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Abstract

We describe the CMU systems submit-
ted to the 2013 WMT shared task in ma-
chine translation. We participated in three
language pairs, French—English, Russian—
English, and English—Russian. Our
particular innovations include: a label-
coarsening scheme for syntactic tree-to-
tree translation and the use of specialized
modules to create “synthetic translation
options” that can both generalize beyond
what is directly observed in the parallel
training data and use rich source language
context to decide how a phrase should
translate in context.

1 Introduction

The MT research group at Carnegie Mellon Uni-
versity’s Language Technologies Institute par-
ticipated in three language pairs for the 2013
Workshop on Machine Translation shared trans-
lation task: French—English, Russian—English,
and English—Russian. Our French—English sys-
tem (§3) showcased our group’s syntactic sys-
tem with coarsened nonterminal types (Hanne-
man and Lavie, 2011). Our Russian—-English and
English—Russian system demonstrate a new multi-
phase approach to translation that our group is us-
ing, in which synthetic translation options (§4)
to supplement the default translation rule inven-
tory that is extracted from word-aligned training
data. In the Russian-English system (§5), we used
a CRF-based transliterator (Ammar et al., 2012)
to propose transliteration candidates for out-of-
vocabulary words, and used a language model
to insert or remove common function words in
phrases according to an n-gram English language
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model probability. In the English—Russian system
(86), we used a conditional logit model to predict
the most likely inflectional morphology of Rus-
sian lemmas, conditioning on rich source syntac-
tic features (§6.1). In addition to being able to
generate inflected forms that were otherwise unob-
served in the parallel training data, the translations
options generated in this matter had features re-
flecting their appropriateness given much broader
source language context than usually would have
been incorporated in current statistical MT sys-
tems.

For our Russian—English system, we addition-
ally used a secondary “pseudo-reference” transla-
tion when tuning the parameters of our Russian—
English system. This was created by automatically
translating the Spanish translation of the provided
development data into English. While the output
of an MT system is not always perfectly gram-
matical, previous work has shown that secondary
machine-generated references improve translation
quality when only a single human reference is
available when BLEU is used as an optimization
criterion (Madnani, 2010; Dyer et al., 2011).

2 Common System Components

The decoder infrastructure we used was cdec
(Dyer et al., 2010). Only the constrained data
resources provided for the shared task were used
for training both the translation and language
models. Word alignments were generated us-
ing the Model 2 variant described in Dyer et al.
(2013). Language models used modified Kneser-
Ney smoothing estimated using KenLM (Heafield,
2011). Translation model parameters were dis-
criminatively set to optimize BLEU on a held-out
development set using an online passive aggres-
sive algorithm (Eidelman, 2012) or, in the case of
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the French—English system, using the hypergraph
MERT algorithm and optimizing towards BLEU
(Kumar et al., 2009). The remainder of the paper
will focus on our primary innovations in the vari-
ous system pairs.

3 French-English Syntax System

Our submission for French-English is a tree-to-
tree translation system that demonstrates several
innovations from group’s research on SCFG-based
translation.

3.1 Data Selection

We divided the French—-English training data into
two categories: clean data (Europarl, News Com-
mentary, UN Documents) totaling 14.8 million
sentence pairs, and web data (Common Crawl,
Giga-FrEn) totaling 25.2 million sentence pairs.
To reduce the volume of data used, we filtered
non-parallel and other unhelpful segments accord-
ing to the technique described by Denkowski et al.
(2012). This procedure uses a lexical translation
model learned from just the clean data, as well as
source and target n-gram language models to com-
pute the following feature scores:

e French and English 4-gram log likelihood (nor-
malized by length);

e French-English and English—French lexical
translation log likelihood (normalized by
length); and,

e Fractions of aligned words under the French—
English and English—French models.

