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Abstract

The Genia Event (GE) extraction task of
the BioNLP Shared Task addresses the ex-
traction of biomedical events from the nat-
ural language text of the published litera-
ture. In our submission, we modified an
existing system for learning of event pat-
terns via dependency parse subgraphs to
utilise a more accurate parser and signifi-
cantly more, but noisier, training data. We
explore the impact of these two aspects of
the system and conclude that the change in
parser limits recall to an extent that cannot
be offset by the large quantities of training
data. However, our extensions of the sys-
tem to extract modification events shows
promise.

1 Introduction

In this paper, we describe our submission to the
Genia Event (GE) information extraction subtask
of the BioNLP Shared Task. This task requires the
development of systems that are capable of iden-
tifying bio-molecular events as those events are
expressed in full-text publications. The task rep-
resents an important contribution to the broader
problem of converting unstructured information
captured in the biomedical literature into struc-
tured information that can be used to index and
analyse bio-molecular relationships.

This year’s task builds on previous instantia-
tions of this task (Kim et al., 2009; Kim et al.,
2012), with only minor changes in the task defini-
tion introduced for 2011. The task organisers pro-
vided full text publications annotated with men-
tions of biological entities including proteins and
genes, and asked participants to provide annota-
tions of simple events including gene expression,
binding, localization, and protein modification, as
well as higher-order regulation events (e.g., pos-
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itive regulation of gene expression). In our sub-
mission, we built on a system originally developed
for the BioNLP-ST 2011 (Liu et al., 2011) and ex-
tended in more recent work (Liu et al., 2013a; Liu
etal., 2013b). This system learns to recognise sub-
graphs of syntactic dependency parse graphs that
express a given bio-molecular event, and matches
those subgraphs to new text using an algorithm
called Approximate Subgraph Matching.

Due to the method’s fundamental dependency
on the syntactic dependency parse of the text, in
this work we set out to explore the impact of
substituting the previously employed dependency
parsers with a different parser which has been
demonstrated to achieve higher performance than
other commonly used parsers for full-text biomed-
ical literature (Verspoor et al., 2012).

In addition, we aimed to address the relatively
lower recall of the method through incorporation
of large quantities of external training data, ac-
quired through integration of previously automat-
ically extracted bio-molecular events available in
a web repository of such extracted events, EVEX
(Van Landeghem et al., 2011; Van Landeghem
et al., 2012), and additional bio-molecular events
generated from a large sample of full text pub-
lications using one of the state-of-the-art event
extraction systems, TEES (Bjorne and Salakoski,
2011). Since the performance of the subgraph
matching method, as an instance-based learning
strategy (Alpaydin, 2004), is dependent on having
good training examples that express the events in a
range of syntactic structures, the motivation under-
lying this was to increase the amount of training
data available to the system, even if that data was
derived from a less-than-perfect source. The aug-
mentation of training corpora with external unla-
belled data that is automatically processed to gen-
erate additional labels has been explored for re-
training the same system, in an approach known as
self-training. This approach has been shown to be
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very effective for improving parsing performance
(McClosky et al., 2006; McClosky and Charniak,
2008). Self-training of the TEES system has been
previously explored (Bjorne et al., 2012), with
somewhat mixed results, but with evidence sug-
gesting it could be useful with an appropriate strat-
egy for selecting training examples. Here, rather
than training our system with its own output over
external data, we explore a semi-supervised learn-
ing approach in which we train our system with the
outputs of a different system (TEES) over external
data.

2 Methodology

2.1 Base Event Extraction System

The event extraction algorithm is essentially the
same as the one used in Liu et al. (2013b). A fuller
description can be found there, but we summarise
the most important aspects of it here.

2.1.1 Event Extraction with ASM

The principal method used in event extraction is
Approximate Subgraph Matching, or ASM (Liu et
al., 2013a). Broadly, we learn subgraph patterns
from the event structures in the training data, and
then apply them by looking for matches with the
patterns of the learned rules, using ASM to allow
for non-exact matches of the patterns.

