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Abstract

Despite being closely related languages,
German and English are characterized by
important word order differences. Long-
range reordering of verbs, in particular,
represents a real challenge for state-of-the-
art SMT systems and is one of the main
reasons why translation quality is often so
poor in this language pair. In this work,
we review several solutions to improve
the accuracy of German-English word re-
ordering while preserving the efficiency of
phrase-based decoding. Among these, we
consider a novel technique to dynamically
shape the reordering search space and
effectively capture long-range reordering
phenomena. Through an extensive eval-
uation including diverse translation qual-
ity metrics, we show that these solutions
can significantly narrow the gap between
phrase-based and hierarchical SMT.

1 Introduction

Modeling the German-English language pair is
known to be a challenging task for state-of-the-
art statistical machine translation (SMT) methods.
A major factor of difficulty is given by word or-
der differences that yield important long-range re-
ordering phenomena.

Thanks to specific reordering modeling compo-
nents, phrase-based SMT (PSMT) systems (Zens
et al., 2002; Koehn et al., 2003; Och and Ney,
2002) are generally good at handling local re-
ordering phenomena that are not captured inside
phrases. However, they typically fail to predict
long reorderings. On the other hand, hierarchi-
cal SMT (HSMT) systems (Chiang, 2005) can
learn reordering patterns by means of discontinu-
ous translation rules, and are therefore considered
a better choice for language pairs characterized by
massive and hierarchical reordering.
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Looking at the results of the Workshop of
Machine Translation’s last edition (WMT12)
(Callison-Burch et al., 2012), no particular SMT
approach appears to be clearly dominating. In
both language directions (official results excluding
the online systems) the rule-based systems outper-
formed all SMT approaches, and among the best
SMT systems we find a variety of approaches:
pure phrase-based, phrase-based and hierarchical
systems combination, n-gram based, a rich syntax-
based approach, and a phrase-based system cou-
pled with POS-based pre-ordering. This gives an
idea of how challenging this language pair is for
SMT and raises the question of which SMT ap-
proach is best suited to model it.

In this work, we aim at answering this ques-
tion by focussing on the word reordering problem,
which is known to be an important factor of SMT
performance (Birch et al., 2008). We hypothe-
size that PSMT can be as successful for German-
English as the more computationally costly HSMT
approach, provided that the reordering-related pa-
rameters are carefully chosen and the best avail-
able reordering models are used. More specifi-
cally, our study covers the following topics: dis-
tortion functions and limits, and dynamic shaping
of the reordering search space based on a discrim-
inative reordering model.

We first review these topics, and then evaluate
them systematically on the WMT task using both
generic and reordering-specific metrics, with the
aim of providing a reference for future system de-
velopers’ choices.

2 Background

Word order differences between German and En-
glish are mainly found at the clause (global) level,
as opposed to the phrase (local) level. We refer to
Collins et al. (2005) and Gojun and Fraser (2012)
for a detailed description of the German clause
structure. To briefly summarize, we can say that
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the verb-second order of German main clauses
contrasts with the rigid SVO structure of English,
as does the clause-final verb position of German
subordinate clauses. A further difficulty is given
by the German discontinuous verb phrases, where
the main verb is separated from the inflected auxil-
iary or modal. The distance between the two parts
of a verb phrase can be arbitrarily long as shown
in the following example:

[DE] Jedoch konnten sie Kinder in Teilen von Helmand

und Kandahar im Stden aus Sicherheitsgrund nicht er-
reichen.

[EN] But they could not reach children in parts of Hel-
mand and Kandahar in the south for security reasons.

Translating this sentence with a PSMT engine
implies performing two very long jumps that are
not even considered by typical systems employing
a distortion limit of 6 or 8 words. At the same
time, increasing the distortion limit to very high
values is known to have a negative impact on both
efficiency and translation quality (cf. results pre-
sented later in this paper).

Because reordering patterns of this kind are
very common between German and English, this
paper focuses on techniques that enable the PSMT
decoder to explore long jumps and thus improve
reordering accuracy without hurting efficiency nor
general translation quality.