We pooled previous years” WMT news test sets
to form a reference data set. We computed the
same features. To filter the web data, we retained
only sentence for which each feature score was
no lower than two standard deviations below the
mean on the reference data. This reduced the web
data from 25.2 million to 16.6 million sentence
pairs. Parallel segments from all parts of the data
that were blank on either side, were longer than 99
tokens, contained a token of more than 30 charac-
ters, or had particularly unbalanced length ratios
were also removed. After filtering, 30.9 million
sentence pairs remained for rule extraction: 14.4
million from the clean data, and 16.5 million from
the web data.

3.2 Preprocessing and Grammar Extraction

Our French-English system uses parse trees in
both the source and target languages, so tokeniza-
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tion in this language pair was carried out to match
the tokenizations expected by the parsers we used
(English data was tokenized with the Stanford to-
kenizer for English and an in-house tokenizer for
French that targets the tokenization used by the
Berkeley French parser). Both sides of the par-
allel training data were parsed using the Berkeley
latent variable parser.

Synchronous context-free grammar rules were
extracted from the corpus following the method of
Hanneman et al. (2011). This decomposes each
tree pair into a collection of SCFG rules by ex-
haustively identifying aligned subtrees to serve as
rule left-hand sides and smaller aligned subtrees
to be abstracted as right-hand-side nonterminals.
Basic subtree alignment heuristics are similar to
those by Galley et al. (2006), and composed rules
are allowed. The computational complexity is held
in check by a limit on the number of RHS elements
(nodes and terminals), rather than a GHKM-style
maximum composition depth or Hiero-style max-
imum rule span. Our rule extractor also allows
“virtual nodes,” or the insertion of new nodes in
the parse tree to subdivide regions of flat struc-
ture. Virtual nodes are similar to the A+B ex-
tended categories of SAMT (Zollmann and Venu-
gopal, 2006), but with the added constraint that
they may not conflict with the surrounding tree
structure.

Because the SCFG rules are labeled with non-
terminals composed from both the source and tar-
get trees, the nonterminal inventory is quite large,
leading to estimation difficulties. To deal with
this, we automatically coarsening the nonterminal
labels (Hanneman and Lavie, 2011). Labels are
agglomeratively clustered based on a histogram-
based similarity function that looks at what tar-
get labels correspond to a particular source label
and vice versa. The number of clusters used is de-
termined based on spikes in the distance between
successive clustering iterations, or by the number
of source, target, or joint labels remaining. Start-
ing from a default grammar of 877 French, 2580
English, and 131,331 joint labels, we collapsed
the label space for our WMT system down to 50
French, 54 English, and 1814 joint categories. '

!Selecting the stopping point still requires a measure of
intuition. The label set size of 1814 chosen here roughly cor-
responds to the number of joint labels that would exist in the
grammar if virtual nodes were not included. This equivalence
has worked well in practice in both internal and published ex-
periments on other data sets (Hanneman and Lavie, 2013).



Extracted rules each have 10 features associated
with them. For an SCFG rule with source left-
hand side /,, target left-hand side ¢, source right-
hand side r;, and target right-hand side 74, they
are:

e phrasal translation log relative frequencies

log f(rs | r¢) and log f(ry | r5):

labeling relative frequency log f(¥s, i |75, 74)
and generation relative frequency
log f(rs> Tt | ls, Zt);

lexical translation log probabilities log pe,(7s |
r¢) and log pje.(r¢ | rs), defined similarly to
Moses’s definition;

. exp(%)—l f 1 ith £
a rarity score s for a rule with frequency

c (this score is monotonically decreasing in the
rule frequency); and,

three binary indicator features that mark
whether a rule is fully lexicalized, fully abstract,
or a glue rule.

Grammar filtering. Even after collapsing la-
bels, the extracted SCFGs contain an enormous
number of rules — 660 million rule types from just
under 4 billion extracted instances. To reduce the
size of the grammar, we employ a combination of
lossless filtering and lossy pruning. We first prune
all rules to select no more than the 60 most fre-
quent target-side alternatives for any source RHS,
then do further filtering to produce grammars for
each test sentence:

Lexical rules are filtered to the sentence level.
Only phrase pairs whose source sides match the
test sentence are retained.

Abstract rules (whose RHS are all nontermi-
nals) are globally pruned. Only the 4000 most
frequently observed rules are retained.

