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Abstract
When they introduced the Graph-Based
Algorithm (GBA) for referring expression
generation, Krahmer et al. (2003) flaunted
the natural way in which it deals with re-
lations between objects; but this feature
has never been tested empirically. We fill
this gap in this paper, exploring referring
expression generation from the perspec-
tive of the GBA and focusing in particu-
lar on generating human-like expressions
in visual scenes with spatial relations. We
compare the original GBA against a variant
that we introduce to better reflect human
reference, and find that although the orig-
inal GBA performs reasonably well, our
new algorithm offers an even better match
to human data (77.91% Dice). Further, it
can be extended to capture speaker vari-
ation, reaching an 82.83% Dice overlap
with human-produced expressions.

1 Introduction

Ten years ago, Krahmer et al. (2003) published the
Graph-Based Algorithm (GBA) for referring ex-
pression generation (REG). REG has since become
one of the most researched areas within Natural
Language Generation, due in a large part to the
central role it plays in communication: referring
allows humans and language generation systems
alike to invoke the entities that the discourse is
about in the mind of a listener or reader.

Like most REG algorithms, the GBA is focussed
on the task of selecting the semantic content for a
referring expression, uniquely identifying a target
referent among all objects in its visual or linguistic
context. The framework used by the GBA is par-
ticularly attractive because it provides fine-grained

control for finding the ‘best’ referring expression,
encompassing several previous approaches. This
control is made possible by defining a desired
cost function over object properties to guide the
construction of the output expression and using a
search mechanism that does not stop at the first
solution found.

One characteristic of the GBA particularly em-
phasized by Krahmer et al. (2003), advancing
from research on algorithms such as the Incre-
mental Algorithm (Dale and Reiter, 1995) and the
Greedy Algorithm (Dale, 1989), was the treatment
of relations between entities. Relations such as on
top of or to the left of fall out naturally from the
graph-based representation of the domain, a facet
missing in earlier algorithms. We believe that this
makes the GBA particularly well-suited for gener-
ating language in spatial visual domains.

In the years since the inception of the GBA,
the REG community has become increasingly in-
terested in evaluating algorithms against human-
produced data in visual domains, aiming to mimic
human references to objects. This interest has
manifested most prominently in the 2007-2009
REG Challenges (Belz and Gatt, 2007; Gatt et al.,
2008; Gatt et al., 2009) based on the TUNA Cor-
pus (van Deemter et al., 2012). The GBA per-
formed among the best algorithms in all three of
these challenges. However, in particular its abil-
ity to analyze relational information could not be
assessed, because the TUNA Corpus does not con-
tain annotated relational descriptions.

We rectify this omission in the current work by
testing the GBA on the GRE3D3 Corpus, which
was designed to study the use of spatial rela-
tions in referring expressions (Viethen and Dale,
2008). We compare against a variant of the GBA
that we introduce to build longer referring expres-
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sions, following the observation that humans tend
to overspecify (i.e., not be maximally brief) in
their referring expressions (Sonnenschein, 1985;
Pechmann, 1989; Engelhardt et al., 2006; Arts et
al., 2011). For both algorithms, we experiment
with cost functions defined at different granular-
ities to produce the best match to human data. We
find that we can match human data better than
the original GBA with the variant that encourages
overspecification.

With this model, we aim to further ad-
vance towards human-like reference by develop-
ing a method to capture speaker-specific varia-
tion. Speaker variation cannot easily be modeled
by the classic input variables of REG algorithms,
but a number of authors have shown that system
output can be improved by using speaker identity
as an additional feature; this has often been ac-
companied by the observation that commonalities
can be found in the reference behaviour of differ-
ent speakers (Bohnet, 2008; Di Fabbrizio et al.,
2008a; Mitchell et al., 2011b), particularly for spa-
tial relations (Viethen and Dale, 2009). In the sec-
ond experiment reported in this paper, we combine
these insights by automatically clustering groups
of speakers with similar behaviour and then defin-
ing separate cost functions for each group to better
guide the algorithms.