2.1 Alternative approaches

German-English reordering in SMT has been
widely studied and is still an open topic. In this
work, we only consider efficient solutions that are
fully integrated into the decoding process, and that
do not require syntactic parsers or manual reorder-
ing rules. Still, it has to be mentioned that sev-
eral alternative solutions were proposed in the lit-
erature. A well-known strategy consists of pre-
ordering the German sentence in an English-like
order by applying a set of manually written rules
to its syntactic parse tree (Collins et al., 2005).!
Other approaches learn the pre-ordering rules au-
tomatically, from syntactic parses (Xia and Mc-
Cord, 2004; Genzel, 2010) or from part-of-speech
labels (Niehues and Kolss, 2009). In the former
case, pre-ordering decisions are typically taken de-
terministically (i. e. one permuation per sentence),
whereas in the latter, multiple alternatives are rep-
resented as word lattices, and the optimal path is

'A similar solution for the opposite translation direction
(English-German) was proposed by Gojun and Fraser (2012).
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selected by the decoder at translation time. In
(Tromble and Eisner, 2009), pre-ordering is cast
as a permutation problem and solved by a model
that estimates the probability of reversing the rel-
ative order of any two input words.

In the field of tree-based SMT, positive results
in German-English were achieved by combining
syntactic translation rules with unlabeled hierar-
chical SMT rules (Hoang and Koehn, 2010). More
recently, Braune et al. (2012) proposed to improve
the long-range reordering capability of an HSMT
system by integrating constraints based on clausal
boundaries and by manually selecting the rule pat-
terns applicable to long word spans. The paper
did not analyse the impact of the technique on ef-
ficiency.

2.2 Evaluation methods

A large number of previous works on word re-
ordering measured their success with general-
purpose metrics such as BLEU (Papineni et al.,
2001) or METEOR (Banerjee and Lavie, 2005).
These metrics, however, are only indirectly sensi-
tive to word order and do not sufficiently penalize
long-range reordering errors, as demonstrated for
instance by Birch et al. (2010). While BLEU re-
mains a standard choice for many evaluation cam-
paigns, we believe it is extremely important to
complement it with metrics that are specifically
designed to capture word order differences. In this
work, we adopt two reordering-specific metrics in
addition to BLEU and METEOR:

Kendall Reordering Score (KRS). As pro-
posed by Birch et al. (2010), the KRS measures
the similarity between the input-output reordering
and the input-reference reordering. This is done by
converting word alignments to permutations and
computing a permutation distance among them.
When interpolated with BLEU, this score is called
LRscore.?

Verb-specific KRS (KRS-V). The ideal way
to automatically evaluate our systems would be
to use syntax- or semantics-based metrics, as the
impact of long reordering errors is particularly
important at these levels. As a light-weight al-
ternative, we instead concentrate the evaluation
on those word classes that are typically crucial
to guess the general structure of a sentence. To
this end, we adopt a word-weighted version of the

>Thus, our KRS results correspond exactly to the
LRscore(a=1) presented in other papers.



KRS and set the weights to 1 for verbs and O for
all other words, so that only verb reordering errors
are captured. We call the resulting metric KRS-V.
The KRS-V rates a translation hypothesis as per-
fect (100%) when the translations of all source
verbs are located in their correct position, regard-
less of the other words’ ordering.

3 Early distortion cost

In its original formulation, the PSMT approach in-
cludes a basic reordering model, called distortion
cost, that exponentially penalizes longer jumps
among consecutively translated phrases simply
based on their distance. Thus, a completely mono-
tonic translation has a total distortion cost of zero.

A weakness of this model is that it penalizes
long jumps only when they are performed, rather
than accumulating their cost gradually. As an ef-
fect, hypotheses with gaps (i.e. uncovered input
positions) can proliferate and cause the pruning
of more monotonic hypotheses that could lead to
overall better translations.

To solve this problem, Moore and Quirk (2007)
proposed an improved version of the distortion
cost function that anticipates the gradual accumu-
lation of the total distortion cost, making hypothe-
ses with the same number of covered words more
comparable with one another. Early distortion
cost (as called in Moses, or “distortion penalty es-
timation” in the original paper) is computed by a
simple algorithm that keeps track of the uncovered
input positions. Note that this option affects the
distortion feature function, but not the distortion
limit, which always corresponds to the maximum
distance allowed between consecutively translated
phrases.

