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Abstract
In this paper we present our entry to the
WMT’13 shared task: Quality Estima-
tion (QE) for machine translation (MT).
We participated in the 1.1, 1.2 and 1.3
sub-tasks with our QE system trained on
features from diverse information sources
like MT decoder features, n-best lists,
mono- and bi-lingual corpora and giza
training models. Our system shows com-
petitive results in the workshop shared
task.

1 Introduction

As MT becomes more and more reliable, more
people are inclined to use automatically translated
texts. If coming across a passage that is obviously
a mistranslation, any reader would probably start
to doubt the reliability of the information in the
whole article, even though the rest might be ad-
equately translated. If the MT system had a QE
component to mark translations as reliable or pos-
sibly erroneous, the reader would know to use in-
formation from passages marked as bad transla-
tions with caution, while still being able to trust
other passages. In post editing a human translator
could use translation quality annotation as an indi-
cation to whether editing the MT output or trans-
lating from scratch might be faster. Or he could
use this information to decide where to start in or-
der to improve the worst passages first or skip ac-
ceptable passages altogether in order to save time.
Confidence scores can also be useful for applica-
tions such as cross lingual information retrieval or
question answering. Translation quality could be
a valuable ranking feature there.

Most previous work in the field estimates con-
fidence on the sentence level (e.g. Quirk et

al. (2004)), some operate on the word level (e.g.
Ueffing and Ney (2007), Sanchis et al. (2007),
and Bach et al. (2011)), whereas Soricut and Echi-
habi (2010) use the document level.

Various classifiers and regression models have
been used in QE in the past. Gandrabur and Foster
(2003) compare single layer to Multi Layer Per-
ceptron (MLP), Quirk et al. (2004) report that Lin-
ear Regression (LR) produced the best results in
a comparison of LR, MLP and SVM, Gamon et
al. (2005) use SVM, Soricut and Echihabi (2010)
find the M5P tree works best among a number of
regression models, while Bach et al. (2011) define
the problem as a word sequence labeling task and
use MIRA.

The QE shared task was added to the WMT
evaluation campaign in 2012 (Callison-Burch et
al., 2012), providing standard training and test
data for system development.

2 WMT’13 Shared Task

In this WMT Shared Task for Quality Estima-
tion1 there were tasks for sentence and word level
QE. We participated in all sub-tasks for Task 1:
Sentence-level QE.

Task 1.1: Scoring and ranking for post-editing
effort focuses on predicting HTER per segment
for the translations of one specific MT system.
Task 1.2: System selection/ranking required to
predict a ranking for up to five translations of
the same source sentence by different MT sys-
tems. The training data provided manual labels for
ranking including ties. Task 1.3: Predicting post-
editing time participants are asked to predict the
time in seconds a professional translator will take
to post edit each segment.

1http://www.statmt.org/wmt13/quality-estimation-
task.html
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Besides the training data with labels, for each
of these tasks additional resources were provided.
These include bilingual training corpora, language
models, 1000-best lists, models from giza and
moses training and various other statistics and
models depending on task and language pair.

3 Features

3.1 Language Models

To calculate language model (LM) features, we
train traditional n-gram language models with n-
gram lengths of four and five using the SRILM
toolkit (Stolcke, 2002). We calculate our features
using the KenLM toolkit (Heafield, 2011). We
normalize all our features with the target sentence
length to get an average word feature score, which
is comparable for translation hypotheses of differ-
ent length. In addition to the LM probability we
record the average n-gram length found in the lan-
guage model for the sentence, the total number of
LM OOVs and OOVs per word, as well as the
maximum and the minimum word probability of
the sentence, six features total.

We use language models trained on source lan-
guage data and target language data to measure
source sentence difficulty as well as translation
fluency.

3.2 Distortion Model

The moses decoder uses one feature from a dis-
tance based reordering model and six features
from a lexicalized reordering model: Given a
phrase pair, this model considers three events
Monotone, Swap, and Discontinuous in two direc-
tions Left and Right. This results in six events:
LM (left-monotone), LS (left-swap), LD (left-
discontinuous) and RM (right-monotone), RS,
RD.