Before we assess the ability of the GBA and our
variant to produce human-like referring expres-
sions containing relations (Sections 5 and 6), we
will give an overview of the relevant background
to the treatment of relations in REG, a short history
of the GBA, and the relevance of individual vari-
ation (Section 2). We introduce our new variant
graph-based algorithm, LongestFirst, in Section 3.

2 Relations, Graphs and Individual
Variation

2.1 Relations in REG

In the knowledge representation underlying most
work in REG, each object in a scene is modeled as
a set of attribute-value pairs describing the object’s
properties, such as hsize, largei. Such a represen-
tation is used in the two of the classic algorithms,
the Greedy Algorithm (Dale, 1989) and the Incre-
mental Algorithm (IA) (Dale and Reiter, 1995).
Neither of these was originally intended to process
relations between objects.

Several attempts have been made to adapt the
traditional REG algorithms to include relations be-

tween objects in their output, but all of them suf-
fer from problems with the knowledge representa-
tion not being suited to relations. Dale and Had-
dock (1991) use a constraint network and a recur-
sive loop to extend the Greedy Algorithm, which
uses the discriminatory power of an attribute as
the main selection criterion. They treat relations
the same as other attributes; but in most cases a
certain spatial relation to a particular other ob-
ject is fully distinguishing, which easily leads to
strange chains of relations in the output omitting
most other attributes (Viethen and Dale, 2006).

Krahmer and Theune (2002) suggest a simi-
lar adjustment for the IA by introducing a re-
cursive loop if a relation to another object is in-
troduced to the referring expression under con-
struction. They treat relations as fundamentally
different from other attributes in order to recog-
nize when to enter the recursive loop, however,
they fail to address the problem of infinite regress,
whereby the objects in a domain might be de-
scribed in a circular manner by the relations hold-
ing between them. Another relational extension to
the IA has been proposed by Kelleher and Kruijff
(2006), treating relations as a completely different
class from other attributes. Both extensions of the
IA make the simplifying assumption that relations
should only be considered if it is not possible to
fully distinguish the target referent from the sur-
rounding objects in any other way, with the idea
that it takes less effort to consider and describe
only one object (Krahmer and Theune, 2002; Vie-
then and Dale, 2008).

2.2 A Short History of the GBA

A new approach to REG was proposed by Krah-
mer et al. (2003). In this approach, a scene is
represented as a labeled directed graph (see Fig-
ure 1(b)), and content selection is a subgraph con-
struction problem. Assuming a scene graph G =
hVG, EGi, where vertices VG represent objects and
edges EG represent the properties and relations of
these objects with associated costs, their algorithm
returns the cheapest distinguishing subgraph that
uniquely refers to the target object v 2 VG. Re-
lations between objects (i.e., edges between dif-
ferent vertices) are a natural part of this repre-
sentation, without requiring special computational
mechanisms. In addition to cost functions, the
GBA requires a preference ordering (PO) over the
edges to arbitrate between equally cheap descrip-
tions (Viethen et al., 2008).
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(a) Scene 7 from the GRE3D3 Corpus.

be
lo
w

ab
ov
e

left-of

right-of

yellow

small

ball

large

small

ball

red

cube

yellow

right-
hand

lef
t-o
f

rig
ht-
of

right-
hand

right-
hand

(b) A graph representing the scene to the left.

Figure 1: An example scene from the GRE3D3 Corpus and the corresponding domain graph.

As the cost functions and preference orders are
specified over edges (i.e., properties), they allow
much more fine-grained control over which prop-
erties to generate for a target referent than the
attribute-based preference orders employed by the
IA and its descendants. The cost functions can be
used to give preference to a commonly used size
value, such as large, over a rarely used color value,
such as mauve, although in general color is de-
scribed more often than size. This process is aided
by a branch-and-bound search that guarantees to
find the cheapest (i.e., ‘best’) referring expression.

