
Proceedings of the 14th European Workshop on Natural Language Generation, pages 94–97,
Sofia, Bulgaria, August 8-9 2013. c©2013 Association for Computational Linguistics

The KBGen Challenge

Eva Banik
Computational
Linguistics Ltd

London, UK
ebanik@comp-ling.com

Claire Gardent
CNRS, LORIA
Nancy, France

claire.gardent@loria.fr

Eric Kow∗

Computational
Linguistics Ltd

London, UK
kowey@comp-ling.com

1 Introduction

The KBGen 2013 natural language generation
challenge1 was intended to survey and compare
the performance of various systems which perform
tasks in the content realization stage of generation
(Banik et al., 2012). Given a set of relations which
form a coherent unit, the task is to generate com-
plex sentences which are grammatical and fluent
in English. The relations for this year’s challenge
were selected from the AURA knowledge base
(KB) (Gunning et al., 2010). In this paper we give
an overview of the KB, describe our methodology
for selecting sets of relations from the KB to pro-
vide input-output pairs for the challenge, and give
details of the development and test data set that
was provided to participating teams. Three teams
have submitted system outputs for this year’s chal-
lenge. In this paper we show BLEU and NIST
scores for outputs generated by the teams. The full
results of our evaluation, including human judge-
ments, as well as the development and test data set
are available at http://www.kbgen.org.

2 The AURA Knowledge Base

The AURA knowledge base (Gunning et al.,
2010) encodes information from a biology text-
book (Reece et al., 2010). It was developed to
support a question answering system, to help stu-
dents understand biological concepts by allowing
them to ask questions about the material while
reading the textbook. AURA is a frame-based
KB which encodes events, the entities that partic-
ipate in events, properties, and roles that the en-
tities play in an event. The relations in the KB
include relations between these types, including
event-to-entity, event-to-event, event-to-property,
entity-to-property. The KB is built on top of the

∗The work reported in this paper was supported by fund-
ing from Vulcan, Inc.

1http://www.kbgen.org

CLIB generic library of concepts (Barker et al.,
2001). As part of the encoding process, concepts
in CLIB are specialized and/or combined to en-
code biology-specific information. AURA is or-
ganized into a set of concept maps, where each
concept map corresponds to a biological entity or
process. The KB was encoded by biology teach-
ers and contains around 5,000 concept maps. It is
available for download for academic purposes in
various formats including OWL2.

3 The Content Selection Process for
KBGen 2012

The input provided to the participants consisted
of a set of content units extracted from the KB,
and a sentence corresponding to each content unit.
The content units were semi-automatically se-
lected from AURA such that:

• the set of relations in each content unit
formed a connected graph

• each content unit can be verbalised by a
single, possibly complex sentence which is
grammatical and meaningful

• the set of content units contain as many dif-
ferent relations and concepts of different se-
mantic types (events, entities, properties, etc)
as possible.

To produce these inputs we first asked biology
teachers to provide coherent content units using
the AURA graphical interface. The basic assump-
tion behind this approach was that, since every
content unit can be expressed by a coherent sen-
tence, each set of relations will exhibit a “coher-
ence pattern”. We then created a search space of
candidate content units by extracting patterns from
the KB which were similar to the patterns given
by the biologists. Finally, we manually selected
coherent content units.

2http://www.ai.sri.com/halo/
halobook2010/exported-kb/biokb.html
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Figure 1: “ A hydrophobic compound attaches to a
carrier protein at a region called the binding site.”

3.1 Manual Selection of Content Units

In the first step of our process, biology teachers
manually selected parts of concept maps which
represented educationally useful information for
biology students by searching for specific con-
cepts in AURA’s graph-based user interface. For
each content unit they wrote a sentence verbalis-
ing the selected relations (Fig. 1). The biology
teachers who identified these coherent, sentence-
sized chunks of information were familiar with the
encoding practices in AURA, the underlying biol-
ogy textbook, and had experience with the Inquire
e-book application (Spaulding et al., 2011) which
displays educationally useful content from the KB.

