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Introduction

The BioNLP Shared Task (BioNLP-ST) series represents a community-wide trend in text-mining for
biology toward fine-grained information extraction (IE). The two previous events, BioNLP-ST 2009 and
2011, attracted wide attention, with over 30 teams submitting final results. The tasks and their data
have since served as the basis of numerous studies, released event extraction systems, and published
datasets. As in previous events, the results of BioNLP-ST 2013 are presented at the ACL/HLT BioNLP-
ST workshop colocated with the BioNLP workshop in Sofia, Bulgaria (9 August 2013).

BioNLP-ST 2013 follows the general outline and goals of the previous tasks. It identifies biologically
relevant extraction targets and proposes a linguistically motivated approach to event representation.
The tasks in BioNLP-ST 2013 cover many new hot topics in biology that are close to biologist needs.
BioNLP-ST 2013 broadens the scope of the text-mining application domains in biology by introducing
new issues on cancer genetics and pathway curation. It also builds on the well-known previous datasets
GENIA, LLL/BI and BB to propose more realistic tasks that considered previously, closer to the actual
needs of biological data integration.

The first event in 2009 triggered active research in the community on a specific fine-grained IE task.
Expanding on this, the second BioNLP-ST was organized under the theme “Generalization”, which
was well received by participants, who introduced numerous systems that could be straightforwardly
applied to multiple tasks. This time, the BioNLP-ST takes a step further and pursues the grand
theme of “Knowledge base construction”, which is addressed in various ways: semantic web (GE,
GRO), pathways (PC), molecular mechanisms of cancer (CG), regulation networks (GRN) and ontology
population (GRO, BB). A general overview paper in this volume summarizes the organization and
participation in the shared tasks, with 22 teams submitted 38 final results this year. Each specific task is
additionally covered by an overview paper.

As in previous events, manually annotated data were provided for training, development and evaluation
of information extraction methods. According to their relevance for biological studies, the annotations
are either bound to specific expressions in the text or represented as structured knowledge. Tools for
the evaluation of system outputs are publicly available. Support in performing linguistic processing was
provided to the participants in the form of analyses created by various state-of-the art tools on the dataset
texts. A last overview paper is dedicated to the preparation of these supporting resources.

Thanks to the many excellent manuscripts received from participants and the efforts of the programme
committee, it is our pleasure to present these proceedings describing the task and the participating
systems.

Claire Nédellec — Organizing Chair
Robert Bossy — BB and GRN Task Chair

Jin-Dong Kim — GE Task Chair
Jung-jae Kim — GRO Task Chair

Tomoko Ohta — PC Task Chair
Sampo Pyysalo — CG Task Chair
Pierre Zweigenbaum — PC Chair
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Abstract 

The BioNLP Shared Task 2013 is the 
third edition of the BioNLP Shared Task 
series that is a community-wide effort to 
address fine-grained, structural 
information extraction from biomedical 
literature. The BioNLP Shared Task 2013 
was held from January to April 2013. Six 
main tasks were proposed. 38 final 
submissions were received, from 22 
teams. The results show advances in the 
state of the art and demonstrate that 
extraction methods can be successfully 
generalized in various aspects. 

1 Introduction 

The BioNLP Shared Task (BioNLP-ST 
hereafter) series is a community-wide effort 
toward fine-grained biomolecular event 
extraction, from scientific documents. BioNLP-
ST 2013 follows the general outline and goals of 
the previous tasks, namely BioNLP-ST’09 (Kim  
et al., 2009) and BioNLP-ST’11 (Kim et al., 

2011). BioNLP-ST aims to provide a common 
framework for the comparative evaluation of 
information extraction (IE) methods in the 
biomedical domain. It shares this common goal 
with other tasks, namely BioCreative (Critical 
Assessment of Information Extraction in 
Biology) (Arighi  et al., 2011), DDIExtraction 
(Extraction of Drug-Drug Interactions from 
biomedical texts) (Segura-Bedmar et al., 2011) 
and i2b2 (Informatics for Integrating Biology 
and the Bedside) Shared-Tasks (Sun et al., 
2013).  

The biological questions addressed by the 
BioNLP-ST series belong to the molecular 
biology domain and its related fields. With the 
three editions, the series gathers several groups 
that prepared various tasks and resources, which 
represent diverse themes in biology. As the two 
previous editions, this one measures the progress 
accomplished by the community on complex 
text-bound event extraction. Compared to the 
other initiatives, the BioNLP-ST series proposes 
a linguistically motivated approach to event 
representation that enables the evaluation of the 
participating methods in a unifying computer 
science framework. Each edition has attracted an 
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increasing number of teams with 22 teams 
submitting 38 final results this year. The task 
setup and the data serve as a basis for numerous 
further studies, released event extraction 
systems, and published datasets.  

The first event in 2009 triggered active 
research in the community on a specific fine-
grained IE task called Genia event extraction  
task. Expanding on this, the second BioNLP-ST 
was organized under the theme Generalization, 
where the participants introduced numerous 
systems that could be straightforwardly applied 
to different tasks. This time, the BioNLP-ST 
goes a step further and pursues the grand theme 
of Knowledge base construction. There were five 
tasks in 2011, and this year there are 6.  
- [GE] Genia Event Extraction for NFkB 

knowledge base  
- [CG] Cancer Genetics  
- [PC] Pathway Curation  
- [GRO] Corpus Annotation with Gene 

Regulation Ontology  
- [GRN] Gene Regulation Network in Bacteria  
- [BB] Bacteria Biotopes  

The grand theme of Knowledge base 
construction is addressed in various ways: 
semantic web (GE, GRO), pathway (PC), 
molecular mechanism of cancer (CG), regulation 
network (GRN) and ontology population (GRO, 
BB).  

In the biology domain, BioNLP-ST 2013 
covers many new hot topics that reflect the 
evolving needs of biologists. BioNLP-ST 2013 
broadens the scope of the text-mining application 
domains in biology by introducing new issues on 
cancer genetics and pathway curation. It also 
builds on the well-known previous datasets 
GENIA, LLL/BI and BB to propose tasks closer 
to the actual needs of biological data integration.  

As in previous events, manually annotated 
data are provided to the participants for training, 
development and evaluation of the information 
extraction methods. According to their relevance 
for biological studies, the annotations are either 
bound to specific expressions in the text or 
represented as structured knowledge. Linguistic 
processing support was provided to the 
participants in the form of analyses of the dataset 
texts produced by state-of-the art tools. 

This paper summarizes the BioNLP-ST 2013 
organization, the task characteristics and their 
relationships. It gives synthetic figures on the 
participants and discusses the participating 
system advances. 

2 Tasks 

The BioNLP-ST’13 includes six tasks from 
four groups: DBCLS, NaCTeM, NTU and 
INRA. As opposed to the last edition, all tasks 
were main extraction tasks. There were no 
supporting tasks designed to assist the extraction 
tasks. 

All tasks share the same event-based 
representation and file format, which is similar to 
the previous editions. This makes it easier to 
reuse the systems across tasks. Five kinds of 
annotation types are defined: 

• T: text-bound annotation (entity/event 
trigger) 

• Equiv: entity aliases 
• E: event 
• M: event modification 
• R: relation 
• N: normalization (external reference) 

The normalization type has been introduced this 
year to represent the references to external 
resources such as dictionaries for GRN or 
ontologies for GRO and BB. The annotations are 
stand-off: the texts of the documents are kept 
separate from the annotations that refer to 
specific spans of texts through character offsets. 
More detail and examples can be found on the 
BioNLP-ST’13 web site. 

2.1     Genia Event Extraction (GE) 
Originally the design and implementation of 

the GE task was based on the Genia event corpus 
(Kim et al., 2008) that represents domain 
knowledge of NFκB proteins. It was first 
organized as the sole task of the initial 2009 
edition of BioNLP-ST (Kim et al., 2009). While 
in 2009 the data sets consisted only of Medline 
abstracts, in its second edition in 2011 (Kim et 
al., 2011b), it was extended to include full text 
articles to measure the generalization of the 
technology to full text papers. For its third 
edition this year, the GE task is organized with 
the goal of making it a more “real” task useful 
for knowledge base construction. The first design 
choice is to construct the data sets with recent 
full papers only, so that the extracted pieces of 
information could represent up-to-date 
knowledge of the domain. Second, the co-
reference annotations are integrated into the 
event annotations, to encourage the use of these 
co-reference features in the solution of the event 
extraction. 
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2.2     Cancer Genetics (CG) 

The CG task concerns the extraction of events 
relevant to cancer, covering molecular 
foundations, cellular, tissue, and organ-level 
effects, and organism-level outcomes. In addition 
to the domain, the task is novel in particular in 
extending event extraction to upper levels of 
biological organization. The CG task involves 
the extraction of 40 event types involving 18 
types of entities, defined with respect to 
community-standard ontologies (Pyysalo et al., 
2011a; Ohta et al., 2012). The newly introduced 
CG task corpus, prepared as an extension of a 
previously introduced corpus of 250 abstracts 
(Pyysalo et al., 2012), consists of 600 PubMed 
abstracts annotated for over 17,000 events. 

