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Abstract

We use feature decay algorithms (FDA)
for fast deployment of accurate statistical
machine translation systems taking only
about half a day for each translation direc-
tion. We develop parallel FDA for solving
computational scalability problems caused
by the abundance of training data for SMT
models and LM models and still achieve
SMT performance that is on par with us-
ing all of the training data or better. Par-
allel FDA runs separate FDA models on
randomized subsets of the training data
and combines the instance selections later.
Parallel FDA can also be used for selecting
the LM corpus based on the training set
selected by parallel FDA. The high qual-
ity of the selected training data allows us
to obtain very accurate translation outputs
close to the top performing SMT systems.
The relevancy of the selected LM corpus
can reach up to 86% reduction in the num-
ber of OOV tokens and up to 74% reduc-
tion in the perplexity. We perform SMT
experiments in all language pairs in the
WMT13 translation task and obtain SMT
performance close to the top systems us-
ing significantly less resources for training
and development.

1 Introduction

Statistical machine translation (SMT) is a data in-
tensive problem. If you have the translations for
the source sentences you are translating in your
training set or even portions of it, then the trans-
lation task becomes easier. If some tokens are not
found in your training data then you cannot trans-
late them and if some translated word do not ap-
pear in your language model (LM) corpus, then it
becomes harder for the SMT engine to find their
correct position in the translation.
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Current SMT systems also face problems
caused by the proliferation of various parallel cor-
pora available for building SMT systems. The
training data for many of the language pairs in
the translation task, part of the Workshop on Ma-
chine translation (WMT13) (Callison-Burch et al.,
2013), have increased the size of the available par-
allel corpora for instance by web crawled corpora
over the years. The increased size of the training
material creates computational scalability prob-
lems when training SMT models and can increase
the amount of noisy parallel sentences found. As
the training set sizes increase, proper training set
selection becomes more important.

At the same time, when we are going to trans-
late just a couple of thousand sentences, possibly
belonging to the same target domain, it does not
make sense to invest resources for training SMT
models over tens of millions of sentences or even
more. SMT models like Moses already have filter-
ing mechanisms to create smaller parts of the built
models that are relevant to the test set.

In this paper, we develop parallel feature decay
algorithms (FDA) for solving computational scal-
ability problems caused by the abundance of train-
ing data for SMT models and LM models and still
achieve SMT performance that is on par with us-
ing all of the training data or better. Parallel FDA
runs separate FDA models on randomized subsets
of the training data and combines the instance se-
lections later. We perform SMT experiments in
all language pairs of the WMT13 (Callison-Burch
et al., 2013) and obtain SMT performance close to
the baseline Moses (Koehn et al., 2007) system us-
ing less resources for training. With parallel FDA,
we can solve not only the instance selection prob-
lem for training data but also instance selection for
the LM training corpus, which allows us to train
higher order n-gram language models and model
the dependencies better.

Parallel FDA improves the scalability of FDA
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and allows rapid prototyping of SMT systems for
a given target domain or task. Parallel FDA can be
very useful for MT in target domains with limited
resources or in disaster and crisis situations (Lewis
et al., 2011) where parallel corpora can be gath-
ered by crawling and selected by parallel FDA.
Parallel FDA also improves the computational re-
quirements of FDA by selecting from smaller cor-
pora and distributing the work load. The high
quality of the selected training data allows us to
obtain very accurate translation outputs close to
the top performing SMT systems. The relevancy
of the LM corpus selected can reach up to 86% re-
duction in the number of OOV tokens and up to
74% reduction in the perplexity.

We organize our work as follows. We describe
FDA and parallel FDA models in the next section.
We also describe how we extend the FDA model
for LM corpus selection. In section 3, we present
our experimental results and in the last section, we
summarize our contributions.

2 Feature Decay Algorithms for Instance
Selection

In this section, we describe the FDA algorithm,
the parallel FDA model, and how FDA training
instance selection algorithms can be used also for
instance selection for language model corpora.

2.1 Feature Decay Algorithm (FDA)

Feature decay algorithms (Bigici and Yuret,
2011a) increase the diversity of the training set by
decaying the weights of n-gram features that have
already been included. FDAs try to maximize the
coverage of the target language features for the test
set. Translation performance can improve as we
include multiple possible translations for a given
word, which increases the diversity of the training
set. A target language feature that does not appear
in the selected training instances will be difficult to
produce regardless of the decoding algorithm (im-
possible for unigram features). FDA tries to find
as many training instances as possible to increase
the chances of covering the correct target language
feature by reducing the weight of the included fea-
tures after selecting each training instance.

