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Abstract

We present the results of the WMT13
shared tasks, which included a translation
task, a task for run-time estimation of ma-
chine translation quality, and an unoffi-
cial metrics task. This year, 143 machine
translation systems were submitted to the
ten translation tasks from 23 institutions.
An additional 6 anonymized systems were
included, and were then evaluated both au-
tomatically and manually, in our largest
manual evaluation to date. The quality es-
timation task had four subtasks, with a to-
tal of 14 teams, submitting 55 entries.

1 Introduction

We present the results of the shared tasks of
the Workshop on Statistical Machine Translation
(WMT) held at ACL 2013. This workshop builds
on seven previous WMT workshops (Koehn and
Monz, 2006; Callison-Burch et al., 2007, 2008,
2009, 2010, 2011, 2012).

This year we conducted three official tasks: a
translation task, a human evaluation of transla-
tion results, and a quality estimation task.1 In
the translation task (§2), participants were asked
to translate a shared test set, optionally restrict-
ing themselves to the provided training data. We
held ten translation tasks this year, between En-
glish and each of Czech, French, German, Span-
ish, and Russian. The Russian translation tasks
were new this year, and were also the most popu-
lar. The system outputs for each task were evalu-
ated both automatically and manually.

The human evaluation task (§3) involves ask-
ing human judges to rank sentences output by
anonymized systems. We obtained large numbers
of rankings from two groups: researchers (who

1The traditional metrics task is evaluated in a separate pa-
per (Macháček and Bojar, 2013).

contributed evaluations proportional to the number
of tasks they entered) and workers on Amazon’s
Mechanical Turk (who were paid). This year’s ef-
fort was our largest yet by a wide margin; we man-
aged to collect an order of magnitude more judg-
ments than in the past, allowing us to achieve sta-
tistical significance on the majority of the pairwise
system rankings. This year, we are also clustering
the systems according to these significance results,
instead of presenting a total ordering over systems.

The focus of the quality estimation task (§6)
is to produce real-time estimates of sentence- or
word-level machine translation quality. This task
has potential usefulness in a range of settings, such
as prioritizing output for human post-editing, or
selecting the best translations from a number of
systems. This year the following subtasks were
proposed: prediction of percentage of word edits
necessary to fix a sentence, ranking of up to five al-
ternative translations for a given source sentence,
prediction of post-editing time for a sentence, and
prediction of word-level scores for a given trans-
lation (correct/incorrect and types of edits). The
datasets included English-Spanish and German-
English news translations produced by a number
of machine translation systems. This marks the
second year we have conducted this task.

The primary objectives of WMT are to evaluate
the state of the art in machine translation, to dis-
seminate common test sets and public training data
with published performance numbers, and to re-
fine evaluation methodologies for machine trans-
lation. As before, all of the data, translations,
and collected human judgments are publicly avail-
able.2 We hope these datasets serve as a valu-
able resource for research into statistical machine
translation, system combination, and automatic
evaluation or prediction of translation quality.

2http://statmt.org/wmt13/results.html
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2 Overview of the Translation Task

The recurring task of the workshop examines
translation between English and five other lan-
guages: German, Spanish, French, Czech, and —
new this year — Russian. We created a test set for
each language pair by translating newspaper arti-
cles and provided training data.

2.1 Test data
The test data for this year’s task was selected from
news stories from online sources. A total of 52
articles were selected, in roughly equal amounts
from a variety of Czech, English, French, German,
Spanish, and Russian news sites:3

Czech: aktuálně.cz (1), CTK (1), denı́k (1),
iDNES.cz (3), lidovky.cz (1), Novinky.cz (2)

French: Cyber Presse (3), Le Devoir (1), Le
Monde (3), Liberation (2)

Spanish: ABC.es (2), BBC Spanish (1), El Peri-
odico (1), Milenio (3), Noroeste (1), Primera
Hora (3)

English: BBC (2), CNN (2), Economist (1),
Guardian (1), New York Times (2), The Tele-
graph (1)

German: Der Standard (1), Deutsche Welle (1),
FAZ (1), Frankfurter Rundschau (2), Welt (2)

Russian: AIF (2), BBC Russian (2), Izvestiya (1),
Rosbalt (1), Vesti (1)

The stories were translated by the professional
translation agency Capita, funded by the EU
Framework Programme 7 project MosesCore, and
by Yandex, a Russian search engine.4 All of the
translations were done directly, and not via an in-
termediate language.

2.2 Training data
As in past years we provided parallel corpora to
train translation models, monolingual corpora to
train language models, and development sets to
tune system parameters. Some training corpora
were identical from last year (Europarl5, United
Nations, French-English 109 corpus, CzEng),
some were updated (News Commentary, mono-
lingual data), and new corpora were added (Com-
mon Crawl (Smith et al., 2013), Russian-English

3For more details see the XML test files. The docid tag
gives the source and the date for each document in the test set,
and the origlang tag indicates the original source language.

4http://www.yandex.com/
5As of Fall 2011, the proceedings of the European Parlia-

ment are no longer translated into all official languages.

parallel data provided by Yandex, Russian-English
Wikipedia Headlines provided by CMU).

Some statistics about the training materials are
given in Figure 1.

2.3 Submitted systems
We received 143 submissions from 23 institu-
tions. The participating institutions and their en-
try names are listed in Table 1; each system did
not necessarily appear in all translation tasks. We
also included three commercial off-the-shelf MT
systems and three online statistical MT systems,6

which we anonymized.
For presentation of the results, systems are

treated as either constrained or unconstrained, de-
pending on whether their models were trained only
on the provided data. Since we do not know how
they were built, these online and commercial sys-
tems are treated as unconstrained during the auto-
matic and human evaluations.

3 Human Evaluation

As with past workshops, we contend that auto-
matic measures of machine translation quality are
an imperfect substitute for human assessments.
We therefore conduct a manual evaluation of the
system outputs and define its results to be the prin-
cipal ranking of the workshop. In this section, we
describe how we collected this data and compute
the results, and then present the official results of
the ranking.

We run the evaluation campaign using an up-
dated version of Appraise (Federmann, 2012); the
tool has been extended to support collecting judg-
ments using Amazon’s Mechanical Turk, replac-
ing the annotation system used in previous WMTs.
The software, including all changes made for this
year’s workshop, is available from GitHub.7

This year differs from prior years in a few im-
portant ways:

• We collected about ten times more judgments
that we have in the past, using judgments
from both participants in the shared task and
non-experts hired on Amazon’s Mechanical
Turk.

• Instead of presenting a total ordering of sys-
tems for each pair, we cluster them and report
a ranking over the clusters.

6Thanks to Hervé Saint-Amand and Martin Popel for har-
vesting these entries.

7https://github.com/cfedermann/Appraise
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Europarl Parallel Corpus
Spanish↔ English French↔ English German↔ English Czech↔ English

Sentences 1,965,734 2,007,723 1,920,209 646,605
Words 56,895,229 54,420,026 60,125,563 55,642,101 50,486,398 53,008,851 14,946,399 17,376,433

Distinct words 176,258 117,481 140,915 118,404 381,583 115,966 172,461 63,039

News Commentary Parallel Corpus
Spanish↔ English French↔ English German↔ English Czech↔ English Russian↔ English

Sentences 174,441 157,168 178,221 140,324 150,217
Words 5,116,388 4,520,796 4,928,135 4,066,721 4,597,904 4,541,058 3,206,423 3,507,249 3,841,950 4,008,949

Distinct words 84,273 61,693 69,028 58,295 142,461 61,761 138,991 54,270 145,997 57,991

Common Crawl Parallel Corpus
Spanish↔ English French↔ English German↔ English Czech↔ English Russian↔ English

Sentences 1,845,286 3,244,152 2,399,123 161,838 878,386
Words 49,561,060 46,861,758 91,328,790 81,096,306 54,575,405 58,870,638 3,529,783 3,927,378 21,018,793 21,535,122

Distinct words 710,755 640,778 889,291 859,017 1,640,835 823,480 210,170 128,212 764,203 432,062

United Nations Parallel Corpus
Spanish↔ English French↔ English

Sentences 11,196,913 12,886,831
Words 318,788,686 365,127,098 411,916,781 360,341,450

Distinct words 593,567 581,339 565,553 666,077

109 Word Parallel Corpus
French↔ English

Sentences 22,520,400
Words 811,203,407 668,412,817

Distinct words 2,738,882 2,861,836

CzEng Parallel Corpus
Czech↔ English

Sentences 14,833,358
Words 200,658,857 228,040,794

Distinct words 1,389,803 920,824

Yandex 1M Parallel Corpus
Russian↔ English

Sentences 1,000,000
Words 24,121,459 26,107,293

Distinct words 701,809 387,646

Wiki Headlines Parallel Corpus
Russian↔ English

Sentences 514,859
Words 1,191,474 1,230,644

Distinct words 282,989 251,328

Europarl Language Model Data
English Spanish French German Czech

Sentence 2,218,201 2,123,835 2,190,579 2,176,537 668,595
Words 59,848,044 60,476,282 63,439,791 53,534,167 14,946,399

Distinct words 123,059 181,837 145,496 394,781 172,461

News Language Model Data
English Spanish French German Czech Russian

Sentence 68,521,621 13,384,314 21,195,476 54,619,789 27,540,749 19,912,911
Words 1,613,778,461 386,014,234 524,541,570 983,818,841 456,271,247 351,595,790

Distinct words 3,392,137 1,163,825 1,590,187 6,814,953 2,655,813 2,195,112

News Test Set
English Spanish French German Czech Russian

Sentences 3000
Words 64,810 73,659 73,659 63,412 57,050 58,327

Distinct words 8,935 10,601 11,441 12,189 15,324 15,736

Figure 1: Statistics for the training and test sets used in the translation task. The number of words and the number of distinct
words (case-insensitive) is based on the provided tokenizer.
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ID Institution
BALAGUR Yandex School of Data Analysis (Borisov et al., 2013)
CMU

CMU-TREE-TO-TREE

Carnegie Mellon University (Ammar et al., 2013)

CU-BOJAR,
CU-DEPFIX,
CU-TAMCHYNA

Charles University in Prague (Bojar et al., 2013)

CU-KAREL, CU-ZEMAN Charles University in Prague (Bı́lek and Zeman, 2013)
CU-PHRASEFIX,
CU-TECTOMT

Charles University in Prague (Galuščáková et al., 2013)

DCU Dublin City University (Rubino et al., 2013a)
DCU-FDA Dublin City University (Bicici, 2013a)
DCU-OKITA Dublin City University (Okita et al., 2013)
DESRT Università di Pisa (Miceli Barone and Attardi, 2013)
ITS-LATL University of Geneva
JHU Johns Hopkins University (Post et al., 2013)
KIT Karlsruhe Institute of Technology (Cho et al., 2013)
LIA Université d’Avignon (Huet et al., 2013)
LIMSI LIMSI (Allauzen et al., 2013)
MES-* Munich / Edinburgh / Stuttgart (Durrani et al., 2013a; Weller et al., 2013)
OMNIFLUENT SAIC (Matusov and Leusch, 2013)
PROMT PROMT Automated Translations Solutions
QCRI-MES Qatar / Munich / Edinburgh / Stuttgart (Sajjad et al., 2013)
QUAERO QUAERO (Peitz et al., 2013a)
RWTH RWTH Aachen (Peitz et al., 2013b)
SHEF University of Sheffield
STANFORD Stanford University (Green et al., 2013)
TALP-UPC TALP Research Centre (Formiga et al., 2013a)
TUBITAK TÜBİTAK-BİLGEM (Durgar El-Kahlout and Mermer, 2013)
UCAM University of Cambridge (Pino et al., 2013)
UEDIN,
UEDIN-HEAFIELD

University of Edinburgh (Durrani et al., 2013b)

UEDIN-SYNTAX University of Edinburgh (Nadejde et al., 2013)
UMD University of Maryland (Eidelman et al., 2013)
UU Uppsala University (Stymne et al., 2013)
COMMERCIAL-1,2,3 Anonymized commercial systems
ONLINE-A,B,G Anonymized online systems

Table 1: Participants in the shared translation task. Not all teams participated in all language pairs. The translations from the
commercial and online systems were not submitted by their respective companies but were obtained by us, and are therefore
anonymized in a fashion consistent with previous years of the workshop.
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3.1 Ranking translations of sentences
The ranking among systems is produced by col-
lecting a large number of rankings between the
systems’ translations. Every language task had
many participating systems (the largest was 19,
for the Russian-English task). Rather than asking
judges to provide a complete ordering over all the
translations of a source segment, we instead ran-
domly select five systems and ask the judge to rank
just those. We call each of these a ranking task.
A screenshot of the ranking interface is shown in
Figure 2.

For each ranking task, the judge is presented
with a source segment, a reference translation,
and the outputs of five systems (anonymized and
randomly-ordered). The following simple instruc-
tions are provided:

You are shown a source sentence fol-
lowed by several candidate translations.
Your task is to rank the translations from
best to worst (ties are allowed).

The rankings of the systems are numbered from 1
to 5, with 1 being the best translation and 5 be-
ing the worst. Each ranking task has the potential
to provide 10 pairwise rankings, and fewer if the
judge chooses any ties. For example, the ranking

{A:1, B:2, C:4, D:3, E:5}

provides 10 pairwise rankings, while the ranking

{A:3, B:3, C:4, D:3, E:1}

provides just 7. The absolute value of the ranking
or the degree of difference is not considered.

We use the collected pairwise rankings to assign
each system a score that reflects how highly that
system was usually ranked by the annotators. The
score for some system A reflects how frequently it
was judged to be better than other systems when
compared on the same segment; its score is the
number of pairwise rankings where it was judged
to be better, divided by the total number of non-
tying pairwise comparisons. These scores were
used to compute clusters of systems and rankings
between them (§3.4).

3.2 Collecting the data
A goal this year was to collect enough data to
achieve statistical significance in the rankings. We
distributed the workload among two groups of
judges: researchers and Turkers. The researcher

group comprised partipants in the shared task, who
were asked to contribute judgments on 300 sen-
tences for each system they contributed. The re-
searcher evaluation was held over three weeks
from May 17–June 7, and yielded about 280k pair-
wise rankings.

The Turker group was composed of non-expert
annotators hired on Amazon’s Mechanical Turk
(MTurk). A basic unit of work on MTurk is called
a Human Intelligence Task (HIT) and included
three ranking tasks, for which we paid $0.25. To
ensure that the Turkers provided high quality an-
notations, this portion of the evaluation was be-
gun after the researcher portion had completed,
enabling us to embed controls in the form of high-
consensus pairwise rankings in the Turker HITs.
To build these controls, we collected ranking tasks
containing pairwise rankings with a high degree of
researcher consensus. An example task is here:

SENTENCE 504
SOURCE Vor den heiligen Stätten verbeugen
REFERENCE Let’s worship the holy places
SYSTEM A Before the holy sites curtain
SYSTEM B Before we bow to the Holy Places
SYSTEM C To the holy sites bow
SYSTEM D Bow down to the holy sites
SYSTEM E Before the holy sites pay

MATRIX

A B C D E
A - 0 0 0 3
B 5 - 0 1 5
C 6 6 - 0 6
D 6 8 5 - 6
E 0 0 0 0 -

Matrix entry Mi,j records the number of re-
searchers who judged System i to be better than
System j. We use as controls pairwise judgments
for which |Mi,j−Mj,i| > 5, i.e., judgments where
the researcher consensus ran strongly in one direc-
tion. We rejected HITs from Turkers who encoun-
tered at least 10 of these controls and failed more
than 50% of them.

There were 463 people who participated in the
Turker portion of the manual evaluation, contribut-
ing 664k pairwise rankings from Turkers who
passed the controls. Together with the researcher
judgments, we collected close to a million pair-
wise rankings, compared to 101k collected last
year: a ten-fold increase. Table 2 contains more
detail.
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Figure 2: Screenshot of the Appraise interface used in the human evaluation campaign. The annotator is presented with a
source segment, a reference translation, and the outputs of five systems (anonymized and randomly-ordered) and has to rank
these according to their translation quality, ties are allowed. For technical reasons, annotators on Amazon’s Mechanical Turk
received all three ranking tasks for a single HIT on a single page, one upon the other.

3.3 Annotator agreement
Each year we calculate annotator agreement
scores for the human evaluation as a measure of
the reliability of the rankings. We measured pair-
wise agreement among annotators using Cohen’s
kappa coefficient (κ) (Cohen, 1960), which is de-
fined as

κ =
P (A)− P (E)

1− P (E)

where P (A) is the proportion of times that the an-
notators agree, and P (E) is the proportion of time
that they would agree by chance. Note that κ is ba-
sically a normalized version of P (A), one which
takes into account how meaningful it is for anno-
tators to agree with each other, by incorporating
P (E). The values for κ range from 0 to 1, with
zero indicating no agreement and 1 perfect agree-
ment.

We calculate P (A) by examining all pairs of
systems which had been judged by two or more
judges, and calculating the proportion of time that
they agreed that A > B, A = B, or A < B. In
other words, P (A) is the empirical, observed rate

at which annotators agree, in the context of pair-
wise comparisons.

As for P (E), it should capture the probability
that two annotators would agree randomly. There-
fore:

P (E) = P (A>B)2 + P (A=B)2 + P (A<B)2

Note that each of the three probabilities in P (E)’s
definition are squared to reflect the fact that we are
considering the chance that two annotators would
agree by chance. Each of these probabilities is
computed empirically, by observing how often an-
notators actually rank two systems as being tied.

Table 3 gives κ values for inter-annotator agree-
ment for WMT11–WMT13 while Table 4 de-
tails intra-annotator agreement scores. Due to the
change of annotation software, we used a slightly
different way of computing annotator agreement
scores. Therefore, we chose to re-compute values
for previous WMTs to allow for a fair comparison.
The exact interpretation of the kappa coefficient is
difficult, but according to Landis and Koch (1977),
0–0.2 is slight, 0.2–0.4 is fair, 0.4–0.6 is moderate,
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LANGUAGE PAIR Systems Rankings Average
Czech-English 11 85,469 7,769.91
English-Czech 12 102,842 8,570.17
German-English 17 128,668 7,568.71
English-German 15 77,286 5,152.40
Spanish-English 12 67,832 5,652.67
English-Spanish 13 60,464 4,651.08
French-English 13 80,741 6,210.85
English-French 17 100,783 5,928.41
Russian-English 19 151,422 7,969.58
English-Russian 14 87,323 6,237.36
Total 148 942,840 6,370.54
WMT12 103 101,969 999.69
WMT11 133 63,045 474.02

Table 2: Amount of data collected in the WMT13 manual evaluation. The final two rows report summary information from the
previous two workshops.