These distortion features are calculated for each
phrase. For a total sentence score we normalize by
the phrase count for each of the seven features.

3.3 Phrase Table

From the phrase table we use the features from
the moses decoder output: inverse phrase trans-
lation probability, inverse lexical weighting, di-
rect phrase translation probability and direct lex-
ical weighting. For a total sentence score we nor-
malize by the phrase count. We use the number
of phrases used to generate the hypothesis and the

average phrase length as additional features, six
features total.

3.4 Statistical Word Lexica

From giza training we use IBM-4 statistical word
lexica in both directions. We use six probabil-
ity based features as described in Hildebrand and
Vogel (2008): Normalized probability, maximum
word probability and word deletion count from
each language direction.

To judge the translation difficulty of each word
in the source sentence we collect the number of
lexicon entries for each word similar to Gandrabur
and Foster (2003). The intuition is, that a word
with many translation alternatives in the word-to-
word lexicon is difficult to translate while a word
with only a few translation choices is easy to trans-
late.

In fact it is not quite this straight forward. There
are words in the lexicon, which have many lex-
icon entries, but the probability for them is not
very equally distributed. One entry has a very
high probability while all others have a very low
one - not much ambiguity there. Other words
on the other hand have several senses in one lan-
guage and therefore are translated frequently into
two or three different words in the target language.
There the top entries in the lexicon might each
have about 30% probability. To capture this be-
havior we do not only count the total number of
entries but also the number of entries with a prob-
ability over a threshold of 0.01.

For example one word with a rather high num-
ber of different translations in the English-Spanish
statistical lexicon is the period (.) with 1570 en-
tries. It has only one translation with a probability
over the threshold which is the period (.) in Span-
ish at a probability of 0.9768. This shows a clear
choice and rather little ambiguity despite the high
number of different translations in the lexicon.

For each word we collect the number of lexi-
con entries, the number of lexicon entries over the
threshold, the highest probability from the lexicon
and whether or not the word is OOV. If a word has
no lexicon entry with a probability over the thresh-
old we exclude the word from the lexicon for this
purpose and count it as an OOV. As sentence level
features we use the sum of the word level features
normalized by the sentence length as well as the
total OOV count for the sentence, which results in
five features.
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3.5 Sentence Length Features

The translation difficulty of a source sentence is
often closely related to the sentence length, as
longer sentences tend to have a more complex
structure. Also a skewed ratio between the length
of the source sentence and its translation can be an
indicator for a bad translation.

We use plain sentence length features, namely
the source sentence length, the translation hypoth-
esis length and their ratio as introduced in Quirk
(2004).

Similar to Blatz et al. (2004) we use the n-best
list as an information source. We calculate the av-
erage hypothesis length in the n-best list for one
source sentence. Then we compare the current hy-
pothesis to that and calculate both the diversion
from that average as well as their ratio. We also
calculate the source-target ratio to this average hy-
pothesis length.

To get a representative information on the
length relationship of translations from the source
and target languages in question, we use the par-
allel training corpus. We calculate the overall lan-
guage pair source to target sentence length ratio
and record the diversion of the current hypothesis’
source-target ratio from that.

The way sentences are translated from one lan-
guage to another might differ depending on how
complex the information is, that needs to be con-
veyed, which in turn might be related to the sen-
tence length and the ratio between source and
translation. As a simple way of capturing this
phenomenon we divide the parallel training cor-
pus into three classes (short, medium, long) by
the length of the source language sentence. The
boundaries of these classes are the mean 26.84
plus and minus the standard deviation 14.54 of the
source sentence lengths seen in the parallel cor-
pus. We calculate the source/target length ratio for
each of the three classes separately. The resulting
statistics for the parallel training corpora can be
found in Table 1. For English - Spanish the ratio
for all classes is close to one, for other language
pairs these differ more clearly.

