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Abstract

We describe the results of our submissions
to the WMT13 Shared Task on Quality
Estimation (subtasks 1.1 and 1.3). Our
submissions use the framework of Gaus-
sian Processes to investigate lightweight
approaches for this problem. We focus on
two approaches, one based on feature se-
lection and another based on active learn-
ing. Using only 25 (out of 160) fea-
tures, our model resulting from feature
selection ranked Ist place in the scoring
variant of subtask 1.1 and 3rd place in
the ranking variant of the subtask, while
the active learning model reached 2nd
place in the scoring variant using only
~25% of the available instances for train-
ing. These results give evidence that
Gaussian Processes achieve the state of
the art performance as a modelling ap-
proach for translation quality estimation,
and that carefully selecting features and
instances for the problem can further im-
prove or at least maintain the same per-
formance levels while making the problem
less resource-intensive.

1 Introduction

The purpose of machine translation (MT) quality
estimation (QE) is to provide a quality prediction
for new, unseen machine translated texts, with-
out relying on reference translations (Blatz et al.,
2004; Specia et al., 2009; Callison-burch et al.,
2012). A common use of quality predictions is
the decision between post-editing a given machine
translated sentence and translating its source from
scratch, based on whether its post-editing effort is
estimated to be lower than the effort of translating
the source sentence.

The WMT13 QE shared task defined a group
of tasks related to QE. In this paper, we present
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the submissions by the University of Sheffield
team. Our models are based on Gaussian Pro-
cesses (GP) (Rasmussen and Williams, 2006), a
non-parametric probabilistic framework. We ex-
plore the application of GP models in two con-
texts: 1) improving the prediction performance by
applying a feature selection step based on opti-
mised hyperparameters and 2) reducing the dataset
size (and therefore the annotation effort) by per-
forming Active Learning (AL). We submitted en-
tries for two of the four proposed tasks.

Task 1.1 focused on predicting HTER scores
(Human Translation Error Rate) (Snover et al.,
2006) using a dataset composed of 2254 English-
Spanish news sentences translated by Moses
(Koehn et al., 2007) and post-edited by a profes-
sional translator. The evaluation used a blind test
set, measuring MAE (Mean Absolute Error) and
RMSE (Root Mean Square Error), in the case of
the scoring variant, and DeltaAvg and Spearman’s
rank correlation in the case of the ranking vari-
ant. Our submissions reached 1st (feature selec-
tion) and 2nd (active learning) places in the scor-
ing variant, the task the models were optimised
for, and outperformed the baseline by a large mar-
gin in the ranking variant.

The aim of task 1.3 aimed at predicting post-
editing time using a dataset composed of 800
English-Spanish news sentences also translated by
Moses but post-edited by five expert translators.
Evaluation was done based on MAE and RMSE
on a blind test set. For this task our models were
not able to beat the baseline system, showing that
more advanced modelling techniques should have
been used for challenging quality annotation types
and datasets such as this.

2 Features

In our experiments, we used a set of 160 features
which are grouped into black box (BB) and glass
box (GB) features. They were extracted using the
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open source toolkit QuEst' (Specia et al., 2013).
We briefly describe them here, for a detailed de-
scription we refer the reader to the lists available
on the QuEst website.

The 112 BB features are based on source and
target segments and attempt to quantify the source
complexity, the target fluency and the source-
target adequacy. Examples of them include:

e Word and n-gram based features:

— Number of tokens in source and target
segments;

Language model (LM) probability of
source and target segments;

Percentage of source 1-3-grams ob-
served in different frequency quartiles of
the source side of the MT training cor-
pus;

Average number of translations per
source word in the segment as given by
IBM 1 model with probabilities thresh-
olded in different ways.

e POS-based features:

— Ratio of percentage of nouns/verbs/etc
in the source and target segments;

— Ratio of punctuation symbols in source
and target segments;

— Percentage of direct object personal or
possessive pronouns incorrectly trans-
lated.

e Syntactic features:

— Source and target Probabilistic Context-
free Grammar (PCFG) parse log-
likelihood;

— Source and target PCFG average confi-
dence of all possible parse trees in the
parser’s n-best list;

— Difference between the number of
PP/NP/VP/ADJP/ADVP/CONJP
phrases in the source and target;

e Other features:

— Kullback-Leibler divergence of source
and target topic model distributions;

— Jensen-Shannon divergence of source
and target topic model distributions;

"http://www.quest.dcs.shef.ac.uk

338

— Source and target sentence intra-lingual
mutual information;

— Source-target sentence inter-lingual mu-
tual information;

— Geometric average of target word prob-
abilities under a global lexicon model.