Since its inception, the GBA has been shown to
be useful for several referential phenomena. Krah-
mer and van der Sluis (2003) combined verbal
descriptions with pointing gestures by modelling
each such gesture as additional looping edges on
all objects that it might be aimed at. While the au-
thors confirmed the ideas implemented in the al-
gorithm in psycholinguistic studies (van der Sluis,
2005), they never assessed its output in an actual
domain.

van Deemter and Krahmer (2007) demonstrated
how the GBA could be used to generate reference
to sets as well as to negated and gradable prop-
erties by representing implicit information as ex-
plicit edges in domain graphs. They also presented
a simple way to account for discourse salience
based on restricting the distractor set. Its ability
to cover such a breadth of referential phenomena
makes the GBA a reasonably robust algorithm for
further exploring the generation of human-like ref-
erence.

The GBA was systematically tested against
human-produced referring expressions for the first
time in the ASGRE Challenge 2007 (Belz and
Gatt, 2007). This entry is described in detail in
(Viethen et al., 2008) and was very successful as

well in the following 2008 and 2009 REG Chal-
lenges (Gatt et al., 2008; Gatt et al., 2009) with
a free-naı̈ve cost function. This cost function as-
signs 0 cost to the most common attributes, 2 to
the rarest, and 1 to all others. By making the most
common attributes free, it became possible to in-
clude these attributes redundantly in a referring
expression, even if they were not strictly neces-
sary for identifying the target. The cost functions
used in the challenges were attribute-based, and
did therefore not make use of the refined control
capabilities of the GBA.

Theune et al. (2011) used k-means clustering
on the property frequencies in order to provide
a more systematic method to transfer the FREE-
NAÏVE cost function to new domains. They found
that using only two clusters (a high frequency and
a low frequency group with associated costs of 0
and 1) achieves the best results, with no significant
differences to the FREE-NAÏVE cost function on
the TUNA Corpus. Subsequently they showed that
on this corpus, a training set of only 20 descrip-
tions suffices to determine a 2-means cost function
that performs as well as one based on 165 descrip-
tions. In (Koolen et al., 2012), the same authors
extended these experiments to a Dutch version of
the TUNA Corpus (Koolen and Krahmer, 2010)
and came to a similar conclusion. Neither of the
corpora used in these experiments included rela-
tions between objects.

2.3 Individual Variation in REG

A number of authors have argued that to be able to
produce human-like referring expressions, an al-
gorithm must account for speaker variation: Dif-
ferent speakers will refer to the same object in
different ways, and modeling this variation can
bring us closer to generating the rich variety of ex-
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pressions that people produce. Several approaches
have been made in this direction.

Although this was not explicitly discussed in
(Jordan and Walker, 2005), the machine-learned
models presented there performed significantly
better at replicating human-produced referring
expressions when a feature set was used that
included information about the identity of the
speaker. In (Viethen and Dale, 2010), the impact
of speaker identity as a machine-learning feature
is more systematically tested. They show that ex-
act knowledge about which speaker produced a
referring expression boosts performance, but also
find many commonalities between different speak-
ers’ strategies for content selection. Mitchell et
al. (2011b) used participant identity in a machine
learner to successfully predict the kind of size
modifier to be used in a referring expression. Ad-
ditionally, various submissions to the REG chal-
lenges, particularly by Bohnet and Fabbrizio et al.
(Bohnet, 2008; Bohnet, 2009; Di Fabbrizio et al.,
2008a; Di Fabbrizio et al., 2008b) used speaker-
specific POs to increase performance in their adap-
tations of the IA.

All of these systems used the exact speaker
identity as input, although many of the authors
noted that groups of speakers behave similarly
(Viethen and Dale, 2010; Mitchell et al., 2011b).
We build off of this idea by clustering similar
speakers together before learning parameters, and
then generate for speaker-specific clusters. This
method results in a significant improvement in per-
formance.

3 LongestFirst: a New Search Strategy

The GBA guarantees to return the cheapest pos-
sible subgraph that fully distinguishes the target.
However, many distinguishing subgraphs can have
the same cost, for example, if a target can be iden-
tified either by its color or by its size, and color
and size have the same cost. Viethen et al. (2008)
discuss some examples in more detail.