As features for each hypothesis we use a binary
indicator for its membership to each class and its
deviation from the length ratio of its class. This
results in 12 sentence length related features in to-
tal.

En train
number of sentences 1,714,385
average length 26.84
standard deviation 14.54
class short 0 - 12.29
class medium 12.29 - 41.38
class long 41.38 - 100
s/t ratio overall 0.9624
s/t ratio for short 0.9315
s/t ratio for medium 0.9559
s/t ratio for long 0.9817

Table 1: Sentence Length Statistics for the
English-Spanish Parallel Corpus

3.6 Source Language Word and Bi-gram
Frequency Features

The length of words is often related to whether
they are content words and how frequently they
are used in the language. Therefore we use the
maximum and average word length as features.

Similar to Blatz et al. (2004) we sort the vo-
cabulary of the source side of the training corpus
by occurrence frequency and then divide it into
four parts, each of which covers 25% of all to-
kens. As features we use the percentage of words
in the source sentence that fall in each quartile.
Additionally we use the number and percentage of
source words in the source sentence that are OOV
or very low frequency, using count 2 as threshold.
We also collect all bigram statistics for the cor-
pus and calculate the corresponding features for
the source sentence based on bigrams. This adds
up to fourteen features from source word and cor-
pus statistics.

3.7 N-Best List Agreement & Diversity

We use the three types of n-best list based features
described in Hildebrand and Vogel (2008): Posi-
tion Dependent N-best List Word Agreement, Po-
sition independent N-best List N-gram Agreement
and N-best List N-gram Probability.

To measure n-best list diversity, we compare
the top hypothesis to the 5th, 10th, 100th, 200th,
300th, 400th and 500th entry in the n-best list
(where they exist) to see how much the transla-
tion changes throughout the n-best list. We calcu-
late the Levenshtein distance (Levenshtein, 1966)
between the top hypothesis and the three lower
ranked ones and normalize by the sentence length
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of the first hypothesis. We also record the n-best
list size and the size of the vocabulary in the n-
best list for each source sentence normalized by
the source sentence length.

Fifteen agreement based and nine diversity
based features add up to 24 n-best list based fea-
tures.

3.8 Source Parse Features

The intuition is that a sentence is harder to trans-
late, if its structure is more complicated. A sim-
ple indicator for a more complex sentence struc-
ture is the presence of subclauses and also the
length of any clauses and subclauses. To obtain the
clause structure, we parse the source language sen-
tence using the Stanford Parser2 (Klein and Man-
ning, 2003). Features are: The number of clauses
and subclauses, the average clause length, and the
number of sentence fragments found. If the parse
does not contain a clause tag, it is treated as one
clause which is a fragment.

3.9 Source-Target Word Alignment Features

A forced alignment algorithm utilizes the trained
alignment models from the MT systems GIZA
(Och and Ney, 2003) training to align each source
sentence to each translation hypothesis.

We use the score given by the word alignment
models, the number of unaligned words and the
number of NULL aligned words, all normalized
by the sentence length, as three separate features.
We calculate those for both language directions.
Hildebrand and Vogel (2010) successfully applied
these features in n-best list re-ranking.

3.10 Cohesion Penalty

Following the cohesion constraints described in
Bach et al. (2009) we calculate a cohesion penalty
for the translation based on the dependency parse
structure of the source sentence and the word
alignment to the translation hypothesis. To obtain
these we use the Stanford dependency parser (de
Marneffe et al., 2006) and the forced alignment
from Section 3.9.

For each head word we collect all dependent
words and also their dependents to form each com-
plete sub-tree. Then we project each sub-tree onto
the translation hypothesis using the alignment. We
test for each sub-tree, whether all projected words
in the translation are next to each other (cohesive)

2http://nlp.stanford.edu/software/lex-parser.shtml

or if there are gaps. From the collected gaps we
subtract any unaligned words. Then we count the
number of gaps as cohesion violations as well as
how many words are in each gap. We go recur-
sively up the tree, always including all sub-trees
for each head word. If there was a violation in
one of the sub-trees it might be resolved by adding
in its siblings, but if the violation persists, it is
counted again.