2.3     Pathway Curation (PC) 

The PC task focuses on the automatic 
extraction of biomolecular reactions from text 
with the aim of supporting the development, 
evaluation and maintenance of biomolecular 
pathway models. The PC task setting and its 
document selection protocol account for both 
signaling and metabolic pathways. The 23 event 
types, including chemical modifications (Pyysalo 
et al., 2011b), are defined primarily with respect 
to the Systems Biology Ontology (SBO) (Ohta et 
al., 2011b; Ohta et al., 2011c), involving 4 SBO 
entity types. 

The PC task corpus was newly annotated for 
the task and consists of 525 PubMed abstracts, 
chosen for the relevance to specific pathway 
reactions selected from SBML models registered 
in BioModels and PANTHER DB repositories 
(Mi and Thomas, 2009). The corpus was 
manually annotated for over 12,000 events on 
top of close to 16,000 entities. 

 2.4     Gene Regulation Ontology (GRO) 

The GRO task aims to populate the Gene 
Regulation Ontology (GRO) (Beisswanger et al., 
2008) with events and relations identified from 
text. The large size and the complex semantic 
representation of the underlying ontology are the 
main challenges of the task. Those issues, to a 
greater extent, should be addressed to support 
full-fledged semantic search over the biomedical 
literature, which is the ultimate goal of this work.   

The corpus consists of 300 MEDLINE 
abstracts, prepared as an extension of (Kim et al., 
2011c). The analysis of the inter-annotator 
agreement between the two annotators shows 

Kappa values of 43%-56%, which might indicate 
the difficulty of the task.  

2.5     Gene Regulation Network in Bacteria 
          (GRN) 

The Gene Regulation Network task consists of 
the extraction of the regulatory network of a set 
of genes involved in the sporulation phenomenon 
of the model organism Bacillus subtilis. 
Participant system predictions are evaluated with 
respect to the target regulation network, rather 
than the text-bound relations. The aim is to 
assess the IE methods with regards to the needs 
of systems biology and predictive biology 
studies. 

The GRN corpus is a set of sentences from 
PubMed abstracts that extends the BioNLP-ST 
2011 BI (Jourde et al., 2011) and LLL (Nedellec, 
2005) corpora. The additional sentences cover a 
wider range of publication dates and complement 
the regulation network of the sporulation 
phenomenon. It has been thoroughly annotated 
with different levels of biological abstraction: 
entities, biochemical events, genic interactions 
and the corresponding regulation network. 

The network prediction submissions have been 
evaluated against the reference network using an 
original metric, the Slot Error Rate (Makhoul et 
al., 1999) that is more adapted to graph 
comparison than the usual Recall, Precision and 
F-score measures.  

2.6     Bacteria Biotopes (BB) 

The Bacteria Biotope (BB) task concerns the 
extraction of locations in which bacteria live and 
the categorization of these habitats with concepts 
from OntoBiotope,1 a large ontology of 1,700 
concepts and 2,000 synonyms. The association 
between bacteria and their habitats is essential 
information for environmental biology studies, 
metagenomics and phylogeny. 

In the previous edition of the BB task, 
participants had to recognize bacteria and habitat 
entities, to categorize habitat entities among 
eight broad types and to extract localization 
relations between bacteria and their habitats 
(Bossy et al., 2011). The BioNLP-ST 2013 
edition has been split into 3 sub-tasks in order to 
better assess the performance of the predictive 
systems for each step. The novelty of this task is 
mainly the more comprehensive and fine-grained 
categorization. It addresses the critical problem 
of habitat normalization necessary for the 
                                                             
1 http://bibliome.jouy.inra.fr/MEM-OntoBiotope 
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automatic exploitation of bacteria-habitat 
databases.  

2.7     Task characteristics 

Task features are given in Table 1. Three 
different types of text were considered: the 
abstracts of scientific papers taken from PubMed 
(CG, PC, GRO and GRN), full-text scientific 
papers (GE) and scientific web pages (BB).   

Task Documents # types # events 
GE 34 Full papers  2 13 
CG 600 Abstracts 18 40 
PC 525 Abstracts 4 23 
GRO 300 Abstracts 174  126 
GRN 201 Abstracts 6 12 
BB 124 Web pages 563 2 

Table 1. Characteristics of the BioNLP-ST 2013 
tasks. 

The number of relations or events targeted 
greatly varies with the tasks as shown in column 
3. The high number of types and events reflect 
the increasing complexity of the biological 
knowledge to be extracted. The grand theme of 
Knowledge base construction in this edition has 
been translated into rich knowledge 
representations with the goal of integrating 
textual data with data from sources other than 
text. These figures illustrate the shared ambition 
of the organizers to promote fine-grained 
information extraction together with an 
increasing biological plausibility. Beyond gene 
and protein interactions, they include many 
complex biological phenomena and 
environmental factors. 

3 BioNLP-ST’13 organization  

BioNLP-ST’13 was split in three main 
periods. During thirteen weeks from mid-January 
to the first week of April, the participants 
prepared their systems with the training data. 
Supporting resources were delivered to 
participants during this period. Supporting 
resources were provided by the organizers and 
by three external providers after a public call for 
contribution. They range from tokenizers to 
entity detection tools, mostly focusing on 
syntactic parsing (Enju (Miyao and Tsujii, 2008), 
Stanford (Klein and Manning, 2002), McCCJ 
(Charniak and Johnson, 2005)). The test data 
were made available for 10 days before the 
participants had to submit their final results using 
on-line services. The evaluation results were 

communicated shortly after and published on the 
ST site. The descriptions of the tasks and 
representative sample data have been available 
since October 2012 so that the participants could 
become acquainted with the task goals and data 
formats in advance. Table 2 shows the task 
schedule.  

Date Event 
23 Oct. 2012 Release of sample data sets 
17 Jan 2013 Release of the training data sets 
06 Apr. 2013 Release of the test data sets 
16 Apr. 2013 Result submission 

17 Apr. 2013 Notification of the evaluation 
results 

Table 2: Schedule of BioNLP-ST 2013. 

The BioNLP-ST’13 web site and a dedicated 
mailing-list have kept the participant informed 
about the whole process.  

4 Participation 

 GE 1-2-3 CG PC GRO GRN BB 1 - 2-3 
EVEX • • •    •    
TEES-2.1 • • • • • • •  • • 

BioSEM •          

NCBI •          
DlutNLP •          
HDS 4NLP •          
NICTA  •  •        
USheff •          
UZH  •          
HCMUS •          
NaCTeM     • •      
NCBI     •       
RelAgent     •       
UET-NII     •       
ISI    •       
OSEE      •     
U. of 
Ljubljana       •    

K.U. 
Leuven       •    

IRISA-
TexMex       • • •  

Boun        • •  
LIPN        •   
LIMSI        • • • 

Table 3: Participating teams per task. 

BioNLP-ST 2013 received 38 submissions from 
22 teams (Table 3). One third, or seven teams, 
participated in multiple tasks. Only one team, 
UTurku, submitted final results with TEES-2.1 to 

4



all the tasks except one – entity categorization. 
This broad participation resulted from the 
growing capability of the systems to be applied 
to various tasks without manual tuning. The 
remaining 15 teams participated in one single 
task. 

5 Results  

Table 4 summarizes the best results and the 
participating systems for each task and sub-task. 
They are all measured using F-scores, except 
when it is not relevant, in which case SER is 
used instead. It is noticeable that the TEES-2.1 
system that participated in 9 of the 10 tasks and 
sub-tasks achieved the best result in 6 cases. 
Most of the participating systems applied a 
combination of machine learning algorithms and 
linguistic features, mainly syntactic parses, with 
some noticeable exceptions.  
 

Tasks Evaluation results  

GE 
Core event extraction 

TEES-2.1, EVEX, 
BioSEM:  0.51 

GE 2 
Event enrichment TEES2.1:  0.32 

GE 3 
Negation/Speculation 

TEES-2.1, EVEX: 

  0.25 

CG TEES-2.1:  0.55 

PC NaCTeM:  0.53 

GRO TEES-2.1: 0.22 (events),  
 0.63 (relations) 

GRN 
U. of Ljubljana:  

 0.73 (SER) 

BB 1 Entity detection 
and categorization IRISA: 0.46 (SER) 

BB 2 
Relation extraction IRISA:  0.40 

BB 3 
Full event extraction TEES-2.1:  0.14 

Table 4. Best results and team per task  
(F-score, except when SER). 

