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Abstract

This paper describes shallow
semantically-informed Hierarchical
Phrase-based SMT (HPBSMT) and
Phrase-Based SMT (PBSMT) systems
developed at Dublin City University
for participation in the translation task
between EN-ES and ES-EN at the Work-
shop on Statistical Machine Translation
(WMT 13). The system uses PBSMT
and HPBSMT decoders with multiple
LMs, but will run only one decoding
path decided before starting translation.
Therefore the paper does not present a
multi-engine system combination. We
investigate three types of shallow seman-
tics: (i) Quality Estimation (QE) score,
(ii) genre ID, and (iii) context ID derived
from context-dependent language models.
Our results show that the improvement is
0.8 points absolute (BLEU) for EN-ES
and 0.7 points for ES-EN compared to
the standard PBSMT system (single best
system). It is important to note that we
developed this method when the standard
(confusion network-based) system com-
bination is ineffective such as in the case
when the input is only two.

1 Introduction

This paper describes shallow semantically-
informed Hierarchical Phrase-based SMT
(HPBSMT) and Phrase-Based SMT (PBSMT)
systems developed at Dublin City University
for participation in the translation task between
EN-ES and ES-EN at WMT 13. Our objectives
are to incorporate several shallow semantics into
SMT systems. The first semantics is the QE score
for a given input sentence which can be used to
select the decoding path either of HPBSMT or

PBSMT. Although we call this aQE score, this
score is not quite a standard one which does not
have access to translation output information. The
second semantics is genre ID which is intended to
capture domain adaptation. The third semantics
is context ID: this context ID is used to adjust the
context for the local words. Context ID is used in
a continuous-space LM (Schwenk, 2007), but is
implicit since the context does not appear in the
construction of a continuous-space LM. Note that
our usage of the termsemantics refers to meaning
constructed by a sentence or words. The QE
score works as a sentence level switch to select
HPBSMT or PBSMT, based on thesemantics
of a sentence. The genre ID gives an indication
that the sentence is to be translated by genre ID-
sensitive MT systems, again based onsemantics
on a sentence level. The context-dependent LM
can be interpreted as supplying the local context
to a word, capturingsemantics on a word level.

The architecture presented in this paper is sub-
stantially different from multi-engine system com-
bination. Although the system has multiple paths,
only one path is chosen at decoding when process-
ing unseen data. Note thatstandard multi-engine
system combination using these three semantics
has been presented before (Okita et al., 2012b;
Okita et al., 2012a; Okita, 2012). This paper also
compares the two approaches.

The remainder of this paper is organized as fol-
lows. Section 2 describes the motivation for our
approach. In Section 3, we describe our proposed
systems, while in Section 4 we describe the exper-
imental results. We conclude in Section 5.

2 Motivation

Model Difference of PBSMT and HPBSMT
Our motivation is identical with a system combi-
nation strategy which would obtain a better trans-
lation if we can access more than two translations.
Even though we are limited in the type of MT sys-
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tems, i.e. SMT systems, we can access at least
two systems, i.e. PBSMT and HPBSMT systems.
The merit that accrues from accessing these two
translation is shown in Figure 1. In this exam-
ple between EN-ES, the skirts of the distribution
shows that around 20% of the examples obtain the
same BLEU score, 37% are better under PBSMT,
and 42% under HPBSMT. Moreover, around 10%
of sentences show difference of 10 BLEU points.
Even a selection of outputs would improve the re-
sults. Unfortunately, some pitfall of system com-
bination (Rosti et al., 2007) impact on the process
when the number of available translation is only
two. If there are only two inputs, (1) the mismatch
of word order and word selection would yield a
bad combination since system combination relies
on monolingual word alignment (or TER-based
alignment) which seeks identical words, and (2)
Minimum Bayes Risk (MBR) decoding, which is
a first step, will not work effectively since it re-
lies on voting. (In fact, only selecting one of the
translation outputs is even effective: this method
is called system combination as well (Specia et al.,
2010).) Hence, although the aim is similar, we do
not use a system combination strategy, but we de-
velop a semantically-informed SMT system.