Mixed rules (whose RHS are a mix of terminals
and nonterminals) must match the test sentence,
and there is an additional frequency cutoff.

After this filtering, the number of completely lex-
ical rules that match a given sentence is typically
low, up to a few thousand rules. Each fully ab-
stract rule can potentially apply to every sentence;
the strict pruning cutoff in use for these rules is
meant to focus the grammar to the most important
general syntactic divergences between French and
English. Most of the latitude in grammar pruning
comes from adjusting the frequency cutoff on the
mixed rules since this category of rule is by far the
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most common type. We conducted experiments
with three different frequency cutoffs: 100, 200,
and 500, with each increase decreasing the gram-
mar size by 70-80 percent.

3.3 French-English Experiments

We tuned our system to the newstest2008 set of
2051 segments. Aside from the official new-
stest2013 test set (3000 segments), we also col-
lected test-set scores from last year’s newstest2012
set (3003 segments). Automatic metric scores
are computed according to BLEU (Papineni et al.,
2002), METEOR (Denkowski and Lavie, 2011),
and TER (Snover et al., 2006), all computed ac-
cording to MultEval v.0.5 (Clark et al., 2011).
Each system variant is run with two independent
MERT steps in order to control for optimizer in-
stability.

Table 1 presents the results, with the metric
scores averaged over both MERT runs. Quite in-
terestingly, we find only minor differences in both
tune and test scores despite the large differences in
filtered/pruned grammar size as the cutoff for par-
tially abstract rules increases. No system is fully
statistically separable (at p < 0.05) from the oth-
ers according to MultEval’s approximate random-
ization algorithm. The closest is the variant with
cutoff 200, which is generally judged to be slightly
worse than the other two. METEOR claims full
distinction on the 2013 test set, ranking the sys-
tem with the strictest grammar cutoff (500) best.
This is the version that we ultimately submitted to
the shared translation task.

4 Synthetic Translation Options

Before discussing our Russian—English and
English-Russian systems, we introduce the
concept of synthetic translation options, which
we use in these systems. We provide a brief
overview here; for more detail, we refer the reader
to Tsvetkov et al. (2013).

In language pairs that are typologically similar,
words and phrases map relatively directly from
source to target languages, and the standard ap-
proach to learning phrase pairs by extraction from
parallel data can be very effective. However, in
language pairs in which individual source lan-
guage words have many different possible transla-
tions (e.g., when the target language word could
have many different inflections or could be sur-
rounded by different function words that have no



Dev (2008) Test (2012) Test (2013)
System BLEU METR TER | BLEU METR TER | BLEU METR TER
Cutoff 100 | 22.52 31.44 59.22 27.73 33.30 53.25 28.34 *33.19 53.07
Cutoff 200 | 22.34 3140 59.21 | *27.33 33.26 53.23 | *28.05 *33.07 53.16
Cutoff 500 | 22.80 31.64 59.10 27.88 *33.58 53.09 28.27 *33.31 53.13

Table 1: French—English automatic metric scores for three grammar pruning cutoffs, averaged over two
MERT runs each. Scores that are statistically separable (p < 0.05) from both others in the same column

are marked with an asterisk (*).

direct correspondence in the source language), we
can expect the standard phrasal inventory to be
incomplete, except when very large quantities of
parallel data are available or for very frequent
words. There simply will not be enough exam-
ples from which to learn the ideal set of transla-
tion options. Therefore, since phrase based trans-
lation can only generate input/output word pairs
that were directly observed in the training corpus,
the decoder’s only hope for producing a good out-
put is to find a fluent, meaning-preserving transla-
tion using incomplete translation lexicons. Syn-
thetic translation option generation seeks to fill
these gaps using secondary generation processes
that produce possible phrase translation alterna-
tives that are not directly extractable from the
training data. By filling in gaps in the transla-
tion options used to construct the sentential trans-
lation search space, global discriminative transla-
tion models and language models can be more ef-
fective than they would otherwise be.