Twelve teams submitted final results to the GE 
task. The performance of highly ranked systems 
shows that the event extraction technology is 
applicable to the most recent full papers without 
drop of performance. 

Six teams submitted final results to the CG 
task. The highest-performing systems achieved 

results comparable to those for established 
molecular level extraction tasks (Kim et al., 
2011). The results indicate that event extraction 
methods generalize well to higher levels of 
biological organization and are applicable to the 
construction of knowledge bases on cancer. 

Two teams successfully completed the PC 
task, and the highest F-score reached 52.8%, 
indicating that event extraction is a promising 
approach to support pathway curation efforts. 

The GRN task attracted five participants. The 
best SER score was 0,73 (the higher, the worse), 
which shows their capability of designing 
regulatory network, but handling modalities 
remains an issue. 

Five teams participated to the 3 BB subtasks 
with 10 final submissions. Not surprisingly, the 
systems achieved better results in relation 
extraction than habitat categorization, which 
remains a major challenge in IE. 

One team participated in the GRO task, and 
their results were compared with those of a 
preliminary system prepared by the task 
organizers. An analysis of the evaluation results 
leads us to study issues such as the need to 
consider the ontology structure and the need for 
semantic analysis, which are not seriously dealt 
with by current approaches to event extraction. 

6 Organization of the workshop 

The BioNLP Shared Task 2013 (BioNLP-ST) 
workshop was organized as part of the ACL 
BioNLP 2013 workshop. After submission of 
their system results, participants were invited to 
submit a paper on their systems to the workshop.  
Task organizers were also invited to present 
overviews of each task, with analyses of the 
participant system features and results. The 
workshop was held in August 2013 in Sofia 
(Bulgaria). It included overview presentations on 
tasks, as well as oral and poster presentations by 
Shared Task participants.  

7 Discussion and Conclusion 

This year, the tasks has significantly gained in 
complexity to face the increasing need for 
Systems Biology knowledge from various textual 
sources. The high level of participation and the 
quality of the results show that the maturity of 
the field is such that it can meet this challenge. 
The innovative and various solutions applied this 
year will without doubt be extended in the future. 
As for previous editions of BioNLP-ST, all tasks 
maintain an online evaluation service that is 
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publicly available. This on-going challenge will 
contribute to the assessment of the evolving 
information extraction field in the biomedical 
domain. 
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Abstract

The Genia Event Extraction task is orga-
nized for the third time, in BioNLP Shared
Task 2013. Toward knowledge based con-
struction, the task is modified in a num-
ber of points. As the final results, it re-
ceived 12 submissions, among which 2
were withdrawn from the final report. This
paper presents the task setting, data sets,
and the final results with discussion for
possible future directions.

1 Introduction

Among various resources of life science, litera-
ture is regarded as one of the most important types
of knowledge base. Nevertheless, lack of explicit
structure in natural language texts prevents com-
puter systems from accessing fine-grained infor-
mation written in literature.BioNLP Shared Task
(ST)series (Kim et al., 2009; Kim et al., 2011a)
is one of the community-wide efforts to address
the problem. Since its initial organization in 2009,
BioNLP-ST series has published a number of fine-
grained information extraction (IE) tasks moti-
vated for bioinformatics projects. Having solicited
wide participation from the community of natural
language processing, machine learning, and bioin-
formatics, it has contributed to the production of
rich resources for fine-grained BioIE, e.g., TEES1

(Björne and Salakoski, 2011), SBEP2 (McClosky
et al., 2011) and EVEX3 (Van Landeghem et al.,
2011).

The Genia Event Extraction (GE) task is a sem-
inal task of BioNLP-ST. It was first organized as
the sole task of the initial 2009 edition of BioNLP-
ST. The task was originally designed and imple-
mented based on the Genia event corpus (Kim et

1https://github.com/jbjorne/TEES/wiki
2http://nlp.stanford.edu/software/eventparser.shtml
3http://www.evexdb.org/

al., 2008b) which represented domain knowledge
around NFκB proteins. There were also some ef-
forts to explore the possibility of literature mining
for pathway construction (Kim et al., 2008a; Oda
et al., 2008). The GE task was designed to make
such an effort a community-driven one by sharing
available resources, e.g., benchmark data sets, and
evaluation tools, with the community.

In its second edition (Kim et al., 2011b) orga-
nized in BioNLP-ST 2011 (Kim et al., 2011a), the
data sets were extended to include full text articles.
The data sets consisted of two collections. Theab-
stract collection, that had come from the first edi-
tion, was used again to measure the progress of the
community between 2009 and 2011 editions, and
thefull text collection, that was newly created, was
used to measure the generalization of the technol-
ogy to full text papers.

In its third edition this year, while succeeding
the fundamental characteristics from its previous
editions, the GE task tries to evolve with the goal
to make it a more “real” task toward knowledge
base construction. The first design choice to ad-
dress the goal is to construct the data sets fully
with recent full papers, so that the extracted pieces
of information can represent up-to-date knowl-
edge of the domain. The abstract collection, that
had been already used twice (in 2009 and 2011), is
removed from official evaluation this time4. Sec-
ond, GE task subsumes the coreference task which
has long been considered critical for improvement
of event extraction performance. It is implemented
by providing coreference annotation in integration
with event annotation in the data sets.

The paper explains the task setting and data sets,
presents the final results of participating systems,
and discusses notable observations with conclu-
sions.

4However, if necessary, the online evaluation for the pre-
vious editions of GE task may be used, which is available at
http://bionlp-st.dbcls.jp/GE/.
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Event Type Primary Argument Secondary Argument
Geneexpression Theme(Protein)
Transcription Theme(Protein)
Localization Theme(Protein) Loc(Entity)?
Proteincatabolism Theme(Protein)
Binding Theme(Protein)+ Site(Entity)*
Proteinmodification Theme(Protein), Cause(Protein/Event)? Site(Entity)?

Phosphorylation Theme(Protein), Cause(Protein/Event)? Site(Entity)?
Ubiquitination Theme(Protein), Cause(Protein/Event)? Site(Entity)?
Acetylation Theme(Protein), Cause(Protein/Event)? Site(Entity)?
Deacetylation Theme(Protein), Cause(Protein/Event)? Site(Entity)?

Regulation Theme(Protein/Event), Cause(Protein/Event)?Site(Entity)?, CSite(Entity)?
Positiveregulation Theme(Protein/Event), Cause(Protein/Event)?Site(Entity)?, CSite(Entity)?
Negativeregulation Theme(Protein/Event), Cause(Protein/Event)?Site(Entity)?, CSite(Entity)?

Table 1: Event types and their arguments for Genia Event Extraction task.The type of each filler entity
is specified in parenthesis. Arguments that may be filled more than once per event are marked with “+”,
and optional arguments are with “?”.

2 Task setting

This section explains the task setting of the 2013
edition of the GE task with a focus on changes to
previous editions. For comprehensive explanation,
readers are referred to Kim et al. (2009).

The changes made to the task setting are three-
folds, among which two are about event types
to be extracted. Table 1 shows the event types
and their arguments targeted in the 2013 edition.
First, four new event types are added to the target
of extraction; theProtein modification
type and its three sub-types,Ubiquitination,
Acetylation, Deacetylation. Second,
TheProtein modification types are modi-
fied to be directly linked to causal entities, which
was only possible throughRegulation events
in previous editions.

The modifications were made based on analy-
sis on preliminary annotation during preparation
of the data sets: in recent papers onNFκB, dis-
cussions on protein modification were observed
with non-trivial frequency. However, in the end,
it turned out that the influence of the above modi-
fications was trivial in terms of the number of an-
notated instances in the final data sets, as shown
in section 3, after filtering out events on non-
individual proteins, e.g., protein families, protein
complexes.