LANGUAGE PAIR WMT11 WMT12 WMT13 WMT13r WMT13m
Czech-English 0.400 0.311 0.244 0.342 0.279
English-Czech 0.460 0.359 0.168 0.408 0.075
German-English 0.324 0.385 0.299 0.443 0.324
English-German 0.378 0.356 0.267 0.457 0.239
Spanish-English 0.494 0.298 0.277 0.415 0.295
English-Spanish 0.367 0.254 0.206 0.333 0.249
French-English 0.402 0.272 0.275 0.405 0.321
English-French 0.406 0.296 0.231 0.434 0.237
Russian-English — — 0.278 0.315 0.324
English-Russian — — 0.243 0.416 0.207

Table 3: κ scores measuring inter-annotator agreement. The WMT13r and WMT13m columns provide breakdowns for re-
searcher annotations and MTurk annotations, respectively. See Table 4 for corresponding intra-annotator agreement scores.

0.6–0.8 is substantial, and 0.8–1.0 is almost per-
fect. We find that the agreement rates are more or
less the same as in prior years.

The WMT13 column contains both researcher
and Turker annotations at a roughly 1:2 ratio. The
final two columns break out agreement numbers
between these two groups. The researcher agree-
ment rates are similar to agreement rates from past
years, while the Turker agreement are well below
researcher agreement rates, varying widely, but of-
ten comparable to WMT11 and WMT12. Clearly,
researchers are providing us with more consistent
opinions, but whether these differences are ex-
plained by Turkers racing through jobs, the partic-
ularities that inform researchers judging systems
they know well, or something else, is hard to tell.
Intra-annotator agreement scores are also on par
from last year’s level, and are often much better.
We observe better intra-annotator agreement for
researchers compared to Turkers.

As a small test, we varied the threshold of ac-
ceptance against the controls for the Turker data
alone and computed inter-annotator agreement
scores on the datasets for the Russian–English task
(the only language pair where we had enough data
at high thresholds). Table 5 shows that higher
thresholds do indeed give us better agreements,
but not monotonically. The increasing κs sug-
gests that we can find a segment of Turkers who
do a better job and that perhaps a slightly higher
threshold of 0.6 would serve us better, while the
remaining difference against the researchers sug-
gests there may be different mindsets informing
the decisions. In any case, getting the best perfor-
mance out of the Turkers remains difficult.

3.4 System Score

Given the multitude of pairwise comparisons, we
would like to rank the systems according to a
single score computed for each system. In re-
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LANGUAGE PAIR WMT11 WMT12 WMT13 WMT13r WMT13m
Czech-English 0.597 0.454 0.479 0.483 0.478
English-Czech 0.601 0.390 0.290 0.547 0.242
German-English 0.576 0.392 0.535 0.643 0.515
English-German 0.528 0.433 0.498 0.649 0.452
Spanish-English 0.574 1.000 0.575 0.605 0.537
English-Spanish 0.426 0.329 0.492 0.468 0.492
French-English 0.673 0.360 0.578 0.585 0.565
English-French 0.524 0.414 0.495 0.630 0.486
Russian-English — — 0.450 0.363 0.477
English-Russian — — 0.513 0.582 0.500

Table 4: κ scores measuring intra-annotator agreement, i.e., self-consistency of judges, across for the past few years of the
human evaluation. The WMT13r and WMT13m columns provide breakdowns for researcher annotations and MTurk annota-
tions, respectively. The perfect inter-annotator agreement for Spanish-English is a result of there being very little data for that
language pair.

thresh. rankings κ

0.5 16,605 0.234
0.6 9,999 0.337
0.7 3,219 0.360
0.8 1,851 0.395
0.9 849 0.336

Table 5: Agreement as a function of threshold for Turkers on
the Russian–English task. The threshold is the percentage of
controls a Turker must pass for her rankings to be accepted.

cent evaluation campaigns, we tweaked the metric
and now arrived at a intuitive score that has been
demonstrated to be accurate in ranking systems ac-
cording to their true quality (Koehn, 2012).

The score, which we call EXPECTED WINS, has
an intuitive explanation. If the system is compared
against a randomly picked opposing system, on a
randomly picked sentence, by a randomly picked
judge, what is the probability that its translation is
ranked higher?

Formally, the score for a system Si among a set
of systems {Sj} given a pool of pairwise rankings
summarized as win(A,B) — the number of times
system A is ranked higher than system B — is
defined as follows:

score(Si) =
1

|{Sj}|
∑

j,j 6=i

win(Si, Sj)
win(Si, Sj) + win(Sj , Si)

Note that this score ignores ties.

3.5 Rank Ranges and Clusters

Given the scores, we would like to rank the sys-
tems, which is straightforward. But we would also
like to know, if the obtained system ranking is
statistically significant. Typically, given the large

number of systems that participate, and the simi-
larity of the systems given a common training data
condition and often common toolsets, there will be
some systems that will be very close in quality.

To establish the reliability of the obtained sys-
tem ranking, we use bootstrap resampling. We
sample from the set of pairwise rankings an equal
sized set of pairwise rankings (allowing for multi-
ple drawings of the same pairwise ranking), com-
pute the expected wins score for each system
based on this sample, and rank each system. By
repeating this procedure a 1,000 times, we can de-
termine a range of ranks, into which system falls
at least 95% of the time (i.e., at least 950 times) —
corresponding to a p-level of p ≤ 0.05.

Furthermore, given the rank ranges for each sys-
tem, we can cluster systems with overlapping rank
ranges.8

For all language pairs and all systems, Table 6
reports all system scores, rank ranges, and clus-
ters. The official interpretation of these results
is that systems in the same cluster are considered
tied. Given the large number of judgements that
we collected, it was possible to group on average
about two systems in a cluster, even though the
systems in the middle are typically in larger clus-
ters.

8Formally, given ranges defined by start(Si) and end(Si),
we seek the largest set of clusters {Cc} that satisfies:

∀S ∃C : S ∈ C
S ∈ Ca, S ∈ Cb → Ca = Cb

Ca 6= Cb → ∀Si ∈ Ca, Sj ∈ Cb :

start(Si) > end(Sj) or start(Sj) > end(Si)

8



Czech-English
# score range system
1 0.607 1 UEDIN-HEAFIELD
2 0.582 2-3 ONLINE-B

0.573 2-4 MES
0.562 3-5 UEDIN
0.547 4-7 ONLINE-A
0.542 5-7 UEDIN-SYNTAX
0.534 6-7 CU-ZEMAN

8 0.482 8 CU-TAMCHYNA
9 0.458 9 DCU-FDA
10 0.321 10 JHU
11 0.297 11 SHEF-WPROA

English-Czech
# score range system
1 0.580 1-2 CU-BOJAR

0.578 1-2 CU-DEPFIX
3 0.562 3 ONLINE-B
4 0.525 4 UEDIN
5 0.505 5-7 CU-ZEMAN

0.502 5-7 MES
0.499 5-8 ONLINE-A
0.484 7-9 CU-PHRASEFIX
0.476 8-9 CU-TECTOMT

10 0.457 10-11 COMMERCIAL-1
0.450 10-11 COMMERCIAL-2

12 0.389 12 SHEF-WPROA

Spanish-English
# score range system
1 0.624 1 UEDIN-HEAFIELD
2 0.595 2 ONLINE-B
3 0.570 3-5 UEDIN

0.570 3-5 ONLINE-A
0.567 3-5 MES

6 0.537 6 LIMSI-SOUL
7 0.514 7 DCU
8 0.488 8-9 DCU-OKITA

0.484 8-9 DCU-FDA
10 0.462 10 CU-ZEMAN
11 0.425 11 JHU
12 0.169 12 SHEF-WPROA

English-Spanish
# rank range system
1 0.637 1 ONLINE-B
2 0.582 2-4 ONLINE-A

0.578 2-4 UEDIN
0.567 3-4 PROMT

5 0.535 5-6 MES
0.528 5-6 TALP-UPC

7 0.491 7-8 LIMSI
0.474 7-9 DCU
0.472 8-10 DCU-FDA
0.455 9-11 DCU-OKITA
0.446 10-11 CU-ZEMAN

12 0.417 12 JHU
13 0.324 13 SHEF-WPROA

German-English
# rank range system
1 0.660 1 ONLINE-B
2 0.620 2-3 ONLINE-A

0.608 2-3 UEDIN-SYNTAX
4 0.586 4-5 UEDIN

0.584 4-5 QUAERO
0.571 5-7 KIT
0.562 6-7 MES

8 0.543 8-9 RWTH-JANE
0.533 8-10 MES-REORDER
0.526 9-10 LIMSI-SOUL

11 0.480 11 TUBITAK
12 0.462 12-13 UMD

0.462 12-13 DCU
14 0.396 14 CU-ZEMAN
15 0.367 15 JHU
16 0.311 16 SHEF-WPROA
17 0.238 17 DESRT

English-German
# rank range system
1 0.637 1-2 ONLINE-B

0.636 1-2 PROMT
3 0.614 3 UEDIN-SYNTAX

0.587 3-5 ONLINE-A
0.571 4-6 UEDIN
0.554 5-6 KIT

7 0.523 7 STANFORD
8 0.507 8 LIMSI-SOUL
9 0.477 9-11 MES-REORDER

0.476 9-11 JHU
0.460 10-12 CU-ZEMAN
0.453 11-12 TUBITAK

13 0.361 13 UU
14 0.329 14-15 SHEF-WPROA

0.323 14-15 RWTH-JANE

English-Russian
# rank range system
1 0.641 1 PROMT
2 0.623 2 ONLINE-B
3 0.556 3-4 CMU

0.542 3-6 ONLINE-G
0.538 3-7 ONLINE-A
0.531 4-7 UEDIN
0.520 5-7 QCRI-MES

8 0.498 8 CU-KAREL
9 0.478 9-10 MES-QCRI

0.469 9-10 JHU
11 0.434 11-12 COMMERCIAL-3

0.426 11-13 LIA
0.419 12-13 BALAGUR

14 0.331 14 CU-ZEMAN

French-English
# rank range system
1 0.638 1 UEDIN-HEAFIELD
2 0.604 2-3 UEDIN

0.591 2-3 ONLINE-B
4 0.573 4-5 LIMSI-SOUL

0.562 4-5 KIT
0.541 5-6 ONLINE-A

7 0.512 7 MES-SIMPLIFIED
8 0.486 8 DCU
9 0.439 9-10 RWTH

0.429 9-11 CMU-T2T
0.420 10-11 CU-ZEMAN

12 0.389 12 JHU
13 0.322 13 SHEF-WPROA

English-French
# rank range system
1 0.607 1-2 UEDIN

0.600 1-3 ONLINE-B
0.588 2-4 LIMSI-SOUL
0.584 3-4 KIT

5 0.553 5-7 PROMT
0.551 5-8 STANFORD
0.547 5-8 MES
0.537 6-9 MES-INFLECTION
0.533 7-10 RWTH-PB
0.516 9-11 ONLINE-A
0.499 10-11 DCU

12 0.427 12 CU-ZEMAN
13 0.408 13 JHU
14 0.382 14 OMNIFLUENT
15 0.350 15 ITS-LATL
16 0.326 16 ITS-LATL-PE

Russian-English
# rank range system
1 0.657 1 ONLINE-B
2 0.604 2-3 CMU

0.588 2-3 ONLINE-A
4 0.562 4-6 ONLINE-G

0.561 4-6 PROMT
0.550 5-7 QCRI-MES
0.546 5-7 UCAM

8 0.527 8-9 BALAGUR
0.519 8-10 MES-QCRI
0.507 9-11 UEDIN
0.497 10-12 OMNIFLUENT
0.492 11-14 LIA
0.483 12-15 OMNIFLUENT-C
0.481 12-15 UMD
0.476 13-15 CU-KAREL

16 0.432 16 COMMERCIAL-3
17 0.417 17 UEDIN-SYNTAX
18 0.396 18 JHU
19 0.215 19 CU-ZEMAN

Table 6: Official results for the WMT13 translation task. Systems are ordered by the expected win score. Lines between
systems indicate clusters according to bootstrap resampling at p-level p ≤ .05. This method is also used to determine the
range of ranks into which system falls. Systems with grey background indicate use of resources that fall outside the constraints
provided for the shared task.
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4 Understandability of English→Czech

For the English-to-Czech translation, we con-
ducted a variation of the “understandability” test
as introduced in WMT09 (Callison-Burch et al.,
2009) and used in WMT10. In order to obtain
additional reference translations, we conflated this
test with post-editing. The procedure was as fol-
lows:

1. Monolingual editing (also called blind edit-
ing). The first annotator is given just the MT
output and requested to correct it. Given er-
rors in MT outputs, some guessing of the
original meaning is often inevitable and the
annotators are welcome to try. If unable, they
can mark the sentences as incomprehensible.

2. Review. A second annotator is asked to
validate the monolingual edit given both the
source and reference translations. Our in-
structions specify three options:

(a) If the monolingual edit is an adequate
translation and acceptably fluent Czech,
confirm it without changes.

(b) If the monolingual edit is adequate but
needs polishing, modify the sentence
and prefix it with the label ‘OK:’.

(c) If the monolingual edit is wrong, cor-
rect it. You may start from the origi-
nal unedited MT output, if that is eas-
ier. Avoid using the reference directly,
prefer words from MT output whenever
possible.

The motivation behind this procedure is that we
want to save the time necessary for reading the
sentence. If the reviewer has already considered
whether the sentence is an acceptable translation,
they do not need to read the MT output again in
order to post-edit it. Our approach is thus some-
what the converse of Aziz et al. (2013) who ana-
lyze post-editing effort to obtain rankings of MT
systems. We want to measure the understandabil-
ity of MT outputs and obtain post-edits at the same
time.

Both annotation steps were carried out in
the CASMACAT/Matecat post-editing user inter-
face.9, modified to provide the relevant variants of
the sentence next to the main edit box. Screen-
shots of the two annotation phases are given in
Figure 3 and Figure 4.

9http://www.casmacat.eu/index.php?n=Workbench

Occurrence GOOD ALMOST BAD EMPTY Total
First 34.7 0.1 42.3 11.0 4082
Repeated 41.1 0.1 41.0 6.1 805
Overall 35.8 0.1 42.1 10.2 4887

Table 7: Distribution of review statuses.

Similarly to the traditional ranking task, we pro-
vided three consecutive sentences from the origi-
nal text, each translated with a different MT sys-
tem. The annotators are free to use this contex-
tual information when guessing the meaning or re-
viewing the monolingual edits. Each “annotation
HIT” consists of 24 sentences, i.e. 8 snippets of 3
consecutive sentences.

4.1 Basic Statistics on Editing

In total, 21 annotators took part in the exercise, 20
of them contributed to monolingual editing and 19
contributed to the reviews.

Connecting each review with the monolingual
edit (some edits received multiple reviews), we ob-
tain one data row. We collected 4887 data rows
(i.e. sentence revisions) for 3538 monolingual ed-
its, covering 1468 source sentences as translated
by 12 MT systems (including the reference).

Not all MT systems were considered for each
sentence, we preferred to obtain judgments for
more source sentences.

Based on the annotation instructions, each data
row has one of the four possible statuses: GOOD,
ALMOST, BAD, and EMPTY. GOOD rows are
those where the reviewer accepted the monolin-
gual edit without changes, ALMOST edits were
modified by the reviewer but they were marked as
‘OK’. BAD edits were changed by the reviewer
and no ‘OK’ mark was given. Finally, the sta-
tus EMPTY is assigned to rows where the mono-
lingual editor refused to edit the sentence. The
EMPTY rows nevertheless contain the (“regular”)
post-edit of the reviewer, so they still provide a
new reference translation for the sentence.

Table 7 summarizes the distribution of row sta-
tuses depending on one more significant distinc-
tion: whether the monolingual editor has seen the
sentence before or not. We see that EMPTY and
BAD monolingual edits together drop by about
6% absolute when the sentence is not new to the
monolingual editor. The occurrence is counted as
“repeated” regardless whether the annotator has
previously seen the sentence in an editing or re-
viewing task. Unless stated otherwise, we exclude
repeated edits from our calculations.
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Figure 3: In this screen, the annotator is expected to correct the MT output given only the context of at most two neighbouring
machine-translated sentences.

ALMOST Pairwise
treated Comparisons Agreement κ

inter
separate 2690 56.0 0.270
as BAD 2690 67.9 0.351
as GOOD 2690 65.2 0.289

intra
separate 170 65.3 0.410
as BAD 170 69.4 0.386
as GOOD 170 71.8 0.422

Table 8: Annotator agreement when reviewing monolingual
edits.

4.2 Agreement on Understandability

Before looking at individual system results, we
consider annotator agreement in the review step.
Details are given in Table 8. Given a (non-
EMPTY) string from a monolingual edit, we
would like to know how often two acceptability
judgments by two different reviewers (inter-) or
the same reviewer (intra-) agree. The repeated ed-
its remain in this analysis because we are not in-
terested in the origin of the string.

Our annotation setup leads to three possible la-
bels: GOOD, ALMOST, and BAD. The agree-
ment on one of three classes is bound to be lower
than the agreement on two classes, so we also re-
interpret ALMOST as either GOOD or BAD. Gen-
erally speaking, ALMOST is a positive judgment,
so it would be natural to treat it as GOOD. How-
ever, in our particular setup, when the reviewer
modified the sentence and forgot to add the label
‘OK:’, the item ended up in the BAD class. We
conclude that this is indeed the case: the inter-
annotator agreement appears higher if ALMOST

is treated as BAD. Future versions of the review-
ing interface should perhaps first ask for the yes/no
judgment and only then allow to post-edit.

The κ values in Table 8 are the Fleiss’
kappa (Fleiss, 1971), accounting for agreement by
chance given the observed label distributions.

In WMT09, the agreements for this task were
higher: 77.4 for inter-AA and 86.6 for intra-AA.
(In 2010, the agreements for this task were not re-
ported.) It is difficult to say whether the differ-
ence lies in the particular language pair, the dif-
ferent set of annotators, or the different user in-
terface for our reviewing task. In 2009 and 2010,
the reviewers were shown 5 monolingual edits at
once and they were asked to judge each as accept-
able or not acceptable. We show just one segment
and they have probably set their minds on the post-
editing rather than acceptability judgment. We be-
lieve that higher agreements can be reached if the
reviewers first validate one or more of the edits and
only then are allowed to post-edit it.