In the case that more than one cheapest sub-
graph exists, the original GBA will generate the
first it encountered. Due to its branch-and-bound
search strategy, this is also the smallest subgraph,
corresponding to the shortest possible description
that can be found at the cheapest cost. Because
its pruning mechanism does not allow further ex-
pansion of a graph once it is distinguishing, the
number of attributes that the algorithm can include

redundantly is limited, in particular if relations
are involved. Attributes of visually salient nearby
landmark objects that are introduced to the refer-
ring subgraph by a relation are only considered af-
ter all other attributes of the target object. This is
the case even if these attributes are free and feature
early in the preference order.

The GBA is therefore not able to replicate many
overspecified descriptions that human speakers
may use: if a subgraph containing a relation is
already distinguishing before the attributes of a
landmark object are considered, the algorithm will
not include any information about the landmark.
Not only is it unlikely that a landmark object
should be included in a description without any
further information about it, it also seems intu-
itive that speakers with a preference for certain
attributes (such as color) would include these at-
tributes not only for the target referent, but for a
landmark object as well.

We solve this problem by amending the search
algorithm in a way that finds the longest of all
the cheapest subgraphs, and call the resulting al-
gorithm LongestFirst. This search strategy results
in a much larger number of subgraphs to check, in
particular, when used with cost functions that in-
volve a lot of free edges. In order to keep our sys-
tems tractable, we therefore limit the number of
attributes the LongestFirst algorithm can include
to four, based on the finding from (Mitchell et al.,
2011a) that people rarely include more than four
modifiers in a noun phrase. In Experiment 2 we
additionally test a setting in which the maximum
number of attributes is determined on the basis of
the average description length in the training data.

4 Implementation Note

The original implementation of the GBA did not
provide a method to specify the order in which
edges were tried, although the edge order deter-
mines the order in which distinguishing subgraphs
are found by the algorithm (Krahmer et al., 2003).
This was fixed in (Viethen et al., 2008) by adding
a PO as parameter to the GBA to arbitrate between
equally cheap solutions.

A further issue arose in this implementation
when tested on the GRE3D3 domain, because
there was no simple way to specify which object
each property belonged to; for the TUNA domain
where the GBA has traditionally been evaluated, it
is safe to always assume a property belongs to the
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target referent. We have therefore provided addi-
tional functionality to the GBA that requires that
not only hattribute, valuei pairs are specified, but
hentity1, attribute, value, entity2i tuples, which
can be translated directly into graph edges. For ex-
ample the tuple htg:relation:above:lmi represents
the edge labelled above between the yellow ball
and the red cube in Figure 1. For direct attributes,
such as size or color, entity1 and entity2 in these
tuples are identical, resulting in loop edges. This
Java implementation of the GBA and the Python
implementation of the LongestFirst algorithm are
available at www.m-mitchell.com/code.

5 Experiment 1: Relational Descriptions

In our first experiment, we evaluate how well the
GBA produces human-like reference in a corpus
that uses spatial relations. We compare against the
LongestFirst variant that encourages overspecifi-
cation.

5.1 Material

To evaluate the different systems, we use the
GRE3D3 Corpus. It consists of 630 distinguish-
ing descriptions for objects in simple 3D scenes.
Each of the 20 scenes contains three objects in
different spatial relations relative to one another
(see Figure 1). The target referent, marked by an
arrow, was always in a direct adjacency relation
(on � top � of or in � front � of) to one of the
other two objects, while the third object was al-
ways placed at a small distance to the left or right.
The objects are either spheres or cubes and differ
in size and color. In addition to these attributes, the
63 human participants who contributed to the cor-
pus used the objects’ location as well as the spatial
relation between the target referent and the closest
landmark object. Each participant described one
of two sets of 10 scenes. The scenes in the two sets
are not identical, but equivalent, so the sets can be
conflated for most analyses. Spatial relations were
used in 36.6% (232) of the descriptions, although
they were never necessary to distinguish the target
object. Further details about the corpus may be
found in (Viethen and Dale, 2008).

5.2 Approaches to Parameter Settings

As discussed above, the GBA behaves differently
depending on the PO and the cost functions over
its edges. To find the best match with human
data, we explore several different approaches to

setting these two parameters. An important dis-
tinction between the approaches we try hinges
on the difference between attributes and proper-
ties. Attributes correspond to, e.g., color, size, or
location, while properties are attribute-value pairs,
e.g., hcolor, redi, hsize, largei, hlocation, middlei.