Third change made to the task setting is addition
of coreference and part-of annotations to the data
sets. It is to address the observation from 2009
edition that coreference structures and entity rela-
tions often hide the syntactic paths between event
triggers and their arguments, restricting the perfor-
mance of event extraction. In 2011, theProtein

coreference taskand Entity Relationwere orga-
nized as sub-tasks, to explicitly address the prob-
lem, but this time, coreference and part-of anno-
tations are integrated in the GE task, to encour-
age an integrative use of them for event extrac-
tion. Figure 1 shows an example of annotation
with coreference and part-of annotations5. Note
that the event representation in the figure is re-
lation centric6, which is different from the event
centric representation of the default BioNLP-ST
format. The two representations are interchange-
able, and the GE task provides data sets in both
formats, together with an automatic converter be-
tween them. Below is the corresponding annota-
tion in the BioNLP-ST format:
T8 Protein 933 938 TRAF1
T9 Protein 940 945 TRAF2
T10 Protein 947 952 TRAF3
T11 Protein 958 963 TRAF6
T12 Protein 1038 1042 CD40
T41 Anaphora 1058 1072 These proteins
T48 Binding 1112 1119 binding
T49 Entity 1127 1143 cytoplasmic tail
T13 Protein 1147 1151 CD40
R1 Coreference Subject:T41 Object:T8
R2 Coreference Subject:T41 Object:T9
R3 Coreference Subject:T41 Object:T10
R4 Coreference Subject:T41 Object:T11
E4 Binding:T48 Theme:T8 Theme2:T13 Site2:T49
E5 Binding:T48 Theme:T9 Theme2:T13 Site2:T49
E6 Binding:T48 Theme:T10 Theme2:T13 Site2:T49
E7 Binding:T48 Theme:T11 Theme2:T13 Site2:T49

In the example, the event trigger,binding, de-
notes four binding events, in which the four pro-
teins,TRAF1, TRAF2, TRAF3, andTRAF6, bind
to the protein,CD40, respectively, through the
site,cytoplasmic tail. The links between the four

5The example is taken from the file, PMC-3148254-01-
Introduction.

6PubAnnotation (http://pubannotation.org) format.
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Figure 1: Annotation example with coreferences and part-of relationship

proteins and the event trigger are however very
hard to find, without being bridged by the demon-
strative noun phrase (NP),These proteins. In the
case, if the link between the demonstrative NP,
These proteinsand its four antecedents,TRAF1,
TRAF2, TRAF3, andTRAF6, can be somehow de-
tected, the remaining link, between the demonstra-
tive NP and the trigger, may be detected by their
syntactic connection. A key point here is the dif-
ferent characteristics of the two step links: de-
tecting the former is rather semantic or discour-
sal while the latter may be a more syntactic prob-
lem. Then, solving them using different processes
would make a sense. To encourage an exploration
into the hypothesis, the coreference annotation is
provided in the training and development data sets.

Based on the definition of event types, the en-
tire task is divided into three sub-tasks addressing
event extraction at different levels of specificity:

Task 1. Core event extraction addresses the ex-
traction of typed events together with their
primary arguments.

Task 2. Event enrichment addresses the extrac-
tion of secondary arguments that further
specify the events extracted in Task 1.

Task 3. Negation/Speculation detection
addresses the detection of negations and
speculations over the extracted events.

For more detail of the subtasks, readers are re-
ferred to Kim et al. (2011b).

Item Training Devel Test
Articles 10 10 14
Words 54938 57907 75144
Proteins 3571 4138 4359
Entities 121 314 327
Events 2817 3199 3348

Geneexpression 729 591 619
Transcription 122 98 101
Localization 44 197 99
Proteincatabolism 23 30 14
Binding 195 376 342
Proteinmodification 8 1 1
Phosphorylation 117 197 161
Ubiquitination 4 2 30
Acetylation 0 3 0
Deacetylation 0 5 0
Regulation 299 284 299
Positiveregulation 780 883 1144
Negativeregulation 496 532 538

Coreferences 178 160 197
to Protein 152 123 169
to Entity 5 6 6
to Event 18 27 13
to Anaphora 3 4 9

Table 2: Statistics of annotations in training, de-
velopment, and test sets

3 Data Preparation

As discussed in section 1, for the 2013 edition, the
data sets are constructed fully with full text pa-
pers. Table 2 shows statistics of three data sets for
training, development and test. The data sets con-
sist of 34 full text papers from the Open Access
subset of PubMed Central. The papers were re-
trieved using lexical variants of the term, “NFκB”
as primary keyword, and “pathway” and “regula-
tion” as secondary keywords. The retrieved papers
were given to the annotators with higher priority
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Item TIAB Intro. R/D/C Methods Caption all
Words 10483 25543 125172 59612 29085 263133
Proteins 816 1507 9060 1797 2169 16427
(Density: P / W) (7.78%) (5.90%) (7.24%) (3.01%) (7.46%) (6.24%)
Prot. Coreferences 18 89 267 5 33 445
(Density: C / P) (2.21%) (5.91%) (2.95%) (0.28%) (1.52%) (2.71%)
Events 510 902 6391 311 892 9364
(Density: E / W) (4.87%) (3.53%) (5.11%) (0.52%) (3.07%) (3.56%)
(Density: E / P) (62.50%) (59.85%) (70.54%) (17.31%) (41.12%)(57.00%)

Geneexpression 101 152 1265 125 220 1939
Transcription 10 18 209 36 47 321
Localization 19 47 191 8 41 340
Proteincatabolism 0 3 49 0 8 67
Binding 29 158 572 15 92 913
Proteinmodification 1 1 7 0 0 10
Phosphorylation 27 38 347 19 35 475
Ubiquitination 0 2 8 0 10 36
Acetylation 0 3 0 0 0 3
Deacetylation 0 5 0 0 0 5
Regulation 67 76 625 7 66 882
Positiveregulation 167 286 2045 19 203 2807
Negativeregulation 89 113 1073 69 170 1566

Table 3: Statistics of annotations in different sections of text: theAbstractcolumn is of the abstraction
collection (1210 titles and abstracts), and the following columns are of full paper collection (14 full
papers).TIAB = title and abstract,Intro. = introduction and background,R/D/C = results, discussions,
and conclusions,Methods= methods, materials, and experimental procedures. Some minor sections,
supporting information, supplementary material, and synopsis, are ignored. Density= relative density of
annotation (P/W = Protein/Word, E/W = Event/Word, and E/P = Event/Protein).

Figure 2: Event distribution in different sections

to newer ones. Note that among 34 papers, 14
were from thefull text collectionof 2011 edition
data sets, and 20 were newly collected this time.
The annotation to the all 34 papers were produced
by the same annotators who also produced anno-
tations for the previous editions of GE task.

The annotated papers are divided into the train-
ing, development, and test data sets; 10, 10, and
14, respectively. Note that the size of the training
data set is much smaller than previous editions,
in terms of number of words and events, while
the size of the development and test data sets are

comparable to previous editions. It is the conse-
quence of a design choice of the organizers with
the notion that (1) relevant resources are substan-
tially accumulated through last two editions, and
that (2) therefore the importance of training data
set may be reduced while the importance of devel-
opment and test data sets needs to be kept. Instead,
participants may utilize, for example, the abstract
collection of the 2011 edition, of which the anno-
tation was produced by the same annotators with
almost same principles. As another example, the
data sets of the EPI task (Ohta et al., 2011) also
may be utilized for the newly added protein modi-
fication events.

Table 3 shows the statistics of annotated event
types in different sections of the full papers in the
data sets. For the analysis, the sections are classi-
fied to five groups as follows:

• The TIAB group includes the titles and
abstracts. In the GE-2011 data sets,
the corresponding files match the pattern,
PMC-*TIAB*.txt.

• The Intro group includes sections
for introduction, and background. The
corresponding files match the pattern,
PMC-*@(-|._)@(I|Back)*.txt.
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Team ’09 ’11 Task Expertise
EVEX UTurku 123 2C+2BI+1B

TEES-2.1 UTurku 123 2BI
BioSEM TM-SCS 1-- 1C+1BI
NCBI CCP-BTMG 1-- 3BI

DlutNLP 1-- 3C
HDS4NLP 1-- 3C

NICTANLM CCP-BTMG 1-3 6C
USheff 1-- 2C
UZH UZurich 1-- 6C

HCMUS HCMUS 1-- 4C

Table 4: Team profiles: The’09 and’11 columns
show the predecessors in 2009 and 2011 editions.
In Expertise column, C=Computer Scientist,
BI=Bioinformatician, B=Biologist, L=Linguist

• The R/D/C group includes sections
on results, discussions, and conclu-
sions. The files match the pattern,
PMC-*@(-|._)@(R|D|Conc)*.txt

• The Methods group includes sections on
methods, materials, and experimental pro-
cedures. The files match the pattern,
PMC-*@(-|._)@(Met|Mat|MAT|E)*.txt

• TheCaption group includes the captions of
tables and figures. The corresponding files
math the pattern,PMC-*aption*.txt.

Figure 2 illustrates the different distribution of
annotated event types in the five section groups.
It shows that theMethods group has signifi-
cantly different distribution of annotated events,
confirming a similar observation reported in Kim
et al. (2011b).