Figure 1: Figure shows the difference of sentence-
based performance between PBSMT and HPB-
SMT systems.

Relation of Complexity of Source Sentence and
Performance of HPBSMT and PBSMT It is
interesting to note that PBSMT tends to be bet-
ter than HPBSMT for European language pairs
as the recent WMT workshop shows, while HPB-
SMT shows often better performance for distant
language pairs such as EN-JP (Okita et al., 2010b)

and EN-ZH in other workshops.
Under the assumption that we use the same

training corpus for training PBSMT and HPBSMT
systems, our hypothesis is that we may be able
to predict the quality of translation. Note that al-
though this is the analogy of quality estimation,
the setting is slightly different in that in test phase,
we will not be given a translation output, but only
a source sentence. Our aim is to predict whether
HPBSMT obtains better translation output than
PBSMT or not. Hence, our aim does not require
that the quality prediction here is very accurate
compared to the standard quality estimation task.
We use a feature set consisting of various charac-
teristics of input sentences.

3 Our Methods: Shallow Semantics

Our system accommodates PBSMT and HPBSMT
with multiple of LMs. A decoder which handles
shallow semantic information is shown in Table
3.1.

3.1 QE Score

Quality estimation aims to predict the quality of
translation outputs for unseen data (e.g. by build-
ing a regressor or a classifier) without access to
references: the inputs are translation outputs and
source sentences in a test phase, while in a training
phase the corresponding BLEU or HTER scores
are used. In this subsection, we try to build a re-
gressor with the similar settings but without sup-
plying the translation outputs. That is, we supply
only the input sentences. (Since our method is not
a quality estimation for a given translation output,
quality estimation may not be an entirely appro-
priate term. However, we borrow this term for this
paper.) If we can build such a regressor for PB-
SMT and HPBSMT systems, we would be able
to select a better translation output without actu-
ally translating them for a given input sentence.
Note that we translate the training set by PBSMT
and HPBSMT in a training phase only to supply
their BLEU scores to a regressor (since a regres-
sor is a supervised learning method). Then, we
use these regressors for a given unseen source sen-
tence (which has no translation output attached) to
predict their BLEU scores for PBSMT and HPB-
SMT.

Our motivation came from the comparison of
a sequential learning system and a parser-based
system. The typical decoder of the former is a
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Viterbi decoder while that of the latter is a Cocke-
Younger-Kasami (CYK) decoder (Younger, 1967).
The capability of these two systems provides
an intuition about the difference of PBSMT and
HPBSMT: the CYK decoder-based system has
some capability to handle syntactic constructions
while the Viterbi decoder-based system has only
the capability of learning a sequence. For ex-

Input: Foreign sent f=f1,...,f1f , language model,
translation model, rule table.
Output: English translation e

ceScore = predictQEScore(fi)
if (ceScore == HPBSMTBetter)

for span length l=1 to1f do
for start=0..1f -1 do

genreID = predictGenreID(fi)
end = start + 1
forall seq s of entries and words in span

[start,end] do
forall rules r do

if rule r applies to chart seq s then
create new chart entry c

with LM(genreID)
add chart entry c to chart

return e from best chart entry in span [0,1f ]
else:

genreID = predictGenreID(fi)
place empty hypothesis into stack 0
for all stacks 0...n-1 do

for all hypotheses in stack do
for all translation options do

if applicable then
create new hyp with LM(ID)
place in stack
recombine with existing hyp if

possible
prune stack if too big

return e

predictQEScore()
predictGenreID()
predictContextID(wordi, wordi−1)

Table 1: Decoding algorithm: the main algorithm
of PBSMT and HPBSMT are from (Koehn, 2010).
The modification is related to predictQEScore(),
predictGenreID(), and predictContextID().