From a practical perspective, synthetic transla-
tion options are attractive relative to trying to build
more powerful models of translation since they
enable focus on more targeted translation prob-
lems (for example, transliteration, or generating
proper inflectional morphology for a single word
or phrase). Since they are translation options and
not complete translations, many of them may be
generated.

In the following system pairs, we use syn-
thetic translation options to augment hiero gram-
mar rules learned in the usual way. The synthetic
phrases we include augment draw from several
sources:

e transliterations of OOV Russian words (§5.3);

e English target sides with varied function words
(for example, given a phrase that translates into
cat we procedure variants like the cat, a cat and
of the cat); and,

e when translating info Russian, we generate
phrases by first predicting the most likely Rus-
sian lemma for a source word or phrase, and
then, conditioned on the English source context
(including syntactic and lexical features), we
predict the most likely inflection of the lemma

(§6.1).
5 Russian-English System

5.1 Data

We used the same parallel data for both the
Russian-English and English Russian systems.
Except for filtering to remove sentence pairs
whose log length ratios were statistical outliers,
we only filtered the Common Crawl corpus to re-
move sentence pairs with less than 50% concentra-
tion of Cyrillic characters on the Russian side. The
remaining data was tokenized and lower-cased.
For language models, we trained 4-gram Markov
models using the target side of the bitext and any
available monolingual data (including Gigaword
for English). Additionally, we trained 7-gram lan-
guage models using 600-class Brown clusters with
Witten-Bell smoothing.?

5.2 Baseline System

Our baseline Russian—English system is a hierar-
chical phrase-based translation model as imple-
mented in cdec (Chiang, 2007; Dyer et al., 2010).
SCFG translation rules that plausibly match each
sentence in the development and deftest sets were
extracted from the aligned parallel data using the
suffix array indexing technique of Lopez (2008).
A Russian morphological analyzer was used to
lemmatize the training, development, and test
data, and the “noisier channel” translation ap-
proach of Dyer (2007) was used in the Russian—
English system to let unusually inflected surface
forms back off to per-lemma translations.

*http://www.ark.cs.cmu.edu/cdyer/ru-600/.
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5.3 Synthetic Translations: Transliteration

Analysis revealed that about one third of the un-
seen Russian tokens in the development set con-
sisted of named entities which should be translit-
erated. We used individual Russian-English word
pairs in Wikipedia parallel headlines 3 to train a
linear-chained CRF tagger which labels each char-
acter in the Russian token with a sequence of zero
or more English characters (Ammar et al., 2012).
Since Russian names in the training set were in
nominative case, we used a simple rule-based mor-
phological generator to produce possible inflec-
tions and filtered out the ones not present in the
Russian monolingual corpus. At decoding, un-
seen Russian tokens are fed to the transliterator
which produces the most probable 20 translitera-
tions. We add a synthetic translation option for
each of the transliterations with four features: an
indicator feature for transliterations, the CRF un-
normalized score, the trigram character-LM log-
probability, and the divergence from the average
length-ratio between an English name and its Rus-
sian transliteration.

5.4 Synthetic Translations: Function Words

Slavic languages like Russian have a large number
of different inflected forms for each lemma, repre-
senting different cases, tenses, and aspects. Since
our training data is rather limited relative to the
number of inflected forms that are possible, we use
an English language model to generate a variety
of common function word contexts for each con-
tent word phrase. These are added to the phrase
table with a feature indicating that they were not
actually observed in the training data, but rather
hallucinated using SRILM’s disambig tool.

5.5 Summary

Table 5.5 summarizes our Russian-English trans-
lation results. In the submitted system, we addi-
tionally used MBR reranking to combine the 500-
best outputs of our system, with the 500-best out-
puts of a syntactic system constructed similarly to
the French—English system.

6 English-Russian System

The bilingual training data was identical to the
filtered data used in the previous section. Word
alignments was performed after lemmatizing the

3We contributed the data set to the shared task participants
at http://www.statmt.org/wmt13/wiki-titles.ru-en.tar.gz
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Table 2: Russian-English summary.