The first stage in this is learning the rules which
link subgraphs to associated patterns. The input
is a set of dependency-parsed articles (the setup
is described in §2.1.2), and a set of gold-standard
annotations of proteins and events in the shared
task format. Using the standoff annotations in the
training data, every protein and trigger is mapped
to one or more nodes in the corresponding depen-
dency graphs. In addition, the textual content of
every protein is replaced with a generic string en-
abling abstraction over individual protein names.
Then, for each event annotation in the training
data, we retrieve the nodes from the graph corre-
sponding to the associated trigger and protein en-
tities. We determine the shortest path (or paths, in
case of a tie) connecting the graph trigger to each
of the event argument nodes. For arguments which
are themselves events (e.g., for regulatory events),
the node corresponding to the trigger of the event
argument is used instead of a protein node. Where
there are multiple arguments, we take the union of
the shortest paths to each individual argument.

This path is then used as the pattern compo-
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nent of an event rule. The rule also consists of an
event type, and a mapping from event arguments
to nodes from the pattern graph, or to an event
type/node pair for nested event arguments. Af-
ter processing all training documents, we get on
the order of a few thousand rules; this can be de-
creased slightly by removing rules with subgraphs
that are isomorphic to those of other rules.

In principle, this set of rules could then be di-
rectly applied to the test documents, by searching
for any matching subgraphs. However, in practice
doing so leads to very low recall, since the pat-
terns are not general enough to get a broad range of
matches on new data. We can alleviate this by re-
laxing the strictness of the subgraph matching pro-
cess. Most basically, we relax node matching. In-
stead of requiring an exact match between both the
token and the part-of-speech of the nodes of the
sentence graph and those from the rule subgraph,
we also allow a match on the basis of the lemma
(according to BioLemmatizer (Liu et al., 2012)),
and a coarse-grained POS-tag (where there is only
one POS-tag for nouns, verbs and adjectives).

More importantly, we also relax the require-
ments on how closely the graphs must match, by
using ASM. ASM defines distances measures be-
tween subgraphs, based on structure, edge labels
and edge directions, and uses a set of specified
weights to combine them into an overall subgraph
distance. We have a pre-configured set of distance
thresholds for each event type, and for each sen-
tence/rule pairing, we extract events for any rules
with subgraphs under the given threshold.

The problem with this approximate matching is
that some rules now match too broadly, and pre-
cision is reduced. This is mitigated by adding
an iterative optimisation phase. In each iteration,
we run the event extraction using the current rule
set over some dataset — usually the training set,
or a subset of it. We check the contribution of
each rule in terms of postulated events and actual
events which match the gold standard. If the ra-
tio of matched to postulated events is too low (for
the work reported here, the threshold is 0.25), the
rule is discarded. This process is repeated until no
more rules are discarded. This can take multiple
iterations since the rules are interdependent due to
the presence of nested event arguments.

The optimisation step is by far the most time-

consuming step of our process, especially for the
large rule sets produced in some configurations.



We were able to improve optimisation times some-
what by parallelising the event extraction, and
temporarily removing documents with long ex-
traction times from the optimisation process un-
til as late as possible, but it remained the primary
bottleneck in our experimentation.

2.1.2 Parsing Pipeline

In our parsing pipeline, we first split sentences
using the JULIE Sentence Boundary Detector, or
JSBD (Tomanek et al., 2007). We then parse
using a version of clearnlp! (Choi and McCal-
Ium, 2013), a successor to ClearParser (Choi and
Palmer, 2011), which was shown to have state-
of-the-art performance over the CRAFT corpus
of full-text biomedical articles (Verspoor et al.,
2012). We use dependency and POS-tagging mod-
els trained on the CRAFT corpus (except where
noted); these pre-trained models are provided with
clearnlp. Our fork of clearnlp integrates to-
ken span marking into the parsing process, so the
dependency nodes can easily be matched to the
standoff annotations provided with the shared task
data. This pipeline is not dependent on any pre-
annotated data, so can thus be trivially applied to
extra data not provided as part of the shared task.
In addition the parsing is fast, requiring roughly 46
wall-clock seconds (processing serially) to parse
the 5059 sentences from the training and develop-
ment sets of the 2013 GE task — an average of 9 ms
per sentence. The ability to apply the same pars-
ing configuration to new text was useful for adding
extra training data, as discussed in §2.2.

