differs
in that it is not limited to model local reordering
phenomena, but allows for phrases to be hierarchi-
cally combined into blocks in order to determine
the orientation class. This has the advantage that
probability mass is shifted from the rather uninfor-
mative default category discontinuous to the other
two orientation classes, which model the location
of a phrase more specifically. In this work, we
transfer this concept to a hierarchical phrase-based
machine translation system.

4 Hierarchical Phrase-Based Translation

The non-terminal set of a standard hierarchical
grammar comprises two symbols which are shared
by source and target: the initial symbol S and one
generic non-terminal symbol X . The generic non-
terminal X is used as a placeholder for the gaps
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(a) Monotone phrase orientation.
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(c) Discontinuous phrase orientation.

Figure 1: Extraction of the orientation classes monotone, swap, and discontinuous from word-aligned
training samples. The examples show the left-to-right orientation of the shaded phrases. The dashed
rectangles indicate how the predecessor words are merged into blocks with regard to their word align-
ment.

within the right-hand side of hierarchical transla-
tion rules as well as on all left-hand sides of the
translation rules that are extracted from the paral-
lel training corpus.

Extracted rules of a standard hierarchical gram-
mar are of the form X → 〈α, β,∼ 〉 where 〈α, β〉
is a bilingual phrase pair that may contain X , i.e.
α ∈ ({X } ∪ VF )+ and β ∈ ({X } ∪ VE)+, where
VF and VE are the source and target vocabulary,
respectively. The non-terminals on the source side
and on the target side of hierarchical rules are
linked in a one-to-one correspondence. The ∼ re-
lation defines this one-to-one correspondence. In
addition to the extracted rules, a non-lexicalized
initial rule

S → 〈X∼0, X∼0〉 (1)

is engrafted into the hierarchical grammar, as well
as a special glue rule

S → 〈S∼0X∼1, S∼0X∼1〉 (2)

that the system can use for serial concatenation
of phrases as in monotonic phrase-based transla-
tion. The initial symbol S is the start symbol of
the grammar.

Hierarchical search is conducted with a cus-
tomized version of the CYK+ parsing algo-
rithm (Chappelier and Rajman, 1998) and cube
pruning (Chiang, 2007). A hypergraph which rep-
resents the whole parsing space is built employing
CYK+. Cube pruning operates in bottom-up topo-
logical order on this hypergraph and expands at
most k derivations at each hypernode.

5 Modeling Phrase Orientation for
Hierarchical Machine Translation

The phrase orientation model we are using was
introduced by Galley and Manning (2008). To
model the sequential order of phrases within the
global translation context, the three orientation
classes monotone (M), swap (S) and discontinu-
ous (D) are distinguished, each in both left-to-
right and right-to-left direction. In order to cap-
ture the global rather than the local context, previ-
ous phrases can be merged into blocks if they are
consistent with respect to the word alignment. A
phrase is in monotone orientation if a consistent
monotone predecessor block exists, and in swap
orientation if a consistent swap predecessor block
exists. Otherwise it is in discontinuous orientation.

Given a sequence of source words fJ1 and a se-
quence of target words eI1, a block 〈f j2j1 , e

i2
i1
〉 (with

1 ≤ j1 ≤ j2 ≤ J and 1 ≤ i1 ≤ i2 ≤ I)
is consistent with respect to the word alignment
A ⊆ {1, ..., I} × {1, ..., J} iff

∃(i, j) ∈ A : i1 ≤ i ≤ i2 ∧ j1 ≤ j ≤ j2
∧ ∀(i, j) ∈ A : i1 ≤ i ≤ i2 ↔ j1 ≤ j ≤ j2.

(3)

Consistency is based upon two conditions in this
definition: (1.) At least one source and target po-
sition within the block must be aligned, and (2.)

words from inside the source interval may only
be aligned to words from inside the target inter-
val and vice versa. These are the same condi-
tions as those that are applied for the extraction of
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(a) A monotone orientation.

Left-to-right orientation counts:

N(M |f2X∼0f4, e2X
∼0e4) = 1

N(S|f2X∼0f4, e2X
∼0e4) = 0

N(D|f2X∼0f4, e2X
∼0e4) = 0
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(b) Another monotone orientation.