Condition BLEU

Baseline 30.8
Function words | 30.9
Transliterations | 31.1

Russian side of the training corpus. An unpruned,
modified Kneser-Ney smoothed 4-gram language
model (Chen and Goodman, 1996) was estimated
from all available Russian text (410 million words)
using the KenLLM toolkit (Heafield et al., 2013).

A standard hierarchical phrase-based system
was trained with rule shape indicator features, ob-
tained by replacing terminals in translation rules
by a generic symbol. MIRA training was per-
formed to learn feature weights.

Additionally, word clusters (Brown et al., 1992)
were obtained for the complete monolingual Rus-
sian data. Then, an unsmoothed 7-gram language
model was trained on these clusters and added as
a feature to the translation system. Indicator fea-
tures were also added for each cluster and bigram
cluster occurence. These changes resulted in an
improvement of more than a BLEU point on our
held-out development set.

6.1 Predicting Target Morphology

We train a classifier to predict the inflection of
each Russian word independently given the cor-
responding English sentence and its word align-
ment. To do this, we first process the Russian
side of the parallel training data using a statisti-
cal morphological tagger (Sharoff et al., 2008) to
obtain lemmas and inflection tags for each word
in context. Then, we obtain part-of-speech tags
and dependency parses of the English side of the
parallel data (Martins et al., 2010), as well as
Brown clusters (Brown et al., 1992). We extract
features capturing lexical and syntactical relation-
ships in the source sentence and train structured
linear logistic regression models to predict the tag
of each English word independently given its part-
of-speech.* In practice, due to the large size of
the corpora and of the feature space dimension,
we were only able to use about 10% of the avail-
able bilingual data, sampled randomly from the
Common Crawl corpus. We also restricted the

“We restrict ourselves to verbs, nouns, adjectives, adverbs
and cardinals since these open-class words carry most inflec-
tion in Russian.



neiTatecA_V + mis-sfm-e
MbiTajlaCb

ST~

she had attempted to cross

C50 C473 C28 c8 C275
PRP VBD VBN TO VB
aux aux
nsubj xcomp

Figure 1: The classifier is trained to predict the verbal inflection mis—sfm—e based on the linear and
syntactic context of the words aligned to the Russian word; given the stem neiTaTbes (pytat’sya), this
inflection paradigm produces the observed surface form nerrasiace (pytalas’).

set of possible inflections for each word to the set
of tags that were observed with its lemma in the
full monolingual training data. This was neces-
sary because of our choice to use a tagger, which
is not able to synthesize surface forms for a given
lemma-tag pair.

We then augment the standard hierarchical
phrase-base grammars extracted for the baseline
systems with new rules containing inflections not
necessarily observed in the parallel training data.
We start by training a non-gappy phrase transla-
tion model on the bilingual data where the Russian
has been lemmatized.’ Then, before translating an
English sentence, we extract translation phrases
corresponding to this specific sentence and re-
inflect each word in the target side of these phrases
using the classifier with features extracted from
the source sentence words and annotations. We
keep the original phrase-based translation features
and add the inflection score predicted by the clas-
sifier as well as indicator features for the part-of-
speech categories of the re-inflected words.

On a held-out development set, these synthetic
phrases produce a 0.3 BLEU point improvement.
Interestingly, the feature weight learned for using
these phrases is positive, indicating that useful in-
flections might be produced by this process.

7 Conclusion

The CMU systems draws on a large number of
different research directions. Techniques such as
MBR reranking and synthetic phrases allow dif-
ferent contributors to focus on different transla-

SWe keep intact words belonging to non-predicted cate-
gories.

75

tion problems that are ultimately recombined into
a single system. Our performance, in particular,
on English—Russian machine translation was quite
satisfying, we attribute our biggest gains in this
language pair to the following:

Our inflection model that predicted how an En-
glish word ought best be translated, given its
context. This enabled us to generate forms that
were not observed in the parallel data or would
have been rare independent of context with pre-
cision.

Brown cluster language models seem to be quite
effective at modeling long-range morphological
agreement patterns quite reliably.
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