The usage of clearnlp as the parser is the pri-
mary point of difference between our system and
that of Liu et al. (2013b), who use the Charniak-
Johnson parser with the McClosky biomedical
model (CJM; McClosky and Charniak (2008)), al-
though there are other minor differences in tokeni-
sation and sentence splitting. We expected that the
higher accuracy of clearnlp over biomedical text
would translate into increased accuracy of event
detection in the shared task; we consider this ques-
tion in some detail below.

2.2 Adding Noisy Training Data

One of the limitations of the ASM approach is that
the high precision comes at the cost of lower re-
call. Our hypothesis is that adding extra training
instances, even if some are errors, will raise re-
call and improve overall performance. We utilised

"https://code.google.com/p/clearnlp/
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two sources of automatically-annotated data: the
EVEX database, and running an automatic event
annotator over documents from PubMed Central
(PMC) and MEDLINE.

To test our hypothesis, we utilise one of the
best performing automatic event extractors in pre-
vious BioNLP tasks: TEES (Turku Event Extrac-
tion System)? (Bjorne et al., 2011). We expand our
pool of training examples by adding the highest-
confidence events TEES identifies in unlabelled
text. We explored different approaches to ranking
events based on classifier confidence empirically.

TEES relies on multi-class SVMs both for trig-
ger and event classification, and produces confi-
dence scores for each prediction. We explored
ranking events according to: (i) score of the trig-
ger prediction, (ii) score of the event-type predic-
tion, and (iii) sum of trigger and event type predic-
tions. We also compared the performance when
selecting the top-k events overall, versus choos-
ing the top-k events for each event type. We also
tested adding as many instances per event-type as
there were in the manually-annotated dataset, with
different multiplying factors. Finally, we evalu-
ated the effect of using different splits of the data
for the evaluation and optimisation steps of ASM.
This is the full list of parameters that we tested
over held-out data:

e Original confidence scores: we ranked events
according to the three SVM scores mentioned
above: trigger prediction, event-type predic-

tion, and combined.

Overall top-k: we selected the top 1,000,
5,000, 10,000, 20,000, 30,000, 40,000, and
50,000 for the different experimental runs.

Top-k per type: for each event type, we se-
lected the top 400, 1,000, and 2,000.

Training bias per type: we add as many in-
stances from EVEX per type as there are in
the manually annotated data. We experiment
with adding up to 6 times as many as in man-
ually annotated data.

Training/optimisation split: we combine
manually and automatically annotated data
for training. For optimisation we tested
different options: manually annotated only,
manual + automatic, manual + top-100
events, and manual + top-1000 events.

http://jbjorne.github.com/TEES/



We did not explore all these settings exhaus-
tively due to time constraints, and we report here
the most promising settings. It is worth mention-
ing that most of the configurations contributed to
improve the baseline performance. We only ob-
served drops when using automatically-annotated
data in the optimisation step.

2.2.1 Data from EVEX

Conveniently, the developers of TEES have re-
leased the output of their tool over the full 2009
collection of MEDLINE, consisting of abstracts of
biomedical articles, in a collection known as the
EVEX dataset. We used the full EVEX dataset as
provided by the University of Turku, and explored
different ways of ranking the full list of events as
described above.

2.2.2 Data from TEES

To augment the training data, we annotated two
data sets with TEES based on MEDLINE and
PubMed Central (PMC). The developers of TEES
released a trained model for the GE 2013 training
data that we utilised.