4 Classifiers

For all experiments we used the Weka3 data min-
ing toolkit described in Hall et. al. (2009) to com-
pare four different classifiers: Linear Regression
(LR), M5P tree (M5Ptree), Multi Layer Percep-
tron (MLP) and Support Vector Machine for Re-
gression (SVM). Each of these has been identi-
fied as effective in previous publications. All but
one of the Weka default settings proved reliable,
changing the learning rate for the MLP from de-
fault: 0.3 to 0.01 improved the performance con-
siderably. We report Mean Absolute Error (MAE)
and Root Mean Squared Error (RMSE) for all re-
sults.

5 Experiment Results

For Tasks 1.1 and 1.3 we used the 1000-best out-
put provided. As first step we removed duplicate
entries in these n-best list. This brought the size
down to an average of 152.9 hypotheses per source
sentence for the Task 1.1 training data, 172.7 on
the WMT12 tests set and 204.3 hypotheses per
source sentence on the WMT13 blind test data.
The training data for task 1.3 has on average 129.0
hypothesis per source sentence, the WMT13 blind
test data 129.8.

In addition to our own features described above
we extracted the 17 features used in the WMT12
baseline for all sub-tasks via the software provided
for the WMT12-QE shared task.

5.1 Task 1.1

Task 1.1 is to give a quality score between 0 and
1 for each segment in the test set, predicting the
HTER score for the segment and also to give a
rank for each segment, sorting the entire test set
from best quality of translation to worst.

For Task 1.1 our main focus was the scoring
task. We did submit a ranking for the blind test

3http://www.cs.waikato.ac.nz/ml/weka/
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wmt12-test: WMT12 manual quality labels

WMT12 best system: Language Weaver 0.61 - 0.75
WMT12 baseline system 0.69 - 0.82
feat. set #feat LR M5Pt MLP SVM
full 117 0.617 - 0.755 0.618 - 0.756 0.619 - 0.773 0.609 - 0.750
no WMT12-base 100 0.618 - 0.766 0.618 - 0.767 0.603 - 0.757 0.611 - 0.761
slim 69 0.621 - 0.767 0.621 - 0.766 0.614 - 0.768 0.627 - 0.773

wmt12-test: HTER

full 117 0.125 - 0.162 0.126 - 0.163 0.122 - 0.156 0.121 - 0.156
no WMT12-base 100 0.124 - 0.160 0.123 - 0.159 0.125 - 0.159 0.121 - 0.155
slim 69 0.125 - 0.161 0.126 - 0.161 0.124 - 0.159 0.123 - 0.158
wmt13-test: HTER

WMT12 baseline system 0.148 - 0.182
full 117 0.146 - 0.183 0.147 - 0.185 0.156 - 0.199 0.142 - 0.180
no WMT12-base 100 0.144 - 0.180 0.144 - 0.180 0.156 - 0.203 0.139 - 0.176
slim 69 0.147 - 0.182 0.147 - 0.181 0.153 - 0.194 0.142 - 0.177

Table 2: Task 1.1: Results in MAE and RMSE on the WMT12 test set for WMT12 manual labels as well
as WMT13 HTER as target class and the WMT13 test set for HTER

set as well, which resulted from simply sorting the
test set by the estimated HTER per segment.

In Table 2 we show the results for some ex-
periments comparing the performance of differ-
ent feature sets and classifiers. For development
we used the WMT12-QE test set and both the
WMT12 manual labels as well as HTER as target
class. We compared the impact of removing the
17 WMT12-baseline features ”no WMT12-base”
and training a ”slim” system by removing nearly
half the features, which showed to have a smaller
impact on the overall performance in preliminary
experiments. Among the removed features are
n-best list based features, redundant features be-
tween ours, the moses based and the base17 fea-
tures and some less reliable features like e.g. the
lexicon deletion features, who’s thresholds need to
be calibrated carefully for each new language pair.
We submitted the full+MLP and the no-WMT12-
base+SVM output to the shared task, shown in
bold in the table.