Early distortion cost was shown by its authors to
yield similar BLEU scores as the standard one but
with stricter pruning parameters, i. e. faster decod-
ing. Experiments were performed on an English-
French task, with a fixed distortion limit of 5 and
without lexicalized reordering models. Our study
deals with a language pair that is arguably more
difficult at the level of reordering. Moreover, we
start from a stronger baseline and measure the im-
pact of early distortion cost in various distortion
limit settings, using also reordering-specific met-
rics. Results are presented in Section 6.2.
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4 Word-after-word reordering
modeling and pruning

Phrase orientation (lexicalized reordering) mod-
els (Tillmann, 2004; Koehn et al., 2005; Galley
and Manning, 2008) have proven very useful for
short and medium-range reordering and are prob-
ably the most widely used in PSMT nowadays.
However, their coarse classification of reordering
steps makes them unsuitable to capture long-range
reordering phenomena, such as those attested in
German-English. Indeed, Galley and Manning
(2008) reported a decrease of translation qual-
ity when the distortion limit was set beyond 6 in
Chinese-English and beyond 4 in Arabic-English.

To address this problem, we have developed a
different reordering model that predicts what in-
put word should be translated at a given decod-
ing state (Bisazza, 2013; Bisazza and Federico,
2013). The model is similar to the one proposed
by Visweswariah et al. (2011), however we use
it differently: that is, not simply for data pre-
processing but as an additional feature function
fully integrated in the phrase-based decoder. More
importantly, we propose to use the same model
to dynamically shape the space of reorderings ex-
plored during decoding (cf. Section 4.2), which
was never done before.

Another related work is the source-side decod-
ing sequence model by Feng et al. (2010), that is
a generative n-gram model trained on a corpus of
pre-ordered source sentences. Although reminis-
cent of a source-side bigram model, our model has
two important differences: (i) the discriminative
modeling framework enables us to design a much
richer feature set including, for instance, the con-
text of the next word to pick; (ii) all our features
are independent from the decoding history, which
allows for an efficient decoder-integration with no
effect on hypothesis recombination.

Finally, we have to mention the models by Al-
Onaizan and Papineni (2006) and Green et al.
(2010), who predict the direction and (binned)
length of a jump to perform after a given input
word. Those models too were only used as ad-
ditional feature functions, and were not shown to
maintain translation quality and efficiency at very
high distortion limits.

4.1 The model

The Word-after-word (WaW) reordering model is
trained to predict whether a given input position



should be translated right after another, given the
words at those positions and their contexts. It is
based on the following maximum-entropy binary
classifier:

P(Ri7j:Y‘fi]7i’j) =

>oyrexp[d o, )‘mhm(fIJ> i, J, Rij=Y")]

where f{ is a source sentence of .J words, h,,, are
feature functions and )\, the corresponding fea-
ture weights. The outcome Y can be either 1 or 0,
with R; j=1 meaning that the word at position j is
translated right after the word at position .

Training examples are extracted from a corpus
of reference reorderings, obtained by converting
the word-aligned parallel data into a set of source
sentence permutations. A heuristic similar to the
one proposed by Visweswariah et al. (2011) is
used to this end. For each input word, we gen-
erate: (i) one positive example for the word that
should be translated right after it; (ii) negative ex-
amples for all the uncovered words that lie within a
given sampling window or 6. The latter parameter
serves to control the proportion between positive
and negative examples.

The WaW model builds on binary features that
are extracted from the local context of positions
1 and j, and from the words occurring between
them. In addition to the actual words, the features
may include POS tags and shallow syntax labels
(i.e. chunk types and boundaries). For instance,
one feature may indicate that the last translated
word (w;) is an adjective while the currently trans-
lated one (wj;) is a noun:

POS(w;)=adj A POS(w;)=noun
Other features indicate that a given word or punc-
tuation is found between w; and w;:
wp="jedoch’ wp=""
or that w; and w; belong to the same shallow syn-
tax chunk.

The WaW reordering model can be seamlessy
integrated into a standard phrase-based decoder
that already includes phrase orientation models.
When a partial hypothesis is expanded with a
given phrase pair, the model returns the log-
probability of translating its words in the order
defined by the phrase-internal word alignment.
Moreover, the global WaW score is independent
from phrase segmentation, and normalized across
outputs of different lengths.
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The complete list of features, training data gen-
eration algorithm and other implementation details
are presented in (Bisazza, 2013) and (Bisazza and
Federico, 2013).