Due to the long pre-processing time of TEES,
which includes gene named entity recognition,
part-of-speech tagging and parsing, we used the
EVEX pre-processed MEDLINE, which required
some adaptation of the EVEX XML to the XML
format accepted by TEES. Once this adaptation
was finished, the files were processed by TEES.

Then, we have selected articles from PMC us-
ing a query containing specific MeSH headings
related to the GE task and limiting the result to
only the Open Access part of PMC. From the al-
most 600k articles from the PMC Open Access set,
we reduced the total number of articles to around
155k. The PMC query is the following:

(Genetic Phenomena[MH] OR Metabolic

PhenomenalMH] OR Cell Physiological

Phenomena[MH] OR Biochemical

Processes| MH]) AND open access|filter]

Furthermore, the articles were split into sections

and specific sections from the full text like Intro-
duction, Background and Methods were removed
to reduce the quantity of text to be annotated by
TEES. The PMC files produced by this filtering
were processed by TEES on the NICTA cluster.

2.3

To evaluate the utility of ASM for a diverse range
of tasks, we also applied it to the task of detect-
ing modification (SPECULATION or NEGATION)

Modification Detection
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NEGATION cues
e Basic: not, no, never, nor, only, neither, fail, cease,
stop, terminate, end, lacking, missing, absent, absence,
failure, negative, unlikely, without, lack, unable
e Data-derived: any, prevention, prevent, disrupt, dis-
ruption

SPECULATION cues:

e Basic: analysis, whether, may, should, can, could, un-
certain, questionable, possible, likely, probable, prob-
ably, possibly, conceivable, conceivably, perhaps, ad-
dress, analyze, analyse, assess, ask, compare, consider,
enquire, evaluate, examine, experiment, explore, inves-
tigate, test, research, study, speculate
Data-derived: measure, measurement, suggest, sug-
gestion, value, quantify, quantification, determine, de-
termination, detect, detection, calculate, calculation

Table 1: Modification cues

of events. In event detection, triggers are explic-
itly annotated, so the linguistic cue which indi-
cates that an event is occurring is easy to identify.
As described in Section 3.2, these triggers are im-
portant for learning event patterns.

The event extraction method is based on paths
between dependency graph nodes, so it is neces-
sary to have at least two relevant graph nodes be-
fore we can determine a path between them. For
learning modification rules, one graph node is the
trigger of the event which is subjec to modifica-
tion. However here we needed a method to deter-
mine another node in the sentence which provided
evidence that NEGATION or SPECULATION was
occurring, and could thus form an endpoint for a
semantically relevant graph pattern. To achieve
this, we specified a set cue lemmas for NEGATION
and SPECULATION. The basic set of cue lemmas
came from a variety of sources. Some were man-
ually specified and some were derived from previ-
ous work on modification detection (Cohen et al.,
2011; MacKinlay et al., 2012). We manually ex-
panded this cue list to include obvious derivational
variants. This gave us a basic set of 34 SPECULA-
TION and 21 NEGATION cues.

We also used a data-driven strategy to find ad-
ditional lemmas indicative of modification. We
adapted the method of Rayson and Garside (2000)
which uses log-likelihood for finding words that
characterise differences between corpora. Here,
the “corpora” are sentences attached to all events
in the training set, and sentences attached to events
which are subject to NEGATION or SPECULATION
(treated separately). We build a frequency distri-
bution over lemmas in each set of sentences, and
calculate the log-likelihood for all lemmas, us-



ing the observed frequency from the modification
events and the expected frequency over all events.
Sorting by decreasing log-likelihood, we get a
list of lemmas which are most strongly associated
with NEGATION or SPECULATION. We manually
examined the highest-ranked lemmas from these
two lists and noted lemmas which may occur,
according to human judgment, in phrases which
would denote the relevant modification type. We
found seven extra SPECULATION cues and three
extra NEGATION cues. Expanding with morpho-
logical variants as described above yielded 47
SPECULATION cues and 26 NEGATION cues to-
tal. These cues are shown, divided into basic and
data-derived, in Table 1.