3.2 From Graphs to Queries

In the second step, the graphical representations
produced by the biologists were manually trans-
lated to specific knowledge base queries which
were run in AURA to retrieve the instances sat-
isfying the queries. Queries consist of two parts:
a set of triples whose domain and range are vari-
ables, and a set of instance-of triples stating type
constraints on the variables. The graph shown in
Figure 1 was translated to the following query:

Type constraints:

(?CP instance-of Carrier-Protein)
(?A instance-of Attach)
(?BS instance-of Binding-Site)
(?HP instance-of Hydrophilic-Compound)

Relation constraints:

(?A object ?HP)
(?A base ?CP)
(?A site ?BS)
(?CP has-region ?BS)

3.3 From Queries to Generalized Query
Patterns

After checking that it returns an answer, each
query was generalized to a query pattern in or-
der to find other queries which involved different
concepts and relations, but still exhibited the same
general coherence pattern. To derive generalized
query patterns, specific queries were modified in
two ways: 1) by removing type constraints on con-
cepts, and 2) by replacing specific relations with
generalized relation types.

Removing type constraints
Manually specified queries were extended by re-
moving type constraints on variables. In the above
example, types were generalised to Event or En-
tity:
(?CP instance-of Entity)
(?A instance-of Event)
(?BS instance-of Entity)
(?HP instance-of Entity)

Other generalized types we used from the ontol-
ogy were Property-Values and Roles.

Generalizing relations
Each query was generalized by defining equiva-
lence classes over semantically similar relations
and replacing the specific relation in the query
with its equivalence class. The basic assumption
behind this was that if a set of relations is coherent,
we should be able to replace a relation with an-
other, semantically similar relation in the set, and
still have a coherent content unit. For example,
whether two entities are connected by has-part

or has-region is unlikely to make a difference
to the coherence of a content unit.

Following this approach we identified groups of
semantically similar relations within each relation
type (Event-to-Event, Event-to-Entity, etc). The
equivalence classes over relations were straight-
forwardly derived from distinctions made in CLIB
(Barker et al., 2001), the upper ontology and li-
brary of general concepts that AURA is built on,
although there was some manual fine-tuning re-
quired to exclude relations which were not re-
liably encoded in the KB. For example, we di-
vided Entity-to-Entity relations into three cate-
gories, based on whether they had a spatial or
meronymic sense, or expressed a specific relation
between two chemicals:

en2en-spatial: abuts is-above is-along is-at is-
inside is-opposite is-outside is-over location
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is-across is-on is-parallel-to is-perpendicular-
to is-under is-between is-facing is-below is-
beside is-near

en2en-part: possesses has-part has-region
encloses has-basic-structural-unit has-
structural-part has-functional-part

en2en-chemical: has-solute has-solvent has-
atom has-ion has-oxidized-form has-
reduced-form has-isomer

Here the distinction between spatial relations
and meronymic relations was given by CLIB. Re-
lations in the third group were specific to our do-
main and added during the process of encoding.

Event-to-entity relations were divided into
“aux-participant” relations, which express the spa-
tial orientation of an event, and “core-participant”
relations which describe ways in which entities
participate in the event. Here we used the cat-
egories of spatial relations and “participant” re-
lations from CLIB. Our terminology reflects the
fact that entities connected to an event by a
core-participant relation are typically expressed as
obligatory arguments of the verb in a sentence,
whereas aux-participants would be expressed as
optional modifiers:

core-participants: agent object donor base in-
strument raw-material recipient result

aux-participants: away-from destination origin
path site toward

With these definitions, the specific query illus-
trated above in section 3.2 was translated to the
following query pattern:
(?A core-participant ?X)
(?A core-participant ?CP)
(?A aux-participant ?BS)
(?CP en2en-part ?BS)

3.4 From Query Results to Content Units
Query patterns were expanded by producing all
valid instantiations of the pattern in order to cre-
ate a search space of candidate content units, and
we ran each expanded query in AURA. The last
step was filtering the results returned by satisfi-
able queries to obtain content units which can be
verbalised in a single sentence. We used the fol-
lowing selection criteria to do this:

• A meaningful and grammatical sentence
could be formed by verbalising all concepts,
relations and properties present in the query
result.

(KBGEN-INPUT :ID "ex03c.99-1"

:TRIPLES (

(|Secretion21994| |object| |Mucus21965|)

(|Secretion21994| |base| |Earthworm21974|)

(|Secretion21994| |site| |Alimentary-Canal21978|)

(|Earthworm21974| |has-region|

|Alimentary-Canal21978|))

:INSTANCE-TYPES (

(|Mucus21965| |instance-of| |Mucus|)

(|Secretion21994| |instance-of| |Secretion|)

(|Earthworm21974| |instance-of| |Earthworm|)

(|Alimentary-Canal21978| |instance-of|

|Alimentary-Canal|))

:ROOT-TYPES (

(|Secretion21994| |instance-of| |Event|)

(|Mucus21965| |instance-of| |Entity|)

(|Earthworm21974| |instance-of| |Entity|)

(|Alimentary-Canal21978| |instance-of| |Entity|)

))

Figure 2: Input for the sentence ”Mucus is se-
creted in the alimentary canal of earthworms.”