The official result for our system for task 1.1
on the WMT13 blind data is MAE 13.84, RMSE
17.46 for the no-WMT12-base+SVM system and
MAE 15.25 RMSE 18.97 for the full+MLP sys-
tem. Surprising here is the fact that our full system
clearly outperforms the 17-feature baseline on the
WMT12 test set, but is behind it on the WMT13
blind test set. (Baseline bb17 SVM: MAE 14.81,

RMSE 18.22) Looking at the WMT13 test set re-
sults, we should have chosen the slim+SVM sys-
tem variant.

5.2 Task 1.2

Task 1.2 asks to rank different MT systems by
translation quality on a segment by segment basis.

Since the manually annotated ranks in task 1.2
allowed ties, we treated them as quality scores and
ran the same QE system on this data as we did
for task 1.1. We submitted the full-MLP output
with the only difference that for this data set the
decoder based features were not available. We
rounded the predicted ranks to integer. Since the
training data contains many ties we did not employ
a strategy to resolve ties.

As a contrastive approach we ran the hypothe-
sis selection system described in Hildebrand and
Vogel (2010) using the BLEU MT metric as rank-
ing criteria. For this system it would have been
very beneficial to have access to the n-best lists
for the different system’s translations. The BLEU
score for the translation listed as the first system
for each source sentence would be 30.34 on the
entire training data. We ran n-best list re-ranking
using MERT (Och, 2003) for two feature sets: The
full feature set, 100 features in total and a slim fea-
ture set with 59 features. For the slim feature set
we removed all features that are solely based on
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the source sentence, since those have no impact on
re-ranking an n-best list. The BLEU score for the
training set improved to 45.25 for the full feature
set and to 45.76 for the slim system. Therefore
we submitted the output of the slim system to the
shared task. This system does not predict ranks
directly, but estimates ranking according to BLEU
gain on the test set. Therefore the new ranking is
always ranks 1-5 without ties.

The official result uses Kendalls tau with and
without ties penalized. Our two submissions
score: −0.11 / −0.11 for the BLEU optimized sys-
tem and −0.63 / 0.23 for the classifier system. The
classifier system is the best submission in the ”ties
ignored” category.

5.3 Task 1.3

Task 1.3 is to estimate post editing time on a per
segment basis.

In absence of a development test set we used
10-fold cross-validation on the training data to de-
termine the best feature set and classifier for the
two submissions. Table 3 shows the results on our
preliminary tests for four classifiers and three fea-
ture sets. The ”no pr.” differs from the full fea-
ture set only by removing the provided features, in
this case the 17 WMT12-baseline features and the
”translator ID” and ”nth in doc” features. For the
”slim” system run the feature set size was cut in
half in order to prevent overfitting to the training
data since the training data set is relatively small.
We used the same criteria as in Task 1.1. For
the shared task we submitted the full+SVM and
slim+LR variants, shown in bold in the table.

The official result for our entries on the WMT13
blind set in MAE and RMSE are: 53.59 - 92.21 for
the full system and 51.59 - 84.75 for the slim sys-
tem. The slim system ranks 3rd for both metrics
and outperforms the baseline at 51.93 - 93.36.

6 Conclusions

In this WMT’13 QE shared task we submitted to
the 1.1, 1.2 and 1.3 sub-tasks. In development we
focused on the scoring type tasks.

In general there don’t seem to be significant dif-
ferences between the different classifiers.

Surprising is the fact that our full system for
task 1.1 clearly outperforms the 17-feature base-
line on the WMT12 test set, but is behind it on
the WMT13 blind test set. This calls into ques-
tion whether the performance on the WMT12 test

set was the right criterium for selecting a system
variant for submission.

The relative success of the ”slim” system vari-
ant over the full feature set shows that our system
would most likely benefit from a sophisticated fea-
ture selection method. We plan to explore this in
future work.
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