4.2 Early reordering pruning

Besides providing an additional feature function
for the log-linear PSMT framework, the WaW
model’s predictions can be used as an early indi-
cation of whether or not a given reordering path
should be further explored. In fact, we have men-
tioned that the existing reordering models are not
capable of guiding the search through very large
reordering search spaces. As a solution, we pro-
pose to decode with loose reordering constraints
(i.e. high distortion limit) but only explore those
long reorderings that are promising according to
the WaW model.

More specifically, at each hypothesis expansion,
we consider the set of input positions that are
reachable within the fixed distortion limit. Only
based on the WaW score, we apply histogram and
threshold pruning to this set and then proceed to
expand only the non-pruned positions.> Further-
more, it is possible to ensure that local reorderings
are always allowed, by setting a so-called non-
prunable-zone of width ¢ around the last covered
input position. In this way, we can ensure that the
usual space of short to medium-range reordering is
exhaustively explored in addition to few promising
long-range reorderings.

The rationale of this approach is two-fold: First,
to avoid costly hypothesis expansions for very un-
likely reordering steps and thus speed up decod-
ing under loose reordering constraints. Second, to
decrease the risk of model errors by exploiting the
fact that some components of the PSMT log-linear
model are more important than others at different
stages of the translation process.

The WaW model is not the only scoring func-
tion that can be used for early reordering prun-
ing. In principle, even phrase orientation model
scores could be used, but we expect them to per-
form poorly due to the coarse classification of re-
ordering steps (all phrases that are not adjacent to
the current one are treated as discontinuous steps).

3The idea is reminiscent of early pruning by Moore and
Quirk (2007): an optimization technique that consists of dis-
carding hypothesis extensions based on their estimated score
before computing the exact language model score.

4See (Bisazza, 2013) for technical details on the integra-
tion of word-level pruning with phrase-level hypothesis ex-
pansion.



S Reordering in hierarchical SMT

To allow for a fair evaluation of our systems,
we also perform a contrastive experiment using a
tree-based SMT approach: namely, hierarchical
phrase-based SMT (HSMT) (Chiang, 2005).

Reordering in HSMT is not modeled separately
but is embedded in the translation model itself,
which contains lexicalized, non syntactically mo-
tivated rules that are directly learnt from word-
aligned parallel text. The major strength of HSMT
compared to PSMT, is the ability to learn discon-
tinous phrases and long-range lexicalized reorder-
ing rules. However, this modeling power has a cost
in terms of model size and decoding complexity.

To have a concrete idea, consider that the
phrase-table trained on our SMT training data (cf.
Section 6.1) with a maximum phrase length of 7
contains 127 million entries (before phrase table
pruning). The hierarchical rule table trained on the
same data with a comparable span constraint (10)
contains instead 1.2 billion entries — one order of
magnitude larger.

Furthermore, the HSMT decoder is based on a
chart parsing algorithm, whose complexity is cu-
bic in the input length, and even higher when tak-
ing into account the target language model. This
issue can be partially addressed by different strate-
gies such as cube pruning (Chiang, 2007), which
reduces the LM complexity to a constant, or rule
application constraints. One of such constraints is
the maximum number of source words that may
be covered by non-terminal symbols (span con-
straint). Setting a span constraint — which is essen-
tial to obtain reasonable decoding times — means
preventing long-range reordering similarly to set-
ting a distortion limit in PSMT. In our experi-
ments, we consider two settings for this parameter:
10 to capture short to medium-range reorderings,
and 20 to also capture long-range reorderings.

6 Experiments

In this section we evaluate the impact on transla-
tion quality and efficiency of the techniques pre-
sented above. Our main objective is to empiri-
cally verify the hypothesis that better reordering
modeling and better reordering space definition
can significantly improve the accuracy of PSMT in
German-English without sacrificing its efficiency.
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6.1 Experimental setup

We choose the WMT German-English news trans-
lation task as our case study. More specifically
we use the WMT10 training data: Europarl (v.5)
plus News-commentary-2010 for a total of 1.6M
parallel sentences, 44M German tokens. The tar-
get LM is trained on the monolingual news data
provided for the constrained track of WMTI10
(1133M English tokens). For development we use
the WMTO8 news benchmark, while for testing we
use the following data sets:

tests(09-11): the concatentation of three previous
years’ benchmarks from 2009 to 2011 (8017
sentences, 21K German tokens).

test12: the latest released benchmark (3003 sen-
tences, 8K German tokens).