4.3 Understandability of English→Czech

Table 9 brings about the first main result of our
post-editing effort. For each system (including
the reference translation), we check how often a
monolingual edit was marked OK or ALMOST
by the subsequent reviewer. The average under-
standability across all MT systems into Czech is
44.2±1.6%. This is a considerable improvement
compared to 2009 where the best systems pro-
duced about 32% understandable sentences. In
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Figure 4: In this screen, the annotator is expected to validate the monolingual edit, correcting it if necessary. The annotator is
expected to add the prefix ‘OK:’ if the correction was more or less cosmetic.

Rank System Total Observations % Understandable
Overall incl. ref. 4082 46.7±1.6
Overall without ref. 3808 44.2±1.6

1 Reference 274±31 80.3±4.8
2-6 CU-ZEMAN 348±34 51.7±5.1
2-6 UEDIN 332±33 51.5±5.4
2-6 ONLINE-B 337±34 50.7±5.3
2-6 CU-BOJAR 341±35 50.7±5.2
2-7 CU-DEPFIX 350±34 48.0±5.3
6-10 COMMERCIAL-2 358±36 43.6±5.2
6-11 COMMERCIAL-1 316±34 41.5±5.5
7-12 CU-TECTOMT 338±34 39.4±5.2
8-12 MES 346±36 38.4±5.2
8-12 CU-PHRASEFIX 394±40 38.1±4.8
10-12 SHEF-WPROA 348±32 34.2±5.1

2009 Reference 91
2009 Best System 32
2010 Reference 97
2010 Best System 58

Table 9: Understandability of English→Czech systems. The
± values indicate empirical confidence bounds at 95%. Rank
ranges were also obtained in the same resampling: in 95% of
observations, the system was ranked in the given range.

2010, the best systems or system combinations
reached 55%–58%. The test set across years and
the quality of references and judgments also play a
role. In our annotation setup, the references appear
to be correctly understandable only to 80.3±4.8%.

To estimate the variance of these results due
to the particular sentences chosen, we draw 1000
random samples from the dataset, preserving the
dataset size and repeating some. The exact num-

ber of judgments per system can thus vary. We
report the 95% empirical confidence interval after
the ‘±’ signs in Table 9 (the systems range from
±4.8 to±5.5). When we drop individual blind ed-
itors or reviewers, the understandability judgments
differ by about ±2 to ±4. In other words, the de-
pendence on the test set appears higher than the
dependence on the annotators.

The limited size of our dataset allows us only
to separate two main groups of systems: those
ranking 2–6 and those ranking worse. This rough
grouping vaguely matches with WMT13 ranking
results as given in Table 6. A somewhat surpris-
ing observation is that two automatic corrections
ranked better in WMT13 ranking but score worse
in understandability: CU-DEPFIX fixes some lost
negation and some agreement errors of CU-BOJAR

and CU-PHRASEFIX is a standard statistical post-
editing of a transfer-based system CU-TECTOMT.
A detailed inspection of the data is necessary to
explain this.

5 More Reference Translations for Czech

Our annotation procedure described in Section 4
allowed us to obtain a considerable number of ad-
ditional reference translations on top of official
single reference.
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Refs 1 2 3 4 5 6 7 8 9 10-16
Sents 233 709 174 123 60 48 40 27 25 29

Table 10: Number of source sentences with the given number
of distinct reference translations.

In total, our edits cover 1468 source sentences,
i.e. about a half of the official test set size, and pro-
vide 4311 unique references. On average, one sen-
tence in our set has 2.94±2.17 unique reference
translations. Table 10 provides a histogram.

It is well known that automatic MT evalua-
tion methods perform better with more references,
because a single one may not confirm a correct
part of MT output. This issue is more severe
for morphologically rich languages like Czech
where about 1/3 of MT output was correct but not
confirmed by the reference (Bojar et al., 2010).
Advanced evaluation methods apply paraphras-
ing to smooth out some of the lexical divergence
(Kauchak and Barzilay, 2006; Snover et al., 2009;
Denkowski and Lavie, 2010). Simpler techniques
such as lemmatizing are effective for morphologi-
cally rich languages (Tantug et al., 2008; Kos and
Bojar, 2009) but they will lose resolution once the
systems start performing generally well.

WMTs have taken the stance that a big enough
test set with just a single reference should compen-
sate for the lack of other references. We use our
post-edited reference translations to check this as-
sumption for BLEU and NIST as implemented in
mteval-13a (international tokenization switched
on, which is not the default setting).

We run many probes, randomly picking the test
set size (number of distinct sentences) and the
number of distinct references per sentence. Note
that such test sets are somewhat artificially more
diverse; in narrow domains, source sentences can
repeat and even appear verbatim in the training
data, and in natural test sets with multiple refer-
ences, short sentences can receive several identical
translations.

For each probe, we measure the Spearman’s
rank correlation coefficient ρ of the ranks pro-
posed by BLEU or NIST and the manual ranks.
We use the same implementation as applied in the
WMT13 Shared Metrics Task (Macháček and Bo-
jar, 2013). Note that the WMT13 metrics task still
uses the WMT12 evaluation method ignoring ties,
not the expected wins. As Koehn (2012) shows,
the two methods do not differ much.

Overall, the correlation is strongly impacted by

Figure 5: Correlation of BLEU and WMT13 manual ranks
for English→Czech translation

Figure 6: Correlation of NIST and WMT13 manual ranks
for English→Czech translation

the particular choice of test sentences and refer-
ence translations. By picking sentences randomly,
similarly or equally sized test sets can reach dif-
ferent correlations. Indeed, e.g. for a test set of
about 1500 distinct sentences selected from the
3000-sentence official test set (1 reference trans-
lation), we obtain correlations for BLEU between
0.86 and 0.94.

Figure 5 plots the correlations of BLEU and the
system rankings, Figure 6 provides the same pic-
ture for NIST. The upper triangular part of the plot
contains samples from our post-edited reference
translations, the lower rectangular part contains
probes from the official test set of 3000 sentences
with 1 reference translation.

To interpret the observations, we also calculate
the average and standard deviation of correlations
for each cell in Figures 5 and 6. Figures 7 and
8 plot the values for 1, 6, 7 and 8 references for
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Figure 7: Projections from Figure 5 of BLEU and WMT13
manual ranks for English→Czech translation
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Figure 8: Projections from Figure 6 of NIST and WMT13
manual ranks for English→Czech translation

BLEU and NIST, resp. The projections confirm
that the average correlations grow with test set
size, the growth is however sub-logarithmic.

Starting from as few as a dozen of sentences, we
see that using more references is better than using
a larger test set. For BLEU, we however already
seem to reach false positives at 7 references for
one or two hundred sentences: larger sets with just
one reference may correlate slightly better.

Using one reference obtained by post-editing
seems better than using the official (independent)
reference translations. BLEU is more affected
than NIST by this difference even at relatively
large test set size. Note that our post-edits are in-
spired by all MT systems, the good as well as the
bad ones. This probably provides our set with a
certain balance.

Overall, the best balance between the test set
size and the number of references seems to lie
somewhere around 7 references and 100 or 200
sentences. Creating such a test set could be even
cheaper than the standard 3000 sentences with just

one reference. However, the wide error bars re-
mind us that even this setting can lead to correla-
tions anywhere between 0.86 and 0.96. For other
languages, data sets types or other MT evaluation
methods, the best setting can be quite different and
has to be sought for.

6 Quality Estimation Task

Machine translation quality estimation is the task
of predicting a quality score for a machine trans-
lated text without access to reference translations.
The most common approach is to treat the problem
as a supervised machine learning task, using stan-
dard regression or classification algorithms. The
second edition of the WMT shared task on qual-
ity estimation builds on the previous edition of the
task (Callison-Burch et al., 2012), with variants to
this previous task, including both sentence-level
and word-level estimation, with new training and
test datasets, along with evaluation metrics and
baseline systems.

The motivation to include both sentence- and
word-level estimation come from the different po-
tential applications of these variants. Some inter-
esting uses of sentence-level quality estimation are
the following:

• Decide whether a given translation is good
enough for publishing as is.

• Inform readers of the target language only
whether or not they can rely on a translation.

• Filter out sentences that are not good enough
for post-editing by professional translators.

• Select the best translation among options
from multiple MT and/or translation memory
systems.

Some interesting uses of word-level quality es-
timation are the following:

• Highlight words that need editing in post-
editing tasks.

• Inform readers of portions of the sentence
which are not reliable.

• Select the best segments among options from
multiple translation systems for MT system
combination.

The goals of this year’s shared task were:
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• To explore various granularity levels for the
task (sentence-level and word-level).

• To explore the prediction of more objective
scores such as edit distance and post-editing
time.

• To explore the use of quality estimation tech-
niques to replace reference-based MT evalua-
tion metrics in the task of ranking alternative
translations generated by different MT sys-
tems.

• To identify new and effective quality indica-
tors (features) for all variants of the quality
estimation task.

• To identify effective machine learning tech-
niques for all variants of the quality estima-
tion task.

• To establish the state of the art performance
in the field.

Four subtasks were proposed, as we discuss in
Sections 6.1 and 6.2. Each subtask provides spe-
cific datasets, annotated for quality according to
the subtask (Section 6.3), and evaluates the system
submissions using specific metrics (Section 6.6).
When available, external resources (e.g. SMT
training corpus) and translation engine-related re-
sources were given to participants (Section 6.4),
who could also use any additional external re-
sources (no distinction between open and close
tracks is made). Participants were also provided
with a software package to extract quality esti-
mation features and perform model learning (Sec-
tion 6.5), with a suggested list of baseline features
and learning method (Section 6.7). Participants
could submit up to two systems for each subtask.

6.1 Sentence-level Quality Estimation
Task 1.1 Predicting Post-editing Distance This
task is similar to the quality estimation task in
WMT12, but with one important difference in the
scoring variant: instead of using the post-editing
effort scores in the [1-5] range, we use HTER
(Snover et al., 2006) as quality score. This score
is to be interpreted as the minimum edit distance
between the machine translation and its manually
post-edited version, and its range is [0, 1] (0 when
no edit needs to be made, and 1 when all words
need to be edited). Two variants of the results
could be submitted in the shared task:

• Scoring: A quality score for each sentence
translation in [0,1], to be interpreted as an
HTER score; lower scores mean better trans-
lations.

• Ranking: A ranking of sentence translations
for all source test sentences from best to
worst. For this variant, it does not matter how
the ranking is produced (from HTER predic-
tions, likert predictions, or even without ma-
chine learning). The reference ranking is de-
fined based on the true HTER scores.

Task 1.2 Selecting Best Translation This task
consists in ranking up to five alternative transla-
tions for the same source sentence produced by
multiple MT systems. We use essentially the same
data provided to participants of previous years
WMT’s evaluation metrics task – where MT eval-
uation metrics are assessed according to how well
they correlate with human rankings. However, ref-
erence translations produced by humans are not be
used in this task.

Task 1.3 Predicting Post-editing Time For this
task systems are required to produce, for each
translation, the expected time (in seconds) it
would take a translator to post-edit such an MT
output. The main application for predictions of
this type is in computer-aided translation where
the predicted time can be used to select among dif-
ferent hypotheses or even to omit any MT output
in cases where no good suggestion is available.

6.2 Word-level Quality Estimation
Based on the data of Task 1.3, we define Task 2, a
word-level annotation task for which participants
are asked to produce a label for each token that
indicates whether the word should be changed by
a post-editor or kept in the final translation. We
consider the following two sets of labels for pre-
diction:

• Binary classification: a keep/change label,
the latter meaning that the token should be
corrected in the post-editing process.

• Multi-class classification: a label specifying
the edit action that should be performed on
the token (keep as is, delete, or substitute).

6.3 Datasets
Task 1.1 Predicting post-editing distance For
the training of models, we provided the WMT12
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quality estimation dataset: 2,254 English-
Spanish news sentences extracted from previous
WMT translation task English-Spanish test sets
(WMT09, WMT10, and WMT12). These were
translated by a phrase-based SMT Moses system
trained on Europarl and News Commentaries cor-
pora as provided by WMT, along with their source
sentences, reference translations, post-edited
translations, and HTER scores. We used TERp
(default settings: tokenised, case insensitive,
etc., but capped to 1)10 to compute the HTER
scores. Likert scores in [1,5] were also provided,
as participants may choose to use them for the
ranking variant.

As test data, we use a subset of the WMT13
English-Spanish news test set with 500 sentences,
whose translations were produced by the same
SMT system used for the training set. To com-
pute the true HTER labels, the translations were
post-edited under the same conditions as those on
the training set. As in any blind shared task, the
HTER scores were solely used to evaluate the sub-
missions, and were only released to participants
after they submitted their systems.

A few variations of the training and test data
were provided, including a version with cases re-
stored and a version detokenized. In addition,
we provided a number of engine-internal informa-
tion from Moses for glass-box feature extraction,
such as phrase and word alignments, model scores,
word graph, n-best lists and information from the
decoder’s search graph.

Task 1.2 Selecting best translation As training
data, we provided a large set of up to five alter-
native machine translations produced by different
MT systems for each source sentence and ranked
for quality by humans. This was the outcome of
the manual evaluation of the translation task from
WMT09-WMT12. It includes two language pairs:
German-English and English-Spanish, with 7,098
and 4,592 source sentences and up to five ranked
translations, totalling 32,922 and 22,447 transla-
tions, respectively.

As test data, a set of up to five alternative ma-
chine translations per source sentence from the
WMT08 test sets was provided, with 365 (1,810)
and 264 (1,315) source sentences (translations)
for German-English and English-Spanish, respec-
tively. We note that there was some overlap be-
tween the MT systems used in the training data

10http://www.umiacs.umd.edu/˜snover/terp/

and test datasets, but not all systems were the
same, as different systems participate in WMT
over the years.

Task 1.3 and Task 2 Predicting post-editing
time and word-level edits For Tasks 1.3 and 2
we provides a new dataset consisting of 22 English
news articles which were translated into Span-
ish using Moses and post-edited during a CAS-
MACAT11 field trial. Of these, 15 documents have
been processed repeatedly by at least 2 out of 5
translators, resulting in a total of 1,087 segments.
For each segment we provided:

• English source and Spanish translation.

• Spanish MT output which was used as basis
for post-editing.

• Document and translator ID.

• Position of the segment within the document.

The metadata about translator and document was
made available as we expect that translator perfor-
mance and normalisation over document complex-
ity can be helpful when predicting the time spend
on a given segment.

For the training portion of the data we also pro-
vided:

• Time to post-edit in seconds (Task 1.3).

• Binary (Keep, Change) and multiclass (Keep,
Substitute, Delete) labels on word level along
with explicit tokenization (Task 2).

The labels in Task 2 are derived by comput-
ing WER between the original machine translation
and its post-edited version.

6.4 Resources
For all tasks, we provided resources to extract
quality estimation features when these were avail-
able:

• The SMT training corpus (WMT News and
Europarl): source and target sides of the cor-
pus used to train the SMT engines for Tasks
1.1, 1.3, and 2, and truecase models gener-
ated from these. These corpora can also be
used for Task 1.2, but we note that some of
the MT systems used in the datasets of this
task were not statistical or did not use (only)
the training corpus provided by WMT.

11http://casmacat.eu/
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• Language models: n-gram language models
of source and target languages generated us-
ing the SMT training corpora and standard
toolkits such as SRILM Stolcke (2002), and
a language model of POS tags for the target
language. We also provided unigram, bigram
and trigram counts.

• IBM Model 1 lexical tables generated by
GIZA++ using the SMT training corpora.

• Phrase tables with word alignment informa-
tion generated by scripts provided by Moses
from the parallel corpora.

• For Tasks 1.1, 1.3 and 2, the Moses config-
uration file used for decoding or the code to
re-run the entire Moses system.

• For Task 1.1, both English and Spanish re-
sources for a number of advanced features
such as pre-generated PCFG parsing models,
topic models, global lexicon models and mu-
tual information trigger models.

We refer the reader to the QUEST website12 for
a detailed list of resources provided for each task.

6.5 QUEST Framework

QUEST (Specia et al., 2013) is an open source
framework for quality estimation which provides a
wide variety of feature extractors from source and
translation texts and external resources and tools.
These range from simple, language-independent
features, to advanced, linguistically motivated fea-
tures. They include features that rely on informa-
tion from the MT system that generated the trans-
lations (glass-box features), and features that are
oblivious to the way translations were produced
(black-box features).

QUEST also integrates a well-known machine
learning toolkit, scikit-learn,13 and other algo-
rithms that are known to perform well on this task
(e.g. Gaussian Processes), providing a simple and
effective way of experimenting with techniques
for feature selection and model building, as well
as parameter optimisation through grid search.

From QUEST, a subset of 17 features and an
SVM regression implementation were used as
baseline for Tasks 1.1, 1.2 and 1.3. The software
was made available to all participants.

12http://www.quest.dcs.shef.ac.uk/
13http://scikit-learn.org/

6.6 Evaluation Metrics

Task 1.1 Predicting post-editing distance
Evaluation is performed against the HTER and/or
ranking of translations using the same metrics as
in WMT12. For the scoring variant of the task,
we use two standard metrics for regression tasks:
Mean Absolute Error (MAE) as a primary metric,
and Root of Mean Squared Error (RMSE) as a
secondary metric. To improve readability, we
report these error numbers by first mapping the
HTER values to the [0, 100] interval, to be read
as percentage-points of the HTER metric. For a
given test set S with entries si, 1 ≤ i ≤ |S|, we
denote by H(si) the proposed score for entry si
(hypothesis), and by V (si) the reference value for
entry si (gold-standard value):

MAE =

∑N
i=1 |H(si)− V (si)|

|S|

RMSE =

√∑N
i=1(H(si)− V (si))2

|S|

Both these metrics are non-parametric, auto-
matic and deterministic (and therefore consistent),
and extrinsically interpretable. For instance, a
MAE value of 10 means that, on average, the ab-
solute difference between the hypothesized score
and the reference score value is 10 percentage
points (i.e., 0.10 difference in HTER scores). The
interpretation of RMSE is similar, with the differ-
ence that RMSE penalises larger errors more (via
the square function).