Previous evaluations of the GBA typically used
parameter settings based on either attribute fre-
quency (Viethen et al., 2008) or property fre-
quency (Koolen et al., 2012). We compare both
methods for setting the parameters. Because the
scenes on which the corpus is based were not bal-
anced for the different attribute-values, the fre-
quency of a property is calculated as the pro-
portion of descriptions in which it was used for
those scenes where the target actually possessed
this property. For our evaluation, the trainable
costs and the POs are determined using cross-
validation (see Section 5.3). We use the following
approaches:

0-COST-PROP: All edges have 0 cost, and the
PO is based on property frequency. Each property
is included (regardless of how distinguishing it is)
until a distinguishing subgraph is found.

0-COST-ATT: As 0-COST-PROP, but the PO is
based on attribute frequency.

FREE-NAÏVE-PROP: Properties that occur in
more than 75% of descriptions where they could
be used cost 0, properties with a frequency below
20% cost 2, and all others cost 1 (Viethen et al.,
2008). The PO is based on property frequency.

FREE-NAÏVE-ATT: As FREE-NAÏVE-PROP:, but
costs and PO are based on attribute frequency.

K-PROP: Costs are assigned using k-means clus-
tering over property frequencies with k=2 (Theune
et al., 2011). The PO is based on property fre-
quency.

K-ATT: As K-PROP, but the k-means clustering
and the PO are based on attribute frequency.

5.3 Evaluation Setup
We evaluate the version of the GBA used by Vie-
then et al. (2008), with additional handling for
relations between entities (see Section 4). We
compare against our LongestFirst algorithm from
Section 3 on all approaches described in Sec-
tion 5.2. As baselines, we compare against the
Incremental Algorithm (Dale and Reiter, 1995)
and a simple informed approach that includes at-
tributes/properties seen in more than 50% of the
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training descriptions. We do not use the IA’s re-
lational extensions (Krahmer and Theune, 2002;
Kelleher and Kruijff, 2006), because these would
deliver the same relation-free output as the basic
IA (relations are never necessary for identifying
the target in GRE3D3). These two baselines are
tried with an attribute-based PO and a property-
based one. We do not expect a difference between
the attribute- and the property-based PO on the IA,
as this difference would only come to the fore in a
situation where a choice has to be made between
two values of the same attribute. In the IA’s anal-
ysis of the GRE3D3 domain, this can only happen
with relations, which it will not use in this domain.

We use Accuracy and Dice, the two most com-
mon metrics for human-likeness in REG (Gatt and
Belz, 2008; Gatt et al., 2009), to assess our sys-
tems. Accuracy reports the relative frequency with
which the generated attribute set and the human-
produced attribute set match exactly. Dice mea-
sures the overlap between the two attribute sets.
For details, see, for example, Krahmer and van
Deemter’s (2012) survey paper. We train and test
our systems using 10-fold cross-validation.

5.4 Results

The original version of the Graph-Based Algo-
rithm shows identical performance for all ap-
proaches (See Table 1). All use a preference order
starting with type, followed by color and size, and
a cost function that favors the same attributes. As
these attributes always suffice to distinguish the in-
tended referent, the algorithm stops before spatial
relations are considered. For the scene in Figure 1
it includes the minimal content htg:type:balli, but
for a number of scenes it overspecifies the descrip-
tion.