Each data set includes one reference translation.
Note that our goal is not to reach the performance
of the best systems participating at the last WMT
edition, but rather to assess the usefulness of our
techniques on a larger and therefore more reliable
test set, while starting from a reasonable baseline.’

For German tokenization and compound split-
ting we use Tree Tagger (Schmid, 1994) and the
Gertwol morphological analyser (Koskenniemi
and Haapalainen, 1994).6

All our SMT systems are built with the Moses
toolkit (Koehn et al., 2007; Hoang et al., 2009),
and word alignments are generated by the Berke-
ley Aligner (Liang et al., 2006). The target lan-
guage model is estimated by the IRSTLM toolkit
(Federico et al., 2008) with modified Kneser-Ney
smoothing (Chen and Goodman, 1999).

The phrase-based baseline decoder includes a
phrase translation model (two phrasal and two lex-
ical probability features), a lexicalized reorder-
ing model (six features), a 6-gram target language
model, distortion cost, word and phrase penalties.
As lexicalized reordering model, we use a hierar-
chical phrase orientation model (Galley and Man-
ning, 2008) trained on all the parallel data using
three orientation classes — monotone, swap or dis-
continuous — in bidirectional mode. Statistically

>Our results on test12 are not directly comparable to the
WMT12 submissions due to the different training data: that
is, the WMT12 parallel data includes S0M German tokens
of Europarl data and 4M of news-commentary, as opposed
to the 41M and 2.5M released for WMT10 and used in our
experiments.

Shttp://www2.lingsoft.fi/cgi-bin/gertwol



improbable phrase pairs are pruned from the trans-
lation model as proposed by Johnson et al. (2007).

The hierarchical system is trained and tested
using the standard Moses configuration which in-
cludes: a rule table (two phrasal and two lexi-
cal probability features), a 6-gram target language
model, word and rule penalties. We set the span
constraint (cf. Section 5) to the default value of
10 words for rule extraction, while for decoding
we consider two different settings: the default 10
words and a large value of 20 to enable very long-
range reorderings.

Feature weights for all systems are optimized
by minimum BLEU-error training (Och, 2003) on
test08. To reduce the effects of the optimizer insta-
bility, we tune each configuration four times and
use the average of the resulting weight vectors for
testing, as suggested by Cettolo et al. (2011).

The source-to-reference word alignments that
are needed to compute the reordering scores are
generated by the Berkeley Aligner previously
trained on the training data. Source-to-output
alignments are obtained from the decoder’s trace.

6.2 Distortion function and limit

We start by measuring the difference between
standard and early distortion cost.” Figure 1
shows the results in terms of BLEU and KRS, plot-
ted against the distortion limit (DL).

Indeed, early distortion cost (Moore and Quirk,
2007) outperforms the standard one in all the
tested configurations and according to both met-
rics. We can see that the quality of both systems
deteriorates as the distortion limit increases, how-
ever the system with early distortion cost is more
robust to this effect. In particular, when passing
from DL=12 to DL=18, the baseline system loses
1.2 BLEU and no less than 6.8 KRS, whereas the
system with early distortion cost loses 0.8 BLEU
and 4.9 KRS. Given these results, we decide to use
early distortion cost in all the remaining experi-
ments.

6.3 WaW reordering pruning

We have seen that early distortion cost can effec-
tively reduce the loss of translation quality, but
cannot totally prevent it. Moreover, increasing
the distortion limit means exploring many more

"For this first series of experiments, feature weights are
tuned in the DL=8 setting and the two resulting weight vec-
tors (one for standard, one for early distortion) are re-used in
the higher-DL experiments.

445

standard
BLEU

19.5 19.2

19.0

18.5 18.9

18.0 17.8

17.0
16.5 16.7
12 18

Disto.Limit

e}

KRS

69.5
67.5
63.5
61.5 62.7
59.5
57.5

co
[
N
[
co

Disto.Limit

Figure 1: Standard vs early distortion cost perfor-
mance measured in terms of BLEU and KRS on
tests(09-11) under different distortion limits.

hypotheses and, consequently, slowing down the
decoding process. With our WaW model-based
reordering pruning technique, we aim at solving
both issues.