4 Participation

The GE task received final submissions from 12
teams, among which 2 were withdrawn from final
report. Table 4 summarizes the teams. Unfortu-
nately, the subtasks 2 and 3 did not met a large
participation.

Table 5 profiles the participating systems. The
systems are roughly grouped into SVM-based
pipeline (EVEX, TEES-2.1, and DlutNLP),
rule-based pipeline (BioSEM and UZH), mixed
pipeline (USheff and HCMUS), joint pattern
matching (NCBI andNICTANLM), and joint SVM
(HDS4NLP) systems. In terms of use of ex-
ternal resources, 5 teams (EVEX, TEES-2.1,
NCBI, DlutNLP, andUSheff) utilized data sets
from 2011 edition, and two teams (HDS4NLP and
NICTANLM) utilized independent resources, e.g.,

UniProt (Bairoch et al., 2005), IntAct (Kerrien et
al., 2012), and CRAFT (Verspoor et al., 2012).

5 Results and Discussions

Table 6 shows the final results of subtask 1. Over-
all EVEX, TEES-2.1, and BioSEM show the
best performance only with marginal difference
between them. In detail, the performance of
BioSEM is significantly different fromEVEX and
TEES-2.1: (1) whileBioSEM show the best per-
formance withBinding and Protein modification
events,EVEX andTEES-2.1 show the best per-
formance withRegulationevents which takes the
largest portion of annotation in data sets; and (2)
while the performance ofEVEX andTEES-2.1
is balanced over recall and precision,BioSEM is
biased for precision, which is a typical feature of
rule-based systems. It is also notable thatBioSEM
has achieved a near best performance using only
shallow parsing. Although it is not shown in the
table,NCBI is the only system which produced
Ubiquitination events, which is interpreted
as a result of utilizing 2011-EPI data sets (Ohta et
al., 2011) for the system development.

Table 7 shows subtask 1 final results only within
TIAB sections. It shows that the systems de-
veloped utilizing previous resources, e.g., 2011
data sets, and EVEX, perform better for titles and
abstracts, which makes sense because those re-
sources are title and abstract-centric.

Tables 8 and 9 show evaluation results within
Methods and Captions section groups, respec-
tively. All the systems show their worst per-
formance in the two section groups. Especially
the drop of performance with regulation events is
huge. Note the two section groups also show sig-
nificantly different event distribution compared to
other section groups (see section 3). It suggests
that language expression in the two section groups
may be quite different from other sections, and an
extensive examination is required to get a reason-
able performance in the sections.

Table 10 and 11 show final results of Task 2
(Event enrichment) and 3 (Negation/Speculation
detection), respectively, which unfortunately did
not meet a large participation.

6 Conclusions

In its third edition, the GE task is fully changed
to a full text paper centric task, while the online
evaluation service on the abstract-centric data sets
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NLP Task Other resources
Team Lexical Proc. Syntactic Proc. Trig. Arg. group Dic. Other
EVEX Porter McCCJ SVM SVM SVM S. cues EVEX

TEES-2.1 Porter McCCJ SVM SVM SVM S. cues
BioSEM OpenNLP, LingPipe OpenNLP(shallow) dic rules rules
NCBI MedPost, BioLemm McCCJ Subgraph Isomorphism rules 2011 GE / EPI

DlutNLP Porter, GTB-tok McCCJ SVM SVM rules 2011 GE
HDS4NLP CNLP, Morpha McCCJ SVM SVM UniProt, IntAct

NICTANLM ClearParser Subgraph Isomorphism rules CRAFT, EVEX
USheff Porter, LingPipe Stanford dic SVM SVM, rules 2011 GE
UZH Porter, Morpha, LingPipe LTT2, Pro3Gres dic. MaxEnt rules rules

HCMUS SnowBall McCCJ dic, SVM rules, SVM rules

Table 5: System profiles: SnowBall=SnowBall Stemmer, CNLP=Stanford CoreNLP (tokenization),
McCCJ=McClosky-Charniak-Johnson Parser, Stanford=StanfordParser, S.=Speculation, N.=Negation

Team Simple Event Binding Prot-Mod. Regulation All
EVEX 73.83 / 79.56 / 76.59 41.14 / 44.77 / 42.88 61.78 / 69.41 / 65.3732.41 / 47.16 / 38.41 45.44 / 58.03 / 50.97

TEES-2.1 74.19 / 79.64 / 76.82 42.34 / 44.34 / 43.32 63.87 / 69.32 / 66.4933.08 / 44.78 / 38.05 46.17 / 56.32 / 50.74
BioSEM 67.71 / 86.90 / 76.11 47.45 / 52.32 / 49.76 69.11 / 80.49 / 74.37 28.19 / 49.06 / 35.80 42.47 / 62.83 / 50.68
NCBI 72.99 / 72.12 / 72.55 37.54 / 41.81 / 39.56 64.92 / 77.02 / 70.4524.74 / 55.61 / 34.25 40.53 / 61.72 / 48.93

DlutNLP 69.15 / 80.56 / 74.42 40.84 / 44.16 / 42.43 62.83 / 77.42 / 69.3626.49 / 43.46 / 32.92 40.81 / 57.00 / 47.56
HDS4NLP 75.27 / 83.27 / 79.07 41.74 / 33.74 / 37.32 70.68 / 75.84 / 73.17 16.67 / 30.86 / 21.6437.11 / 51.19 / 43.03

NICTANLM 73.59 / 57.67 / 64.66 32.13 / 31.10 / 31.61 42.41 / 72.97 / 53.6421.60 / 47.14 / 29.63 36.99 / 50.68 / 42.77
USheff 54.50 / 80.07 / 64.86 31.53 / 46.88 / 37.70 39.79 / 92.68 / 55.6821.14 / 52.69 / 30.18 31.69 / 63.28 / 42.23
UZH 60.26 / 77.47 / 67.79 22.22 / 28.03 / 24.79 62.30 / 70.83 / 66.3011.06 / 31.02 / 16.31 27.57 / 51.33 / 35.87

HCMUS 67.47 / 60.24 / 63.65 38.74 / 26.99 / 31.81 64.92 / 57.67 / 61.0819.60 / 19.93 / 19.76 36.23 / 33.80 / 34.98

Table 6: Evaluation results (recall / precision / f-score) of Task 1. Some notable figures are emphasized
in bold.

is kept maintained. Unfortunately, the corefer-
ence annotation, which has been integrated in the
event annotation in the data sets, was not exploited
by the participants, during the official shared task
period. An analysis shows that the performance
of systems significantly drops in theMethodsand
Captionssections, suggesting for an extensive ex-
amination in the sections.

As usual, after the official shared task period,
the GE task is maintaining an online evaluation
that can be freely accessed by anyone but with
a time limitation; once in 24 hours per a per-
son. With a few new features that are introduced
in 2013 editions but are not fully exploited by
the participants, the organizers solicit participants
to continuously explore the task using the online
evaluation. The organizers are also planning to
provide more resources to the participants, based
on the understanding that interactive communica-
tion between organizers and participants is impor-
tant for progress of the participating systems and
also the task itself.
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Team Simple Event Binding Prot-Mod. Regulation All
EVEX 91.67 / 88.00 / 89.80 55.56 / 62.50 / 58.82 85.71 / 75.00 / 80.0051.18 / 59.09 / 54.85 62.83 / 68.18 / 65.40

TEES-2.1 91.67 / 88.00 / 89.80 55.56 / 62.50 / 58.82 85.71 / 75.00 / 80.0051.18 / 57.02 / 53.94 62.83 / 66.67 / 64.69
NCBI 81.25 / 79.59 / 80.41 55.56 / 45.45 / 50.00 85.71 / 66.67 / 75.0037.01 / 67.14 / 47.72 50.79 / 69.78 / 58.79

BioSEM 83.33 / 88.89 / 86.02 66.67 / 66.67 / 66.67 85.71 / 75.00 / 80.00 35.43 / 54.22 / 42.86 50.79 / 66.90 / 57.74
DlutNLP 87.50 / 93.33 / 90.32 44.44 / 50.00 / 47.0685.71 / 85.71 / 85.71 37.01 / 51.09 / 42.92 51.83 / 65.13 / 57.73
USheff 81.25 / 88.64 / 84.78 44.44 / 57.14 / 50.00 71.43 / 71.43 / 71.4329.13 / 56.06 / 38.34 44.50 / 68.55 / 53.97

NICTANLM 93.75 / 57.69 / 71.43 22.22 / 25.00 / 23.53 42.86 /100.00 / 60.0029.92 / 49.35 / 37.25 46.07 / 53.01 / 49.30
HDS4NLP 93.75 / 90.00 / 91.84 66.67 / 54.55 / 60.00 85.71 / 85.71 / 85.71 19.69 / 31.65 / 24.27 42.93 / 55.78 / 48.52
HCMUS 93.75 / 69.23 / 79.65 33.33 / 27.27 / 30.00 71.43 / 41.67 / 52.6327.56 / 25.36 / 26.42 46.07 / 38.94 / 42.21

UZH 72.92 / 79.55 / 76.09 44.44 / 57.14 / 50.00 71.43 / 71.43 / 71.4311.02 / 32.56 / 16.47 30.37 / 57.43 / 39.73

Table 7: Evaluation results (recall / precision / f-score) of Task 1 in titlesand abstracts. Some notable
figures are emphasized in bold.