ample, the (context-free) grammar-based system
has the capability of handling various difficul-

ties caused by inserted clauses, coordination, long
Multiword Expressions, and parentheses, while
the sequential learning system does not (This is
since this is what the aim of the context-free
grammar-based system is.) These difficulties are
manifest in input sentences.
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Figure 2: A blue line shows the true BLEU dif-
ference between PBSMT and HPBSMT (y-axis)
where x-axis is the sample IDs reordered in de-
scending order (blue), while green dots show the
BLEU absolute difference (y-axis) of the typical
samples where x-axis is shared with the above.
This example is sampled 300 points from new-
stest2013 (ES-EN). Even if the regressor does not
achieve a good performance, the bottom line of the
overall performance is already really high in this
tricky problem. Roughly, even if we plot randomly
we could achieve around 80 - 90% of correctness.
Around 50% of samples (middle of the curve) do
not care (since the true performance of PBSMT
and HPBSMT are even), there is a slope in the left
side of the curve where random plot around this
curve would achieve 15 - 20% among 25% of cor-
rectness (the performance of PBSMT is superior),
and there is another slope in the right side of the
curve where random plot would achieve again 15
- 20% among 25% (the performance of HPBSMT
is superior). In this case, accuracy is 86%.

If we assume that this is one major difference
between these two systems, the complexity of the
input sentence will correlate with the difference of
translation quality of these two systems. In this
subsection, we assume that this is one major dif-
ference of these two systems and that the complex-
ity of the input sentence will correlate with the dif-
ference of translation quality of these two systems.
Based on these assumptions, we build a regressor
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for each system for a given input sentence where in
a training phase we supply the BLEU score mea-
sured using the training set. One remark is that the
BLEU score which we predict is only meaning-
ful in a relative manner since we actually generate
a translation output in preparation phase (there is
a dependency to the mean of BLEU score in the
training set). Nevertheless, this is still meaningful
as a relative value if we want to talk about their
difference, which is what we want in our settings
to predict which system, either PBSMT or HPB-
SMT, will generate a better output.

The main features used for training the regres-
sor are as follows: (1) number of / length of in-
serted clause / coordination / multiword expres-
sions, (2) number of long phrases (connection by
‘of’; ordering of words), (3) number of OOV
words (which let it lower the prediction quality),
(4) number of / length of parenthesis, etc. We ob-
tained these features using parser (de Marneffe et
al., 2006) and multiword extractor (Okita et al.,
2010a).

3.2 Genre ID

Genre IDs allow us to apply domain adaptation
technique according to the genre ID of the testset.
Among various methods of domain adaptation, we
investigate unsupervised clustering rather than al-
ready specified genres.

We used (unsupervised) classification via La-
tent Dirichlet Allocation (LDA) (Blei et al., 2003)
to obtain genre ID. LDA represents topics as
multinomial distributions over theW unique
word-types in the corpus and represents docu-
ments as a mixture of topics.

Let C be the number of unique labels in the
corpus. Each labelc is represented by aW -
dimensional multinomial distributionφc over the
vocabulary. For documentd, we observe both the
words in the documentw(d) as well as the docu-
ment labelsc(d). Given the distribution over top-
ics θd, the generation of words in the document is
captured by the following generative model.

1. For each labelc ∈ {1, . . . C}, sample a distri-
bution over word-typesφc ∼ Dirichlet(·|β)

2. For each documentd ∈ {1, . . . , D}

(a) Sample a distribution over its observed
labelsθd ∼ Dirichlet(·|α)

(b) For each wordi ∈ {1, . . . , NW
d }

i. Sample a label z
(d)
i ∼

Multinomial(θd)

ii. Sample a word w
(d)
i ∼

Multinomial(φc) from the la-

bel c = z
(d)
i

Using topic modeling (or LDA) as described
above, we perform the in-domain data partitioning
as follows, building LMs for each class, and run-
ning a decoding process for the development set,
which will obtain the best weights for clusteri.

1. Fix the number of clustersC, we explore val-
ues from small to big.1

2. Do unsupervised document classification (or
LDA) on the source side of the training, de-
velopment and test sets.

3. Separate each class of training sets and build
LM for each clusteri (1 ≤ i ≤ C).

4. Separate each class of development set (keep
the original index and new index in the allo-
cated separated dataset).

5. (Using the same class of development set):
Run the decoder on each class to obtain the
n-best lists, run a MERT process to obtain the
best weights based on the n-best lists, (Repeat
the decoding / MERT process several itera-
tions. Then, we obtain the best weights for a
particular class.)