We generate the WaW training data from the
first 30K sentences of the News-commentary-
2010 parallel corpus, using a sampling window of
width 6=10. This results in 8 million training sam-
ples, which are fed to the binary classifier imple-
mentation of the MegaM Toolkit®. Features with
less than 20 occurrences are ignored and the max-
imum number of training iterations is set to 100.

Evaluated intrinsically on test08, the model
achieves the following classification accuracy:
67.0% precision, 50.0% recall, 57.2% F-score.
While these figures are rather low, we recall that
the WaW model is not meant to be used as a stand-
alone classifier, but rather as one of several SMT
feature functions and as a way to detect very un-
likely reordering steps. Hence, we also evaluate its
ability to rank a typical set of reordering options
during decoding: that is, we traverse the source
words in target order and, for each of them, we ex-

8http://www.cs.utah.edu/ "hal/megam/ (Daumé III, 2004).



tests(09-11) test12 ms/
System DL|bleu met krs Kkrs-V |blew met Kkrs Kkrs-V | word
Allowing only short to medium-range reordering:
PSMT, early disto g 192 281 674 654 |[19.0 28.1 67.8 66.14| 202
+WaW (feature only) 19.44 2824 67.64 65.54|19.54 28.34 678 66.2 212
HSMT, max.span=10 20.14 28.54 68.44 66.74|19.7% 28.4% 68.64 67.34| 406
Allowing also long-range reordering:

PSMT, early disto 182 280 629 620 |182 28.1 634 625 408
+WaW (feature only) 18| 18.44 280 61.8Y 61.3Y[18.1 28.1 6227 61.7Y| 428
+WaW reo.pruning (9=5) 19.54 2834 67.9% 6634|1934 2844 67.8%4 6634 | 142
HSMT, max.span=20 20.04 28.54 68.14 66.74|19.74 28.4 6824 67.14| 706

Table 1: Effects of WaW reordering model and early reordering pruning on PSMT translation quality
and efficiency, compared against a hierarchical SMT baseline. Translation quality is measured with
% BLEU, METEOR, and Kendall Reordering Score: regular (KRS) and verb-specific (KRS-V). Statistically
significant differences with respect to the previous row are marked with 4Y at the p < .05 level and #V
at the p < .10 level. Decoding time is measured in milliseconds per input word.

amine the ranking of all words that may be trans-
lated next (i.e. the uncovered positions within
a given DL). We find that, even when the DL is
very high (18), the correct jump is ranked among
the top 3 reachable jumps in the large majority of
cases (81.4%). If we only consider long jumps —
i.e. spanning more than 6 words — the Top-3 accu-
racy is 56.4% while that of a baseline that simply
favors shorter jumps (as the distortion cost does)
is only 26.5%.

For the early reordering pruning experiment, we
set the pruning parameters to 2 for histogram and
0.25 for relative threshold.” A non-prunable-zone
of width =5 is set around the last covered posi-
tion. The resulting configuration is re-optimized
by MERT on testO8 for the final experiment.

Table 1 shows the effects of integrating the
WaW reordering model into a PSMT decoder
that already includes a state-of-the-art hierarchi-
cal phrase orientation model. The same table also
presents the results of the HSMT constrastive ex-
periments. Two scenarios are considered: in the
first block, the PSMT distortion limit is set to a
medium value (8) and the HSMT maximum span
constraint is set to 10. Although not directly com-
parable, these settings have the same effect of dis-
allowing long-range reorderings. In the second
block, long-range reorderings are instead allowed

Pruning parameters were optimized for BLEU with a
grid search over the values (1, 2, 3, 4, 5) for histogram and
(0.5, 0.25, 0.1) for threshold.
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with a DL of 18 and a HSMT span constraint of
20.

Feature weights are optimized for each exper-
iment using the procedure described above (four
averaged MERT runs). Statistical significance is
computed for each experiment against the pre-
vious one (i.e. previous row), using approxi-
mate randomization as in (Riezler and Maxwell,
2005). Run times are obtained by an Intel Xeon
X5650 processor on the first 500 sentences of
tests(09-11), excluding loading time of all models.