Algorithm 1 gives the pseudo-code for FDA.
We improve FDA with improved scaling, where
the score for each sentence is scaled proportional
to the length of the sentence, which reduces the
average length of the training instances.
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Algorithm 1: The Feature Decay Algorithm

Input: Parallel training sentences U, test set
features F, and desired number of
training instances V.
Data: A priority queue Q, sentence scores
score, feature values fval.
Output: Subset of the parallel sentences to be
used as the training data £ C U.
1 foreach f € F do
2 fval(f) « init(f,U)
3 foreach S € U/ do
>

score(S) +
fE€features(9)

enqueue(Q, S, score(S))
while |£| < N do
S < dequeue(Q)

1
SR

4

EE fval(f)

wn

score(S) + | fval(f)

fEfea%res(S)
if score(S) > topval(Q) then
L+ LU{S}
foreach f € features(S) do
fval(f) « decay(f,U,L)
else

enqueue(Q, S, score(S5))
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11
12
13
14

The input to the algorithm consists of parallel
training sentences, the number of desired training
instances, and the source language features of the
test set. The feature decay function (decay) is
the most important part of the algorithm where
feature weights are multiplied by 1/n where n
is the count of the feature in the current train-
ing set. The initialization function (init) calcu-
lates the log of inverse document frequency (idf):
init(f,U) = log(|U]/(1 + C(f,U))), where
|| is the sum of the number of features appear-
ing in the training corpus and C'( f,U) is the num-
ber of times feature f appear in /. Further ex-
periments with the algorithm are given in (Bigici
and Yuret, 2011a). We improve FDA with a scal-
ing factor that prefers shorter sentences defined as:
|S]°, where s is the power of the source sentence
length and we set it to 0.9 after optimizing it over
the perplexity of the LM built over the selected
corpus (further discussed in Section 2.3).

2.2 Parallel FDA Model

FDA model obtains a sorting over all of the avail-
able training corpus based on the weights of the
features found on the test set. Each selected train-



Algorithm 2: Parallel FDA
Input: U, F, and N.
Output: £ C U.

1 U + shuffle(ld)

2 U, M + split(U,N)

3 L+ {}

4 S+ {}

s foreach U; € U do
L;,S; < FDA(U;, F, M)
add([,,ﬁi)
add(S,Si)

L + merge(L,S)

6
7
8
9

ing instance effects which feature weights will be
decayed and therefore can result in a different or-
dering of the instances if previous instance selec-
tions are altered. This makes it difficult to par-
allelize the FDA algorithm fully. Parallel FDA
model first shuffles the parallel training sentences,
U, and distributes them to multiple splits for run-
ning individual FDA models on them.

The input to parallel FDA also consists of paral-
lel training sentences, the number of desired train-
ing instances, and the source language features of
the test set. The first step shuffles the parallel train-
ing sentences and the next step splits into equal
parts and outputs the split files and the adjusted
number of instances to select from each, M. Since
we split into equal parts, we select equal number
of sentences, M, from each split. Then we run
FDA on each file to obtain sorted files, £, together
with their scores, S. merge combines k sorted
lists into one sorted list in O(Mklogk) where
ME is the total number of elements in all of the
input lists. | The obtained £ is the new training set
to be used for SMT experiments. We compared the
target 2-gram feature coverage of the training sets
obtained with FDA and parallel FDA and found
that parallel FDA achieves close performance.

Parallel FDA improves the scalability of FDA
and allows rapid prototyping of SMT systems for
a given target domain or task. Parallel FDA also
improves the computational requirements of FDA
by selecting from smaller corpora and distributing
the work load, which can be very useful for MT in
disaster scenarios.

! (Cormen et al., 2009), question 6.5-9. Merging k sorted
lists into one sorted list using a min-heap for k-way merging.
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2.3 Instance Selection for the Language
Model Corpus