Team Simple Event Binding Prot-Mod. Regulation All
BioSEM 70.83 / 90.44 / 79.44 48.24 / 53.93 / 50.93 74.17 / 82.41 / 78.07 28.74 / 51.25 / 36.83 42.97 / 64.90 / 51.70
EVEX 73.51 / 83.26 / 78.08 43.72 / 47.80 / 45.67 66.67 / 66.12 / 66.3932.79 / 46.79 / 38.56 45.29 / 58.05 / 50.88

TEES-2.1 74.09 / 83.37 / 78.46 43.72 / 47.80 / 45.67 66.67 / 65.04 / 65.8433.24 / 44.48 / 38.04 45.70 / 56.34 / 50.46
NCBI 74.28 / 75.59 / 74.93 38.19 / 45.24 / 41.42 67.50 / 81.82 / 73.9724.69 / 55.46 / 34.17 40.01 / 63.56 / 49.11

DlutNLP 70.06 / 84.49 / 76.60 39.20 / 44.32 / 41.60 67.50 / 74.31 / 70.7427.78 / 43.23 / 33.83 41.01 / 56.70 / 47.60
NICTANLM 75.24 / 57.14 / 64.95 35.68 / 41.76 / 38.48 52.50 / 76.83 / 62.3822.33 / 46.83 / 30.24 37.73 / 52.30 / 43.84

USheff 56.81 / 80.43 / 66.59 32.66 / 48.15 / 38.92 45.00 / 94.74 / 61.0221.67 / 53.55 / 30.85 32.27 / 63.93 / 42.89
HDS4NLP 76.20 / 84.65 / 80.20 41.21 / 38.14 / 39.61 75.83 / 75.21 / 75.52 16.58 / 30.16 / 21.4036.19 / 51.26 / 42.42

UZH 63.53 / 78.25 / 70.13 23.12 / 28.75 / 25.63 66.67 / 74.07 / 70.1810.61 / 29.39 / 15.59 27.36 / 50.89 / 35.58
HCMUS 67.18 / 62.84 / 64.94 38.19 / 28.15 / 32.41 67.50 / 61.83 / 64.5419.45 / 20.11 / 19.78 35.09 / 33.95 / 34.51

Table 8: Evaluation results (recall / precision / f-score) of Task 1 inMethodssection group. Some notable
figures are emphasized in bold.

Team Simple Event Binding Prot-Mod. Regulation All
TEES-2.1 76.67 / 67.65 / 71.88 53.19 / 46.30 / 49.50 60.61 / 76.92 / 67.8022.68 / 39.29 / 28.76 43.41/53.74 / 48.02
BioSEM 60.00 / 78.26 / 67.92 68.09 / 58.18 / 62.75 69.70 / 82.14 / 75.41 23.20 / 34.35 / 27.69 42.31/54.42 / 47.60
EVEX 76.67 / 67.65 / 71.88 53.19 / 46.30 / 49.50 48.48 / 72.73 / 58.1821.13 / 39.81 / 27.61 41.48/53.74 / 46.82

DlutNLP 70.00 / 67.02 / 68.48 55.32 / 48.15 / 51.49 57.58 / 79.17 / 66.6718.04 / 46.67 / 26.02 39.29/57.89 / 46.81
NCBI 80.00 / 58.54 / 67.61 40.43 / 41.30 / 40.86 66.67 / 70.97 / 68.7514.95 / 44.62 / 22.39 39.01/53.58 / 45.15

HDS4NLP 78.89 / 78.02 / 78.45 48.94 / 29.49 / 36.80 66.67 / 68.75 / 67.69 06.19 / 14.63 / 08.7035.16/45.23 / 39.57
UZH 57.78 / 68.42 / 62.65 23.40 / 26.19 / 24.72 69.70 / 74.19 / 71.8812.89 / 43.10 / 19.84 30.49/53.62 / 38.88

USheff 47.78 / 74.14 / 58.11 36.17 / 45.95 / 40.48 30.30 /100.00 / 46.5113.40 / 45.61 / 20.72 26.37/59.26 / 36.50
NICTANLM 75.56 / 53.12 / 62.39 40.43 / 27.94 / 33.04 18.18 / 54.55 / 27.2711.34 / 36.67 / 17.32 31.59/43.07 / 36.45

HCMUS 73.33 / 52.80 / 61.40 53.19 / 25.51 / 34.48 63.64 / 53.85 / 58.3315.46 / 17.96 / 16.62 39.01/33.10 / 35.81

Table 9: Evaluation results (recall / precision / f-score) of Task 1 inCaptionssection group. Some notable
figures are emphasized in bold.

Team Site-Binding Site-Phosphorylation Loc-Localization Total
TEES-2.1 31.37 / 56.14 / 40.25 37.21 / 82.05 / 51.20 36.67 / 78.57 / 50.0022.03 / 61.90 / 32.50

EVEX 31.37 / 56.14 / 40.25 32.56 / 80.00 / 46.28 36.67 / 78.57 / 50.0020.90 / 61.67 / 31.22

Table 10: Evaluation results (recall / precision / f-score) of Task 2

Team Negation Speculation Total
TEES-2.1 21.68 / 36.84 / 27.30 18.46 / 33.96 / 23.9219.53 / 35.59 / 25.22

EVEX 20.98 / 38.03 / 27.04 18.46 / 32.73 / 23.6119.82 / 34.41 / 25.15
NICTANLM 15.38 / 32.76 / 20.94 14.36 / 34.15 / 20.2214.79 / 33.57 / 20.54

Table 11: Evaluation results (recall / precision / f-score) of Task 3
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Abstract

We participate in the BioNLP 2013 Shared
Task with Turku Event Extraction System
(TEES) version 2.1. TEES is a support
vector machine (SVM) based text mining
system for the extraction of events and re-
lations from natural language texts. In ver-
sion 2.1 we introduce an automated an-
notation scheme learning system, which
derives task-specific event rules and con-
straints from the training data, and uses
these to automatically adapt the system
for new corpora with no additional pro-
gramming required. TEES 2.1 is shown to
have good generalizability and good per-
formance across the BioNLP 2013 task
corpora, achieving first place in four out
of eight tasks.

1 Introduction

Biomedical event extraction concerns the detec-
tion of statements of biological relations from sci-
entific texts. Events are a formalism for accu-
rately annotating the content of any natural lan-
guage sentence. They are characterized by typed,
directed arguments, annotated trigger words and
the ability to nest other events as arguments, lead-
ing to flexible, complex structures. Compared to
the more straightforward approach of binary rela-
tion extraction, the aim of event extraction is to
utilize the added complexity to more accurately
depict the content of natural language statements
and to produce more detailed text mining results.

The BioNLP Shared Task is the primary forum
for international evaluation of different event ex-
traction technologies. Organized for the first time
in 2009, it has since been held in 2011 and now in
2013 (Kim et al., 2009; Kim et al., 2011). Starting
from the single GENIA corpus on NF-kB, it has
since been extended to varied domain tasks, such

as epigenetics and bacteria-host interactions. The
theme of the 2013 task is “knowledge base con-
struction”, defining several domain tasks relevant
for different aspects of this overall goal.

The Turku Event Extraction System (TEES)1

is a generalized biomedical text mining tool, de-
veloped at University of Turku and characterized
by the use of a unified graph representation and
a stepwise machine learning approach based on
support vector machines (SVM). TEES has partic-
ipated in all BioNLP Shared Tasks, achieving first
place in 2009, first place in four out of eight tasks
in 2011 and now in 2013 again first place in four
out of eight tasks (Björne et al., 2011; Björne et
al., 2012). It has been available as an open source
project since 2009, and has also been used by other
research groups (Jamieson et al., 2012; Neves et
al., 2013).