For every node N with a lemma in the appro-
priate set of cue lemmas, we create a rule based
on the shortest path between the cue lemma node
N and the event trigger node. The trigger lem-
mas are replaced with generic lemmas which only
reflect the POS-tag of the trigger, to broaden the
range of possible matches. Each rule thus consists
of the POS-tag of an event trigger, and a subgraph
pattern including the abstracted event trigger node.

At modification detection time, the rules are ap-
plied in a similar way to the event rules. After
detecting events, we look for matches of each ex-
tracted event with every modification rule. A rule
R is considered to match if the event trigger node
POS tag matches the POS tag of the rule, and the
subgraph pattern of the rule matches the graph of
the sentence, including a node corresponding to
the event trigger node. If R is found to match
for a given event and sentence, any events which
have the trigger defined in the rule are marked as
SPECULATION or NEGATION as appropriate. As
in event extraction, we use ASM to allow a looser
match between graphs, but initial experimentation
showed that increasing the match thresholds be-
yond a relatively small distance was detrimental.
We have not yet added an optimisation phase for
modification, which might allow larger ASM dis-
tance threshold to have more benefit.

3 Results

We present our results over development data,
and the official test. We report the Approximate
Span/Approximate Recursive metric in all our ta-
bles, for easy comparison of scores. We describe
the data split used for development, explain our
event extraction results, and finally describe our
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performance in modification detection.

3.1 Data division for development

In the data provided by the task organisers, the
split of data between training and development
sets, with 249 and 222 article sections respec-
tively, was fairly even. If we had used such a split,
we would have had an unfeasibly small amount
of data to train from during development, and
possible unexpected effects when we sharply in-
creased the amount of training data for running
over the held-out test set. We instead used our
own data set split during development, pooling
the provided training and development sets, and
randomly selecting six PMC articles (PMC IDs
2626671, 2674207, 3062687, 3148254, 3333881
and 3359311) for the development set, with the
remainder available for training. We respected ar-
ticle boundaries in the new split to avoid training
and testing on sentences taken from different sec-
tions of the same article. Results over the devel-
opment set reported in this section are over this
data split. We will refer to our training subset as
GE13tr, and to the testing subset as GE13dev.

For our runs over the official test of this chal-
lenge, we merged all the manually annotated data
from 2013 to be used as training. We also per-
formed some experiments with adding the exam-
ples from the 2011 GE task to our training data.

3.2 Event Extraction

For our first experiment, we evaluated the contri-
bution of the automatically annotated data over us-
ing GE13tr data only. We performed a set of ex-
periments to explore the parameters described in
Section 2.2 over two sources of extra examples:
EVEX and TEES.

Using EVEX data in training resulted in clear
improvements in performance when only manu-
ally annotated data was consulted for optimisa-
tion. The increase was mainly due to the better
recall, with small variations in precision over the
baseline for the majority of experiments. Our best
run over the GE13dev data followed this setting:
rank events according to trigger scores, include all
top-30000 events (without considering the types of
the events), and use only manually annotated data
for the optimisation step. Other settings also per-
formed well, as we will see below.

