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Abstract 

We describe a high precision system for ex-

tracting events of biomedical significance that 

was developed during the BioNLP shared task 

2013 and tested on the Cancer Genetics data 

set. The system achieved an F-score on the de-

velopment data of 73.67 but was ranked 5
th

 out 

of six with an F-score of 29.94 on the test data. 

However, precision was the second highest 

ranked on the task at 62.73. Analysis suggests 

the need to continue to improve our system for 

complex events particularly taking into ac-

count cross-domain differences in argument 

distributions.   

1 Introduction 

In this paper we present our approach to the Bi-

oNLP 2013 shared task on Cancer Genetics (CG) 

(Pyysalo et al., 2013, Pyysalo et al., 2012), 

aimed at identifying biomedical relations of sig-

nificance in the development and progress of 

cancer. Our system explored a multi-stage ap-

proach including trigger detection, edge detec-

tion and event composition. After trigger edge 

detection is finished we are left with a semantic 

graph from which we must select the optimal 

subset that is consistent with the semantic frames 

for each event type. Previous approaches have 

derived sub-graph matching rules using heuris-

tics (Jari Björne et al. 2009) or machine learning 

using graph kernels (Liu et al., 2013). Based on 

McClosky et al. (2011)’s observation that event 

structures have a strong similarity to dependency 

graphs, we proposed a novel method for the 

composition of ambiguous events used a proba-

bilistic variation of the Earley chart parsing algo-

rithm (Stolcke 1995) for finding best derived 

trigger-argument candidates. Our method uses 

the event templates and named entity classes as 

grammar rules. As an additional novel step our 

chart parsing approach incorporates a linear in-

terpolation mechanism for cross-domain adaptiv-

ity between the training and testing (develop-

ment)  data.   

2 Approach 

The system consists of five main modules: pre-

processing, trigger detection, edge detection, 

simple event extraction, complex event extrac-

tion. Each of these is described below with an 

emphasis on event composition where we ap-

plied a probabilistic variation on the Earley par-

ser.   

2.1 Experimental Setting 

As our team’s first attempt at the BioNLP shared 

task we decided to focus our attention on the 

Cancer Genetic Task. The CG Task aims to ex-

tract events related to the development and pro-

gression of cancer.  

A characteristic feature of the CG Task is that 

there are a large number of entity and event 

types: 18 entity classes, 40 types of event and 8 

types of arguments. Among these events, there 

are 7 that may have no arguments: Blood vessel 

development, Cell death, Carcinogenesis, Metas-

tasis, Infection, Amino acid catabolism and Gly-

colysis. On the other hand, some events may 

have more than one argument: Binding and Gene 

Expression may have more than one Theme ar-

gument, and Planned process may have more 

than one Instrument argument. 

We divided events into two groups based on 

definitions of Miwa et al.(2010) : simple and 

complex events. Simple events include 36 events 

whose arguments must be entities. Complex 

events include 4 event types whose arguments 

may be other events. 

2.2 Pre-processing 

Pre-processing conventionally made use of the 

GeniaTagger (Tsuruoka and Tsujii, 2005) for 

sentence splitting and tokenizing, and the HPSG 
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parser Enju
1
 (Miyao and Tsujii, 2008).  Both of 

these were provided in the supporting resources 

by the task organisers. Gold standard named enti-

ty annotations were also provided.  

2.3 Trigger Detection 

In the CG Task dataset, 95% of the triggers 

that indicate events are single token. We there-

fore treated trigger detection as a token labeling 

problem in a similar way to Björne et al. (2009). 

Here the system has to classify whether a token 

acts as a trigger for one of the forty event types 

or not.  We used the Liblinear-java library
2
 (Fan 

et al., 2008) with the L2-regularized logistic re-

gression method for both trigger detection and 

edge detection. We performed a manual grid 

search to select a C-value parameter of 0.5. This 

parameter value is same from that of the Turku 

system (Björne et al. (2009), in which the C-

values were tuned for all of their detectors. 

The major features used are primarily based 

on Miwa, et al. (2012) and shown in Table 1. In 

our experiments this led to a relatively large 

number of features: about 500k features for the 

trigger detection model, 900k features in the T-E 

model and 600k features in the EV-EV model. 

Our choice of the Liblinear library was partly 

motivated by its efficient performance with large 

feature sets. 

 
Feature Target 

Token feature - Current token 

Neighbouring word feature - Current token 

Word n-gram feature - Current token 

Trigger dictionary feature - Current token 

Pair n-gram feature - Between current token and 

named entities 

Parse tree shortest path 

feature 

- Between current token and 

named entities 

Table 1: Features in the trigger detection module. 

2.4 Event edge detection 

For edge detection, we used Liblinear to con-

struct two models: one model is designed primar-

ily to extract trigger-entity edges (T-E model), 

while the other system is designed primarily to 

extract event-event edges (EV-EV model). 

The T-E model classifies edge candidates to 

one of the 8 argument roles (theme, cause, site, 

atloc, toloc, fromloc, instrument, participant) 

and a negative argument class. Relation pairs are 

identified through the simple event extraction 

module (cf Section 2.5). 