Left-to-right orientation counts:

N(M |f2X∼0f4, e2X
∼0e4) = 2

N(S|f2X∼0f4, e2X
∼0e4) = 0

N(D|f2X∼0f4, e2X
∼0e4) = 0
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(c) A swap orientation.

Left-to-right orientation counts:

N(M |f2X∼0f4, e2X
∼0e4) = 2

N(S|f2X∼0f4, e2X
∼0e4) = 1

N(D|f2X∼0f4, e2X
∼0e4) = 0

Figure 2: Accumulation of orientation counts for hierarchical phrases during extraction. The hierarchical
phrase 〈f2X∼0f4, e2X∼0e4〉 (dark shaded) can be extracted from all the three training samples. Its
orientation is identical to the orientation of the continuous phrase (lightly shaded) which the sub-phrase
is cut out of, respectively. Note that the actual lexical content of the sub-phrase may differ. For instance,
the sub-phrase 〈f3, e3〉 is being cut out in Fig. 2a, and the sub-phrase 〈f6, e6〉 is being cut out in Fig. 2b.

standard continuous phrases. The only difference
is that length constraints are applied to phrases, but
not to blocks.

Figure 1 illustrates the extraction of monotone,
swap, and discontinuous orientation classes in
left-to-right direction from word-aligned bilingual
training samples. The right-to-left direction works
analogously.

We found that this concept can be neatly
plugged into the hierarchical phrase-based trans-
lation paradigm, without having to resort to ap-
proximations in decoding, which is necessary to
determine the right-to-left orientation in a standard
phrase-based system (Cherry et al., 2012). To train
the orientations, the extraction procedure from the
standard phrase-based version of the reordering
model can be used with a minor extension. The
model is trained on the same word-aligned data
from which the translation rules are extracted. For
each training sentence, we extract all phrases of
unlimited length that are consistent with the word
alignment, and store their corners in a matrix. The
corners are distinguished by their location: top-
left, top-right, bottom-left, and bottom-right. For
each bilingual phrase, we determine its left-to-
right and right-to-left orientation by checking for
adjacent corners.

The lexicalized orientation probability for the
orientation O ∈ {M,S,D} and the phrase pair
〈α, β〉 is estimated as its smoothed relative fre-
quency:

p(O) =
N(O)∑

O′∈{M,S,D}N(O′)
(4)

p(O|α, β) = σ · p(O) +N(O|α, β)
σ +

∑
O′∈{M,S,D}N(O′|f̃ , ẽ)

.

(5)
Here, N(O) denotes the global count and

N(O|α, β) the lexicalized count for the orienta-
tion O. σ is a smoothing constant.

To determine the orientation frequency for a hi-
erarchical phrase with non-terminal symbols, the
orientation counts of all those phrases are accu-
mulated from which a sub-phrase is cut out and
replaced by a non-terminal symbol to obtain this
hierarchical phrase. Figure 2 gives an example.

Negative logarithms of the values are used as
costs in the log-linear model combination (Och
and Ney, 2002). Cost 0 for all orientations is as-
signed to the special rules which are not extracted
from the training data (initial and glue rule).
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(a) Monotone non-terminal orientation.
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(b) Swap non-terminal orientation.
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(c) Discontinuous non-terminal orienta-
tion.

Figure 3: Scoring with the orientation classes monotone, swap, and discontinuous. Each picture shows
exactly one hierarchical phrase. The block which replaces the non-terminal X during decoding is embed-
ded with the orientation of this non-terminal X within the hierarchical phrase. The examples show the
left-to-right orientation of the non-terminal. The left-to-right orientation can be detected from the word
alignment of the hierarchical phrase, except for cases where the non-terminal is in boundary position on
target side.

6 Phrase Orientation Scoring in
Hierarchical Decoding

Our implementation of phrase orientation scoring
in hierarchical decoding is based on the observa-
tion that hierarchical rule applications, i.e. the us-
age of rules with non-terminals within their right-
hand sides, settle the target sequence order. Mono-
tone, swap, or discontinuous orientations of blocks
are each due to monotone, swap, or discontinuous
placement of non-terminals which are being sub-
stituted by these blocks.

The problem of phrase orientation scoring can
thus be mostly reduced to three steps which need
to be carried out whenever a hierarchical rule is
applied:

1. Determining the orientations of the non-
terminals in the rule.

2. Retrieving the proper orientation cost of the
topmost rule application in the sub-derivation
which corresponds to the embedded block for
the respective non-terminal.