The 48 GB features are based on information
provided by the Moses decoder, and attempt to in-
dicate the confidence of the system in producing
the translation. They include:

e Features and global score of the SMT model;

e Number of distinct hypotheses in the n-best

list;

1-3-gram LM probabilities using translations
in the n-best to train the LM;

Average size of the target phrases;

Relative frequency of the words in the trans-
lation in the n-best list;

Ratio of SMT model score of the top transla-
tion to the sum of the scores of all hypothesis
in the n-best list;

Average size of hypotheses in the n-best list;

N-best list density (vocabulary size / average
sentence length);

Fertility of the words in the source sentence
compared to the n-best list in terms of words
(vocabulary size / source sentence length);

Edit distance of the current hypothesis to the
centre hypothesis;

e Proportion of pruned search graph nodes;

e Proportion of recombined graph nodes.

3 Model

Gaussian Processes are a Bayesian non-parametric
machine learning framework considered the state-
of-the-art for regression. They assume the pres-
ence of a latent function f : RF — R, which maps
a vector x from feature space F' to a scalar value.
Formally, this function is drawn from a GP prior:

f(x) ~ GP(0, k(x,x'))

which is parameterized by a mean function (here,
0) and a covariance kernel function k(x, x’). Each



response value is then generated from the function
evaluated at the corresponding input, y; = f(x;)+
n, where 17 ~ N(0, 02) is added white-noise.

Prediction is formulated as a Bayesian inference
under the posterior:

p(y*\x*,’D) = /fp(y*|x*af)p(f’D)

where x, is a test input, y, is the test response
value and D is the training set. The predictive pos-
terior can be solved analitically, resulting in:

ys ~ N (kI (K + 0217y,
Fer ) — KT (K +021) k)

where k, = [k(xy, x1)k(xs, X2) .. . k(x,%q)] "
is the vector of kernel evaluations between the
training set and the test input and K is the kernel
matrix over the training inputs.

A nice property of this formulation is that y,
is actually a probability distribution, encoding the
model uncertainty and making it possible to inte-
grate it into subsequent processing. In this work,
we used the variance values given by the model in
an active learning setting, as explained in Section
4.

The kernel function encodes the covariance
(similarity) between each input pair. While a vari-
ety of kernel functions are available, here we fol-
lowed previous work on QE using GP (Cohn and
Specia, 2013; Shah et al., 2013) and employed
a squared exponential (SE) kernel with automatic
relevance determination (ARD):

F

1
k(x,x') = 0} exp (—2 Z
i=1

where F' is the number of features, 0']2c is the co-
variance magnitude and [; > 0 are the feature
length scales.

The resulting model hyperparameters (SE vari-
ance o]%, noise variance a,% and SE length scales /;)
were learned from data by maximising the model
likelihood. In general, the likelihood function is
non-convex and the optimisation procedure may
lead to local optima. To avoid poor hyperparam-
eter values due to this, we performed a two-step
procedure where we first optimise a model with all
the SE length scales tied to the same value (which
is equivalent to an isotropic model) and we used
the resulting values as starting point for the ARD
optimisation.
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All our models were trained using the GPy?
toolkit, an open source implementation of GPs
written in Python.

3.1 Feature Selection

To perform feature selection, we followed the ap-
proach used in Shah et al. (2013) and ranked the
features according to their learned length scales
(from the lowest to the highest). The length scales
of a feature can be interpreted as the relevance of
such feature for the model. Therefore, the out-
come of a GP model using an ARD kernel can be
viewed as a list of features ranked by relevance,
and this information can be used for feature selec-
tion by discarding the lowest ranked (least useful)
ones.