The LongestFirst/0-COST systems and the
LongestFirst/K-PROP system are the only sys-
tems that include relations in their output.
The LongestFirst/0-COST systems both in-
clude a relation in every description; however,
not always the one that was included in the
human-produced reference, resulting in 521
false-positives for the attribute-based version
and 398 for the property-based one. For the
scene in Figure 1 they include htg:color:yellow,
tg:size:small, tg:type:ball, tg:right of:obj3i and
htg:color:yellow, tg:size:small, tg:type:ball,
tg:on top of:lmi, respectively. The first
one of these two attribute sets (produced by

Original Longest
GBA First

0-COST- Acc 39.21 0.16
PROP Dice 73.40 68.75
0-COST- Acc 39.21 0.00
ATT Dice 73.40 64.34
FREE-NAÏVE Acc 39.21 46.51
-ATT Dice 73.40 77.91
FREE-NAÏVE Acc 39.21 38.10
-PROP Dice 73.40 74.99

K-PROP
Acc 39.21 35.08
Dice 73.40 74.66

K-ATT
Acc 39.21 35.08
Dice 73.40 74.56

50%-Base IA
prop- Acc 27.30 37.14
based PO Dice 72.17 72.21
att- Acc 24.92 37.14
based PO Dice 71.16 72.21

Table 1: Experiment 1: System performance in %.
We used �2 on Accuracy and paired t-tests on Dice
to check for statistical significance. The best per-
formance is highlighted in boldface. It is statisti-
cally significantly different from all other systems
(Acc: p < 0.02, Dice: p < 0.0001).

LongestFirst/0-COST-ATT) includes the rela-
tion between the target and the third object
to the right, which was almost never included
in the human-produced references, leading to
many false-positives. The LongestFirst/K-PROP
system results in only 45 true-positives and
81 false-positives. It includes the attribute set
htg:color:yellow, tg:type:balli for Figure 1.
One of its relational descriptions (for Scene 5)
contains the set htg:size:small, tg:color:blue,
tg:on top of:lmi.

The 50%-baseline system outperforms the
LongestFirst/0-COST systems, which illustrates
the utility of cost functions in combination with
a PO. It includes the attribute set htg:color:yellow,
tg:type:balli for the scene in Figure 1. The best
performing system is the LongestFirst algorithm
with the attribute-based FREE-NAÏVE approach,
although this system produces no spatial relations.

6 Experiment 2: Individual Variation

We now extend our methods to take into account
individual variation in the content selection for
referring expressions, and evaluate whether we
have better success at reproducing participants’ re-
lational descriptions. Rather than using speaker
identity as an input parameter to the system (Sec-
tion 2.3), we automatically find groups of people
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who behave similarly to each other, but signifi-
cantly different to speakers in the other groups.

6.1 Evaluation Setup
We use k-means clustering to group the speak-
ers in the GRE3D3 Corpus based on the number
of times they used each attribute and the average
length of their descriptions. We tried values be-
tween 2 and 5 for k, but found that any value
above 2 resulted in two very large clusters accom-
panied by a number of extremely small clusters.
As these small clusters would not be suitable for
x-fold cross-validation, we proceed with two clus-
ters, one consisting of speakers preferring rela-
tively long descriptions that often contain spatial
relations (Cluster CL0, 16 speakers, 160 descrip-
tions), and one consisting of speakers preferring
short, non-relational descriptions (Cluster CL1, 47
speakers, 470 descriptions).

We train cost functions and POs separately for
the two clusters in order to capture the different
behaviour patterns they are based on. We use the
FREE-NAÏVE cost functions for this experiment,
which outperformed all others in Experiment 1.
We again use 10-fold cross-validation for the eval-
uation. In this experiment, we vary the maximum
length setting for the LongestFirst algorithm. In
Experiment 1, the maximum length for a referring
expression was set to 4 based on previous empiri-
cal findings. Here we additionally test setting it to
the rounded average length for each training fold.
On Cluster CL0 this average length is 6 in all folds,
on Cluster CL1 it is 3.