3. Applying the orientation cost to the log-linear
model combination for the current derivation.

The orientation of a non-terminal in a hierarchi-
cal rule is dependent on the word alignments in
its context. Figure 3 depicts three examples.1 We

however need to deal with special cases where a
non-terminal orientation cannot be established at
the moment when the hierarchical rule is consid-
ered. We first describe the non-degenerate case
(Section 6.1). Afterwards we briefly discuss our
strategy in the special situation of boundary non-
terminals where the non-terminal orientation can-
not be determined from information which is in-
herent to the hierarchical rule under consideration
(Section 6.3).

We focus on left-to-right orientation scoring;
right-to-left scoring is symmetric.

6.1 Determining Orientations

In order to determine the orientation class of a
non-terminal, we rely on the word alignments
within the phrases. With each phrase, we store
the alignment matrix that has been seen most fre-
quently during phrase extraction. Non-terminal
symbols on target side are assumed to be aligned
to the respective non-terminal symbols on source

1Note that even maximal consecutive lexical intervals (ei-
ther on source or target side) are not necessarily aligned in
a way which makes them consistent bilingual blocks. In
Fig. 3a, e4 is for instance aligned both below and above
the non-terminal. In Fig. 3c, neither 〈f1f2, e1e2〉 nor
〈f1f2, e3e4〉 would be valid continuous phrases (the same
holds for 〈f3f4, e1e2〉 and 〈f3f4, e3e4〉). We actually need
the generalization of the phrase orientation model to hierar-
chical phrases as described in Section 5 for this reason. Oth-
erwise we would be able to just score neighboring consistent
sub-blocks with a model that does not account for hierarchi-
cal phrases with non-terminals.
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(a) Last previous aligned target position.
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(b) Initial box.
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(c) Expansion of the initial box.
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(d) The final box is a consistent left-to-right mono-
tone predecessor block of the non-terminal.

Figure 4: Determining the orientation class during decoding. Starting from the last previous aligned
target position, a box is spanned across the relevant alignment links onto the corner of the non-terminal.
The box is then checked for consistency.

side according to the ∼ relation. In the alignment
matrix, the rows and columns of non-terminals can
obviously contain only exactly this one alignment
link.

Starting from the last previous aligned target po-
sition to the left of the non-terminal, the algorithm
expands a box that spans across the other rele-
vant alignment links onto the corner of the non-
terminal. Afterwards it checks whether the areas
on the opposite sides of the non-terminal position
are non-aligned in the source and target intervals
of this box. The non-terminal is in discontinu-
ous orientation if the box is not a consistent block.
If the box is a consistent block, the non-terminal
is in monotone orientation if its source-side posi-
tion is larger than the maximum of the source-side
interval of the box, and in swap orientation if its
source-side position is smaller than the minimum
of the source-side interval of the box.

Figure 4 illustrates how the procedure operates.
In left-to-right direction, an initial box is spanned
from the last previous aligned target position to
the lower (monotone) or upper (swap) left cor-
ner of the non-terminal. In the example, starting
from 〈f3, e5〉 (Fig. 4a), this initial box is spanned
to the lower left corner by iterating from f3 to
f4 and expanding its target interval to the mini-
mum aligned target position within these two rows
of the alignment matrix. The initial box cov-
ers 〈f3f4, e3e4e5〉 (Fig. 4b). The procedure then
repeatedly checks whether the box needs to be
expanded—alternating to the bottom (monotone)
or top (swap) and to the left—until no alignment
links below or to the left of the box break the
consistency. Two box expansion are conducted
in the example: the first one expands the ini-
tial box below, resulting in a larger box which
covers 〈f1f2f3f4, e3e4e5〉 (Fig. 4c); the second
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(a) Left boundary non-
terminal that can be placed
in left-to-right monotone or
discontinuous orientation
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(b) Left boundary non-
terminal that can be placed
in left-to-right discontinuous
or swap orientation when
the phrase is embedded into
another one.
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(c) Left boundary non-
terminal that can be placed in
left-to-right monotone, swap,
or discontinuous orientation
when the phrase is embedded
into another one.
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(d) Left boundary non-
terminal that can only be
placed in left-to-right dis-
continuous orientation when
the phrase is embedded into
another one.