The BioNLP Shared Tasks have recorded the
progress of various event extraction approaches.
Where TEES 1.0 achieved an F-score of 51.95%
in 2009, in 2011 the best performing system by
team FAUST on the extended, but similar GENIA
task achieved an F-score of 56.0% (Riedel et al.,
2011). Interesting approaches have been demon-
strated also in the interim of the Shared Tasks, for
example with the EventMine system of Miwa et
al. (2010) achieving an F-score of 56.00% on the
2009 GENIA corpus, and with the extremely com-
putationally efficient system of Bui et al. (2012)
based on automatically learning extraction rules
from event templates. The GENIA task of 2013
has been considerably extended and the scope of
the corpus is different, so a direct comparison with
the earlier GENIA tasks is not possible.

In the BioNLP 2013 Shared Task the goal of the
TEES project is to continue the generalization of
event extraction techniques introduced in 2011 by
fully automating task-specific adaptation via auto-

1http://jbjorne.github.com/TEES/
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mated learning of event annotation rules. As an
open source project TEES should also be easily
applicable by any team interested in this task, so
TEES 2.1 analyses were provided for all interested
participants during the system development phase
of the competition.

2 Methods

2.1 Turku Event Extraction System 2.1

TEES is a machine-learning based tool for extract-
ing text-bound graphs from natural language arti-
cles. It represents both binary relations and events
with a unified graph format where named entities
and triggers are nodes and relations and event ar-
guments are edges. This representation is com-
monly stored in the “interaction XML” format, an
extensible XML representation applicable to var-
ious corpora (Björne et al., 2012; Pyysalo et al.,
2008; Segura-Bedmar et al., 2013).

TEES approaches event extraction as a classi-
fication task, breaking the complex graph genera-
tion task into smaller steps that can be performed
with multiclass classification. The SVMmulticlass

support vector machine2 (Tsochantaridis et al.,
2005) with a linear kernel is used as the classifier
in all machine learning steps.

To start with the BioNLP Shared Task, TEES
conversion tools are used to convert the shared
task format (txt/a1/a2) corpora into the interac-
tion XML format. Equivalence annotations are re-
solved into independent events in the process.

Figure 1 shows an overview of the TEES event
extraction process. In real-world applications, ex-
ternal programs are used to split sentences, de-
tect protein/gene named entities and parse text,
but in the BioNLP Shared Tasks these analyses
are provided by the organizers. As in previous
Shared Tasks, we used the tokenisations and the
McCCJ parses converted into the collapsed CC-
processed Stanford dependency scheme (Stene-
torp et al., 2013; McClosky, 2010).

With the preprocessing done, TEES uses three
primary processing steps to detect events. First,
event trigger words are detected by classifying
each non-named entity token into one of the trig-
ger classes or as a negative. Then, for each
(optionally directed) pair of named entity and
trigger nodes a relation/argument edge candidate

2http://svmlight.joachims.org/svm_
multiclass.html
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Figure 1: TEES event extraction process. Prepro-
cessing steps A–C are achieved in the shared task
with data provided by organizers. Event extraction
steps D–F are all performed as consecutive, inde-
pendent SVM classification steps. (Adapted from
Björne et. al (2012).)

is generated and classified into one of the rela-
tion/argument classes or as a negative. Finally, for
each event trigger node, for each valid set of out-
going argument edges an unmerging example is
generated and classified as a true event or not, sep-
arating overlapping events into structurally valid
ones. For tasks where events can have modifiers, a
final modifier detection step can be performed. To
better fit the trigger detection step into the overall
task, a recall adjustment parameter is experimen-
tally determined to increase the amount of triggers
generated before edges are detected. The feature
representations and basic approach of the system
are largely unchanged from the 2011 entry, and for
a more detailed overview we refer to Björne et. al
(2012).

The main change in TEES 2.1, described in this
paper, is the automated annotation scheme learn-
ing system, which enables the optimal use of the
system on any interaction XML format corpus.
This preprocessing step results in an annotation
scheme definition which is used throughout the
machine learning steps and the impact of which
is described in detail in the following sections.
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2.2 Automated Annotation Scheme Learning

In previous versions of TEES, task specific rules
needed to be defined in code. The most impor-
tant of these were the event annotation schemes of
each task, which define the type and number of ar-
guments that are valid for each event type. This
limited straightforward application of TEES only
to corpora that were part of the shared tasks. In
TEES 2.1, the event scheme rules and constraints
are learned automatically. All event types and ar-
gument combinations seen in the known training
data are considered valid for the current task. The
result of this analysis for the GE (GENIA) task is
shown in Table 1.

The automatically generated annotation scheme
analysis lists all entities, events, relations and
modifiers detected in the corpus. Entities are sim-
ply a type of node and relations can be directed or
undirected but are always defined as a single edge
connecting two nodes. Events consist of a trigger
node whose type is equal to the type of the event
itself and a set of arguments, for which are defined
also valid argument counts.

The interaction XML graph format represents
both event arguments and binary relations as edge
elements. To distinguish these annotations, a pre-
requisite for automated detection of valid event
structures, elements that are part of events are la-
beled as such in the TEES 2.1 interaction XML
graph. Those node and argument types that are
not annotated also for the test set become the pre-
diction targets, and the rest of the annotation can
be used as known data to help in predicting them.

The annotation scheme analysis is stored in the
TEES model file/directory, is available at runtime
via a class interface and is used in the machine
learning steps to enforce task-specific constraints.
The availability of the learned annotation scheme
impacts mostly the edge and unmerging detectors.

2.3 TEES 2.1 Edge Detection

The primary task specific specialization required
in TEES 2.0 was the set of rules defining valid
node combinations for edges. TEES detects edges
(relations or arguments) by defining one edge can-
didate for each directed (or undirected) pair of
nodes. While the system could be used without
task-specific specialization to generate edge candi-
dates for all pairs, due to the potentially large num-
ber of nodes in event-containing sentences this
approach led to an inflated amount of negatives

and reduced SVM performance. In the BioNLP
Shared Task, e.g. the common Protein entities can
only ever have incoming edges, so even such a
simple limitation could considerably reduce the
amount of edge candidates, but these task-specific
rules had to be written into the Python-code. With
the automatically learned annotation scheme, the
edge detector checks for each node pair whether it
constitutes a valid edge candidate as learned from
the training data, automating and generalizing this
task-specific optimization.

2.4 TEES 2.1 Unmerging
The TEES module most affected by the learned
annotation scheme is the unmerging detector,
which takes the merged event graph (where over-
lapping events share the same trigger node) and
attempts to define which node/argument combina-
tions constitute valid events (See Figure 1 E). One
example is generated for each potential event, and
nodes and edges are duplicated as needed for those
classified as positives. In TEES 2.0, only the GE
(GENIA), EPI (Epigenetics and Post-translational
Modifications) and ID (Infectious Diseases) tasks
from 2009 and 2011 were supported, with valid
argument combinations defined in the code. In
TEES 2.1 invalid argument combinations, as de-
termined by the learned annotation scheme, are
automatically removed before classification. Even
if an event is structurally valid, it may of course
not be a correct event, but reducing the number of
negatives by removing invalid ones is an impor-
tant optimization step also in the case of unmerg-
ing classification.

2.5 Unified site-argument representation
Representing the BioNLP Shared Task site-
arguments in the interaction XML format has been
problematic. The sites are arguments of argu-
ments, linking a separate site-entity to a primary
argument. In the graph format all arguments are
edges, and while technically all edges could be
defined as having a central node to which site-
arguments could connect, this would result in
a multi-step edge detection system, where site-
argument edges could only be predicted after pri-
mary argument edges are predicted. To avoid this
situation, in TEES 2.0 site arguments were defined
as edges connecting the site entity either to the
protein node (See Figure 2 A) or to the trigger
node (See Figure 2 B). The second case was the
most straightforward, and we assume closest to the
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Figure 2: A unified representation (C) is intro-
duced for site-arguments, replacing the differ-
ent TEES 2.0 representations and enabling site-
arguments to be processed as any other event ar-
guments.

syntactic structure, as demonstrated by the good
performance on the 2011 EPI task (Björne et al.,
2012). However, in tasks where events can have
multiple primary arguments, the approach shown
in Fig. 2 B becomes problematic, as a primary/site
argument pair cannot be determined unambigu-
ously. In the approach shown in Fig. 2 A, the con-
nection between the event and the site argument is
indirect, meaning that the TEES 2.1 automated an-
notation scheme learning system cannot determine
valid site argument constraints for events.

In TEES 2.1 this problem is solved with a uni-
fied approach where regardless of task, the site
arguments are comparable to primary argument
edges in all aspects, enabling consistent event
analysis and simplifying site argument processing
(See Figure 2 C). Additional SiteParent edges are
defined to connect the entity and the protein it be-
longs to. In ambiguous cases, these are used to
connect the right site to the right primary argument
when converting to the final Shared Task format.