For the ranking variant of the task, we use the
DeltaAvg metric proposed in the 2012 edition of
the task (Callison-Burch et al., 2012) as our main
metric. This metric assumes that each reference
test instance has an extrinsic number associated
with it that represents its ranking with respect to
the other test instances. For completeness, we
present here again the definition of DeltaAvg.

The goal of the DeltaAvg metric is to measure
how valuable a proposed ranking (which we call a
hypothesis ranking) is, according to the true rank-
ing values associated with the test instances. We
first define a parametrised version of this metric,
called DeltaAvg[n]. The following notations are
used: for a given entry sentence s, V (s) represents
the function that associates an extrinsic value to
that entry; we extend this notation to a set S, with
V (S) representing the average of all V (s), s ∈ S.
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Intuitively, V (S) is a quantitative measure of the
“quality” of the set S, as induced by the extrinsic
values associated with the entries in S. For a set
of ranked entries S and a parameter n, we denote
by S1 the first quantile of set S (the highest-ranked
entries), S2 the second quantile, and so on, for n
quantiles of equal sizes.14 We also use the nota-
tion Si,j =

⋃j
k=i Sk. Using these notations, we

define:

DeltaAvgV [n] =
∑n−1

k=1 V (S1,k)

n− 1
− V (S)

When the valuation function V is clear from the
context, we write DeltaAvg[n] for DeltaAvgV [n].
The parameter n represents the number of quan-
tiles we want to split the set S into. For instance,
n = 2 gives DeltaAvg[2] = V (S1)−V (S), hence it
measures the difference between the quality of the
top quantile (top half) S1 and the overall quality
(represented by V (S)). For n = 3, DeltaAvg[3] =
(V (S1)+V (S1,2)/2−V (S) = ((V (S1)−V (S))+
(V (S1,2−V (S)))/2, hence it measures an average
difference across two cases: between the quality of
the top quantile (top third) and the overall quality,
and between the quality of the top two quantiles
(S1 ∪ S2, top two-thirds) and the overall quality.
In general, DeltaAvg[n] measures an average dif-
ference in quality across n − 1 cases, with each
case measuring the impact in quality of adding an
additional quantile, from top to bottom. Finally,
we define:

DeltaAvgV =

∑N
n=2 DeltaAvgV [n]

N − 1

where N = |S|/2. As before, we write DeltaAvg
for DeltaAvgV when the valuation function V is
clear from the context. The DeltaAvg metric is an
average across all DeltaAvg[n] values, for those
n values for which the resulting quantiles have at
least 2 entries (no singleton quantiles).

We present results for DeltaAvg using as valu-
ation function V the HTER scores, as defined in
Section 6.3. We also use Spearman’s rank correla-
tion coefficient ρ as a secondary metric.

Task 1.2 Selecting best translation The perfor-
mance on the task of selecting the best transla-
tion from a pool of translation candidates is mea-

14If the size |S| is not divisible by n, then the last quantile
Sn is assumed to contain the rest of the entries.

sured by comparing proposed (hypothesis) rank-
ings against human-produced rankings. The met-
ric used is Kendall’s τ rank correlation coefficient,
computed as follows:

τ =
|concordant pairs| − |discordant pairs|

|total pairs|
where a concordant pair is a pair of two transla-
tions for the same source segment in which the
ranking order proposed by a human annotator and
the ranking order of the hypothesis agree; in a dis-
cordant pair, they disagree. The possible values of
τ range between 1 (where all pairs are concordant)
and −1 (where all pairs are discordant). Thus a
system with ranking predictions having a higher
τ value makes predictions that are more similar
to human judgements than a system with ranking
predictions having a lower τ . Note that, in general,
being able to predict rankings with an accuracy
of τ = −1 is as difficult as predicting rankings
with an accuracy of τ = 1, whereas a completely
random ranking would have an expected value of
τ = 0. The range is therefore said to be symmet-
ric.

However, there are two distinct ways of mea-
suring rank correlation using Kendall’s τ , related
to the way ties are treated. They greatly affect how
Kendall’s τ numbers are to be interpreted, and es-
pecially the symmetry property. We explain the
difference in detail in what follows.

Kendall’s τ with ties penalised If the goal is
to measure to what extent the difference in qual-
ity visible to a human annotator has been captured
by an automatically produced hypothesis (recall-
oriented view), then proposing a tie between t1
and t2 (t1-equal-to-t2) when the pair was judged
(in the reference) as t1-better-than-t2 is treated as
a failure-to-recall. In other words, it is as bad as
proposing t1-worse-than-t2. Henceforth, we call
this recall-oriented measure “Kendall’s τ with ties
penalised”. This metric has the following proper-
ties:

• it is completely fair when comparing differ-
ent methods to produce ranking hypotheses,
because the denominator (number of total
pairs) is the same (it is the number of non-
tied pairs under the human judgements).

• it is non-symmetric, in the sense that a value
of τ = −1 is not as difficult to obtain as τ =
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1 (simply proposing only ties gets a τ = −1);
hence, the sign of the τ value matters.

• the expected value of a completely random
ranking is not necessarily τ = 0, but rather
depends on the number of ties in the refer-
ence rankings (i.e., it is test set dependent).

Kendall’s τ with ties ignored If the goal
is to measure to what extent the difference in
quality signalled by an automatically produced
hypothesis is reflected in the human annota-
tion (precision-oriented view), then proposing t1-
equal-to-t2 when the pair was judged differently
in the reference does no harm the metric.

Henceforth, we call this precision-oriented
measure ”Kendall’s τ with ties ignored”. This
metric has the following properties:

• it is not completely fair when comparing dif-
ferent methods to produce ranking hypothe-
ses, because the denominator (number of to-
tal pairs) may not be the same (it is the num-
ber of non-tied pairs under each system’s pro-
posal).

• it is symmetric, in the sense that a value of
τ = −1 is as difficult to obtain as τ = 1;
hence, the sign of the τ value may not mat-
ter. 15

• the expected value of a completely random
ranking is τ = 0 (test-set independent).

The first property is the most worrisome from
the perspective of reporting the results of a shared
task, because a system may fare very well on this
metric simply because it choses not to commit
(proposes ties) most of the time. Therefore, to
give a better understanding of the systems’ perfor-
mance, for Kendall’s τ with ties ignored we also
provide the number of non-ties proposed by each
system.

Task 1.3 Predicting post-editing time Submis-
sions are evaluated in terms of Mean Average Er-
ror (MAE) against the actual time spent by post-
editors (in seconds). By using a linear error mea-
sure we limit the influence of outliers: sentences
that took very long to edit or where the measure-
ment taken is questionable.

15In real life applications this distinction matters. Even
if, from a computational perspective, it is as hard to get τ
close to−1 as it is to get it close to 1, knowing the sign is the
difference between selecting the best or the worse translation.

To further analyse the influence of extreme val-
ues, we also compute Spearman’s rank correlation
ρ coefficient which does not depend on the abso-
lute values of the predictions.

We also give RMSE and Pearson’s correlation
coefficient r for reference.

Task 2 Predicting word-level scores The word-
level task is primarily evaluated by macro-
averaged F-measure. Because the class distribu-
tion is skewed – in the test data about one third
of the tokens are marked as correct – we compute
precision and recall and F1 for each class individ-
ually. Consider the following confusion matrix for
the two classes Keep and Change:

predicted
(K)eep (C)hange

expected
(K)eep 10 20
(C)hange 30 40

For the given example we derive true-positive
(tp), true-negative (tn), false-positive (fp), and
false-negative (fn) counts:

tpK = 10 fpK = 30 fnK = 20
tpC = 40 fpC = 20 fnC = 30

precisionK =
tpK

tpK + fpK
= 10/40

recallK =
tpK

tpK + fnK
= 10/30

F1,K =
2 · precisionK · recallK
precisionK +recallK

A single cumulative statistic can be computed
by averaging the resulting F-measures (macro av-
eraging) or by micro averaging in which case pre-
cision and recall are first computed by accumulat-
ing the relevant values for all classes (Özgür et al.,
2005), e.g.

precision =
tpK + tpC

(tpK + fpK) + (tpC + fpC)

The latter gives equal weight to each exam-
ple and is therefore dominated by performance on
the largest class while macro-averaged F-measure
gives equal weight to each class.

The same setup is used to evaluate the perfor-
mance in the multiclass setting. Please note that
here the test data only contains 4% examples for
class (D)elete.
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ID Participating team
CMU Carnegie Mellon University, USA (Hildebrand and Vogel, 2013)

CNGL Centre for Next Generation Localization, Ireland (Bicici, 2013b)
DCU Dublin City University, Ireland (Almaghout and Specia, 2013)

DCU-SYMC Dublin City University & Symantec, Ireland (Rubino et al., 2013b)
DFKI German Research Centre for Artificial Intelligence, Germany (Avramidis and

Popovic, 2013)
FBK-UEdin Fondazione Bruno Kessler, Italy & University of Edinburgh, UK (Camargo de

Souza et al., 2013)
LIG Laboratoire d’Informatique Grenoble, France (Luong et al., 2013)

LIMSI Laboratoire d’Informatique pour la Mécanique et les Sciences de l’Ingénieur,
France (Singh et al., 2013)

LORIA Lorraine Laboratory of Research in Computer Science and its Applications,
France (Langlois and Smaili, 2013)

SHEF University of Sheffield, UK (Beck et al., 2013)
TCD-CNGL Trinity College Dublin & CNGL, Ireland (Moreau and Rubino, 2013)

TCD-DCU-CNGL Trinity College Dublin, Dublin City University & CNGL, Ireland (Moreau and
Rubino, 2013)

UMAC University of Macau, China (Han et al., 2013)
UPC Universitat Politecnica de Catalunya, Spain (Formiga et al., 2013b)

Table 11: Participants in the WMT13 Quality Estimation shared task.

6.7 Participants
Table 11 lists all participating teams submitting
systems to any subtask in this shared task. Each
team was allowed up to two submissions for each
subtask. In the descriptions below participation in
specific tasks is denoted by a task identifier: T1.1,
T1.2, T1.3, and T2.

Sentence-level baseline system (T1.1, T1.3):
QUEST was used to extract 17 system-
independent features from the source and
translation files and the SMT training cor-
pus that were found to be relevant in previous
work (same features as in the WMT12 shared
task):

• number of tokens in the source and tar-
get sentences.
• average source token length.
• average number of occurrences of the

target word within the target sentence.
• number of punctuation marks in source

and target sentences.
• Language model probability of source

and target sentences using language
models provided by the task.
• average number of translations per

source word in the sentence: as given
by IBM 1 model thresholded so that

P (t|s) > 0.2, and so that P (t|s) > 0.01
weighted by the inverse frequency of
each word in the source side of the SMT
training corpus.
• percentage of unigrams, bigrams and tri-

grams in frequency quartiles 1 (lower
frequency words) and 4 (higher fre-
quency words) in the source side of the
SMT training corpus
• percentage of unigrams in the source

sentence seen in the source side of the
SMT training corpus.

These features are used to train a Support
Vector Machine (SVM) regression algorithm
using a radial basis function kernel within the
SCIKIT-LEARN toolkit. The γ, ε and C pa-
rameters were optimized using a grid-search
and 5-fold cross validation on the training
set. We note that although the system is re-
ferred to as a “baseline”, it is in fact a strong
system. For tasks of the same type as 1.1
and 1.3, it has proved robust across a range
of language pairs, MT systems, and text do-
mains for predicting post-editing effort, as it
has also been shown in the previous edition
of the task (Callison-Burch et al., 2012).

The same features could be useful for a base-
line system for Task 1.2. In our official re-
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sults, however, the baseline for Task 1.2 is
simpler than that: it proposes random ranks
for each pair of alternative translations for a
given source sentence, as we will discuss in
Section 6.8.

CMU (T1.1, T1.2, T1.3): The CMU quality
estimation system was trained on features
based on language models, the MT sys-
tem’s distortion model and phrase table fea-
tures, statistical word lexica, several sentence
length statistics, source language word and
bi-gram frequency statistics, n-best list agree-
ment and diversity, source language parse,
source-target word alignment and a depen-
dency parse based cohesion penalty. These
features were extracted using GIZA++, a
forced alignment algorithm and the Stanford
parser (de Marneffe et al., 2006). The pre-
diction models were trained using four clas-
sifiers in the Weka toolkit (Hall et al., 2009):
linear regression, M5P trees, multi layer per-
ceptron and SVM regression. In addition to
main system submission, a classic n-best list
re-ranking approach was used for Task 1.2.

CNGL (T1.1, T1.2, T1.3, T2): CNGL systems
are based on referential translation machines
(RTM) (Biçici and van Genabith, 2013), par-
allel feature decay algorithms (FDA) (Bicici,
2013a), and machine translation performance
predictor (MTPP) (Biçici et al., 2013), all
of which allow to obtain language and MT
system-independent predictions. For each
task, RTM models were developed using the
parallel corpora and the language model cor-
pora distributed by the WMT13 translation
task and the language model corpora pro-
vided by LDC for English and Spanish.

The sentence-level features are described in
MTPP (Biçici et al., 2013); they include
monolingual or bilingual features using n-
grams defined over text or common cover
link (CCL) (Seginer, 2007) structures as the
basic units of information over which sim-
ilarity calculations are made. RTMs use
308 features about coverage and diversity,
IBM1, and sentence translation performance,
retrieval closeness and minimum Bayes re-
trieval risk, distributional similarity and en-
tropy, IBM2 alignment, character n-grams,
and sentence readability. The learning mod-

els are Support Vector Machines (SVR) and
SVR with partial least squares (SVRPLS).

The word-level features include CCL links,
word length, location, prefix, suffix, form,
context, and alignment, totalling 511K fea-
tures for binary classification, and 637K for
multiclass classification. Generalised lin-
ear models (GLM) (Collins, 2002) and GLM
with dynamic learning (GLMd) were used.

DCU (T1.2): The main German-English submis-
sion uses six Combinatory Categorial Gram-
mar (CCG) features: CCG supertag lan-
guage model perplexity and log probability,
the number of maximal CCG constituents in
the translation output which are the highest-
probability minimum number of CCG con-
stituents that span the translation output, the
percentage of CCG argument mismatches be-
tween each subsequent CCG supertags, the
percentage of CCG argument mismatches be-
tween each subsequent CCG maximal cate-
gories and the minimum number of phrases
detected in the translation output. A second
submission uses the aforementioned CCG
features combined with 80 features from
QUEST as described in (Specia, 2011). For
the CCG features, the C&C parser was used
to parse the translation output. Moses was
used to build the phrase table from the SMT
training corpus with maximum phrase length
set to 7. The language model of supertags
was built using the SRILM toolkit. As learn-
ing algorithm, Logistic Regression as pro-
vided by the SCIKIT-LEARN toolkit was used.
The training data was prepared by converting
each ranking of translation outputs to a set
of pairwise comparisons according to the ap-
proach proposed by Avramidis et al. (2011).
The rankings were generated back from pair-
wise comparisons predicted by the model.

DCU-SYMC (T1.1): The DCU-Symantec team
employed a wide set of features which in-
cluded language model, n-gram counts and
word-alignment features as well as syntac-
tic features, topic model features and pseudo-
reference features. The main learning algo-
rithm was SVR, but regression tree learning
was used to perform feature selection, re-
ducing the initial set of 442 features to 96
features (DCU-Symantec alltypes) and 134
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(DCU-Symantec combine). Two methods
for feature selection were used: a best-first
search in the feature space using regression
trees to evaluate the subsets, and reading bi-
narised features directly from the nodes of
pruned regression trees.

The following NLP tools were used in feature
extraction: the Brown English Wall-Street-
Journal-trained statistical parser (Charniak
and Johnson, 2005), a Lexical Functional
Grammar parser (XLE), together with a
hand-crafted Lexical Functional Grammar,
the English ParGram grammar (Kaplan et al.,
2004), and the TreeTagger part-of-speech
tagger (Schmidt, 1994) with off-the-shelf
publicly available pre-trained tagging mod-
els for English and Spanish. For pseudo-
reference features, the Bing, Moses and Sys-
tran translation systems were used. The Mal-
let toolkit (McCallum, 2002) was used to
build the topic models and features based on
a grammar checker were extracted with Lan-
guageTool.16

DFKI (T1.2, T1.3): DFKI’s submission for Task
1.2 was based on decomposing rankings into
pairs (Avramidis, 2012), where the best sys-
tem for each pair was predicted with Lo-
gistic Regression (LogReg). For German-
English, LogReg was trained with Stepwise
Feature Selection (Hosmer, 1989) on two
feature sets: Feature Set 24 includes ba-
sic counts augmented with PCFG parsing
features (number of VPs, alternative parses,
parse probability) on both source and tar-
get sentences (Avramidis et al., 2011), and
pseudo-reference METEOR score; the most
successful set, Feature Set 33 combines those
24 features with the 17 baseline features. For
English-Spanish, LogReg was used with L2
Regularisation (Lin et al., 2007) and two fea-
ture sets were devised after scoring features
with ReliefF (Kononenko, 1994) and Infor-
mation Gain (Hunt et al., 1966). Feature Set
431 combines 30 features with highest abso-
lute Relief-F and Information Gain (15 from
each). features with the highest

Task 1.3 was modelled using feature sets
selected after Relief-F scoring of external
black-box and glass-box features extracted

16http://www.languagetool.org/

from the SMT decoding process. The most
successful submission (linear6) was trained
with Linear Regression including the 17 fea-
tures with highest positive Relief-F. Most
prominent features include the alternative
possible parses of the source and target sen-
tence, the positions of the phrases with the
lowest and highest probability and future
cost estimate in the translation, the counts of
phrases in the decoding graph whose prob-
ability or whether the future cost estimate
is higher/lower than their standard deviation,
counts of verbs and determiners, etc. The
second submission (pls8) was trained with
Partial Least Squares regression (Stone and
Brooks, 1990) including more glass-box fea-
tures.

FBK-Uedin (T1.1, T1.3):

The submissions explored features built on
MT engine resources including automatic
word alignment, n-best candidate translation
lists, back-translations and word posterior
probabilities. Information about word align-
ments is used to extract quantitative (amount
and distribution of the alignments) and qual-
itative (importance of the aligned terms) fea-
tures under the assumption that alignment
information can help tasks where sentence-
level semantic relations need to be identified
(Souza et al., 2013). Three similar English-
Spanish systems are built and used to provide
pseudo-references (Soricut et al., 2012) and
back-translations, from which automatic MT
evaluation metrics could be computed and
used as features.