The language model corpus is very important for
improving the SMT performance since it helps
finding the correct ordering among the translated
tokens or phrases. Increased LM corpus size can
increase the SMT performance where doubling the
LM corpus can improve the BLEU (Papineni et
al., 2002) by 0.5 (Koehn, 2006). However, al-
though LM corpora resources are more abundant,
training on large LM corpora also poses compu-
tational scalability problems and until 2012, LM
corpora such as LDC Gigaword corpora were not
fully utilized due to memory limitations of com-
puters and even with large memory machines, the
LM corpora is split into pieces, interpolated, and
merged (Koehn and Haddow, 2012) or the LM
order is decreased to use up to 4-grams (Markus
et al., 2012) or low frequency n-gram counts are
omitted and better smoothing techniques are de-
veloped (Yuret, 2008). Using only the given train-
ing data for building the LM is another option
used for limiting the size of the corpus, which
can also obtain the second best performance in
Spanish-English translation task and in the top
tier for German-English (Guzman et al., 2012;
Callison-Burch et al., 2012). This can also indi-
cate that prior knowledge of the test set domain
and its similarity to the available parallel training
data may be diminishing the gains in SMT perfor-
mance through better language modeling or better
domain adaptation.

For solving the computational scalability prob-
lems, there is a need for properly selecting LM
training data as well. We select LM corpus with
parallel FDA based on this observation:

No word not appearing in the training
set can appear in the translation.

It is impossible for an SMT system to translate
a word unseen in the training corpus nor can it
translate it with a word not found in the target
side of the training set 2. Thus we are only in-
terested in correctly ordering the words appear-
ing in the training corpus and collecting the sen-
tences that contain them for building the LM. At
the same time, we want to be able to model longer
range dependencies more efficiently especially for
morphologically rich languages (Yuret and Bigici,

2Unless the translation is a verbatim copy of the source.



2009). Therefore, a compact and more relevant
LM corpus can be useful.

Selecting the LM corpus is harder. First of all,
we know which words should appear in the LM
corpus but we do not know which phrases should
be there since the translation model may reorder
the translated words, find different translations,
and generate different phrases. Thus, we use 1-
gram features for LM corpus selection. At the
same time, in contrast with selecting instances for
the training set, we are less motivated to increase
the diversity since we want predictive power on
the most commonly observed patterns. Thus, we
do not initialize feature weights with the idf score
and instead, we use the inverse of the idf score
for initialization, which is giving more importance
to frequently occurring words in the training set.
This way of LM corpus selection also allows us
to obtain a more controlled language and helps us
create translation outputs within the scope of the
training corpus and the closely related LM corpus.

We shuffle the LM corpus available before split-
ting and select from individual splits, to prevent
extreme cases. We add the training set directly
into the LM and also add the training set not se-
lected into the pool of sentences that can be se-
lected for the LM. The scaling parameter s is opti-
mized over the perplexity of the training data with
the LM built over the selected LM corpus.

3 Experiments

We experiment with all language pairs in
both directions in the WMTI13 translation
task (Callison-Burch et al., 2013), which include
English-German (en-de), English-Spanish (en-es),
English-French (en-fr), English-Czech (en-cs),
and English-Russian (en-ru). We develop transla-
tion models using the phrase-based Moses (Koehn
et al., 2007) SMT system. We true-case all of the
corpora, use 150-best lists during tuning, set the
max-fertility of GIZA++ (Och and Ney, 2003) to
a value between 8-10, use 70 word classes learned
over 3 iterations with mkcls tool during GIZA++
training, and vary the language model order
between 5 to 9 for all language pairs. The de-
velopment set contains 3000 sentences randomly
sampled from among all of the development
sentences provided.

Since we do not know the best training set
size that will maximize the performance, we rely
on previous SMT experiments (Bicici and Yuret,
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2011a; Bigici and Yuret, 2011b) to select the
proper training set size. We choose close to 15
million words and its corresponding number of
sentences for each training corpus and 10 million
sentences for each LM corpus not including the
selected training set, which is added later. This
corresponds to selecting roughly 15% of the train-
ing corpus for en-de and 35% for ru-en, and due to
their larger size, 5% for en-es, 6% for cs-en, 2%
for en-fr language pairs. The size of the LM cor-
pus allows us to build higher order models. The
statistics of the training data selected by the paral-
lel FDA is given in Table 1. Note that the training
set size for different translation directions differ
slightly since we run a parallel FDA for each.

cs/en |de/en| es/en fr/en ru/en
words (#M) [ 186/215(92/99 (409 /359 1010/ 886 |41/44
sents (#K) 867 631 841 998 709
words (#M) | 13/15 [16/17| 23/21 26/22 |16/18

Table 1: Comparison of the training data available
and the selected training set by parallel FDA for
each language pair. The size of the parallel cor-
pora is given in millions (M) of words or thou-
sands (K) of sentences.