For TEES, we selected noisy examples from
MEDLINE and PMC to be used as additional



System Prec. Rec. F-sc.
GE13tr 60.40 27.02 37.34
+TEES 59.27 29.89 39.74
+TEES +EVEX (top5k) 46.93 30.78 37.18
+TEES +EVEX (top20k) 56.32 31.90 40.73
+TEES +EVEX (top30k) 55.34 32.48 40.93
+TEES +EVEX (ptlk) 58.54 30.96 40.50
+TEES +EVEX (trx4) 57.83 31.23 40.56

Table 2: Impact of adding extra training data to the
ASM method. top5k,20k,30k: using the top 5,000,
20,000, and 30,000 events. ptlk: using the top
1,000 events per event-type. trx4: following the
training bias of events, with a multiplying factor
of four. For TEES we always use the top 10,000
events. Evaluated over GE13dev.

training data. Initial results showed that when us-
ing only MEDLINE annotated data in the train-
ing step, the performance decreased compared to
not using any additional data. This might have
been due to differences between the EVEX pre-
processed data that we used and what TEES was
expecting, so the MEDLINE set was not consid-
ered for further experimentation. Using PMC ar-
ticles annotated with TEES in the training step se-
lected by the evidence score of TEES shows an in-
crease of recall while slightly decreasing the pre-
cision, which was expected. We selected the top
10000 events from the PMC set based on the evi-
dence score as additional training data.

Table 2 summarises the results of combin-
ing different settings of EVEX with TEES. We
achieve a considerable boost in recall, at the cost
of precision for most configurations. The only set-
ting where there is a slight drop in F-score is the
experiment with only 5000 events from EVEX; in
the remaining runs we are able to alleviate the drop
in precision, and improve the F-score. Consider-
ing the addition of top-events according to their
type, the increment in recall is slightly lower, but
these runs are able to reach similar F-score to the
best ones, using less training data. Results with
TEES might be slightly overoptimistic since the
PMC annotation is based on a TEES model trained
on the 2013 GE data and our configurations are
evaluated on a subset of this data.

For our next experiment, we tested the contribu-
tion of adding the dataset from the 2011 GE task
to the training dataset. We use this data both in
the training and optimisation steps. The results are
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Train Prec. Rec. F-sc.
GE13tr 60.40 27.02 37.34
+GElI1 5341 32.62 40.50

Table 3: Adding GE11 data to the training and op-
timisation steps. Evaluated over GE13dev.

Parser Train Prec. Rec. F-sc.
clearnlp GE13 60.40 27.02 37.34
+GE11 5341 32.62 40.50
CIM GE13 60.96 33.11 42091
+GE11 64.11 38.93 48.44

Table 4: Performance depending on the applied
parsing pipeline (clearnlp for this work against
the CIM pipeline of Liu et al. (2013b)) over
GE13dev. For each run, the available data was
used both in training and optimisation.

given in Table 3, where we can observe a boost in
recall at the cost of precision. Overall, the im-
proved F-score suggests that this dataset would
make a useful contribution to the system.

We also compared our system to that of Liu
et al. (2013b), where the primary difference
(although not the only difference, as noted in
§2.1.2) is the use of clearnlp instead of the CJIM
(Charniak-Johnson/McClosky) pipeline. It is thus
somewhat surprising to see in Table 4 that the
CJM pipeline outperforms our clearnlp pipeline
by 5.5-8% in F-score, depending on the train-
ing data. For the smaller GE13-only training set,
the gap is smaller, and the precision figures are
in fact comparable. However, the recall is uni-
formly lower, suggesting that the rules learned
from clearnlp parses are for some reason less gen-
erally applicable. Another interesting difference
is that our clearnlp pipeline gets a smaller benefit
from the addition of the GEI11 training data. We
consider possible reasons for this in §4.1.

Table 5 contains the evaluation of different ex-
periments on the official test data. We tested the
baseline system using the training and develop-
ment data from 2011 and 2013 GE tasks and the
addition of TEES and EVEX data. The additional
data improves the recall slightly compared to not
using it, while, as expected, it decreases the pre-
cision. Table 5 also shows the results for our of-
ficial submission (+TEES+EVEX sub), which due
to time constraints was a combination of the opti-
mised rules of different data splits and has a lower



Train Prec. Rec. F-sc.

GEl11, GE13 65.71 32.57 43.55
+TEES+EVEX 63.67 33.50 4391
+TEES+EVEX * 50.68 36.99 42.77

Table 5: Test set results, always optimised over
gold data only. * denotes the official submission.

performance compared to the other results.