All features were computed over a concatena-
tion of several publicly available parallel cor-
pora for the English-Spanish language pair
such as Europarl, News Commentary, and
MultiUN. The models were developed using
supervised learning algorithms: SVMs (with
feature selection step prior to model learning)
and extremely randomized trees.

LIG (T2): The LIG systems are designed to
deal with both binary and multiclass variants
of the word level task. They integrate sev-
eral features including: system-based (graph
topology, language model, alignment con-
text, etc.), lexical (Part-of-Speech tags), syn-
tactic (constituent label, distance to the con-
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stituent tree root) and semantic (target and
source polysemy count). Besides the exist-
ing components of the SMT system, feature
extraction requires further external tools and
resources, such as: TreeTagger (for POS tag-
ging), Bekerley Parser trained with AnCora
treebank (for generating constituent trees in
Spanish), WordNet and BabelNet (for pol-
ysemy count), Google Translate. The fea-
ture set is then combined and trained using
a Conditional Random Fields (CRF) learn-
ing method. During the labelling phase, the
optimal threshold is tuned using a small de-
velopment set split from the original training
set. In order to retain the most informative
features and eliminate the redundant ones, a
Sequential Backward Selection algorithm is
employed over the all-feature systems. With
the binary classifier, the Boosting technique
is applied to allow a number of sub feature
sets to complement each other, resulting in
the “stronger” combined system.

LIMSI (T1.1, T1.3): The two tasks were treated
as regression problems using a simple elas-
tic regression, a linear model trained with L1

and L2 regularisers. Regarding features, the
submissions mainly aimed at evaluating the
usefulness for quality estimation of n-gram
posterior probabilities (Gispert et al., 2013)
that quantify the probability for a given n-
gram to be part of the system output. Their
computation relies on all the hypotheses con-
sidered by a SMT system during decoding:
intuitively, the more hypotheses a n-gram ap-
pears in, the more confident the system is
that this n-gram is part of the correct trans-
lation, and the higher its posterior probabil-
ity is. The feature set contains 395 other fea-
tures that differs, in two ways, from the tra-
ditional features used in quality estimation.
First, it includes several features based on
large span continuous space language mod-
els (Le et al., 2011) that have already proved
their efficiency both for the translation task
and the quality estimation task. Second, each
feature was expanded into two “normalized
forms” in which their value was divided ei-
ther by the source length or the target length
and, when relevant, into a “ratio form” in
which the feature value computed on the tar-
get sentence is divided by its value computed

in the source sentence.

LORIA (T1.1): The system uses the 17 baseline
features, plus several numerical and boolean
features computed from the source and target
sentences (Langlois et al., 2012). These are
based on language model information (per-
plexity, level of back-off, intra-lingual trig-
gers), translation table (IBM1 table, inter-
lingual triggers). For language models, for-
ward and backward models are built. Each
feature gives a score to each word in the sen-
tence, and the score of the sentence is the av-
erage of word scores. For several features,
the score of a word depends on the score of its
neighbours. This leads to 66 features. Sup-
port Vector Machines are used to learn a re-
gression model. In training is done in a multi-
stage procedure aimed at increasing the size
of the training corpus. Initially, the train-
ing corpus with machine translated sentences
provided by the task is used to train an SVM
model. Then this model is applied to the post-
edited and reference sentences (also provided
as part of the task). These are added to the
quality estimation training corpus using as la-
bels the SVM predictions. An algorithm to
tune the predicted scores on a development
corpus is used.

SHEF (T1.1, T1.3): These submissions use
Gaussian Processes, a non-parametric prob-
abilistic learning framework for regression,
along with two techniques to improve predic-
tion performance and minimise the amount
of resources needed for the problem: feature
selection based on optimised hyperparame-
ters and active learning to reduce the training
set size (and therefore the annotation effort).
The initial set features contains all black box
and glass box features available within the
QUEST framework (Specia et al., 2013) for
the dataset at hand (160 in total for Task 1.1,
and 80 for Task 1.3). The query selection
strategy for active learning is based on the
informativeness of the instances using Infor-
mation Density, a measure that leverages be-
tween the variance among instances and how
dense the region (in the feature space) where
the instance is located is. To perform fea-
ture selection, following (Shah et al., 2013)
features are ranked by the Gaussian Process
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algorithm according to their learned length
scales, which can be interpreted as the rel-
evance of such feature for the model. This
information was used for feature selection
by discarding the lowest ranked (least use-
ful) ones. based on empirical results found
in (Shah et al., 2013), the top 25 features for
both models were selected and used to retrain
the same regression algorithm.

UPC (T1.2): The methodology used a broad set
of features, mainly available through the last
version of the Asiya toolkit for MT evalua-
tion (Gonzàlez et al., 2012)17. Concretely,
86 features were derived for the German-to-
English and 97 features for the English-to-
Spanish tasks. These features cover differ-
ent approaches and include standard qual-
ity estimation features, as provided by the
above mentioned Asiya and QUEST toolk-
its, but also a variety of features based on
pseudo-references, explicit semantic analy-
sis and specialised language models trained
on the parallel and monolingual corpora pro-
vided by the WMT Translation Task.

The system selection task is approached by
means of pairwise ranking decisions. It uses
Random Forest classifiers with ties, expand-
ing the work of 402013cFormiga et al.), from
which a full ranking can be derived and the
best system per sentence is identified. Once
the classes are given by the Random Forest,
one can build a graph by means of the adja-
cency matrix of the pairwise decision. The fi-
nal ranking is assigned through a dominance
scheme similar to Pighin et al. (2012).

An important remark of the methodology is
the feature selection process, since it was no-
ticed that the learner was sensitive to the fea-
tures used. Selecting the appropriate set of
features was crucial to achieve a good per-
formance. The best feature combination was
composed of: i) a baseline quality estimation
feature set (Asiya or Quest) but not both of
them, ii) Length Model, iii) Pseudo-reference
aligned based features, and iv) adapted lan-
guage models. However, within the de-en
task, substituting Length Model and Aligned
Pseudo-references by the features based on

17http://asiya.lsi.upc.edu/

Semantic Roles could bring marginally bet-
ter accuracy.

TCD-CNGL (T1.1) and TCD-DCU-CNGL
(T1.3): The system is based on features
which are commonly used for style classifi-
cation (e.g. author identification). The as-
sumption is that low/high quality translations
can be characterised by some patterns which
are frequent and/or differ significantly from
the opposite category. Such features are in-
tended to focus on striking patterns rather
than to capture the global quality in a sen-
tence, but they are used in conjunction with
classical features for quality estimation (lan-
guage modelling, etc.). This requires two
steps in the training process: first the refer-
ence categories against which sentences will
be compared are built, then the standard qual-
ity estimation model training stage is per-
formed. Both datasets (Tasks 1.1 and 1.3)
were used for both tasks. Since the number
of features can be very high (up to 65,000),
a combination of various heuristics for se-
lecting features was used before the training
stage (the submitted systems were trained us-
ing SVM with RBF kernels).

UMAC (T1.1, T1.2, T2): For Task 1.1, the fea-
ture set consists in POS sequences of the
source and target languages, using 12 uni-
versal tags that are common in both lan-
guages. The algorithm is an enhanced ver-
sion of the BLEU metric (EBLEU) designed
with a modified length penalty and added re-
call factor, and having the precision and re-
call components grouped using the harmonic
mean. For Task 1.2, in addition to the uni-
versal POS sequences of the source and tar-
get languages, features include the scores of
length penalty, precision, recall and rank.
Variants of EBLEU with different strategies
for alignment are used, as well as a Naı̈ve
Bayes classification algorithm. For Task 2,
the features used are unigrams (from previous
4th to following 3rd tokens), bigrams (from
previous 2nd to following 2nd tokens), skip
bigrams (previous and next token), trigrams
(from previous 2nd to following 2nd tokens).
The learning algorithms are Conditional Ran-
dom Fields and Naı̈ve Bayes.
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6.8 Results

In what follows we give the official results for all
tasks followed by a discussion that highlights the
main findings for each of the tasks.

Task 1.1 Predicting post-editing distance

Table 12 summarises the results for the ranking
variant of the task. They are sorted from best to
worse using the DeltaAvg metric scores as primary
key and the Spearman’s rank correlation scores as
secondary key.

The winning submissions for the ranking vari-
ant of Task 1.1 are CNGL SVRPLS, with a
DeltaAvg score of 11.09, and DCU-SYMC all-
types, with a DeltaAvg score of 10.13. While the
former holds the higher score, the difference is not
significant at the p ≤ 0.05 level as estimated by a
bootstrap resampling test.

Both submissions are better than the baseline
system by a very wide margin, a larger relative im-
provement than that obtained in the corresponding
WMT12 task. In addition, five submissions (out
of 12 systems) scored significantly higher than the
baseline system (systems above the middle gray
area), which is a larger proportion than that in last
year’s task (only 3 out of 16 systems), indicat-
ing that this shared task succeeded in pushing the
state-of-the-art performance to new levels.

In addition to the performance of the official
submission, we report results obtained by two or-
acle methods: the gold-label HTER metric com-
puted against the post-edited translations as ref-
erence (Oracle HTER), and the BLEU metric (1-
BLEU to obtain the same range as HTER) com-
puted against the same post-edited translations as
reference (Oracle HBLEU). The “Oracle HTER”
DeltaAvg score of 16.38 gives an upperbound in
terms of DeltaAvg for the test set used in this eval-
uation. It indicates that, for this set, the differ-
ence in post-editing effort between the top quality
quantiles and the overall quality is 16.38 on aver-
age. The oracle based on HBLEU gives a lower
DeltaAvg score, which is expected since HTER
was our actual gold label. However, it is still
significantly higher than the score of the winning
submission, which shows that there is significant
room for improvement even by the highest scor-
ing submissions.

The results for the scoring variant of the task
are presented in Table 13, sorted from best to
worse by using the MAE metric scores as primary

key and the RMSE metric scores as secondary key.
According to MAE scores, the winning submis-

sion is SHEF FS (MAE = 12.42), which uses fea-
ture selection and a novel learning algorithm for
the task, Gaussian Processes. The baseline sys-
tem is measured to have an MAE of 14.81, with
six other submissions having performances that
are not different from the baseline at a statisti-
cally significant level, as shown by the gray area
in the middle of Table 13). Nine submissions (out
of 16) scored significantly higher than the base-
line system (systems above the middle gray area),
a considerably higher proportion of submissions
as compared to last year (5 out of 19), which indi-
cates that this shared task also succeeded in push-
ing the state-of-the-art performance to new levels
in terms of absolute scoring. Only one (6%) sys-
tem scored significantly lower than the baseline,
as opposed to 8 (42%) in last year’s task.

For the sake of completeness, we also show or-
acles figures using the same methods as for the
ranking variant of the task. Here the lowerbound
in error (Oracle HTER) will clearly be zero, as
both MAE and RMSE are measured against the
same gold label used for the oracle computation.
“Oracle HBLEU” is also not indicative in this
case, as the although the values for the two metrics
(HTER and HBLEU) are within the same ranges,
they are not directly comparable. This explains the
larger MAE/RMSE figures for “Oracle HBLEU”
than those for most submissions.

Task 1.2 Selecting the best translation
Below we present the results for this task for each
of the two Kendall’s τ flavours presented in Sec-
tion 6.6, for the German-English test set (Tables 14
and 16) and the English-Spanish test set (Tables 15
and 17). The results are sorted from best to worse
using each of the Kendall’s τ metric flavours.

For German-English, the winning submission is
DFKI’s logRegFss33 entry, for both Kendall’s τ
with ties penalised and ties ignored, with τ = 0.31
(since this submission has no ties, the two met-
rics give the same τ value). A trivial baseline that
proposes random ranks (with ties allowed) has a
Kendall’s τ with ties penalised of -0.12 (as this
metric penalises the system’s ties that were non-
ties in the reference), and a Kendall’s τ with ties
ignored of 0.08. Most of the submissions per-
formed better than this simple baseline. More in-
terestingly perhaps is the comparison between the
best submission and the performance by an ora-
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System ID DeltaAvg Spearman ρ
• CNGL SVRPLS 11.09 0.55

• DCU-SYMC alltypes 10.13 0.59
SHEF FS 9.76 0.57

CNGL SVR 9.88 0.51
DCU-SYMC combine 9.84 0.59

CMU noB 8.98 0.57
SHEF FS-AL 8.85 0.50

Baseline bb17 SVR 8.52 0.46
CMU full 8.23 0.54

LIMSI 8.15 0.44
TCD-CNGL open 6.03 0.33

TCD-CNGL restricted 5.85 0.31
UMAC 2.74 0.11

Oracle HTER 16.38 1.00
Oracle HBLEU 15.74 0.93

Table 12: Official results for the ranking variant of the WMT13 Quality Estimation Task 1.1. The winning submissions are
indicated by a • (they are significantly better than all other submissions according to bootstrap resampling (10k times) with
95% confidence intervals). The systems in the gray area are not different from the baseline system at a statistically significant
level according to the same test. Oracle results that use human-references are also shown for comparison purposes.

System ID MAE RMSE
• SHEF FS 12.42 15.74

SHEF FS-AL 13.02 17.03
CNGL SVRPLS 13.26 16.82

LIMSI 13.32 17.22
DCU-SYMC combine 13.45 16.64
DCU-SYMC alltypes 13.51 17.14

CMU noB 13.84 17.46
CNGL SVR 13.85 17.28

FBK-UEdin extra 14.38 17.68
FBK-UEdin rand-svr 14.50 17.73

LORIA inctrain 14.79 18.34
Baseline bb17 SVR 14.81 18.22

TCD-CNGL open 14.81 19.00
LORIA inctraincont 14.83 18.17

TCD-CNGL restricted 15.20 19.59
CMU full 15.25 18.97

UMAC 16.97 21.94
Oracle HTER 0.00 0.00

Oracle HBLEU (1-HBLEU) 16.85 19.72

Table 13: Official results for the scoring variant of the WMT13 Quality Estimation Task 1.1. The winning submission is
indicated by a • (it is significantly better than the other submissions according to bootstrap resampling (10k times) with 95%
confidence intervals). The systems in the gray area are not different from the baseline system at a statistically significant level
according to the same test. Oracle results that use human-references are also shown for comparison purposes.
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German-English System ID Kendall’s τ with ties penalised
• DFKI logRegFss33 0.31

DFKI logRegFss24 0.28
CNGL SVRPLSF1 0.17

CNGL SVRF1 0.17
DCU CCG 0.15

UPC AQE+SEM+LM 0.11
UPC AQE+LeM+ALGPR+LM 0.10

DCU baseline+CCG 0.00
Baseline Random-ranks-with-ties -0.12

UMAC EBLEU-I -0.39
UMAC NB-LPR -0.49

Oracle Human 1.00
Oracle BLEU (margin 0.00) 0.19
Oracle BLEU (margin 0.01) 0.05

Oracle METEOR-ex (margin 0.00) 0.23
Oracle METEOR-ex (margin 0.01) 0.06

Table 14: Official results for the Task 1.2 of the WMT13 Quality Estimation shared task for German-English, using as metric
Kendall’s τ with ties penalised. The winning submissions are indicated by a •. Oracle results that use human-references are
also shown for comparison purposes.

English-Spanish System ID Kendall’s τ with ties penalised
• CNGL SVRPLSF1 0.15

CNGL SVRF1 0.13
DFKI logRegL2-411 0.09
DFKI logRegL2-431 0.04

UPC QQE+LeM+ALGPR+LM -0.03
UPC AQE+LeM+ALGPR+LM -0.06

CMU BLEUopt -0.11
Baseline Random-ranks-with-ties -0.23

UMAC EBLEU-A -0.27
UMAC EBLEU-I -0.35

CMU cls -0.63
Oracle Human 1.00

Oracle BLEU (margin 0.00) 0.17
Oracle BLEU (margin 0.02) -0.06

Oracle METEOR-ex (margin 0.00) 0.19
Oracle METEOR-ex (margin 0.02) 0.05

Table 15: Official results for the Task 1.2 of the WMT13 Quality Estimation shared task for English-Spanish, using as metric
Kendall’s τ with ties penalised. The winning submissions are indicated by a •. Oracle results that use human-references are
also shown for comparison purposes.
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German-English System ID Kendall’s τ with ties ignored Nr. of non-ties / Nr. of decisions
• DFKI logRegFss33 0.31 882/882

DFKI logRegFss24 0.28 882/882
UPC AQE+SEM+LM 0.27 768/882

UPC AQE+LeM+ALGPR+LM 0.24 788/882
DCU CCG 0.18 862/882

CNGL SVRPLSF1 0.17 882/882
CNGL SVRF1 0.17 881/882

Baseline Random-ranks-with-ties 0.08 718/882
DCU baseline+CCG 0.01 874/882

UMAC NB-LPR 0.01 447/882
UMAC EBLEU-I -0.03 558/882

Oracle Human 1.00 882/882
Oracle BLEU (margin 0.00) 0.22 859/882
Oracle BLEU (margin 0.01) 0.27 728/882

Oracle METEOR-ex (margin 0.00) 0.20 869/882
Oracle METEOR-ex (margin 0.01) 0.24 757/882

Table 16: Official results for the Task 1.2 of the WMT13 Quality Estimation shared task for German-English, using as metric
Kendall’s τ with ties ignored. The winning submissions are indicated by a •. Oracle results that use human-references are also
shown for comparison purposes.