Figure 5: Left boundary non-terminal symbols. Orientations the non-terminal can eventually turn out to
get placed in differ depending on existing alignment links in the rest of the phrase. Delayed left-to-right
scoring is not required in cases as in Fig. 5d. Fractional costs for the possible orientations are temporarily
applied in the other cases and recursively corrected as soon as an orientation is constituted in an upper
hypernode.

one expands this new box to the left, resulting in
a final box which covers 〈f1f2f3f4, e1e2e3e4e5〉
(Fig. 4d) and does not need to be expanded to-
wards the lower left corner any more. Afterwards
the procedure examines whether the final box is
a consistent block by inspecting whether the ar-
eas on the opposite side of the non-terminal po-
sition are non-aligned in the intervals of the box
(areas with waved lines in the Fig. 4d). These ar-
eas do not contain alignment links in the example:
the orientation class of the non-terminal is mono-
tone as it has a consistent left-to-right monotone
predecessor block. (Suppose an alignment link
〈f5, e2〉 would break the consistency: the orienta-
tion class would then be discontinuous as the final
box would not be a consistent block.)

Orientations of non-terminals could basically be
precomputed and stored in the translation table.
We however compute them on demand during de-
coding. The computational overhead did not seem
to be too severe in our experiments.

6.2 Scoring Orientations

Once the orientation is determined, the proper ori-
entation cost of the embedded block needs to be
retrieved. We access the topmost rule application
in the sub-derivation which corresponds to the em-
bedded block for the respective non-terminal and
read the orientation model costs for this rule. The
special case of delayed scoring for boundary non-
terminals as described in the subsequent section is
recursively processed if necessary. The retrieved

orientation costs of the embedded blocks of all
non-terminals are finally added to the log-linear
model combination for the current derivation.

6.3 Boundary Non-Terminals

Cases where a non-terminal orientation cannot be
established at the moment when the hierarchi-
cal rule is considered arise when a non-terminal
symbol is in a boundary position on target side.
We define a non-terminal to be in (left or right)
boundary position iff no symbols are aligned be-
tween the phrase-internal target-side index of the
non-terminal and the (left or right) phrase bound-
ary. Left boundary positions of non-terminals
are critical for left-to-right orientation scoring,
right boundary positions for right-to-left orienta-
tion scoring. We denote non-terminals in bound-
ary position as boundary non-terminals.

The procedure as described in Section 6.1 is not
applicable to boundary non-terminals because a
last previous aligned target position does not ex-
ist. If it is impossible to determine the final non-
terminal orientation in the hypothesis from infor-
mation which is inherent to the phrase, we are
forced to delay the orientation scoring of the em-
bedded block. Our solution in these cases is to
heuristically add fractional costs of all orientations
the non-terminal can still eventually turn out to get
placed in (cf. Figure 5). We do so because not
adding an orientation cost to the derivation would
give it an unjustified advantage over other ones.
As soon as an orientation is constituted in an up-
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per hypernode, any heuristic and actual orientation
costs can be collected by means of a recursive call.
Note that monotone or swap orientations in upper
hypernodes can top-down transition into discon-
tinuous orientations for boundary non-terminals,
depending on existing phrase-internal alignment
links in the context of the respective boundary
non-terminal. In the derivation at the upper hyper-
node, the heuristic costs are subtracted and the cor-
rect actual costs added. Delayed scoring can lead
to search errors; in order to keep them confined,
the delayed scoring needs to be done separately
for all derivations, not just for the first-best sub-
derivations along the incoming hyperedges.

7 Experiments

We evaluate the effect of phrase orienta-
tion scoring in hierarchical translation on the
Chinese→English 2008 NIST task2 and on the
French→German language pair using the standard
WMT3 newstest sets for development and testing.

7.1 Experimental Setup

We work with a Chinese–English parallel train-
ing corpus of 3.0 M sentence pairs (77.5 M Chi-
nese / 81.0 M English running words). To train the
German→French baseline system, we use 2.0 M
sentence pairs (53.1 M French / 45.8 M German
running words) that are partly taken from the
Europarl corpus (Koehn, 2005) and have partly
been collected within the Quaero project.4

Word alignments are created by aligning the
data in both directions with GIZA++5 and sym-
metrizing the two trained alignments (Och and
Ney, 2003). When extracting phrases, we ap-
ply several restrictions, in particular a maximum
length of ten on source and target side for lexi-
cal phrases, a length limit of five on source and
ten on target side for hierarchical phrases (includ-
ing non-terminal symbols), and no more than two
non-terminals per phrase.