3.3 Modification Detection

We show results for selected modification detec-
tion experiments in Table 6. In all cases we used
all of the available gold training data from the
GE11 and GE13 datasets. To assess the impact of
modification cues, we show results using the basic
set as well as with the addition of the data-derived
cues. It has often been noted (MacKinlay et al.,
2012; Cohen et al., 2011) that modification detec-
tion accuracy is strongly dependent on the quality
of the upstream event annotation, so we provide an
oracle evaluation, using gold-standard event anno-
tations rather than automatic output.

The performance over the automatically-
annotated runs is respectable, given that the recall
is fundamentally limited by the recall of the input
event annotations, which is only around 30% for
the configurations shown. With the oracle event
annotations, the results improve substantially,
with considerable gains in precision, and recall
increasing by a factor of 4—6. This boost in recall
in particular is more than we would naively expect
from the roughly threefold increase in recall over
the events. It seems that many of the modification
rules we learned were even more effective over
events which our pipeline was unable to detect.
The modification rules were learned from oracle
event data, but this does not fully explain the
discrepancy. Regardless, our algorithm for mod-
ification detection showed excellent performance
over the oracle annotations. Over the 2009 version
of the BioNLP shared task data, MacKinlay et al.
(2012) report F-scores of 54.6% for NEGATION
and 51.7% for SPECULATION. These are not
directly comparable with those in Table 6, but
running our newer algorithm over the same 2009
data gives F-scores of 84.2% for NEGATION and
69.1% for SPECULATION.

For the official run, which conflates event
extraction and modification detection accuracy,
our system was ranked third for NEGATION and
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SPECULATION out of the three competing teams,
although the other teams had event extraction F-
scores of roughly 8% higher than our system. For
SPECULATION, our system had the highest preci-
sion of 34.15%, while the F-score of 20.22% was
close to the best result of 23.92%. Our NEGA-
TION detection was less competitive, with an F-
score of 20.94% — roughly 6% lower than the other
teams. We cannot extrapolate directly from the or-
acle evaluation in Table 6, but it seems to indicate
that an increase in event extraction accuracy would
have flow-on benefits in modification detection.

4 Discussion

4.1 Detrimental Effects of Parser Choice

The biggest surprise here was that clearnlp, a
more accurate dependency parser for the biomed-
ical domain, as evaluated on the CRAFT tree-
bank, gave a substantially lower event extrac-
tion F-score than the CJM parser. To determine
whether preprocessing caused the differences, we
replaced the existing modules (sentence-splitting
from JSBD and tokenisation/POS-tagging from
clearnlp) with the BioC-derived versions from the
CJIM pipeline, but this yielded only an insignifi-
cant decrease in accuracy.

Over the same training data, the optimised rules
from CJM have an average of 2.6 nodes per sub-
graph path, compared to 3.9 nodes per path using
clearnlp. A longer path is less likely to match
than a shorter path, so this may help to explain
the lower generalisability of the clearnlp-derived
rules. While it is possible for a longer subgraph
to match just as generally, if the test sentences
are parsed consistently, in general there are more
nodes and edges which can fail to match due to mi-
nor surface variations. One way to mitigate this is
to raise the ASM distance thresholds to compen-
sate for this; preliminary experiments suggest it
would provide a small (~ 1%) boost in F-score but
this would not close the gap between the parsers.