                                                 
1
 http://www-tsujii.is.s.u-tokyo.ac.jp/enju/ 

2 http://www.bwaldvogel.de/liblinear-java/ 

The EV-EV model identifies relations in the 

sentences between 4 types of complex events 

(Regulation, Negative regulation, Positive Regu-

lation and Planned process) and other events 

(including events belonging to the 4 complex 

events). The relations are classified into three 

classes: the two argument roles (theme or cause) 

or NOT. 

The features used in these two models are 

mostly the same as those used in the earlier trig-

ger detection module. Table 2 shows features and 

their applied target objects used in T-E model, 

Table 3 shows features and target objects for 

each feature of EV-EV model.  

 
Feature Target  

Token feature - Current trigger 

- Trigger argument entity 

Class feature - Current trigger 

- Trigger argument entity 

Neighbouring word 

feature 

- Current trigger 

- Trigger argument entity 

Word n-gram feature - Current trigger 

- Trigger argument entity 

Pair n-gram feature - Between current trigger and 

argument entity 

Parse tree shortest 

path feature 

- Between current trigger and 

rigger argument entity 

Table 2: Features in the T-E model. 
 

Feature Target 

Token feature Current trigger, target trigger, cur-

rent arguments, target arguments 

Class feature Current trigger, target trigger, cur-

rent arguments, target arguments 

Neighbouring word 

feature 

Current trigger, target trigger, cur-

rent arguments, target arguments 

Word n-gram feature Current trigger, target trigger, cur-

rent arguments, target arguments 

Pair n-gram feature Between current trigger and target 

trigger, between current trigger and 

target arguments, between current 

arguments and target trigger, be-

tween current arguments and target 

arguments 

Parse tree shortest 

path feature 

Between current trigger and target 

trigger, between current trigger and 

target arguments, between current 

arguments and target trigger, be-

tween current arguments and target 

arguments 

Table 3: Features in the EV-EV model. 

2.5 Simple event extraction 

In order to minimise the incorrect combination 

of arguments and triggers it seemed natural to try 

and solve the edge classification problem first 

between triggers and entities (simple edge detec-

tion) and then apply these as features in a stacked 

model to the complex event recogniser (cf Sec-

tion 2.6). In the simple event extraction module, 
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Figure 1: An example of representing two complex events as two event trees. 

 

we combined edge candidates identified in the T-

E model into complete simple events. After this 

step, we had the results which belong to the 36 

simple event types and relations between 4 com-

plex events and entities. 

In order to select the edge candidates for each 

trigger, we used event-argument pattern based 

probabilities derived from the training set. An 

example of a Development event-arguments pat-

tern is:  

Development  Theme(Gene_expression) + At-

Loc(Cancer) 

In practice there are several problems that 

arose when opting for this simple strategy: 

 - Firstly, there may be multiple candidates 

with the same argument role label linking to a 

trigger (such triggers do not belong to Binding, 

Gene Expression and Planned process). We used 

the output probability from the logistic regres-

sion event edge classifiers to select the best can-

didate in these cases. 

- Secondly, there are triggers whose candidate 

edge types link to entities that do not match pat-

terns observed in the training set or do not have 

any relation. We introduced a rule-based seman-

tic post-processing step: triggers are checked to 

see if they belong to the 7 event types which 

have no argument; if they do not, we rejected 

these from the results. 

- Thirdly, there may be an imbalance between 

the argument distribution in the training and test-

ing data (development data). In the development 

data, we observed some event-argument patterns 

which do not occur in training set, this problem 

may lead to false negatives. For example: 

Cell_transformation  Theme(Cell) + At-

Loc(Cell) or Mutation  

Site(DNA_domain_or_region). This was one 

cause of false negatives in our system’s perfor-

mance (cf Section 3). 

2.6 Complex event extraction with proba-

bilistic Earley Parser 

For complex event extraction, based on the 

idea of McClosky et al. (2011) that treats event 

extraction as dependency parsing, we represent 

complex events in the form of event trees which 

are similar to dependency trees. Our idea differs 

from McClosky et al. in that they represented all 

events in a sentences within a single tree, where-

as we build a tree for each complex event. This 

solution helps avoid the problem of directed cy-

cles if there are two complex event that relate to 

the same entity or event. 

Figure 1 shows an example of representing 

two complex events as two event trees. To build 

the event tree, we create a virtual ROOT node; 

the complex event target will be linked directly 

to this ROOT node, and triggers and entities that 

do not belong to sub-structure of the target event 

will also have links to ROOT node, too. In the 

event tree, labels of entity classes and event 

types are retained while terms of triggers and 

entities are removed. 

For event tree parsing, we used the Earley 

parsing algorithm proposed by Jay Earley (1970) 

to find alternative structures. The event tree is 

stored in memory in the form of Earley rules. 

The inputs to the parser are the entities and trig-

gers which have been identified in the trigger 

detection module, and the outputs are the event 

tree candidates.  