A standard set of models is used in the base-
lines, comprising phrase translation probabilities
and lexical translation probabilities in both direc-
tions, word and phrase penalty, binary features
marking hierarchical rules, glue rule, and rules

2http://www.itl.nist.gov/iad/mig/
tests/mt/2008/

3http://www.statmt.org/wmt13/
translation-task.html

4http://www.quaero.org
5http://code.google.com/p/giza-pp/

with non-terminals at the boundaries, three sim-
ple count-based binary features, phrase length ra-
tios, and a language model. The language models
are 4-grams with modified Kneser-Ney smooth-
ing (Kneser and Ney, 1995; Chen and Goodman,
1998) which have been trained with the SRILM
toolkit (Stolcke, 2002).

Model weights are optimized against BLEU (Pa-
pineni et al., 2002) with MERT (Och, 2003) on
100-best lists. For Chinese→English we employ
MT06 as development set, MT08 is used as unseen
test set. For German→French we employ news-
test2009 as development set, newstest2008, news-
test2010, and newstest2011 are used as unseen test
sets. During decoding, a maximum length con-
straint of ten is applied to all non-terminals except
the initial symbol S . Translation quality is mea-
sured in truecase with BLEU and TER (Snover et
al., 2006). The results on MT08 are checked for
statistical significance over the baseline. Confi-
dence intervals have been computed using boot-
strapping for BLEU and Cochran’s approximate
ratio variance for TER (Leusch and Ney, 2009).

7.2 Chinese→English Experimental Results

Table 1 comprises all results of our empirical eval-
uation on the Chinese→English task.

We first compare the performance of the phrase
orientation model in left-to-right direction only
with the performance of the phrase orientation
model in left-to-right and right-to-left direction
(bidirectional). In all experiments, monotone,
swap, and discontinuous orientation costs are
treated as being from different feature functions
in the log-linear model combination: we assign
a separate scaling factor to each of the orienta-
tions. We have three more scaling factors than in
the baseline for left-to-right direction only, and six
more scaling factors for bidirectional phrase ori-
entation scoring. As can be seen from the results
table, the left-to-right model already yields a gain
of 1.1 %BLEU over the baseline on the unseen test
set (MT08). The bidirectional model performs just
slightly better (+1.2 %BLEU over the baseline).
With both models, the TER is reduced significantly
as well (-1.1 / -1.3 compared to the baseline). We
adopted the discriminative lexicalized reordering
model (discrim. RO) that has been suggested by
Huck et al. (2012a) for comparison purposes. The
phrase orientation model provides clearly better
translation quality in our experiments.
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MT06 (Dev) MT08 (Test)
NIST Chinese→English BLEU [%] TER [%] BLEU [%] TER [%]
HPBT Baseline 32.6 61.2 25.2 66.6
+ discrim. RO 33.0 61.3 25.8 66.0
+ phrase orientation (left-to-right) 33.3 60.7 26.3 65.5
+ phrase orientation (bidirectional) 33.2 60.6 26.4 65.3
+ swap rule 32.8 61.7 25.8 66.6

+ discrim. RO 33.1 61.2 26.0 66.1
+ phrase orientation (bidirectional) 33.3 60.7 26.5 65.3
+ binary swap feature 33.2 61.0 25.9 66.2

+ discrim. RO 33.2 61.3 26.2 66.1
+ phrase orientation (bidirectional) 33.6 60.5 26.6 65.1

+ soft syntactic labels 33.4 60.8 26.1 66.4
+ phrase orientation (bidirectional) 33.7 60.1 26.8 65.1

+ phrase-level s2t+t2s DWL + triplets 34.3 60.1 27.7 65.0
+ discrim. RO 34.8 59.8 27.7 64.7
+ phrase orientation (bidirectional) 35.3 59.0 28.4 63.7

Table 1: Experimental results for the NIST Chinese→English translation task (truecase). On the test set,
bold font indicates results that are significantly better than the baseline (p < .05).