6.2 Results
As shown in Table 2, the LongestFirst algorithm
performs best at generating human-like spatial re-
lations (Cluster CL0), with property-based param-
eters and a maximum description length deter-
mined by the training set. It produces the attribute
set hlm:type:cube, tg:on top of:lm, tg:type:ball,
tgcolouryellow, lm:colour:redi for Figure 1. The
difference to the other systems is statistically sig-
nificant for both Accuracy (�2>15, p<0.0001)
and Dice (t>13, p<0.0001). The attribute-based
parameters and the original GBA perform very
badly on this cluster. For participants who do
not tend to use spatial relations (Cluster CL1),
the maximum length setting has no influence,
but attribute-based parameters perform better than
property-based ones. The attribute-based Longest-
First systems also outperform the original GBA

CL0 CL1 avg
FN Acc 19.38 48.94 41.43

LongestFirst -PROP Dice 75.61 80.27 79.08
-max-av FN Acc 0.00 60.00 44.76

-ATT Dice 55.74 85.28 77.78
FN Acc 0.63 48.94 36.67

LongestFirst -PROP Dice 72.15 80.21 78.17
-max4 FN Acc 0.00 60.00 44.76

-ATT Dice 59.01 85.28 78.61
FN Acc 5.00 48.30 37.30

Original -PROP Dice 49.36 80.77 72.79
GBA FN Acc 5.00 50.85 39.21

-ATT Dice 49.36 81.58 73.40

Table 2: Experiment 2: Performance in % of the
LongestFirst and OriginalGraph algorithms on the
two speaker clusters and overall using the FREE-
NAÏVE (FN) approaches. We used �2 on Accu-
racy and paired t-tests on Dice to check for statis-
tical significance. The best performance in each
column and those that are statistically not signifi-
cantly different are highlighted in boldface.

on CL1, but interestingly none of the differences
are as large as on CL0. For the scene in Fig-
ure 1 they produce the attribute set htg:type:ball,
tg:colour:yellowi.

The average results over both clusters (shown
in the last column Table 2) are not conclusive
as to which setting should be used overall, al-
though it is clear that the LongestFirst version is
preferable when evaluated by Dice. The differ-
ent result patterns on the two clusters suggest that
the different referential behaviour of the partici-
pants in the two clusters are ideally modeled us-
ing different parameters. In particular, it appears
that property-based costs are useful for replicat-
ing descriptions containing relations to other ob-
jects, while attribute-based costs are useful for
replicating shorter descriptions. The best over-
all performance, achieved by combining the best
performing systems on each cluster (LongestFirst-
max-av/FN-PROP on CL0 and LongestFirst/FN-
ATT with either maximum length setting on CL1),
lies at 49.68% Accuracy and 82.83% Dice. The
Dice score in this combined model is significantly
higher than the best achieved by LongestFirst-
max-av/FN-PROP and from the best Dice score
achieved on the unclustered data in Experiment 1
(t=8.2, p<0.0001). The difference in Accuracy is
not significant (�2=1.2, p> 0.2).

To get an idea of how successful the new
LongestFirst approach is at replicating the use of
relations on the clustered data, we take a closer
look at the output of the best-performing systems
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on the two clusters. On CL0, the cluster of partic-
ipants who produce longer descriptions contain-
ing more spatial relations, the best match to the
human data comes from LongestFirst-max-av/FN-
PROP. 147 of the 160 descriptions in this cluster
contain a relation, and the system includes the cor-
rect relation for all 147. It falsely also includes a
relation for the remaining 13 descriptions. This
shows that with the appropriate parameter settings
the LongestFirst algorithm is able to replicate hu-
man relational reference behaviour, but personal
speaker preferences are the main driving factor for
the human use of relations.

CL1, the cluster with shorter descriptions,
contains only 85 (18%) relational descriptions.
The best performing system on this cluster
(LongestFirst/FN-ATT) does not produce any rela-
tions. This is not surprising as the cost functions
and POs for this cluster are necessarily dominated
by the non-relational attributes used more regu-
larly. The cases in which relations are used stem
from participants who do not show a clear prefer-
ence for or against relations and would therefore
be hard to model in any system. With more data it
might be possible to group these participants into
a third cluster and find suitable parameter settings
for them. This would only be possible if their use
of relations is influenced by other factors available
to the algorithm, such as the spatial configuration
of the scene. Viethen and Dale’s (2008) analysis of
the GRE3D3 Corpus suggests that this is the case
at least to some extent.

7 Conclusions and Future Work

We have evaluated the Graph-Based Algorithm for
REG (Krahmer et al., 2003) as well as a novel
search algorithm, LongestFirst, that functions on
the same graph-based representation, to assess
their ability to generate referring expressions that
contain spatial relations. We coupled the search
algorithms with a number of different approaches
to setting the cost functions and preference orders
that guide the search.