To choose the best event tree candidates, we 

built a probabilistic Earley parser which devel-

oped from the idea of Hale (2001). As a first at-

tempt at introducing robustness for edge classifi-

er error our parser used linear interpolation on 

the probability from the edge detection module 

and the prior edge probabilities to calculate a 

score for each event tree candidate. The interpo-

lation parameter λ was set using a manual grid 
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search and reflects the confidence we have in the 

generalisability of the edge detection module on 

the testing (development) data.   

The scoring function for each node is: 

Occurrence

(edge | argrument)

(node) (arguments | node)
(edges)

edges node

P

Score P
num


 

  

where, 

 num(edge) is the number of edges that 

have a link to the node 

 POccurence(arguments|node) is a distribu-

tion which represents the co-occurrence of 

entity/trigger labels in the arguments of an 

event type. 

 (edge | argrument) (edge | argument)ClassifierP P  

        (1 )* (edge | argument)PriorP  

 λ is a linear interpolation parameter in 

the range of [0,1]  

 PClassifier(edge|argument) is the probabil-

ity obtained from the edge classifier. 

 PPrior(edge|argument) is the training set’s 

prior probability for the edge. 

Edges that linked directly to ROOT and did 

not relate to the target complex event had a de-

fault value of zero. The final score of an event 

tree candidate was calculated as ROOT’s value. 

We used a filter_threshold parameter to re-

move event tree candidates which had an edge 

with P(edge|argument) less than filter_threshold. 

On the other hand, we used a cut-off_threshold 

parameter to choose event tree candidates which 

have highest value. Event tree candidates which 

are sub-structure of other event tree candidates 

were removed from the final results. 

3 Results and Discussion 

We evaluated each component of the system 

on the training and held out data sets. The opti-

mal configuration of parameters was then used 

on the shared task test data. We set these as fol-

lows:α=0.5;filter_threshold=0.2;cutoff_threshol

d=0.45.  

Table 4 shows F-score performance for event 

composition on the development data set. We 

found that complex events such as regulation and 

planned process performed at the lower end of 

accuracy due to their high complexity. This re-

sulted in relatively low recall compared to preci-

sion (figures not shown). The three Regulation 

events in particular are very productive in terms 

of the variety of named entities and triggers they 

take as arguments and their distribution in the 

development data was quite different to the train-

ing data. 
Event F1 Event F1 

Development 86.67 Phosphorylation 68.45 

Blood vessel 

development 

84.15 Dephosphorylation 66.67 

Growth 76.77 DNA methylation 85.71 

Death 61.95 DNA demethyla-

tion 

- 

Cell death 53.06 Pathway 61.81 

Breakdown 77.68 Localization 66.11 

    

Cell proliferation 59.82 Binding 70.68 

Cell division 100.00 Dissociation 100.00 

Remodeling 60.00 Regulation 69.55 

Reproduction - Positive regulation 68.13 

Mutation 78.74 Negative regula-

tion 

68.57 

Carcinogenesis 60.67 Planned process 49.99 

Metastasis 74.39 Acetylation  100.00 

Metabolism 62.50 Glycolysis  69.89 

Synthesis 52.63 Glycosylation - 

Catabolism 59.27 Cell transformation  66.67 

Gene expression 79.18 Cell differentiation  71.18 

Transcription 75.00 Ubiquitination 75.00 

Translation 80.00 Amino acid ca-

tabolism 

100.00 

Protein pro-

cessing 

100.00 Infection  75.86 

  Total  73.67 

Table 4: Baseline results for event composi-

tion on the development data. 

 

From our analysis on the development set we 

found that trigger detection was performing well 

overall with F-scores in the range 78 to 80. We 

choose 50 false negative events at random for 

error analysis. There are 29 triggers and 21 

events missing. Table 5 shows a stratified analy-

sis by major error type (we note that errors may 

of course have multiple causes). 
Cause Trigger Event 

Ambiguity in event class 9  

Co-reference 6  

Do not match with any event argument 

patterns 

7  

No training instance 7 4 

Choose best argument entity in simple 

event extraction   

 5 

No argument  4 

No Earley parser rule  8 

Total 29 21 

Table 5: Error classification of 50 missing 

false negatives. 
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Performance on the shared task testing set was 

overall disappointing with an F-score of 29.94 

(Recall = 19.66, Precision = 62.73, F-score of 

simple event extraction = 47.96 and F-score of 

complex event extraction = 12.49) indicating low 

coverage caused by severe over-fitting issues. 

Analysis revealed that one cause of this was the 

imbalance in the distribution of arguments be-

tween training and testing sets. 

4 Conclusion  

We presented a system built on supervised 

machine learning with rich features, semantic 

post-processing rules and the dynamic program-

ming Earley parser. The system achieved an F-

score of 29.94 on the CG task with high preci-

sion of 62.73. Future work will focus on extend-

ing recall for complex events and looking at how 

we can avoid over-fitting to benefit cross-domain 

adaptivity.   
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