Medium reordering space. Integrating the
WaW model as an additional feature function
yields small but consistent improvements (second
row of Table 1). Concerning the run time, we no-
tice just a small overload of about 5%: that is, from
202 to 212 ms/word.

In comparison, the tree-based system (third
row) has almost double decoding time but
achieves statistically significant higher translation
quality, especially at the level of reordering.

Large reordering space. As expected, raising
the DL to 18 with no special pruning (fourth row)
results in much slower decoding (from 202 to 408
ms/word) but also in very poor translation qual-
ity. This loss is especially visible on the reordering
scores: e.g. from 67.4 to 62.9 KRS on tests(09-
11). Unfortunately, adding the WaW model as a
feature function (fifth row) does not appear to be
helpful under the high DL condition.

On the other hand, when using the WaW model



adv.  verbmoa Subj.

obj. compl.

Jedoch konnten sie Kinder in Teilen von Helmand und Kandahar im Stiden aus Sicherheit~ grund

SRC however could they children in parts of Helmand and Kandahar in South for  security reasons
(de) neg  verbi
nicht erreichen .
not reach

REF  But they could not reach children in parts of Helm. and Kand. in the south for security reasons.
BASE-8 However, they were children in parts of Helm. and Kand. in the south, for security reasons.
HIER-10 However, they were children in parts of Helm. and Kand. in the south not reach for security reasons.
BASE-18 However, they were children in parts of Helm. and Kand. in the south do not reach for security reasons.
wAwP-18 However, they could not reach children in parts of Helm. and Kand. in the south for security reasons.
HIER-20 However, they were children in parts of Helm. and Kand. in the south not reach for security reasons.

Table 2: Long-range reordering example showing the behavior of different systems: [BASE-*] are phrase-
based systems with a DL of 8 and 18 respectively; [WAWP-18] refers to the WaW-pruning PSMT system;
[HIER-*] are hierarchical SMT systems with a span constraint of 10 and 20 words respectively.

also for reordering pruning (sixth row) we are able
to recover the performance of the medium-DL
baseline performance and even to slightly improve
it. It is interesting to note that the largest improve-
ment concerns the accuracy of verb reordering on
tests(09-11): from 65.4 to 66.3 KRS-V. Although
the other gains are rather small, we emphasize the
fact that our solutions mostly affect rare and iso-
lated events, which have a limited impact on the
general purpose evaluation metrics but are are es-
sential to produce readable translations. WaW re-
ordering pruning has also a remarkable effect on
efficiency, making decoding time decrease from
428 ms/word to 142 ms/word, that is even faster
than a baseline that does not explore any long-
range reordering at all (202 ms/word).

Finally, we can see from the last row of Ta-
ble 1 that the gap between PSMT and HSMT has
been narrowed significantly. While more work is
needed to reach and outperform the quality of the
HSMT system, we were able to closely approach
it with five times lower decoding time (142 versus
706 ms/word) and about ten times smaller mod-
els (cf. Section 5). Comparing our best system
with the best HSMT system (i.e. span constraint
10), we see that the gap in translation accuracy
is slightly larger and that the decoding speed-up
is smaller (142 versus 406 ms/word). However,
the better performance and efficiency of HSMT-10
comes at the expense of all long-range reorderings.

Thus, our enhanced PSMT appears as an opti-
mal choice in terms of trade-off between transla-
tion quality and efficiency.

Table 3 reports two kinds of decoding statistics
that allow us to explain the very different decod-
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ing times observed, and to verify that the WaW-
pruning system actually performs long-range re-
orderings: #hyp/sent is the average number of
partial translation hypotheses created!® per test
sentence; (#jumps/sent)x100 is the average
number of phrase-to-phrase jumps included in
the 1-best translation of every 100 test sentences.
Only medium and long jumps are shown (distor-
tion D>6), divided into three distortion buckets.

System DL | #hyp/sent (7#jumps/sent) < 100
D: [6..8] [9..12] [13..18]
baseline 8 600K 90 - -
baseline 18 1278K 88 61 48
+WaW r.prun. 18 364K 52 29 17

Table 3: Decoding statistics of three PSMT sys-
tems exploring different reordering search spaces
for the translation of test12.