As a next experiment, we bring in more re-
ordering capabilities by augmenting the hierarchi-
cal grammar with a single swap rule

X → 〈X∼0X∼1,X∼1X∼0〉 (6)

supplementary to the initial rule and glue rule.
The swap rule allows adjacent phrases to be trans-
posed. The setup with swap rule and bidirectional
phrase orientation model is about as good as the
setup with just the bidirectional phrase orienta-
tion model and no swap rule. If we furthermore
mark the swap rule with a binary feature (binary
swap feature), we end up at an improvement of
+1.4 %BLEU over the baseline. The phrase ori-
entation model again provides higher translation
quality than the discriminative reordering model.

In a third experiment, we investigate whether
the phrase orientation model also has a positive in-
fluence when integrated into a syntax-augmented
hierarchical system. We configured a hierarchi-
cal setup with soft syntactic labels (Stein et al.,
2010), a syntactic enhancement in the manner of
preference grammars (Venugopal et al., 2009). On
MT08, the syntax-augmented system performs 0.9
%BLEU above the baseline setup. We achieve an
additional improvement of +0.7 %BLEU and -1.3
TER by including the bidirectional phrase orien-
tation model. Interestingly, the translation quality
of the setup with soft syntactic labels (but with-
out phrase orientation model) is worse than of the

setup with phrase orientation model (but without
soft syntactic labels) on MT08. The combination
of both extensions provides the best result, though.

In a last experiment, we finally took a very
strong setup which improves over the baseline by
2.5 %BLEU through the integration of phrase-level
discriminative word lexicon (DWL) models and
triplet lexicon models in source-to-target (s2t) and
target-to-source (t2s) direction. The models have
been presented by Hasan et al. (2008), Bangalore
et al. (2007), and Mauser et al. (2009). We apply
them in a similar manner as proposed by Huck et
al. (2011). In this strong setup, the discriminative
reordering model gives gains on the development
set which barely carry over to the test set. Adding
the bidirectional phrase orientation model, in con-
trast, results in a nice gain of +0.7 %BLEU and a
reduction of 1.3 points in TER on the test set, even
on top of the DWL and triplet lexicon models.

7.3 French→German Experimental Results
Table 2 comprises the results of our empirical eval-
uation on the French→German task.

The left-to-right phrase orientation model
boosts the translation quality by up to 0.3 %BLEU.
The reduction in TER is in a similar order of
magnitude. The bidirectional model performs a
bit better again, with an advancement of up to
0.4 %BLEU and a maximal reduction in TER of
0.6 points.
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newstest2008 newstest2009 newstest2010 newstest2011
BLEU TER BLEU TER BLEU TER BLEU TER

French→German [%] [%] [%] [%] [%] [%] [%] [%]
HPBT Baseline 15.2 71.7 15.0 71.7 15.7 69.5 14.2 72.2
+ phrase orientation (left-to-right) 15.1 71.4 15.3 71.4 15.9 69.2 14.5 71.8
+ phrase orientation (bidirectional) 15.4 71.1 15.4 71.3 15.9 69.1 14.6 71.6

Table 2: Experimental results for the French→German translation task (truecase). newstest2009 is used
as development set.

8 Conclusion

In this paper, we introduced a phrase orientation
model for hierarchical machine translation. The
training of a lexicalized reordering model which
assigns probabilities for monotone, swap, and dis-
continuous orientation of phrases was generalized
from standard continuous phrases to hierarchical
phrases. We explained how phrase orientation
scoring can be implemented in hierarchical decod-
ing and conducted a number of experiments on a
Chinese→English and a French→German transla-
tion task. The results indicate that phrase orienta-
tion modeling is a very suitable enhancement of
the hierarchical paradigm.

Our implementation will be released as part of
Jane (Vilar et al., 2010; Vilar et al., 2012; Huck
et al., 2012b), the RWTH Aachen University open
source statistical machine translation toolkit.6
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Constantin, and Evan Herbst. 2007. Moses: Open
Source Toolkit for Statistical Machine Translation.
In Proc. of the Annual Meeting of the Assoc. for
Computational Linguistics (ACL), Demo and Poster
Sessions, pages 177–180, Prague, Czech Republic.

Philipp Koehn. 2005. Europarl: A Parallel Corpus for
Statistical Machine Translation. In Proc. of the MT
Summit X, Phuket, Thailand, September.

Gregor Leusch and Hermann Ney. 2009. Edit dis-
tances with block movements and error rate confi-
dence estimates. Machine Translation, 23(2):129–
140, December.
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