For task 1.1, we performed this feature selection
over all 160 features mentioned in Section 2. For
task 1.3, we used a subset of the 80 most general
BB features as in (Shah et al., 2013), for which we
had all the necessary resources available for the
extraction. We selected the top 25 features for both
models, based on empirical results found by Shah
et al. (2013) for a number of datasets, and then
retrained the GP using only the selected features.

4 Active Learning

Active Learning (AL) is a machine learning
paradigm that let the learner decide which data it
wants to learn from (Settles, 2010). The main goal
of AL is to reduce the size of the dataset while
keeping similar model performance (therefore re-
ducing annotation costs). In previous work with
17 baseline features, we have shown that with only
~30% of instances it is possible to achieve 99%
of the full dataset performance in the case of the
WMT12 QE dataset (Beck et al., 2013).

To investigate if a reduced dataset can achieve
competitive performance in a blind evaluation set-
ting, we submitted an entry for both tasks 1.1 and
1.3 composed of models trained on a subset of in-
stances selected using AL, and paired with fea-
ture selection. Our AL procedure starts with a
model trained on a small number of randomly se-
lected instances from the training set and then uses
this model to query the remaining instances in the
training set (our query pool). At every iteration,
the model selects the more “informative” instance,
asks an oracle for its true label (which in our case
is already given in the dataset, and therefore we
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only simulate AL) and then adds it to the training
set. Our procedure started with 50 instances for
task 1.1 and 20 instances for task 1.3, given its re-
duced training set size. We optimised the Gaussian
Process hyperparameters every 20 new instances,
for both tasks.

As a measure of informativeness we used Infor-
mation Density (ID) (Settles and Craven, 2008).
This measure leverages between the variance
among instances and how dense the region (in the
feature space) where the instance is located is:

B

1 U
i Z sim(x,x™)

u=1

ID(x) = Var(y|x) x

The ({8 parameter controls the relative impor-
tance of the density term. In our experiments, we
set it to 1, giving equal weights to variance and
density. The U term is the number of instances
in the query pool. The variance values Var(y|x)
are given by the GP prediction while the similar-
ity measure sim(x,x") is defined as the cosine
distance between the feature vectors.

In a real annotation setting, it is important to
decide when to stop adding new instances to the
training set. In this work, we used the confidence
method proposed by Vlachos (2008). This is an
method that measures the model’s confidence on
a held-out non-annotated dataset every time a new
instance is added to the training set and stops the
AL procedure when this confidence starts to drop.
In our experiments, we used the average test set
variance as the confidence measure.

In his work, Vlachos (2008) showed a correla-
tion between the confidence and test error, which
motivates its use as a stop criterion. To check if
this correlation also occurs in our task, we measure
the confidence and test set error for task 1.1 using
the WMT12 split (1832/422 instances). However,
we observed a different behaviour in our experi-
ments: Figure 1 shows that the confidence does
not raise or drop according to the test error but it
stabilises around a fixed value at the same point as
the test error also stabilises. Therefore, instead of
using the confidence drop as a stop criterion, we
use the point where the confidence stabilises. In
Figure 2 we can observe that the confidence curve
for the WMT13 test set stabilises after ~580 in-
stances. We took that point as our stop criterion
and used the first 580 selected instances as the AL
dataset.
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Figure 1: Test error and test confidence curves
for HTER prediction (task 1.1) using the WMT12
training and test sets.
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Figure 2: Test confidence for HTER prediction
(task 1.1) using the official WMT13 training and
test sets.

We repeated the experiment with task 1.3, mea-
suring the relationship between test confidence
and error using a 700/100 instances split (shown
on Figure 3). For this task, the curves did not fol-
low the same behaviour: the confidence do not
seem to stabilise at any point in the AL proce-
dure. The same occurred when using the official
training and test sets (shown on Figure 4). How-
ever, the MAE curve is quite flat, stabilising after
about 100 sentences. This may simply be a conse-
quence of the fact that our model is too simple for
post-editing time prediction. Nevertheless, in or-
der to analyse the performance of AL for this task
we submitted an entry using the first 100 instances
chosen by the AL procedure for training.