We can see that the early-pruning system in-
deed performed several long jumps but it explored
a much smaller search space compared to the high-
distortion baseline (364K versus 1278K partial hy-
potheses). As for the lower number of long jumps
(e.g. 29 versus 61 with D in [9..12] and 17 versus
48 in [13..18]) it suggests that the early-pruning
system is more precise, while the high-distortion
baseline is over-reordering.

The output of different systems for our exam-
ple sentence is shown in Table 2. In this sentence,
a jump forward with D=12 and a jump backward
with D=14 were necessary to achieve the correct
reordering of the verb and its negation. Although

!0That is, the hypotheses that were scored by all the PSMT
model components and added to a hypothesis stack.
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Figure 2: Effects of beam size on translation quality measured by BLEU, KRS and KRS-V, in two base-
line PSMT systems (DL=8 and DL=18) and in the WaW early-pruning system (test12). For comparison,
the hierarchical system performance (span constraint 20) is provided as a dotted line.

these jumps were reachable for both the [PSMT-
18] and the [HSMT-20] systems, only the WaW-
pruning PSMT system actually performed them.

6.4 Interaction with beam-search pruning

During the beam-search decoding process, early
reordering pruning interacts with regular hypoth-
esis pruning based on the weighted sum of all
model scores. In particular, all the PSMT systems
presented so far apply a default histogram thresh-
old of 200 to each hypothesis stack. To examine
this interaction, we increase the histogram thresh-
old (beam size) from the default value of 200 up to
800, while keeping all other parameters and fea-
ture weights fixed. The results on test12 are plot-
ted against the beam size and reported in Figure 2.
The dotted line in each plot represents the perfor-
mance of the hierarchical system presented in the
last row of Table 1 (span constraint 20).

We can see that increasing the beam size is more
beneficial for the high-DL baseline (baseDL18)
than for the medium one (baseDLS8). This is not
surprising as the risk of search error is higher when
a larger search space is explored with equal mod-
els and pruning parameters. Nevertheless, bas-
eDL18 remains by far the worst performing sys-
tem, even in our largest beam setting (800) corre-
sponding to four times longer decoding time (1582
ms/word). What is remarkable, instead, is that
the larger beam size also results in better perfor-
mances by the WaW-pruning system, which is the
PSMT system that explores by far the smallest
search space (cf. Table 3). The superiority of the
WaW-pruning system over the PSMT baselines is
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maintained in all tested settings and according to
all metrics, which confirms the usefulness of our
methods not only as optimization techniques, but
also for reducing model errors of a baseline that
already includes strong reordering models.

With a very large beam size (800) our en-
hanced PSMT system can closely approach the
performance of HSMT-20 in terms of BLEU and
KRS-V, and even surpass it in terms of KRS (sta-
tistically significant) while still remaining faster:
that is, 554 versus 706 ms/word.

Overall HSMT-10 remains the best system, with
slightly higher KRS and KRS-V and lower de-
coding time than our best enhanced PSMT sys-
tem (406 versus 554 ms/word). However, we note
once more that this performance comes at the ex-
pense of all long-range reorderings. For a com-
pletely fair comparison, the HSMT system should
also be enhanced with similar reordering-pruning
techniques — a research path that we plan to ex-
plore in the future, possibly inspiring from the ap-
proach of Braune et al. (2012).

7 Conclusions

We have presented a few techniques that can im-
prove the accuracy of the word reordering per-
formed by a German-English phrase-based SMT
system. In particular, we have shown how long-
range reorderings can be captured without worsen-
ing the general quality of translation and without
renouncing to efficiency. Our best PSMT system
is actually faster than a system that does not even
attempt to perform long-range reordering, and it



obtains significantly higher evaluation scores.

In comparison to a more computationally costly
tree-based approach (hierarchical SMT), our en-
hanced PSMT system produces slightly lower
translation quality but in five times lower decod-
ing time when long-range reordering is allowed.
Moreover, when a larger beam size is explored,
the performance of our system can equal that of
the long-reordering hierarchical system, but still
with faster decoding.

In summary, we have shown that an appropri-
ate modeling of the word reordering problem can
lead to narrow or even fill the gap between phrase-
based and hierarchical SMT in this difficult lan-
guage pair. We have also disproved the common
belief that sacrificing long-range reorderings by
setting a low distortion limit is the only way to
obtain well-performing PSMT systems.
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