English-Spanish System ID Kendall’s τ with ties ignored Nr. of non-ties / Nr. of decisions
• CMU cls 0.23 192/633

CNGL SVRPLSF1 0.16 632/633
CNGL SVRF1 0.13 631/633

DFKI logRegL2-411 0.13 610/633
UPC QQE+LeM+ALGPR+LM 0.11 554/633
UPC AQE+LeM+ALGPR+LM 0.08 554/633

UMAC EBLEU-A 0.07 430/633
DFKI logRegL2-431 0.04 633/633

Baseline Random-ranks-with-ties 0.03 507/633
UMAC EBLEU-I 0.02 407/633

CMU BLEUopt -0.11 633/633
Oracle Human 1.00 633/633

Oracle BLEU (margin 0.00) 0.19 621/633
Oracle BLEU (margin 0.02) 0.26 474/633

Oracle METEOR-ex (margin 0.00) 0.25 623/633
Oracle METEOR-ex (margin 0.02) 0.28 517/633

Table 17: Official results for the Task 1.2 of the WMT13 Quality Estimation shared task for English-Spanish, using as metric
Kendall’s τ with ties ignored. The winning submissions are indicated by a •. Oracle results that use human-references are also
shown for comparison purposes.
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cle method that has access to human-created refer-
ences. This oracle uses human references to com-
pute BLEU and METEOR scores for each trans-
lation segment, and consequently computes rank-
ings for the competing translations based on these
scores. To reflect the impact of ties on the two
versions of Kendall’s τ metric we use, we allow
these ranks to be tied if the difference between the
oracle BLEU or METEOR scores is smaller than
a margin (see lower section of Tables 14 and 16,
with margins of 0 and 0.01 for the scores). For ex-
ample, under a regime of BLEU with margin 0.01,
a translation with BLEU score of 0.172 would get
the same rank as a translation with BLEU score of
0.164 (difference of 0.008), but a higher rank than
a translation with BLEU score of 0.158 (difference
of 0.014). Not surprisingly, under the Kendall’s
τ with ties penalised the best Oracle BLEU or
METEOR performance happens for a 0.0 mar-
gin (which makes ties possible only for exactly-
matching scores), for a value of τ = 0.19 and
τ = 0.23, respectively. Under the Kendall’s τ with
ties ignored, the Oracle BLEU performance for a
0.01 margin (i.e, translations under 1 BLEU point
should be considered as having the same rank)
achieves τ = 0.27, while Oracle METEOR for a
0.01 margin achieves τ = 0.24. These values are
lower than the τ = 0.31 of the winning submis-
sion without access to reference translations, sug-
gesting that quality estimation models are capable
of better modelling translation differences com-
pared to traditional, human reference-based MT
evaluation metrics.

For English-Spanish, under Kendall’s τ with
ties penalised the winning submission is CNGL’s
SVRPLSF1, with τ = 0.15. Under Kendall’s τ
with ties ignored, the best scoring submission is
CMU’s cls with τ = 0.23, but this is achieved
by offering non-tie judgements only for 192 of the
633 total judgements (30% of them). As we dis-
cussed in Section 6.6, the ”Kendall’s τ with ties
ignored” metric is weak with respect to compar-
ing different submissions, since it favours systems
that are do not commit to a given rank and rather
produce a large number of ties. This becomes even
clearer when we look at the performance of the or-
acle methods (Tables 15 and 17). Under Kendall’s
τ with ties penalised, “Oracle BLEU” (margin
0.00) achieves τ = 0.17, while under Kendall’s
τ with ties ignored, “Oracle BLEU” (margin 0.02)
has a τ = 0.26. This results in 474 non-tie deci-

sions (75% of them), and a better τ value com-
pared to “Oracle BLEU” (margin 0.00), with a
τ = 0.19 under the same metric. The oracle values
for both BLEU and METEOR are close to the τ
values of the winning submissions, supporting the
conclusion that quality estimation techniques can
successfully replace traditional, human reference-
based MT evaluation metrics.

Task 1.3 Predicting post-editing time
Results for this task are presented in Table 18.
A third of the submissions was able to beat the
baseline. Among these FBK-UEDIN’s submission
ranked best in terms of MAE, our main metric for
this task, and also achieved the lowest RMSE.

Only three systems were able to beat our base-
line in terms of MAE. Please note that while all
features were available to the participants, our
baseline is actually a competitive system.

The second-best entry, CNGL SVR, reached
the highest Spearman’s rank correlation, our sec-
ondary metric. Furthermore, in terms of this met-
ric all four top-ranking entries, two by CNGL and
FBK-UEDIN respectively, are significantly better
than the baseline (10k bootstrap resampling test
with 95% confidence intervals). As high ranking
submissions also yield strong rank correlation to
the observed post-editing time, we can be confi-
dent that improvements in MAE are not only due
to better handling of extreme cases.

Many participants submitted two variants of
their systems with different numbers of features
and/or machine learning approaches. In Table 18
we can see these are grouped closely together giv-
ing rise to the assumption that the general pool of
available features and thereby the used resources
and strongest features are most relevant for a sys-
tem’s performance. Another hint in that direction
is the observation the top-ranked systems rely on
additional data and resources to generate their fea-
tures.

Task 2 Predicting word-level scores
Results for this task are presented in Table 19 and
20, sorted by macro average F1. Since this is a
new task, we have yet to establish a strong base-
line. For reference we provide a trivial baseline
that predicts the dominant class – (K)eep – for ev-
ery token.

The first observation in Table 19 is that this triv-
ial baseline is difficult to beat in terms of accuracy.
However, considering our main metric – macro-
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System ID MAE RMSE Pearson’s r Spearman’s ρ
• FBK-UEDIN Extra 47.5 82.6 0.65 0.75

• FBK-UEDIN Rand-SVR 47.9 86.7 0.66 0.74
CNGL SVR 49.2 90.4 0.67 0.76

CNGL SVRPLS 49.6 86.6 0.68 0.74
CMU slim 51.6 84.7 0.63 0.68

Baseline bb17 SVR 51.9 93.4 0.61 0.70
DFKI linear6 52.4 84.3 0.64 0.68

CMU full 53.6 92.2 0.58 0.60
DFKI pls8 53.6 88.3 0.59 0.67

TCD-DCU-CNGL SVM2 55.8 98.9 0.47 0.60
TCD-DCU-CNGL SVM1 55.9 99.4 0.48 0.60

SHEF FS 55.9 103.1 0.42 0.61
SHEF FS-AL 64.6 99.1 0.57 0.60
LIMSI elastic 70.6 114.4 0.58 0.64

Table 18: Official results for the Task 1.3 of the WMT13 Quality Estimation shared-task. The winning submissions are
indicated by a • (they are significantly better than all other submissions according to bootstrap resampling (10k times) with
95% confidence intervals). The systems in the gray area are not different from the baseline system at a statistically significant
level according to the same test.

Keep Change
System ID Accuracy Prec. Recall F1 Prec. Recall F1 Macro F1

• LIG FS BIN 0.74 0.79 0.86 0.82 0.56 0.43 0.48 0.65
• LIG BOOST BIN 0.74 0.78 0.88 0.83 0.57 0.37 0.45 0.64

CNGL GLM 0.70 0.76 0.86 0.80 0.47 0.31 0.38 0.59
UMAC NB 0.56 0.82 0.49 0.62 0.37 0.73 0.49 0.55

CNGL GLMd 0.71 0.74 0.93 0.82 0.51 0.19 0.28 0.55
UMAC CRF 0.71 0.72 0.98 0.83 0.49 0.04 0.07 0.45

Baseline (one class) 0.71 0.71 1.00 0.83 0.00 0.00 0.00 0.42

Table 19: Official results for Task 2: binary classification on word level of the WMT13 Quality Estimation shared-task. The
winning submissions are indicated by a •.

System ID F1 Keep F1 Substitute F1 Delete Micro-F1 Macro-F1

• LIG FS MULT 0.83 0.44 0.072 0.72 0.45
• LIG ALL MULT 0.83 0.45 0.064 0.72 0.45

UMAC NB 0.62 0.43 0.042 0.52 0.36
CNGL GLM 0.83 0.18 0.028 0.71 0.35

CNGL GLMd 0.83 0.14 0.034 0.72 0.34
UMAC CRF 0.83 0.04 0.012 0.71 0.29

Baseline (one class) 0.83 0.00 0.000 0.71 0.28

Table 20: Official results for Task 2: multiclass classification on word level of the WMT13 Quality Estimation shared-task.
The winning submissions are indicated by a •.
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average F1 – it is clear that all systems outperform
the baseline. The winning systems by LIG for the
binary task are also the top ranking systems on the
multiclass task.

While promising results are found for the bi-
nary variant of the task where systems are able to
achieve an F1 of almost 0.5 for the relevant class
– Change, the multiclass prediction variant of the
task seem to suffer from its severe class imbalance.
In fact, none of the systems shows good perfor-
mance when predicting deletions.

6.9 Discussion
In what follows, we discuss the main accomplish-
ments of this shared task starting from the goals
we had previously identified for it.

Explore various granularity levels for the
quality-prediction task The decision on which
level of granularity quality estimation is applied
depends strongly on the intended application. In
Task 2 we tested binary word-level classification
in a post-editing setting. If such annotation is pre-
sented through a user interface we imagine that
words marked as incorrect would be hidden from
the editor, highlighted as possibly wrong or that a
list of alternatives would we generated.

With respect to the poor improvements over
trivial baselines, we consider that the results for
word-level prediction could be mostly connected
to limitations of the datasets provided, which are
very small for word-level prediction, as compared
to successful previous work such as (Bach et al.,
2011). Despite the limited amount of training
data, several systems were able to predict dubious
words (binary variant of the task), showing that
this can be a promising task. Extending the granu-
larity even further by predicting the actual editing
action necessary for a word yielded less positive
results than the binary setting.

We cannot directly compare sentence- and
word-level results. However, since sentence-level
predictions can benefit from more information
available and therefore more signal on which the
prediction is based, the natural conclusion is that,
if there is a choice in the prediction granularity,
to opt for the coarser one possible (i.e., sentence-
level over word-level). But certain applications
may require finer granularity levels, and therefore
word-level predictions can still be very valuable.

Explore the prediction of more objective scores
Given the multitude of possible applications for

quality estimation we must decide which predicted
values are both useful and accurate. In this year’s
task we have attempted to address the useful-
ness criterion by moving from the subjective, hu-
man judgement-based scores, to the prediction of
scores that can be more easily interpreted for prac-
tical applications: post-editing distance or types of
edits (word-level), post-editing time, and ranking
of alternative translations.

The general promise of using objective scores is
that predicting a value that is related to the use case
will make quality estimation more applicable and
yield lower deviance compared to the use of proxy
metrics. The magnitude of this benefit should be
sufficient to account for the possible additional ef-
fort related to collecting such scores.

While a direct comparison between the differ-
ent types of scores used for this year’s tasks is not
possible as they are based on different datasets, if
we compare last year’s task on predicting 1-5 lik-
ert scores (and generating an overall ranking of all
translations in the test set) with this year’s Task
1.1, which is virtually the same, but using post-
editing distance as gold-label, we see that the num-
ber of systems that outperform the baseline 18 is
proportionally larger this year. We can also notice
a higher relative improvement of these submis-
sions over the baseline system. While this could
simply be a consequence of progress in the field, it
may also provide an indication that objective met-
rics are more suitable for the problem.

Particularly with respect to post-editing time,
given that this label has a long tailed distribution
and is not trivial to measure even in a controlled
environment, the results of Task 1.3 are encour-
aging. Comparison with the better results seen
on Tasks 1.1 and 1.2, however, suggests that, for
Task 1.3, additional data processing, filtering, and
modelling (including modelling translator-specific
traits such as their variance in time) is required, as
evidenced in (Cohn and Specia, 2013).

Explore the use of quality estimation tech-
niques to replace reference-based MT evalua-
tion metrics When it comes to the task of au-
tomatically ranking alternative translations gener-
ated by different MT systems, the traditional use
of reference-based MT evaluation metrics is chal-
lenged by the findings of this task.

The top ranking quality estimation submissions
18The two baselines are exactly the same, and therefore the

comparison is meaningful.
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to Task 1.2 have performances that outperform or
are at least at the same level with the ones that
involve the use of human references. The most in-
teresting property of these techniques is that, be-
ing reference-free, they can be used for any source
sentences, and therefore are ready to be deployed
for arbitrary texts.

An immediate application for this capability is
a procedure by which MT system-selection is per-
formed, based on the output of such quality esti-
mators. Additional measurements are needed to
determine the level of improvement in translation
quality that the current performance of these tech-
niques can achieve in a system-selection scenario.

Identify new and effective quality indicators
Quality indicators, or features, are core to the
problem of quality estimation. One significant dif-
ference this year with respect to previous year was
the availability of QUEST, a framework for the ex-
traction of a large number of features. A few sub-
missions used these larger sets – as opposed to the
17 baseline features used in the 2012 edition – as
their starting point, to which they added other fea-
tures. Most features available in this framework,
however, had already been used in previous work.

Novel families of features used this year which
seems to have played an important role are those
proposed by CNGL. They include a number of
language and MT-system independent monolin-
gual and bilingual similarity metrics between the
sentences for prediction and corpora of the lan-
guage pair under consideration. Based on standard
regression algorithm (the same used by the base-
line system), the submissions from CNGL using
such feature families topped many of the tasks.

Another interesting family of features is that
used by TCD-CNGL and TCD-DCU-CNGL for
Tasks 1.1 and 1.3. These were borrowed from
work on style or authorship identification. The as-
sumption is that low/high quality translations can
be characterised by some patterns which are fre-
quent and/or differ significantly from patterns be-
longing to the opposite category.

Like in last year’s task, the vast majority of
the participating systems used external resources
in addition to those provided for the task, par-
ticularly for linguistically-oriented features, such
as parsers, part-of-speech taggers, named entity
recognizers, etc. A novel set of syntactic fea-
tures based on Combinatory Categorial Grammar
(CCG) performed reasonably well in Task 1.2:

with six CCG-based features and no additional
features, the system outperformed the baseline
system and also a second submission where the
17 baseline features were added. This highlights
the potential of linguistically-motivated features
for the problem.

As expected, different feature sets were used
for different tasks. This is essential for Task 2,
where word-level features are certainly necessary.
For example, LIG used a number of lexical fea-
tures such as part-of-speech tag, word-posterior
probabilities, syntactic (constituent label, distance
to the constituent tree root, and target and source
polysemy count). For submissions where a se-
quence labelling algorithm such as a Conditional
Random Fields was used for prediction, the inter-
dependencies between adjacent words and labels
was also modelled though features.

Pseudo-references, i.e., scores from standard
evaluation metrics such as BLEU based on trans-
lations generated by an alternative MT system as
“reference”, featured in more than half of the sub-
missions for sentence-level tasks. This is not sur-
prising given their performance in previous work
on quality estimation.

Identify effective machine learning techniques
for all variants of the quality estimation task
For the sentence-level tasks, standard regression
methods such as SVR performed well as in the
previous edition of the shared task, topping the
results for the ranking variant of Task 1.1, both
first and second place. In fact this algorithm was
used by most submissions that outperformed the
baseline. An alternative algorithm to SVR with
very promising results and which was introduced
for the problem this year is that of Gaussian Pro-
cesses. It was used by SHEF, the winning submis-
sion in the scoring variant of Task 1.1, which also
performed well in the ranking variant, despite its
hyperparameters having been optimised for scor-
ing only. Algorithms behave similarly for Task
1.3, with SVR performing particularly well.

For Task 1.2, logistic regression performed the
best or among the best, along with SVR. One of
the most effective approach for this task, however,
appears to be one that is better tailored for the
task, namely pair-wise decomposition for ranking.
This approach benefits from transforming a k-way
ranking problem into a series of simpler, 2-way
ranking problems, which can be more accurately
solved. Another approach that shows promise is

32



that of ensemble of regressors, in which the output
is the results combining the predictions of differ-
ent regression models.

Linear-chain Conditional Random Fields are a
popular model of choice for sequence labelling
tasks and have been successfully used by several
participants in Task 2, along with discriminatively
trained Hidden Markov Models and Naı̈ve Bayes.

As in the previous edition, feature engineer-
ing and feature selection prior to model learning
were important components in many submissions.
However, the role of individual features is hard
to judge separately from the role of the machine
learning techniques employed.

Establish the state of the art performance All
four tasks addressed in this shared task have
achieved a dual role that is important for the re-
search community: (i) to make publicly available
new data sets that can serve to compare different
approaches and contributions; and (ii) to estab-
lish the present state-of-the-art performance in the
field, so that progress can be easily measured and
tracked. In addition, the public availability of the
scoring scripts makes evaluation and direct com-
parison straightforward.

Many participants submitted predictions for
several tasks. Comparison of the results shows
that there is little overlap between the best sys-
tems when the predicted value is varied. While
we did not formally require the participants to use
similar systems across tasks, these results indicate
that specialised systems with features selected de-
pending on the predicted variable can in fact be
beneficial.

As we mentioned before, compared to the pre-
vious edition of the task, we noticed (for Task
1.1) a larger relative improvement of scores over
the baseline system, as well as a larger propor-
tion of systems outperforming the baseline sys-
tems, which are a good indication that the field is
progressing over the years. For example, in the
scoring variant of Task 1.1, last year only 5 out of
20 systems (i.e. 25% of the systems) were able to
significantly outperform the baseline. This year, 9
out 16 systems (i.e. 56%) outperformed the same
baseline. Last year, the relative improvement of
the winning submission with respect to the base-
line system was 13%, while this year the relative
improvement is of 19%.

Overall, the tables of results presented in Sec-
tion 6.8 give a comprehensive view of the current

state-of-the-art on the data sets used for this shared
task, as well as indications on how much room
there still is for improvement via figures from ora-
cle methods. As a result, people interested in con-
tributing to research in these machine translation
quality estimation tasks will be able to do so in a
principled way, with clearly established state-of-
the-art levels and straightforward means of com-
parison.

7 Summary

As in previous incarnations of this workshop we
carried out an extensive manual and automatic
evaluation of machine translation performance,
and we used the human judgements that we col-
lected to validate automatic metrics of translation
quality. We also refined last year’s quality estima-
tion task, asking for methods that predict sentence-
level post-editing effort and time, rank translations
from alternative systems, and pinpoint words in
the output that are more likely to be wrong.

As in previous years, all data sets generated by
this workshop, including the human judgments,
system translations and automatic scores, are pub-
licly available for other researchers to analyze.19
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touš Macháček and Martin Popel for detailed dis-
cussions.

References
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TÜbtak-blgem german-english machine trans-
lation systems for w13. In Proceedings of the
Eighth Workshop on Statistical Machine Trans-
lation, pages 107–111, Sofia, Bulgaria. Associ-
ation for Computational Linguistics.

Durrani, N., Fraser, A., Schmid, H., Sajjad, H.,
and Farkas, R. (2013a). Munich-Edinburgh-
Stuttgart submissions of OSM systems at
WMT13. In Proceedings of the Eighth Work-
shop on Statistical Machine Translation, pages
120–125, Sofia, Bulgaria. Association for Com-
putational Linguistics.