The observed peaks in the confidence curves re-



Task 1.1 - Ranking Task 1.1 - Scoring Task 1.3
DeltaAvg 1 | Spearman 1 | MAE | | RMSE | | MAE | | RMSE |
SHEF-Lite-FULL 9.76 0.57 12.42 15.74 5591 103.11
SHEF-Lite-AL 8.85 0.50 13.02 17.03 64.62 99.09
Baseline 8.52 0.46 14.81 18.22 51.93 93.36

Table 1: Submission results for tasks 1.1 and 1.3. The bold value shows a winning entry in the shared

task.
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Figure 3: Test error and test confidence curves
for post-editing time prediction (task 1.3) using a
700/100 split on the WMT13 training set.

WMT13 dataset (full)

250
200
150

100

|

Number of instances

Figure 4: Test confidence for post-editing time
prediction (task 1.3) using the official WMT13
training and test sets.

sult from steps where the hyperparameter optimi-
sation got stuck at bad local optima. These de-
generated results set the variances (0]2@, o2) to very
high values, resulting in a model that considers all
data as pure noise. Since this behaviour tends to
disappear as more instances are added to the train-
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ing set, we believe that increasing the dataset size
helps to tackle this problem. We plan to investi-
gate this issue in more depth in future work.

For both AL datasets we repeated the feature se-
lection procedure explained in Section 3.1, retrain-
ing the models on the selected features.

5 Results

Table 1 shows the results for both tasks. SHEF-
Lite-FULL represents GP models trained on the
full dataset (relative to each task) with a feature
selection step. SHEF-Lite-AL corresponds to the
same models trained on datasets obtained from
each active learning procedure and followed by
feature selection.

For task 1.1, our submission SHEF-Lite-FULL
was the winning system in the scoring subtask, and
ranked third in the ranking subtask. These results
show that GP models achieve the state of the art
performance in QE. These are particularly positive
results considering that there is room for improve-
ment in the feature selection procedure to identify
the optimal number of features to be selected. Re-
sults for task 1.3 were below the baseline, once
again evidencing the fact that the noise model used
in our experiments is probably too simple for post-
editing time prediction. Post-editing time is gener-
ally more prone to large variations and noise than
HTER, especially when annotations are produced
by multiple post-editors. Therefore we believe that
kernels that encode more advanced noise models
(such as the multi-task kernel used by Cohn and
Specia (2013)) should be used for better perfor-
mance. Another possible reason for that is the
smaller set of features used for this task (black-
box features only).

Our SHEF-Lite-AL submissions performed bet-
ter than the baseline in both scoring and ranking
in task 1.1, ranking 2nd place in the scoring sub-
task. Considering that the dataset is composed by
only ~25% of the full training set, these are very
encouraging results in terms of reducing data an-



notation needs. We note however that these results
are below those obtained with the full training set,
but Figure 1 shows that it is possible to achieve
the same or even better results with an AL dataset.
Since the curves shown in Figure 1 were obtained
using the full feature set, we believe that advanced
feature selection strategies can help AL datasets to
achieve better results.

6 Conclusions

The results obtained by our submissions confirm
the potential of Gaussian Processes to become the
state of the art approach for Quality Estimation.
Our models were able to achieve the best perfor-
mance in predicting HTER. They also offer the ad-
vantage of inferring a probability distribution for
each prediction. These distributions provide richer
information (like variance values) that can be use-
ful, for example, in active learning settings.

In the future, we plan to further investigate these
models by devising more advanced kernels and
feature selection methods. Specifically, we want
to employ our feature set in a multi-task kernel set-
ting, similar to the one proposed by Cohn and Spe-
cia (2013). These kernels have the power to model
inter-annotator variance and noise, which can lead
to better results in the prediction of post-editing
time.

We also plan to pursue better active learning
procedures by investigating query methods specif-
ically tailored for QE, as well as a better stop cri-
teria. Our goal is to be able to reduce the dataset
size significantly without hurting the performance
of the model. This is specially interesting in the
case of QE, since it is a very task-specific problem
that may demand a large annotation effort.
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