
Proceedings of the 14th European Workshop on Natural Language Generation, pages 210–211,
Sofia, Bulgaria, August 8-9 2013. c©2013 Association for Computational Linguistics

UIC-CSC: The Content Selection Challenge entry
from the University of Illinois at Chicago

Hareen Venigalla
Computer Science

University of Illinois at Chicago
Chicago, IL, USA

hareen058@gmail.com

Barbara Di Eugenio
Computer Science

University of Illinois at Chicago
Chicago, IL, USA

bdieugen@uic.edu

Abstract

This paper described UIC-CSC, the en-
try we submitted for the Content Selection
Challenge 2013. Our model consists of
heuristic rules based on co-occurrences of
predicates in the training data.

1 Introduction

The core of the Content Selection Challenge task
is formulated as Build a system which, given a set
of RDF triples containing facts about a celebrity
and a target text (for instance, a Wikipedia - style
article about that person), selects those triples that
are reflected in the target text. The organizers pro-
vided training data consisting of 62618 pairs of
texts and triple sets. The text is the introductory
text tfC of the Wikipedia article corresponding to
celebrity C; the set of triples trC concerning C was
grepped from the Freebase official weekly RDF
dump. It is important to note that we do not know
which specific triples from trC are rendered in tfC .

A sample triple in the file is as follows:
ns:m.04wqr

ns:award.award winner.awards won

ns:m.07ynmx5

In the above triple, ns:m.04wqr is
the subject id, of Marilyn Monroe in
this case (ns denotes namespace);
ns:award.award winner.awards won is
the predicate and ns:m.07ynmx5 is the object
id of the award. Since this format is not readable,
the organizers provided a script to transform the
turtle file into a human readable form, where the
object id is replaced by its actual value:
/award/award winner/awards won ‘‘Golden

Globe Awards for Actress - Musical or

Comedy Film - 17th Golden Globe Awards

- Some Like It Hot - 1960 - earliye -

Award Honor’’ /m/07ynmx5

In the following, we will refer to the first element

of these expressions as the predicate. Our ap-
proach relies on heuristics derived from clustering
predicates directly, or clustering them based on
the co-occurrence of the argument of predicate pi

in a text tf and in turtle files tr that contain both
pi and another predicate pj .

2 Deriving heuristic rules

We observed that in total there are 613 distinct
predicates. Out of these 613 predicate, only 11
are present in over 40 percent of the files and only
19 predicates are present in over 10 percent of the
files. This means that a large number of predi-
cates are present only in a few files. This makes it
harder to decide whether we have to include these
predicates or not. Conversely, nearly 40 percent of
text files only contain one or two sentences, which
compounds the sparsity problem.

Predicate Clustering. In the first method, we
generate predicate clusters by simply removing
the leaf from each predicate expression. For exam-
ple, /people/person/place of birth,
and /people/person/education belong to
the same cluster, labelled /people/person as
they have the same parent /people/person.
We found 35 such clusters. We then ana-
lyzed the frequency of each predicate pi on
its own, and conditional on other predicates in
the same cluster: for example, how frequent
/people/person/education is, and
how often it occurs in those triple files, where
/people/person/place of birth is also
present.

Intersection on Arguments. For each predicate
pi, we compute the set of its intersection sets ISi,j .
Each set isi,j comprises all the turtle files tri,j

where pi co-occurs with a second predicate pj . For
each tri,j , we retrieve the corresponding text file
tf (recall that each turtle file is associated with
one text file) and check whether the argument of

210



pi occurs in tf – this is indirect evidence that the
text does include the information provided by pi

(of course this inference may be wrong, if this ar-
gument occurs in a context different from what pi

conveys). If the argument of pi does occur in tf ,
we keep tri,j , otherwise we discard it. As above,
we then proceed to compute the frequencies of the
occurrences of pi on its own, and of pi when pj

is also present, over all the turtle files tri,j ∈ isi,j

that have not been filtered out as just discussed.
Given these two methods, we derive rules such

as the following:

IF /baseball/baseball player/position ∈ trk

AND
/baseball/baseball player/batting stats
∈ trk

THEN
select
/baseball/baseball player/position

The set of rules is then filtered as follows. On
a small development set, we manually annotated
which triples are included in the corresponding
text files. We keep a rule if the F-measure concern-
ing predicate pi (i.e., concerning the triples whose
predicate is pi) improves when using the rule, as
opposed to including pi if it belongs to a set of
frequent predicates.

We also need to deal with multiple occurrences
of pi in one single turtle file. Predicates such as
/music/artist/track can have multiple in-
stances, up to 30, in a certain trk, with different
arguments; however, those predicates may occur
far fewer times in the corresponding text files – be-
cause say trMM on Marilyn Monroe includes one
triple for each of her movies, but the correspond-
ing tfMM only mentions a few of those movies.
Hence, we impose an upper limit of 5 on the num-
ber of occurrences in the same turtle file, for a cer-
tain predicate to be included, for example:

IF /music/artist/track
AND its count ≤ 5

THEN select /music/artist/track

3 Evaluation

Apart from our participation in the Challenge, we
evaluated our system on a small test set composed
of 96 pairs of text and turtle files, randomly se-
lected from the data released by the organizers.
This resulted in a total of 153 unique predicates
(hence, about 1

4 of the total number of distinct
predicates). We manually annotated the predicates

in the turtle files as present/absent in the corre-
sponding text file.

We consider four domains:

1. Basic facts: general, very frequent informa-
tion, such as people/person/profession,
people/person/nationality.

2. Books: predicates whose root is book,
like book/author/works written,
book/book subject/works.

3. Sports: predicates whose root is a sport, like
baseball/baseball player/position s,
ice hockey/hockey player/former team.

4. Film and Music: predicates
whose root is film or music,
like /film/director/film,
/music/artist/track.

5. Television: predicates whose root is tv, like
/tv/tv director/episodes directed.

As apparent from Table 1, the performance of
our system varies considerably according to the
domain of the predicates. Specifically, we be-
lieve that the exceedingly low precision for pred-
icates of type book, film & music, tv is
due to the sparseness of the data. As we noted
above, 40% of the text files only include one or
two sentences. Hence, our system selects many
more predicates than are actually present in the
corresponding text file.

Table 1: Performance on in-house test set
Domain P R F-score
Basic Facts 79.83 51.25 62.40
Sports 79.84 49.22 60.90
Books 12.80 66.30 21.47
Film & Music 5.77 55.19 10.45
TV 5.46 43.36 9.70

4 Future Enhancements

UIC-CSC could be improved by more closely an-
alyzing the features of the text files, especially the
shortest ones: when they include only few sen-
tences, which kinds of predicates (and arguments)
do they include? For example, if only two movies
are mentioned as far as Monroe is concerned, what
else can we infer from the Monroe turtle file trMM

about those two movies?

211