Durrani, N., Haddow, B., Heafield, K., and Koehn,
P. (2013b). Edinburgh’s machine translation
systems for European language pairs. In Pro-
ceedings of the Eighth Workshop on Statisti-
cal Machine Translation, pages 112–119, Sofia,
Bulgaria. Association for Computational Lin-
guistics.

35



Eidelman, V., Wu, K., Ture, F., Resnik, P., and Lin,
J. (2013). Towards efficient large-scale feature-
rich statistical machine translation. In Proceed-
ings of the Eighth Workshop on Statistical Ma-
chine Translation, pages 126–131, Sofia, Bul-
garia. Association for Computational Linguis-
tics.

Federmann, C. (2012). Appraise: An Open-
Source Toolkit for Manual Evaluation of Ma-
chine Translation Output. The Prague Bulletin
of Mathematical Linguistics (PBML), 98:25–
35.

Fleiss, J. L. (1971). Measuring nominal scale
agreement among many raters. Psychological
Bulletin, 76(5):378–382.

Formiga, L., Costa-jussà, M. R., Mariño, J. B.,
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Galuščáková, P., Popel, M., and Bojar, O. (2013).
PhraseFix: Statistical post-editing of TectoMT.
In Proceedings of the Eighth Workshop on Sta-
tistical Machine Translation, pages 139–145,
Sofia, Bulgaria. Association for Computational
Linguistics.

Gispert, A., Blackwood, G., Iglesias, G., and
Byrne, W. (2013). N-gram posterior probabil-
ity confidence measures for statistical machine
translation: an empirical study. Machine Trans-
lation, 27:85–114.
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(2012). A graph-based strategy to streamline
translation quality assessments. In Proceed-
ings of the Tenth Conference of the Associa-
tion for Machine Translation in the Americas
(AMTA’2012), San Diego, USA.

Pino, J., Waite, A., Xiao, T., de Gispert, A., Flego,
F., and Byrne, W. (2013). The University of
Cambridge Russian-English system at WMT13.
In Proceedings of the Eighth Workshop on Sta-
tistical Machine Translation, pages 198–203,
Sofia, Bulgaria. Association for Computational
Linguistics.

Post, M., Ganitkevitch, J., Orland, L., Weese, J.,
Cao, Y., and Callison-Burch, C. (2013). Joshua
5.0: Sparser, better, faster, server. In Proceed-
ings of the Eighth Workshop on Statistical Ma-
chine Translation, pages 204–210, Sofia, Bul-
garia. Association for Computational Linguis-
tics.

Rubino, R., Toral, A., Cortés Vaı́llo, S., Xie, J.,
Wu, X., Doherty, S., and Liu, Q. (2013a). The
CNGL-DCU-Prompsit translation systems for
WMT13. In Proceedings of the Eighth Work-
shop on Statistical Machine Translation, pages
211–216, Sofia, Bulgaria. Association for Com-
putational Linguistics.

Rubino, R., Wagner, J., Foster, J., Roturier, J.,
Samad Zadeh Kaljahi, R., and Hollowood, F.

(2013b). DCU-Symantec at the WMT 2013
quality estimation shared task. In Proceedings
of the Eighth Workshop on Statistical Machine
Translation, pages 390–395, Sofia, Bulgaria.
Association for Computational Linguistics.

Sajjad, H., Smekalova, S., Durrani, N., Fraser, A.,
and Schmid, H. (2013). QCRI-MES submis-
sion at WMT13: Using transliteration mining
to improve statistical machine translation. In
Proceedings of the Eighth Workshop on Statisti-
cal Machine Translation, pages 217–222, Sofia,
Bulgaria. Association for Computational Lin-
guistics.

Schmidt, H. (1994). Probabilistic part-of-speech
tagging using decision trees. In Proceedings of
the International Conference on New Methods
in Natural Language Processing.

Seginer, Y. (2007). Learning Syntactic Structure.
PhD thesis, University of Amsterdam.

Shah, K., Cohn, T., and Specia, L. (2013). An In-
vestigation on the Effectiveness of Features for
Translation Quality Estimation. In Proceedings
of MT Summit XIV (to appear), Nice, France.

Singh, A. K., Wisniewski, G., and Yvon, F.
(2013). LIMSI submission for the WMT’13
quality estimation task: an experiment with n-
gram posteriors. In Proceedings of the Eighth
Workshop on Statistical Machine Translation,
pages 396–402, Sofia, Bulgaria. Association for
Computational Linguistics.

Smith, J., Saint-Amand, H., Plamada, M., Koehn,
P., Callison-Burch, C., and Lopez, A. (2013).
Dirt cheap web-scale parallel text from the
Common Crawl. In Proceedings of the 2013
Conference of the Association for Computa-
tional Linguistics (ACL 2013), Sofia, Bulgaria.
Association for Computational Linguistics.

Snover, M., Dorr, B., Schwartz, R., Micciulla, L.,
and Makhoul, J. (2006). A study of transla-
tion edit rate with targeted human annotation.
In Proceedings of the 7th Biennial Conference
of the Association for Machine Translation in
the Americas (AMTA-2006), Cambridge, Mas-
sachusetts.

Snover, M., Madnani, N., Dorr, B. J., and
Schwartz, R. (2009). Fluency, adequacy, or
hter?: exploring different human judgments
with a tunable mt metric. In Proceedings of the
Fourth Workshop on Statistical Machine Trans-

38



lation, StatMT ’09, pages 259–268, Strouds-
burg, PA, USA. Association for Computational
Linguistics.

Soricut, R., Bach, N., and Wang, Z. (2012). The
SDL Language Weaver Systems in the WMT12
Quality Estimation Shared Task. In Proceed-
ings of the 7th Workshop on Statistical Machine
Translation, pages 145–151.

Souza, J. G. C. d., Espl-Gomis, M., Turchi, M.,
and Negri, M. (2013). Exploiting qualitative in-
formation from automatic word alignment for
cross-lingual nlp tasks. In The 51st Annual
Meeting of the Association for Computational
Linguistics - Short Papers (ACL Short Papers
2013).

Specia, L. (2011). Exploiting Objective Annota-
tions for Measuring Translation Post-editing Ef-
fort. In Proceedings of the 15th Conference of
the European Association for Machine Transla-
tion, pages 73–80, Leuven.

Specia, L., Shah, K., de Souza, J. G. C., and Cohn,
T. (2013). QuEst - A Translation Quality Esti-
mation Framework. In Proceedings of the 51th
Conference of the Association for Computa-
tional Linguistics (ACL), Demo Session, Sofia,
Bulgaria. Association for Computational Lin-
guistics.

Stolcke, A. (2002). SRILM – An extensible lan-
guage modeling toolkit. In Proceedings of the
7th International Conference on Spoken Lan-
guage Processing (ICSLP 2002), pages 901–
904.

Stone, M. and Brooks, R. J. (1990). Contin-
uum regression: cross-validated sequentially
constructed prediction embracing ordinary least
squares, partial least squares and principal com-
ponents regression. Journal of the Royal
Statistical Society Series B Methodological,
52(2):237–269.

Stymne, S., Hardmeier, C., Tiedemann, J., and
Nivre, J. (2013). Tunable distortion limits and
corpus cleaning for SMT. In Proceedings of the
Eighth Workshop on Statistical Machine Trans-
lation, pages 223–229, Sofia, Bulgaria. Associ-
ation for Computational Linguistics.

Tantug, A. C., Oflazer, K., and El-Kahlout, I. D.
(2008). BLEU+: a Tool for Fine-Grained BLEU
Computation. In (ELRA), E. L. R. A., edi-
tor, Proceedings of the Sixth International Lan-

guage Resources and Evaluation (LREC’08),
Marrakech, Morocco.

Weller, M., Kisselew, M., Smekalova, S., Fraser,
A., Schmid, H., Durrani, N., Sajjad, H., and
Farkas, R. (2013). Munich-Edinburgh-Stuttgart
submissions at WMT13: Morphological and
syntactic processing for SMT. In Proceedings
of the Eighth Workshop on Statistical Machine
Translation, pages 230–237, Sofia, Bulgaria.
Association for Computational Linguistics.

39



A Pairwise System Comparisons by Human Judges

Tables 21–30 show pairwise comparisons between systems for each language pair. The numbers in each
of the tables’ cells indicate the percentage of times that the system in that column was judged to be better
than the system in that row, ignoring ties. Bolding indicates the winner of the two systems.

Because there were so many systems and data conditions the significance of each pairwise compar-
ison needs to be quantified. We applied the Sign Test to measure which comparisons indicate genuine
differences (rather than differences that are attributable to chance). In the following tables ? indicates sta-
tistical significance at p ≤ 0.10, † indicates statistical significance at p ≤ 0.05, and ‡ indicates statistical
significance at p ≤ 0.01, according to the Sign Test.

Each table contains final rows showing how likely a system would win when paired against a randomly
selected system (the expected win ratio score) and the rank range according bootstrap resampling (p ≤
0.05). Gray lines separate clusters based on non-overlapping rank ranges.
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UEDIN-HEAFIELD – .50 .48† .43‡ .47† .43‡ .44‡ .38‡ .32‡ .25‡ .26‡
ONLINE-B .50 – .46‡ .48† .47† .49 .44‡ .40‡ .39‡ .29‡ .27‡

MES .52† .54‡ – .49 .47? .44‡ .45‡ .42‡ .41‡ .27‡ .25‡
UEDIN .57‡ .52† .51 – .51 .48† .47‡ .42‡ .39‡ .28‡ .25‡

ONLINE-A .53† .53† .53? .49 – .48 .51 .44‡ .42‡ .31‡ .30‡
UEDIN-SYNTAX .57‡ .51 .56‡ .52† .52 – .51 .43‡ .41‡ .29‡ .26‡

CU-ZEMAN .56‡ .56‡ .55‡ .53‡ .49 .49 – .45‡ .42‡ .32‡ .29‡
CU-TAMCHYNA .62‡ .60‡ .58‡ .58‡ .56‡ .57‡ .55‡ – .46‡ .35‡ .32‡

DCU-FDA .68‡ .61‡ .59‡ .61‡ .58‡ .59‡ .58‡ .54‡ – .32‡ .32‡
JHU .75‡ .71‡ .73‡ .72‡ .69‡ .71‡ .68‡ .65‡ .68‡ – .46‡

SHEF-WPROA .74‡ .73‡ .75‡ .75‡ .70‡ .74‡ .71‡ .68‡ .68‡ .54‡ –
score .60 .58 .57 .56 .54 .54 .53 .48 .45 .32 .29
rank 1 2-3 2-4 3-5 4-7 5-7 6-7 8 9 10 11

Table 21: Head to head comparison, ignoring ties, for Czech-English systems
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CU-BOJAR – .51 .47† .44‡ .42‡ .43‡ .48 .41‡ .37‡ .39‡ .38‡ .33‡
CU-DEPFIX .49 – .48? .42‡ .43‡ .41‡ .47† .42‡ .40‡ .40‡ .39‡ .34‡
ONLINE-B .53† .52? – .47‡ .44‡ .44‡ .44‡ .44‡ .44‡ .41‡ .36‡ .34‡

UEDIN .56‡ .58‡ .53‡ – .47† .47‡ .48 .45‡ .44‡ .42‡ .43‡ .38‡
CU-ZEMAN .58‡ .57‡ .56‡ .53† – .49 .49 .48† .46‡ .47‡ .47‡ .35‡

MES .57‡ .59‡ .56‡ .53‡ .51 – .50 .47† .46‡ .43‡ .44‡ .42‡
ONLINE-A .52 .53† .56‡ .52 .51 .50 – .52 .47? .47† .47† .46†

CU-PHRASEFIX .59‡ .58‡ .56‡ .55‡ .52† .53† .48 – .49 .48† .49 .42‡
CU-TECTOMT .63‡ .60‡ .56‡ .56‡ .54‡ .54‡ .53? .51 – .46‡ .46‡ .40‡

COMMERCIAL-1 .61‡ .60‡ .59‡ .58‡ .53‡ .57‡ .53† .52† .54‡ – .49 .42‡
COMMERCIAL-2 .62‡ .61‡ .64‡ .57‡ .53‡ .56‡ .53† .51 .54‡ .51 – .43‡

SHEF-WPROA .67‡ .66‡ .66‡ .62‡ .65‡ .58‡ .54† .58‡ .60‡ .58‡ .57‡ –
score .58 .57 .56 .52 .50 .50 .49 .48 .47 .45 .45 .38
rank 1-2 1-2 3 4 5-7 5-7 5-8 7-9 8-9 10-11 10-11 12

Table 22: Head to head comparison, ignoring ties, for English-Czech systems
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ONLINE-B – .48 .44‡ .37‡ .44‡ .41‡ .42‡ .40‡ .35‡ .37‡ .32‡ .31‡ .31‡ .27‡ .23‡ .18‡ .16‡
ONLINE-A .52 – .47 .45† .47 .43‡ .42‡ .41‡ .44‡ .40‡ .35‡ .36‡ .34‡ .31‡ .27‡ .25‡ .21‡

UEDIN-SYNTAX .56‡ .53 – .48 .46† .48? .46† .46† .45‡ .45‡ .35‡ .35‡ .34‡ .28‡ .25‡ .20‡ .19‡
UEDIN .63‡ .55† .52 – .51 .46‡ .47† .49 .44‡ .43‡ .39‡ .34‡ .35‡ .32‡ .28‡ .24‡ .22‡

QUAERO .56‡ .53 .54† .49 – .49 .52 .44‡ .46‡ .44‡ .39‡ .38‡ .37‡ .30‡ .31‡ .25‡ .21‡
KIT .59‡ .57‡ .52? .54‡ .51 – .45‡ .51 .43‡ .46‡ .37‡ .38‡ .41‡ .35‡ .31‡ .25‡ .21‡

MES .58‡ .58‡ .54† .53† .48 .55‡ – .49 .49 .46‡ .44‡ .37‡ .40‡ .34‡ .30‡ .26‡ .20‡
RWTH-JANE .60‡ .59‡ .54† .51 .56‡ .49 .51 – .46‡ .50 .45‡ .46‡ .47† .38‡ .33‡ .28‡ .20‡

MES-SZEGED-REORDER-SPLIT .65‡ .56‡ .55‡ .56‡ .54‡ .57‡ .51 .54‡ – .53? .44‡ .41‡ .41‡ .36‡ .34‡ .31‡ .21‡
LIMSI-NCODE-SOUL .63‡ .60‡ .55‡ .57‡ .56‡ .54‡ .54‡ .50 .47? – .51 .45‡ .43‡ .37‡ .34‡ .30‡ .22‡

TUBITAK .68‡ .65‡ .65‡ .61‡ .61‡ .63‡ .56‡ .55‡ .56‡ .49 – .48? .49 .39‡ .41‡ .30‡ .25‡
UMD .69‡ .64‡ .65‡ .66‡ .62‡ .62‡ .63‡ .54‡ .59‡ .55‡ .52? – .48? .41‡ .40‡ .33‡ .27‡
DCU .69‡ .66‡ .66‡ .65‡ .63‡ .59‡ .60‡ .53† .59‡ .57‡ .51 .52? – .41‡ .38‡ .37‡ .25‡

CU-ZEMAN .73‡ .69‡ .72‡ .68‡ .70‡ .65‡ .66‡ .62‡ .64‡ .63‡ .61‡ .59‡ .59‡ – .44‡ .43‡ .29‡
JHU .77‡ .73‡ .75‡ .72‡ .69‡ .69‡ .70‡ .67‡ .66‡ .66‡ .59‡ .60‡ .62‡ .56‡ – .43‡ .30‡

SHEF-WPROA .82‡ .75‡ .80‡ .76‡ .75‡ .75‡ .74‡ .72‡ .69‡ .70‡ .70‡ .67‡ .63‡ .57‡ .57‡ – .41‡
DESRT .84‡ .79‡ .81‡ .78‡ .79‡ .79‡ .80‡ .80‡ .79‡ .78‡ .75‡ .73‡ .75‡ .71‡ .70‡ .59‡ –

score .66 .62 .60 .58 .58 .57 .56 .54 .53 .52 .48 .46 .46 .39 .36 .31 .23
rank 1 2-3 2-3 4-5 4-5 5-7 6-7 8-9 8-10 9-10 11 12-13 12-13 14 15 16 17

Table 23: Head to head comparison, ignoring ties, for German-English systems
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ONLINE-B – .55‡ .50 .45? .45‡ .34‡ .37‡ .37‡ .37‡ .32‡ .32‡ .33‡ .24‡ .21‡ .26‡
PROMT .45‡ – .48? .50 .43‡ .40‡ .39‡ .36‡ .37‡ .31‡ .31‡ .32‡ .27‡ .24‡ .27‡

UEDIN-SYNTAX .50 .52? – .57† .45‡ .43‡ .38‡ .41‡ .39‡ .38‡ .33‡ .33‡ .26‡ .25‡ .22‡
ONLINE-A .55? .50 .43† – .51 .42† .48 .41‡ .36‡ .44? .44? .38‡ .32‡ .27‡ .29‡

UEDIN .55‡ .57‡ .55‡ .49 – .52 .45‡ .45‡ .42‡ .43‡ .37‡ .34‡ .29‡ .27‡ .31‡
KIT .66‡ .60‡ .57‡ .58† .48 – .48 .45‡ .42‡ .36‡ .39‡ .40‡ .30‡ .29‡ .26‡

STANFORD .63‡ .61‡ .62‡ .52 .55‡ .52 – .50 .44‡ .48 .44‡ .43‡ .34‡ .29‡ .32‡
LIMSI-NCODE-SOUL .63‡ .64‡ .59‡ .59‡ .55‡ .55‡ .50 – .44‡ .44‡ .44‡ .47† .40‡ .34‡ .33‡

MES-REORDER .63‡ .63‡ .61‡ .64‡ .58‡ .58‡ .56‡ .56‡ – .50 .46‡ .49 .38‡ .37‡ .34‡
JHU .68‡ .69‡ .62‡ .56? .57‡ .64‡ .52 .56‡ .50 – .48? .45‡ .36‡ .37‡ .34‡

CU-ZEMAN .68‡ .69‡ .67‡ .56? .63‡ .61‡ .56‡ .56‡ .54‡ .52? – .48 .40‡ .33‡ .34‡
TUBITAK .67‡ .68‡ .67‡ .62‡ .66‡ .60‡ .57‡ .53† .51 .55‡ .52 – .38‡ .40‡ .32‡