For the test phase,

1. Separate each class of the test set (keep the
original index and new index in the allocated
separated dataset).

2. Suppose the test sentence belongs to cluster
i, run the decoder of clusteri.

3. Repeat the previous step until all the test sen-
tences are decoded.

3.3 Context ID

Context ID semantics is used through the re-
ranking of the n-best list in a MERT process
(Schwenk, 2007; Schwenk et al., 2012; Le et al.,
2012). 2-layer ngram-HMM LM is a two layer
version of the 1-layer ngram-HMM LM (Blun-
som and Cohn, 2011) which is a nonparametric

1Currently, we do not have a definite recommendation on
this. It needs to be studied more deeply.

180



Bayesian method using hierarchical Pitman-Yor
prior. In the 2-layer LM, the hidden sequence of
the first layer becomes the input to the higher layer
of inputs. Note that such an architecture comes
from the Restricted Boltzmann Machine (Smolen-
sky, 1986) accumulating in multiple layers in or-
der to build deep belief networks (Taylor and Hin-
ton, 2009). Although a 2-layer ngram-HMM LM
is inferior in its performance compared with other
two LMs, the runtime cost is cheaper than these.
ht denotes the hidden word for the first layer,h̄t

denotes the hidden word for the second layer,wi

denotes the word in output layer. The generative
model for this is shown below.

ht|h̄t ∼ F (φ̄st) (1)

wt|ht ∼ F (φst) (2)

wi|w1:i−1 ∼ PY(di, θi, Gi) (3)

where α is a concentration parameter,θ is a
strength parameter, andGi is a base measure.
Note that these terms belong to the hierarchical
Pitman-Yor language model (Teh, 2006). We used
a blocked inference for inference. The perfor-
mance of 2-layer LM is shown in Table 3.

4 Experimental Settings

We used Moses (Koehn et al., 2007) for PBSMT
and HPBSMT systems in our experiments. The
GIZA++ implementation (Och and Ney, 2003) of
IBM Model 4 is used as the baseline for word
alignment: Model 4 is incrementally trained by
performing 5 iterations of Model 1, 5 iterations
of HMM, 3 iterations of Model 3, and 3 iter-
ations of Model 4. For phrase extraction the
grow-diag-final heuristics described in (Koehn et
al., 2003) is used to derive the refined alignment
from bidirectional alignments. We then perform
MERT process (Och, 2003) which optimizes the
BLEU metric, while a 5-gram language model is
derived with Kneser-Ney smoothing (Kneser and
Ney, 1995) trained with SRILM (Stolcke, 2002).
For the HPBSMT system, the chart-based decoder
of Moses (Koehn et al., 2007) is used. Most of the
procedures are identical with the PBSMT systems
except the rule extraction process (Chiang, 2005).

The procedures to handle three kinds of se-
mantics are implemented using the already men-
tioned algorithm. We use libSVM (Chang and Lin,
2011), and Mallet (McCallum, 2002) for Latent
Dirichlet Allocation (LDA) (Blei et al., 2003).

For the corpus, we used all the resources pro-
vided for the translation task at WMT13 for lan-

output layer

2−layer conditional RBM language model

ngram language model

1st RBM

2nd RBM

hidden layer

output layer

N

projection layer

discrete representation

N

P

neural network
probability estimation

continuous−space language

model [Schwenk, 2007]

1st hidden layer

2−layer ngram−HMM language model

2nd hidden layer

output layer

ngram language model

Figure 3: Figure shows the three kinds of context-
dependent LM. The upper-side shows continuous-
space language model (Schwenk, 2007). The
lower-left shows ours, i.e. the 2-layer ngram-
HMM LM. The lower-right shows the 2-layer con-
ditional Restricted Boltzmann Machine LM (Tay-
lor and Hinton, 2009).

guage model, that is parallel corpora (Europarl
V7 (Koehn, 2005), Common Crawl corpus, UN
corpus, and News Commentary) and monolingual
corpora (Europarl V7, News Commentary, and
News Crawl from 2007 to 2012).