After selecting the training set, we select the
LM corpora using the words in the target side of
the training set as the features. For en, es, and
fr, we have access to the LDC Gigaword corpora,
from which we extract only the story type news
and for en, we exclude the corpora from Xinhua
News Agency (xin_eng). The size of the LM cor-
pora from LDC and the monolingual LM corpora
provided by WMT13 are given in Table 2. For
all target languages, we select 10M sentences with
parallel FDA from the LM corpora and the remain-
ing training sentences and add the selected training
data to obtain the LM corpus. Thus the size of the
LM corpora is 10M plus the number of sentences
in the training set as given in Table 1.

#M cs de en es fr ru
LDC - - 3402 949 773 -
Mono | 388 842 1389 341 434 289

Table 2: The size of the LM corpora from LDC
and the monolingual language model corpora pro-
vided in millions (M) of words.

With FDA, we can solve not only the instance
selection problem for the training data but also
the instance selection problem for the LM train-
ing corpus and achieve close target 2-gram cover-



S —en en —>T
cs-en  de-en  es-en fr-en ru-en en-cs en-de  en-es en-fr en-ru
WMT13 2620 2680 3060 3150  .2430 .1860 2030  .3040 3060  .1880
BLEUc 2430 2414 2909 2539 2226 .1708 1792 2799 2379 1732
BLEUc diff | .0190 .0266 .0151 .0611 .0204 .0152 .0238  .0241  .0681 .0148
LM order 7 9 7 9 6 5 5 5 7 5
BLEUc, n | .2407,5 .2396,5 .2886,8 .2532,6 .2215,9 | .1698,9 .1784,9 .2794,9 .2374,9 .1719,9

Table 3: Best BLEUc results obtained on the translation task together with the LM order used when
obtaining the result compared with the best constrained Moses results in WMT12 and WMT13. The last
row compares the BLEUCc result with respect to using a different LM order.

age using about 5% of the available training data
and 5% of the available LM corpus for instance for
en. A smaller LM training corpus also allows us
to train higher order n-gram language models and
model the dependencies better and achieve lower
perplexity as given in Table 5.

3.1 WMT13 Translation Task Results

We run a number of SMT experiments for each
language pair varying the LM order used and ob-
tain different results and sorted these based on the
tokenized BLEU performance, BLEUc. The best
BLEUc results obtained on the translation task to-
gether with the LM order used when obtaining the
results are given in Table 3. We also list the top re-
sults from WMT13 (Callison-Burch et al., 2013) 3,
which use phrase-based Moses for comparison
and the BLEUc difference we obtain. For trans-
lation tasks with en as the target, higher order n-
gram LM perform better whereas for translation
tasks with en as the source, mostly 5-gram LM
perform the best. We can obtain significant gains
in BLEU (+0.0023) using higher order LMs.

For all translation tasks except fr-en and en-ft,
we are able to obtain very close results to the top
Moses system output (0.0148 to 0.0266 BLEUc
difference). This shows that we can obtain very
accurate translation outputs yet use only a small
portion of the training corpus available, signifi-
cantly reducing the time required for training, de-
velopment, and deployment of an SMT system for
a given translation task.

We are surprised by the lower performance in
en-fr or fr-en translation tasks and the reason is,
we believe, due to the inherent noise in the Gi-
gaFrEn training corpus °. FDA is an instance se-

*We use the results from matrix.statmt.org.
“Phrase-based Moses systems usually rank in the top 3.
>We even found control characters in the corpora.
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lection tool and it does not filter out target sen-
tences that are noisy since FDA only looks at the
source sentences when selecting training instance
pairs. Noisy instances may be caused by a sen-
tence alignment problem and one way to fix them
is to measure the sentence alignment accuracy by
using a similarity score over word distributions
such as the Zipfian Word Vectors (Bigici, 2008).
Since noisy parallel corpora can decrease the per-
formance, we also experimented with discarding
the GigaFrEn corpus in the experiments. However,
this decreased the results by 0.0003 BLEU in con-
trast to 0.004-0.01 BLEU gains reported in (Koehn
and Haddow, 2012). Also, note that the BLEU re-
sults we obtained are lower than in (Koehn and
Haddow, 2012), which may be an indication that
our training set size was small for this task.

3.2 Training Corpus Quality

We measure the quality of the training corpus by
the coverage of the target 2-gram features of the
test set, which is found to correlate well with the
BLEU performance achievable (Bigici and Yuret,
2011a). Table 4 presents the source (scov) and tar-
get (tcov) 2-gram feature coverage of both the par-
allel training corpora (train) that we select from
and the training sets obtained with parallel FDA.
We show that we can obtain coverages close to us-
ing all of the available training corpora.