In Experiment 1, we found that ignoring the cost
function (our 0-cost approaches) is not helpful; but
the LongestFirst algorithm, which produces longer
descriptions, leads to more human-like output for
the visuospatial domain we evaluate on than the
original Graph-Based Algorithm or the Incremen-
tal Algorithm (Dale and Reiter, 1995). However,
in order for spatial relations to be included in a

human-like way, it was necessary to take into ac-
count speaker preferences. We modeled these in
Experiment 2 by clustering the participants who
had contributed to the evaluation corpus based on
their referential behaviour. By training separate
cost functions and preference orders for the dif-
ferent clusters, we enabled the LongestFirst al-
gorithm to correctly reproduce 100% of relations
used by people who regularly mentioned relations.

Our findings suggest that the graph-based rep-
resentation proposed by Krahmer et al. (2003)
can be used to successfully generate relational de-
scriptions, however their original search algorithm
needs to be amended to allow more overspecifica-
tion. Furthermore, we have shown that variation
in the referential behaviour of individual speak-
ers has to be taken into account in order to suc-
cessfully model the use of relations in referring
expressions. We have proposed a clustering ap-
proach to advance this goal based directly on the
referring behaviour of speakers rather than speaker
identity. We have found that the best models use
fine-grained property-based parameters for speak-
ers who tend to use spatial relations, and coarser
attribute-based parameters for speakers who tend
to use shorter descriptions.

In future work, we hope to expand to more
complex domains, beyond the simple properties
available in the GRE3D3 Corpus. We also aim
to explore further graph-based representations and
search strategies, modeling non-spatial properties
as separate vertices, similar to the approach by
Croitoru and van Deemter (2007).
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2012. Learning preferences for referring expression
generation: Effects of domain, language and algo-
rithm. In Proceedings of the 7th International Nat-
ural Language Generation Conference, pages 3–11,
Starved Rock, IL, USA.

Emiel Krahmer and Mariët Theune. 2002. Effi-
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Mariët Theune, Ruud Koolen, Emiel Krahmer, and
Sander Wubben. 2011. Does size matter - how
much data is required to train a REG algorithm? In
Proceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 660–664, Portland OR,
USA.

Kees van Deemter and Emiel Krahmer. 2007. Graphs
and Booleans: On the generation of referring ex-
pressions. In Harry C. Bunt and Reinhard Muskens,
editors, Computing Meaning, volume 3, pages 397–
422. Kluwer, Dordrecht, The Netherlands.

Kees van Deemter, Albert Gatt, Ielka van der Sluis,
and Richard Power. 2012. Generation of referring
expressions: Assessing the incremental algorithm.
Cognitive Science, 36(5):799–836.

Ielka van der Sluis. 2005. Multimodal Reference, Stud-
ies in Automatic Generation of Multimodal Refer-
ring Expressions. Ph.D. thesis, Tilburg University,
The Netherlands.

Jette Viethen and Robert Dale. 2006. Algorithms for
generating referring expressions: Do they do what
people do? In Proceedings of the 4th International
Conference on Natural Language Generation, pages
63–70, Sydney, Australia.

Jette Viethen and Robert Dale. 2008. The use of spatial
relations in referring expression generation. In Pro-
ceedings of the 5th International Conference on Nat-
ural Language Generation, pages 59–67, Salt Fork
OH, USA.

Jette Viethen and Robert Dale. 2009. Referring ex-
pression generation: What can we learn from human
data? In Proceedings of the 2009 Workshop on Pro-
duction of Referring Expressions: Bridging the Gap
Between Computational and Empirical Approaches
to Reference, Amsterdam, The Netherlands.

Jette Viethen and Robert Dale. 2010. Speaker-
dependent variation in content selection for refer-
ring expression generation. In Proceedings of the
8th Australasian Language Technology Workshop,
pages 81–89, Melbourne, Australia.

Jette Viethen, Robert Dale, Emiel Krahmer, Mariët
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