Both parsers produce outputs with Stanford
Dependency labels (de Marneffe and Manning,
2008), so we might naively expect similar graph
topology and subgraph pattern lengths. However,
the CIM pipeline produces graphs in the “CCpro-
cessed” SD format, which are simpler and denser.
If anode NNV has a link to a node O with a conjunc-
tion link to another node P (from e.g. and), an ex-
tra link with the same label is added directly from
N to P in the CCprocessed format. This means



NEGATION SPECULATION

Eval Events (F-sc) Cues P / R / F P / R / F
Dev GE13+TEES+EVEX (40.93) Basic 32.69/13.71/19.32 37.04/14.49/20.83
GE13+TEES+EVEX (40.93) B + Data 32.69/12.88/18.48 39.71/17.20/24.00
Oracle (100.0) B+ Data 82.48/71.07/76.35 78.79/67.71/72.83
Test GE11+GE13 (43.55) B + Data 39.53/13.99/20.66 50.00/13.85/21.69

GE11+GE13+TEES+EVEX * (42.77) B + Data

32.76/15.38/20.94 34.15/14.36/20.22

Table 6: Results for SPECULATION and NEGATION using automatically-annotated events (showing the
F-score of the configuration), as well as using oracle event annotations from the gold standard, over our
development set and the official test set. Rules are learned from GE13+GE11 gold data (excluding any
test data). Cues for learning rules are either the basic manually-specified set (34 SPEC/21 NEG) or the
augmented set with data-driven additions (47 SPEC/26 NEG). * denotes the official submission.

there are more direct links in the graph, match-
ing the semantics more closely. The shortest path
from N to P is now direct, instead of via O, which
could enable the CJM pipeline to produce more
general rules.

To evaluate how much this detrimentally af-
fects the clearnlp pipeline, as a post hoc in-
vestigation, we implemented a conversion mod-
ule. Using Stanford Dependency parser code,
we replicated the CCprocessed conversion on the
clearnlp graphs, reducing the average subgraph
pattern length to 2.8, and slightly improving ac-
curacy. Over our development set, compared to
the results in Table 3 it gave a 0.7% absolute F-
score boost over using GE13 training-data only,
and 1.1% over using GE11 and GE13 training data
(in both cases improving recall). Over the test
set, the improvement was greater, with a P/R/F
of 35.66/64.99/46.05, a 2.5% increase in F-score
compared to the results in Table 5 and only 2.9%
less than the official Liu et al. (2012) submission.

Clearly some of the inter-parser discrepancies
are due to surface features and post-processing,
and as noted above, we can also achieve small im-
provements by relaxing ASM thresholds, so some
problems may be caused by the default parameters
being suboptimal for the parser. However, the ac-
curacy is still lower where we would expect it to
be higher, and this remaining discrepancy is diffi-
cult to explain without performing a detailed error
analysis, which we leave for future work.

4.2 Effect of additional data

Our initial intuition that using additional noisy
training data during the training of the system
would improve the performance is supported by
the results in Table 2. Table 3 shows that us-
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ing a larger set of manually annotated data based
on 2011 GE task data also improves performance.
However, these tables also indicate that adding
manually annotated data produces an increase in
performance comparable to adding the noisy data,
despite its smaller size, and when using this man-
ually annotated set together with the noisy data,
the improvement resulting from the noisy data is
smaller (Table 5). Noisy data was only used dur-
ing training, which limits its effectiveness—any
rule extracted from automatically acquired anno-
tations that are not seen during optimisation of the
rule set will have a lower weight. On the other
hand, we found that using noisy data for optimi-
sation seemed to decrease performance. Together,
these results suggest that studying strategies, pos-
sibly self-training, for selection of events from the
noisy data to be used during rule set optimisation
in the ASM method are warranted.

5 Conclusion

Using additional training data, whether manually
annotated or noisy, improves the performance of
our baseline event extraction system. The gains
that we achieved by adding training data, however,
were outweighed by a loss of performance due to
our parser substitution, with longer dependency
subgraphs limiting rule generalisability the most
likely explanation. Our experiments demonstrate
that while a given parser might be ‘better’ in one
evaluation context, that advantage may not trans-
late to improved performance in a downstream
task that depends strongly on the parser output.
We presented an extension of the subgraph match-
ing methodology to extract modification events
which, when based on a good core event extrac-
tion system, shows very promising results.
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