3.3 LM Corpus Quality

We compare the perplexity of the LM trained on
all of the available training corpora for the de-en
language pair versus the LM trained on the paral-
lel FDA training corpus and the parallel FDA LM
corpus. The number of OOV tokens become 2098,
2255, and 291 respectively for English and 2143,
2555, and 666 for German. To be able to com-
pare the perplexities, we take the OOV tokens into
consideration during calculations. Tokenized LM



cs-en de-en es-en fr-en ru-en | en-cs en-de en-es en-fr en-ru

train 5OV .70 74 .85 .83 .66 .82 .82 .84 .87 78
tcov | .82 .82 .84 .87 78 .70 74 .85 .83 .66
FDA 56OV .70 74 .85 .82 .66 .82 .82 .84 .84 78
tcov | .74 5 7 78 75 .59 .67 78 .76 .61

Table 4: Source (scov) and target (tcov) 2-gram feature coverage comparison of the training corpora
(train) with the training sets obtained with parallel FDA (FDA).

corpus has 247M tokens for en and 218M tokens
for de. We assume that each OOV word in en or
de contributes log(1/218M) to the log probabil-
ity, which we round to —19. We also present re-
sults for the case when we handle OOV words bet-
ter with a cost of —11 each in Table 5.

Table 5 shows that we reduce the perplexity
with a LM built on the training set selected with
parallel FDA, which uses only 15% of the training
data for de-en. More significantly, the LM build on
the LM corpus selected by the parallel FDA is able
to decrease both the number of OOV tokens and
the perplexity and allows us to efficiently model
higher order relationships as well. We reach up to
86% reduction in the number of OOV tokens and
up to 74% reduction in the perplexity.

log OOV = —19 log OOV = —11
ppl train FDA FDA LM | train FDA FDA LM
3| 763 774 203 431 419 187
4 | 728 754 192 412 409 178
en 5| 725 753 191 410 408 176
6 | 724 753 190 409 408 176
71 724 753 190 409 408 176
3 | 1255 1449 412 693 713 343
4 | 1216 1428 398 671 703 331
de 5 | 1211 1427 394 668 702 327
6 | 1210 1427 393 668 702 326
7 | 1210 1427 392 668 702 326
Table 5: Perplexity comparison of the LM built

from the training corpus (train), parallel FDA se-
lected training corpus (FDA), and the parallel FDA
selected LM corpus (FDA LM).

3.4 Computational Costs

In this section, we quantify how fast the overall
system runs for a given language pair. The in-
stance selection times are dependent on the num-
ber of training sentences available for the language
pair for training set selection and for the target lan-
guage for LM corpus selection. We give the av-
erage number of minutes it takes for the parallel
FDA to finish selection for each direction and for
each target language in Table 6.

83

time (minutes) en-fr en-ru
Parallel FDA train | 50 18
Parallel FDA LM 66 50

Table 6: The average time in the number of min-
utes for parallel FDA to select instances for the
training set or for the LM corpus for language
pairs en-fr and en-ru.

Once the training set and the LM corpus are
ready, the training of the phrase-based SMT model
Moses takes about 12 hours. Therefore, we are
able to deploy an SMT system for the target trans-
lation task in about half a day and still obtain very
accurate translation results.

4 Contributions

We develop parallel FDA for solving computa-
tional scalability problems caused by the abun-
dance of training data for SMT models and LM
models and still achieve SMT performance that is
on par with the top performing SMT systems. The
high quality of the selected training data and the
LM corpus allows us to obtain very accurate trans-
lation outputs while the selected the LM corpus re-
sults in up to 86% reduction in the number of OOV
tokens and up to 74% reduction in the perplexity
and allows us to model higher order dependencies.
FDA and parallel FDA raise the bar of expec-
tations from SMT translation outputs with highly
accurate translations and lowering the bar to entry
for SMT into new domains and tasks by allowing
fast deployment of SMT systems in about half a
day. Parallel FDA provides a new step towards
rapid SMT system development in budgeted train-
ing scenarios and can be useful in developing ma-
chine translation systems in target domains with
limited resources or in disaster and crisis situations
where parallel corpora can be gathered by crawl-
ing and selected by parallel FDA. Parallel FDA is
also allowing a shift from general purpose SMT
systems towards task adaptive SMT solutions.
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