• The set of content units should be as varied
as possible. In particular, we did not keep
a content unit if another very similar content
unit was present in the selected units. For in-
stance, if two content units contain identical
relations (modulo concept labels), only one
of these two units would be kept.

Given the pattern shown in Fig. 1 for instance,
we obtained 27 coherent content units. Each con-
tent unit was verbalized as a sentence to provide
development data for the content realization chal-
lenge. The following sentences illustrate the vari-
ation in the resulting content units:

- Polymers are digested in the lysosomes of eu-
karyotic cells.

- Mucus is secreted in the alimentary canal of
earthworms.

- Lysosomal enzymes digest proteins and poly-
mers at the lysosome of a eukaryotic cell.

- A chemical is attached to the active site of a
protein enzyme with an ionic bond.

- An enzyme substrate complex is formed
when a chemical attaches to the active site of
a protein enzyme with a hydrogen bond.

- Starch is stored in the lateral root of carrots.

4 Development Data Set

The development data set provided to participants
contained 207 input-output pairs. These inputs
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were based on 19 different coherence patterns.
Fig. 2 shows an input-output pair based on the
pattern illustrated above. We also provided two
lexicons: a lexicon for events which gave a map-
ping from events to verbs, their inflected forms and
nominalizations and a lexicon for entities, which
provided a noun and its plural form. The rele-
vant entries in these lexicons for the input in Fig. 2
were:
Secretion,secretes,secrete,secreted,secretion

Mucus, mucus, mucus

Earthworm,earthworm,earthworms

Alimentary-Canal,alimentary canal,alimentary canals

5 Test Set

Our test data set contained 72 inputs in the same
format (and corresponding lexical resources as
above), which were divided into three categories:
(1) seen patterns, seen relations: inputs that have
exactly the same relations as some of the inputs in
the development data set, but different concepts
(2) seen patterns, unseen relations: these in-
puts are derived from patterns in the development
data set. They have similar structure, but contain
slightly different combinations of relations.
(3) unseen patterns: inputs extracted from a pre-
viously unused pattern, containing combinations
of relations not seen in the development data set.

6 Evaluation

Participants submitted two sets of outputs:
(1) outputs generated by their system as is (mod-
ulo including the lexicon provided in the test data
set) (2) outputs generated 6 days later, during
which time teams had a chance to make improve-
ments.
Each team was allowed to submit a set of 5 ranked
outputs for each input. We have evaluated all
of the submitted outputs using BLEU and NIST
scores and we are currently in the process of col-
lecting human judgements for the final system out-
puts that were ranked first. Table 1 shows the
overall results of automatic evaluation on both the
initial and final data sets for our three teams3, as
well as the coverage of the individual systems over
the 72 test inputs. More detail including the full
results of our evaluation can be found at http:

//www.kbgen.org, along with a link to download
3IMS: Stuttgart University Institute for Computational

Language Processing, LOR: LORIA, University of Nancy,
UDEL: University of Delaware, Computer and Information
Science Department

NIST BLEU coverage
HUMAN-1 10.0098 1.0000 100%

UDEL-final-1 5.9749 0.3577 97%
UDEL-initial-1 5.6030 0.3165 100%

LOR-final-1 4.8569 0.3053 84%
LOR-final-3 4.7238 0.2993 100%
LOR-final-2 4.6711 0.2945 100%
LOR-final-5 4.5720 0.2812 100%
LOR-final-4 4.4889 0.2781 100%
IMS-final-2 3.9649 0.1107 100%
IMS-final-4 3.8813 0.1140 100%
IMS-final-1 3.8670 0.1111 100%
IMS-final-3 3.7765 0.1023 100%

IMS-initial-2 3.6726 0.1117 100%
IMS-initial-3 3.6608 0.1181 100%
IMS-initial-1 3.6384 0.1173 100%
IMS-initial-4 3.5817 0.1075 100%

LOR-initial-1 0.1206 0.0822 30%
LOR-initial-3 0.1091 0.0751 100%
LOR-initial-4 0.0971 0.0732 100%
LOR-initial-2 0.0948 0.0757 100%
LOR-initial-5 0.0881 0.0714 100%

Table 1: BLEU and NIST scores of initial and final
system outputs. The digit behind the team names
refer to the output rank

the development and test data set used in the chal-
lenge, and more information about AURA and re-
lated resources.
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