Experimental results are shown in Table 2.
The left-most column (sem-inform) shows our re-
sults. Thesem-inform made a improvement of 0.8
BLEU points absolute compared to the PBSMT
results in EN-ES, while the standard system com-
bination lost 0.1 BLEU points absolute compared
to the single worst. For ES-EN, thesem-inform
made an improvement of 0.7 BLEU points abso-
lute compared to the PBSMT results. These im-
provements over both of PBSMT and HPBSMT
are statistically significant by a paired bootstrap
test (Koehn, 2004).
5 Conclusion

This paper describes shallow semantically-
informed HPBSMT and PBSMT systems devel-
oped at Dublin City University for participation in
the translation task at the Workshop on Statistical
Machine Translation (WMT 13). Our system has
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EN-ES sem-inform PBSMT HPBSMT syscomb aug-syscomb

BLEU 30.3 29.5 28.2 28.1 28.5
BLEU(11b) 30.3 29.5 28.2 28.1 28.5
BLEU-cased 29.0 28.4 27.1 27.0 27.5
BLEU-cased(11b) 29.0 28.4 27.1 27.0 27.5
NIST 7.91 7.74 7.35 7.35 7.36
Meteor 0.580 0.579 0.577 0.577 0.578
WER 53.7 55.4 59.3 59.2 58.9
PER 41.3 42.4 46.0 45.8 45.5

ES-EN sem-inform PBSMT HPBSMT syscomb aug-syscomb

BLEU 31.1 30.4 23.1∗ 28.8 29.9
BLEU(11b) 31.1 30.4 23.1∗ 28.8 29.9
BLEU-cased 29.7 29.1 22.3∗ 27.9 28.8
BLEU-cased(11b) 29.7 29.1 22.3∗ 27.9 28.8
NIST 7.87 7.79 6.67∗ 7.40 7.71
Meteor 0.615 0.612 0.533∗ 0.612 0.613
WER 54.8 55.4 62.5∗ 59.3 56.1
PER 41.3 41.8 48.3∗ 45.8 41.9

Table 2: Table shows the score where “sem-inform” shows our system. Underlined figure shows the
official score. “syscomb” denotes the confusion-network-based system combination using BLEU, while
“aug-syscomb” uses three shallow semantics described in QE score (Okitaet al., 2012a), genre ID (Okita
et al., 2012b), and context ID (Okita, 2012). Note that the inputs for syscomb and aug-syscomb are the
output of HPBSMT and PBSMT. HPBSMT from ES to EN has marked with∗, which indicates that this
is trained only with Europarl V7.

2-layer ngram- SRI-
EN HMM LM LM

newstest12 130.4 140.3
newstest11 146.2 157.1
newstest10 156.4 166.8
newstest09 176.3 187.1

Table 3: Table shows the perplexity of context-
dependent language models, which is 2-layer
ngram HMM LM, and that of SRILM (Stolcke,
2002) in terms of newstest09 to 12.

PBSMT and HPBSMT decoders with multiple
LMs, but our system will execute only one path,
which is different from multi-engine system
combination. We consider investigate three types
of shallow semantic information: (i) a Quality
Estimate (QE) score, (ii) genre ID, and (iii) a
context ID through context-dependent language
models. Our experimental results show that the
improvement is 0.8 points absolute (BLEU) for
EN-ES and 0.7 points for ES-EN compared to
the standard PBSMT system (single best system).
We developed this method when the standard

(confusion network-based) system combination is
ineffective such as in the case when the input is
only two.

A further avenue would be the investigation of
other semantics such as linguistic semantics, in-
cluding co-reference resolution or anaphora reso-
lution, hyper-graph decoding, and text understand-
ing. Some of which are investigated in the context
of textual entailment task (Okita, 2013b) and we
would like to extend this to SMT task. Another
investigation would be the integration of genre ID
into the context-dependent LM. The preliminary
work shows that such integration would decrease
the overall perplexity (Okita, 2013a).
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