UU .76‡ .73‡ .74‡ .68‡ .71‡ .70‡ .66‡ .60‡ .62‡ .64‡ .60‡ .62‡ – .44‡ .46†
SHEF-WPROA .79‡ .76‡ .75‡ .73‡ .73‡ .71‡ .71‡ .66‡ .63‡ .63‡ .67‡ .60‡ .56‡ – .47†

RWTH-JANE .74‡ .73‡ .78‡ .71‡ .69‡ .74‡ .68‡ .67‡ .66‡ .66‡ .66‡ .68‡ .54† .53† –
score .63 .63 .61 .58 .57 .55 .52 .50 .47 .47 .46 .45 .36 .32 .32
rank 1-2 1-2 3 3-5 4-6 5-6 7 8 9-11 9-11 10-12 11-12 13 14-15 14-15

Table 24: Head to head comparison, ignoring ties, for English-German systems
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UEDIN-HEAFIELD – .45‡ .46‡ .46‡ .42‡ .42‡ .34‡ .34‡ .29‡ .33‡ .31‡ .28‡ .24‡
UEDIN .55‡ – .52? .43‡ .45‡ .46? .40‡ .38‡ .33‡ .36‡ .33‡ .32‡ .23‡

ONLINE-B .54‡ .48? – .49 .46‡ .44‡ .45‡ .40‡ .38‡ .34‡ .36‡ .31‡ .26‡
LIMSI-NCODE-SOUL .54‡ .57‡ .51 – .52? .47 .45‡ .42‡ .38‡ .36‡ .34‡ .31‡ .28‡

KIT .58‡ .55‡ .54‡ .48? – .47 .46‡ .44‡ .39‡ .38‡ .37‡ .33‡ .28‡
ONLINE-A .58‡ .54? .56‡ .53 .53 – .47 .45† .40‡ .40‡ .39‡ .34‡ .32‡

MES-SIMPLIFIEDFRENCH .66‡ .60‡ .55‡ .55‡ .54‡ .53 – .48? .44‡ .40‡ .39‡ .39‡ .32‡
DCU .66‡ .62‡ .60‡ .58‡ .56‡ .55† .52? – .45‡ .45‡ .42‡ .41‡ .36‡

RWTH .71‡ .67‡ .62‡ .62‡ .61‡ .60‡ .56‡ .55‡ – .48? .47† .47? .38‡
CMU-TREE-TO-TREE .67‡ .64‡ .66‡ .64‡ .62‡ .60‡ .60‡ .55‡ .52? – .50 .48 .37‡

CU-ZEMAN .69‡ .67‡ .64‡ .66‡ .63‡ .61‡ .61‡ .58‡ .53† .50 – .47† .39‡
JHU .72‡ .68‡ .69‡ .69‡ .67‡ .66‡ .61‡ .59‡ .53? .52 .53† – .45‡

SHEF-WPROA .76‡ .77‡ .74‡ .72‡ .72‡ .68‡ .68‡ .64‡ .62‡ .63‡ .61‡ .55‡ –
score .63 .60 .59 .57 .56 .54 .51 .48 .43 .42 .42 .38 .32
rank 1 2-3 2-3 4-5 4-5 5-6 7 8 9-10 9-11 10-11 12 13

Table 25: Head to head comparison, ignoring ties, for French-English systems

U
E

D
IN

O
N

L
IN

E
-B

L
IM

S
I-

N
C

O
D

E
-S

O
U

L

K
IT

P
R

O
M

T

S
TA

N
F

O
R

D

M
E

S

M
E

S
-I

N
FL

E
C

T
IO

N

R
W

T
H

-P
H

R
A

S
E

-B
A

S
E

D
-J

A
N

E

O
N

L
IN

E
-A

D
C

U

C
U

-Z
E

M
A

N

JH
U

O
M

N
IF

L
U

E
N

T

IT
S
-L

A
T

L

IT
S
-L

A
T

L
-P

E

UEDIN – .49 .47? .48 .50 .44‡ .41‡ .40‡ .47? .39‡ .41‡ .35‡ .29‡ .30‡ .27‡ .24‡
ONLINE-B .51 – .46‡ .47? .47† .44‡ .49 .43‡ .43‡ .43‡ .38‡ .35‡ .36‡ .28‡ .25‡ .25‡

LIMSI-NCODE-SOUL .53? .54‡ – .45‡ .48 .48 .45‡ .43‡ .44‡ .45† .41‡ .32‡ .34‡ .30‡ .27‡ .27‡
KIT .52 .53? .55‡ – .48 .46† .45‡ .43‡ .45‡ .46? .38‡ .30‡ .33‡ .31‡ .29‡ .29‡

PROMT .50 .53† .52 .52 – .50 .48 .52? .45‡ .47 .48? .38‡ .36‡ .36‡ .34‡ .31‡
STANFORD .56‡ .56‡ .52 .54† .50 – .52 .48 .44‡ .49 .44‡ .39‡ .34‡ .36‡ .30‡ .29‡

MES .59‡ .51 .55‡ .55‡ .52 .48 – .52 .51 .45? .45‡ .36‡ .37‡ .34‡ .29‡ .29‡
MES-INFLECTION .60‡ .57‡ .57‡ .57‡ .48? .52 .48 – .54† .51 .46† .37‡ .35‡ .31‡ .33‡ .31‡

RWTH-PHRASE-BASED-JANE .53? .57‡ .56‡ .55‡ .55‡ .56‡ .49 .46† – .53 .49 .38‡ .36‡ .34‡ .35‡ .31‡
ONLINE-A .61‡ .57‡ .55† .54? .53 .51 .55? .49 .47 – .50 .45† .38‡ .38‡ .39‡ .35‡

DCU .59‡ .62‡ .59‡ .62‡ .52? .56‡ .55‡ .54† .51 .50 – .42‡ .40‡ .40‡ .36‡ .35‡
CU-ZEMAN .65‡ .65‡ .68‡ .70‡ .62‡ .61‡ .64‡ .63‡ .62‡ .55† .58‡ – .50 .42‡ .41‡ .37‡

JHU .71‡ .64‡ .66‡ .67‡ .64‡ .66‡ .63‡ .65‡ .64‡ .62‡ .60‡ .50 – .47‡ .42‡ .38‡
OMNIFLUENT .70‡ .72‡ .70‡ .69‡ .64‡ .64‡ .66‡ .69‡ .66‡ .62‡ .60‡ .58‡ .53‡ – .43‡ .42‡

ITS-LATL .73‡ .75‡ .72‡ .71‡ .66‡ .70‡ .71‡ .67‡ .65‡ .61‡ .64‡ .59‡ .58‡ .57‡ – .45‡
ITS-LATL-PE .76‡ .75‡ .73‡ .71‡ .69‡ .71‡ .71‡ .69‡ .69‡ .65‡ .65‡ .63‡ .62‡ .58‡ .55‡ –

score .60 .60 .58 .58 .55 .55 .54 .53 .53 .51 .49 .42 .40 .38 .35 .32
rank 1-2 1-3 2-4 3-4 5-7 5-8 5-8 6-9 7-10 9-11 10-11 12 13 14 15 16

Table 26: Head to head comparison, ignoring ties, for English-French systems
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UEDIN-HEAFIELD – .49 .42‡ .45? .43‡ .40‡ .34‡ .43‡ .37‡ .34‡ .31‡ .15‡
ONLINE-B .51 – .49 .44‡ .46‡ .47† .42‡ .39‡ .40‡ .37‡ .37‡ .16‡

UEDIN .58‡ .51 – .55† .50 .47† .43‡ .42‡ .39‡ .39‡ .35‡ .14‡
ONLINE-A .55? .56‡ .45† – .50 .44‡ .45† .42‡ .42‡ .41‡ .37‡ .18‡

MES .57‡ .54‡ .50 .50 – .47† .45‡ .41‡ .41‡ .40‡ .38‡ .15‡
LIMSI-NCODE-SOUL .60‡ .53† .53† .56‡ .53† – .46‡ .45‡ .44‡ .43‡ .38‡ .18‡

DCU .66‡ .58‡ .57‡ .55† .55‡ .54‡ – .44‡ .47† .42‡ .41‡ .16‡
DCU-OKITA .57‡ .61‡ .58‡ .58‡ .59‡ .55‡ .56‡ – .49 .46‡ .46‡ .18‡

DCU-FDA .63‡ .60‡ .61‡ .58‡ .59‡ .56‡ .53† .51 – .48? .43‡ .18‡
CU-ZEMAN .66‡ .63‡ .61‡ .59‡ .60‡ .57‡ .58‡ .54‡ .52? – .43‡ .18‡

JHU .69‡ .63‡ .65‡ .63‡ .62‡ .62‡ .59‡ .54‡ .57‡ .57‡ – .22‡
SHEF-WPROA .85‡ .84‡ .86‡ .82‡ .85‡ .82‡ .84‡ .82‡ .82‡ .82‡ .78‡ –

score .62 .59 .57 .57 .56 .53 .51 .48 .48 .46 .42 .16
rank 1 2 3-5 3-5 3-5 6 7 8-9 8-9 10 11 12

Table 27: Head to head comparison, ignoring ties, for Spanish-English systems
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ONLINE-B – .49 .45‡ .43‡ .38‡ .35‡ .34‡ .35‡ .37‡ .34‡ .33‡ .32‡ .23‡
ONLINE-A .51 – .49 .48 .38‡ .46? .42‡ .41‡ .43‡ .38‡ .38‡ .37‡ .31‡

UEDIN .55‡ .51 – .49 .46† .45‡ .43‡ .42‡ .36‡ .38‡ .38‡ .38‡ .26‡
PROMT .57‡ .52 .51 – .46‡ .48 .43‡ .43‡ .40‡ .37‡ .39‡ .34‡ .29‡

MES .62‡ .62‡ .54† .54‡ – .46‡ .44‡ .44‡ .41‡ .40‡ .43‡ .36‡ .32‡
TALP-UPC .65‡ .54? .55‡ .52 .54‡ – .50 .45‡ .44‡ .40‡ .40‡ .37‡ .32‡

LIMSI-NCODE .66‡ .58‡ .57‡ .57‡ .56‡ .50 – .46‡ .51 .48 .44‡ .45‡ .35‡
DCU .65‡ .59‡ .58‡ .57‡ .56‡ .55‡ .54‡ – .50 .48 .48 .45‡ .36‡

DCU-FDA .63‡ .57‡ .64‡ .60‡ .59‡ .56‡ .49 .50 – .53? .49 .42‡ .32‡
DCU-OKITA .66‡ .62‡ .62‡ .63‡ .60‡ .60‡ .52 .52 .47? – .50 .47† .36‡
CU-ZEMAN .67‡ .62‡ .62‡ .61‡ .57‡ .60‡ .56‡ .52 .51 .50 – .46‡ .40‡

JHU .68‡ .63‡ .62‡ .66‡ .64‡ .63‡ .55‡ .55‡ .58‡ .53† .54‡ – .37‡
SHEF-WPROA .77‡ .69‡ .74‡ .71‡ .68‡ .68‡ .65‡ .64‡ .68‡ .64‡ .60‡ .63‡ –

score .63 .58 .57 .56 .53 .52 .49 .47 .47 .45 .44 .41 .32
rank 1 2-4 2-4 3-4 5-6 5-6 7-8 7-9 8-10 9-11 10-11 12 13

Table 28: Head to head comparison, ignoring ties, for English-Spanish systems
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ONLINE-B – .40‡ .42‡ .41‡ .37‡ .37‡ .41‡ .33‡ .33‡ .37‡ .33‡ .33‡ .35‡ .38‡ .34‡ .33‡ .29‡ .28‡ .14‡
CMU .60‡ – .50 .46† .43‡ .47† .42‡ .42‡ .39‡ .43‡ .41‡ .41‡ .40‡ .38‡ .36‡ .30‡ .30‡ .29‡ .17‡

ONLINE-A .58‡ .50 – .50 .51 .43‡ .47? .44‡ .40‡ .41‡ .43‡ .38‡ .40‡ .38‡ .38‡ .39‡ .34‡ .30‡ .19‡
ONLINE-G .59‡ .54† .50 – .55† .50 .51 .48 .42‡ .41‡ .44‡ .43‡ .46† .40‡ .44‡ .36‡ .34‡ .33‡ .19‡

PROMT .63‡ .57‡ .49 .45† – .43‡ .47† .43‡ .47† .47† .43‡ .39‡ .44‡ .43‡ .37‡ .41‡ .40‡ .38‡ .25‡
QCRI-MES .63‡ .53† .57‡ .50 .57‡ – .48 .46† .47? .45‡ .43‡ .45‡ .45‡ .38‡ .42‡ .37‡ .33‡ .40‡ .19‡

UCAM-MULTIFRONTEND .59‡ .58‡ .53? .49 .53† .52 – .47† .48 .46‡ .46‡ .42‡ .45‡ .46‡ .45‡ .40‡ .39‡ .33‡ .17‡
BALAGUR .67‡ .58‡ .56‡ .52 .57‡ .54† .53† – .47† .49 .45‡ .53? .40‡ .44‡ .44‡ .41‡ .36‡ .33‡ .23‡
MES-QCRI .67‡ .61‡ .60‡ .58‡ .53† .53? .52 .53† – .49 .47† .47? .43‡ .43‡ .44‡ .38‡ .42‡ .39‡ .17‡

UEDIN .63‡ .57‡ .59‡ .59‡ .53† .55‡ .54‡ .51 .51 – .48 .52 .44‡ .52 .49 .42‡ .43‡ .35‡ .21‡
OMNIFLUENT-UNCNSTR .67‡ .59‡ .57‡ .56‡ .57‡ .57‡ .54‡ .55‡ .53† .52 – .51 .46† .48 .48 .44‡ .40‡ .39‡ .25‡

LIA .67‡ .59‡ .62‡ .57‡ .61‡ .55‡ .58‡ .47? .53? .48 .49 – .51 .49 .48 .50 .41‡ .39‡ .20‡
OMNIFLUENT-CNSTR .65‡ .60‡ .60‡ .54† .56‡ .55‡ .55‡ .60‡ .57‡ .56‡ .54† .49 – .51 .48 .47? .40‡ .40‡ .25‡

UMD .62‡ .62‡ .62‡ .60‡ .57‡ .62‡ .54‡ .56‡ .57‡ .48 .52 .51 .49 – .53† .42‡ .46‡ .42‡ .19‡
CU-KAREL .66‡ .64‡ .62‡ .56‡ .63‡ .58‡ .55‡ .56‡ .56‡ .51 .52 .52 .52 .47† – .44‡ .40‡ .47? .24‡

COMMERCIAL-3 .67‡ .70‡ .61‡ .64‡ .59‡ .63‡ .60‡ .59‡ .62‡ .58‡ .56‡ .50 .53? .58‡ .56‡ – .51 .44‡ .32‡
UEDIN-SYNTAX .71‡ .70‡ .66‡ .66‡ .60‡ .67‡ .61‡ .64‡ .58‡ .57‡ .60‡ .59‡ .60‡ .54‡ .60‡ .49 – .45‡ .25‡

JHU .72‡ .71‡ .70‡ .67‡ .62‡ .60‡ .67‡ .67‡ .61‡ .65‡ .61‡ .61‡ .60‡ .58‡ .53? .56‡ .55‡ – .24‡
CU-ZEMAN .86‡ .83‡ .81‡ .81‡ .75‡ .81‡ .83‡ .77‡ .83‡ .79‡ .75‡ .80‡ .75‡ .81‡ .76‡ .68‡ .75‡ .76‡ –

score .65 .60 .58 .56 .56 .55 .54 .52 .51 .50 .49 .49 .48 .48 .47 .43 .41 .39 .21
rank 1 2-3 2-3 4-6 4-6 5-7 5-7 8-9 8-10 9-11 10-12 11-14 12-15 12-15 13-15 16 17 18 19

Table 29: Head to head comparison, ignoring ties, for Russian-English systems
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PROMT – .44‡ .39‡ .47 .46? .36‡ .37‡ .37‡ .32‡ .35‡ .28‡ .30‡ .32‡ .24‡
ONLINE-B .56‡ – .44‡ .41‡ .44† .38‡ .37‡ .35‡ .33‡ .39‡ .33‡ .31‡ .35‡ .24‡

CMU .61‡ .56‡ – .52 .49 .47† .43‡ .41‡ .39‡ .44‡ .44‡ .40‡ .35‡ .28‡
ONLINE-G .53 .59‡ .48 – .48 .50 .48 .46 .46? .42‡ .38‡ .43‡ .38‡ .36‡
ONLINE-A .54? .56† .51 .52 – .47 .49 .49 .48 .44† .38‡ .40‡ .40‡ .34‡

UEDIN .64‡ .62‡ .53† .50 .53 – .49 .46† .42‡ .39‡ .44‡ .41‡ .38‡ .29‡
QCRI-MES .63‡ .63‡ .57‡ .52 .51 .51 – .48 .45‡ .44‡ .42‡ .39‡ .40‡ .29‡

CU-KAREL .63‡ .65‡ .59‡ .54 .51 .54† .52 – .50 .46† .43‡ .40‡ .42‡ .34‡
MES-QCRI .68‡ .67‡ .61‡ .54? .52 .58‡ .55‡ .50 – .48? .47‡ .43‡ .45‡ .34‡

JHU .65‡ .61‡ .56‡ .58‡ .56† .61‡ .56‡ .54† .52? – .51 .44‡ .44‡ .33‡
COMMERCIAL-3 .72‡ .67‡ .56‡ .62‡ .62‡ .56‡ .58‡ .57‡ .53‡ .49 – .52 .48 .44‡

LIA .70‡ .69‡ .60‡ .57‡ .60‡ .59‡ .61‡ .60‡ .57‡ .56‡ .48 – .47† .41‡
BALAGUR .68‡ .65‡ .65‡ .62‡ .60‡ .62‡ .60‡ .58‡ .55‡ .56‡ .52 .53† – .41‡

CU-ZEMAN .76‡ .76‡ .72‡ .64‡ .66‡ .71‡ .71‡ .66‡ .66‡ .67‡ .56‡ .59‡ .59‡ –
score .64 .62 .55 .54 .53 .53 .52 .49 .47 .46 .43 .42 .41 .33
rank 1 2 3-4 3-6 3-7 4-7 5-7 8 9-10 9-10 11-12 11-13 12-13 14

Table 30: Head to head comparison, ignoring ties, for English-Russian systems
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