2.6 Validating final predictions

The current implementation of the automated an-
notation scheme learning system in TEES 2.1
has a shortcoming occasionally resulting in in-
valid event structures being produced. Consider
an event with multiple optional arguments, such as
Cell differentiation from the CG task with 0–1 At-
Loc arguments and 0–1 Theme arguments. While
it can be possible that such an event can exist with-

out any arguments at all, it is often the case that
at least one of the optional arguments must be
present. This is not detected by the current system,
and would require the addition of learning rules for
such groups of mandatory arguments.

The result of this and other small limitations in
conforming to task rules is the occasional invalid
predicted event. The Shared Task test set evalua-
tion servers will not accept any invalid events, so
these errors had to be resolved in some way. As
this problem was detected at a late stage in the
shared task, there was no more time to fix the un-
derlying causes. However, these errors could not
either be fixed by looking at the test set and cor-
recting the events preventing the acceptance of the
submission, as that would result in de facto man-
ual annotation of the test set and an information
leak. Therefore, we never looked at the document
triggering the error, and used the following, con-
sistent approach to resolve the invalid events. If
the server would both report an invalid argument
and a missing argument for the same event, the
invalid argument was first replaced with the miss-
ing one. This was only the case with the GRN
task. If the server would only report an invalid
argument, we first removed the argument, and if
this did not resolve the conflict, we removed the
entire event. Following this, all events recursively
pointing to removed invalid events were also re-
moved. This approach could be implemented with
a system processing the validation tools’ output,
but the better approach which we aim to pursue is
to fix the limitations of the automated annotation
scheme learning system, thus producing a tool us-
able on any corpora. In practice only a few invalid
events were produced for each task where they oc-
curred, so the impact on performance is likely to
be negligible.

2.7 Public dataset

TEES 2.0, published in summer 2012 was a po-
tentially useful tool for the BioNLP 2013 Shared
Task, but at the same time required specific code
extensions to be adapted for the task, leading to a
situation where the program was available, but was
not likely to be of practical value with new cor-
pora. To resolve this problem the automated anno-
tation scheme learning system was developed, tak-
ing the generalization approaches developed for
the 2011 task and making them automatically ap-
plicable for new corpora. As using TEES can still
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be difficult for people not familiar with the system,
and as re-training the program is quite time con-
suming, we also published our event predictions
for the 2013 task during the system development
period, for other teams to make use of. Develop-
ment set analyses were made available on Febru-
ary 26th, and test set analyses during the test pe-
riod on April 13th. With only a few downloads,
the data did not enjoy wide popularity, and due
to the complexity of the tasks utilizing the data in
other systems could very well have been too time
consuming. TEES was also used to produce public
analyses for the DDIExtraction 2013 Shared Task,
where the data was used more, maybe due to eas-
ier integration into a binary relation extraction task
(Segura-Bedmar et al., 2013; Björne et al., 2013).

3 Tasks and Results

TEES 2.1 could be applied as is to almost all the
2013 tasks with no task specific development re-
quired. Only subtask 1 of the Bacteria Biotopes
task, concerning the assignment of ontology con-
cepts, falls outside the scope of the current sys-
tem. TEES 2.1 was the system to participate
in most tasks, with good general performance,
demonstrating the utility of abstracting away task-
specific details. Official results for each task are
shown in Table 2 and system performance relative
to other entries in Figure 3.

Task # R P F SER
GE 2/10 46.17 56.32 50.74
CG 1/6 48.76 64.17 55.41
PC 2/2 47.15 55.78 51.10
GRO 1/1 15.22 36.58 21.50
GRN 3/5 33 78 46 0.86
BBT1 0/4
BBT2 1/4 28 82 42
BBT3 1/2 12 18 14

Table 2: Official test set results for the BioNLP
2013 tasks. Performance is shown in (R)ecall,
(P)recision and (F)-score, and also SER for the
GRN task. BB task 1 falls outside the scope of
TEES 2.1. Rank is indicated by #.

3.1 GENIA (GE)
The GENIA task is the central task of the BioNLP
Shared Task series, having been organized in all
three Shared Tasks. It has also enjoyed the largest
number of contributions and as such could be

GE CG PC GRO GRN BBT2 BBT3 BBT1
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Figure 3: Performance of the systems participat-
ing in the BioNLP’13 Shared Task. Our results
are marked with black dots. Please note that the
performance metric for tasks GRN and BBT1 is
SER*100, where a smaller score is better.

viewed as the primary task for testing different
event extraction approaches. In 2013 the GE-
NIA task annotation has been considerably ex-
tended and the coreference annotation that in 2011
formed its own supporting task is integrated in the
main GENIA corpus (Kim et al., 2013a).

The GENIA task is a good example for demon-
strating the usefulness of automatically learning
the event annotation scheme. The task uses 11
different event types, pairwise binary coreference
relations and modality annotation for both specu-
lation and negation. Previous versions of TEES
would have encoded all of this information in the
program, but with TEES 2.1 the annotation rules
are detected automatically and stored in a sep-
arate datafile external to the program. Table 1
shows the automatically learned event scheme. It
should however be noted that while the learned
scheme accurately describes the known annota-
tion, it may not exactly correspond to the corpus
annotation rules. For example, the Binding event,
when learned from the data, can have one or two
Theme arguments, when in the official rules it sim-
ply has one or more Theme arguments.

In some GENIA Coreference relations (45 out
of 338 in train and devel data) at least one of the
endpoints is an event trigger. While such rela-
tions could indeed be linked to event trigger nodes,
TEES makes no distinction between triggers and
events and would link them to the event annotation
when converting back to the Shared Task format,
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so we chose to skip them.
TEES 2.1 achieved a performance of 50.74%,

placing second in the GENIA task. The first place
was reached by team EVEX (Hakala et al., 2013),
with a system that utilizes the publicly available
TEES 2.1 program. This result further highlights
the value of open sourcing scientific code and un-
derlines the importance of incorporating existing
solutions into future systems.

3.2 Cancer Genetics (CG)
The CG task is a domain-specific event extrac-
tion task targeting the recovery of information re-
lated to cancer (Pyysalo et al., 2013; Pyysalo et
al., 2012). It is characterized by a large number
of entity and event types. Despite a heterogeneous
annotation scheme, TEES 2.1 achieved a perfor-
mance of 55.41% F-score, placing first in this task.
On some event categories TEES achieved a per-
formance notably higher than usual for it in event
extraction tasks, such as the 77.20% F-score for
the Anatomy-group events. The impact of more
common, and as such more easily detected classes
on the micro-averaged F-score is certainly impor-
tant, but it is interesting to speculate that maybe
the very detailed annotation scheme led to a more
focused and thus more consistent annotation, mak-
ing machine learning easier on this task.

3.3 Pathway Curation (PC)
The PC task aims to produce events suitable for
pathway curation (Ohta et al., 2013). Its extrac-
tion targets are based on existing pathway models
and ontologies such as the Systems Biology On-
tology (SBO). The dataset has only a few entity
types, but similar to the CG task, a large number
of event types. With 51.10% F-score TEES 2.1
placed second, behind team NaCTeM by 1.74 per-
centage points (Miwa and Ananiadou, 2013). On
the CG task team NaCTeM placed second, 3.32
percentage points lower than TEES 2.1. Even with
the only two participants in the PC task having
very close performance, compared to the results
of the same teams on the CG task, we speculate
the PC and CG tasks are of similar complexity.

3.4 Gene Regulation Ontology (GRO)
The GRO task concerns the automatic annota-
tion of documents with Gene Regulation Ontol-
ogy (GRO) concepts (Kim et al., 2013b). The an-
notation is very detailed, with 145 entity and 81
event types. This results in a large number of small

classes which are independent in SVM classifica-
tion and thus hard to learn. TEES did not detect
most of the small classes, and generally, the larger
the class, the higher the performance. It is possible
that classification performance might be improved
by merging some of the smaller classes and disam-
biguating the predictions with a rule-based step,
similar to the TEES approach in the EPI 2011 task.

Overall performance was at 21.50% F-score but
as TEES 2.1 was the only system in this task, not
many conclusions can be drawn from it. However,
the system was also exactly the same as applied
in the other tasks. With decent performance on
some of the larger classes, we speculate that with
a larger training corpus, and with a system adapted
for the GRO task, performance comparable to the
GE, CG and PC tasks could be reached.

3.5 Gene Regulation Network (GRN)
GRN is a task where event extraction is utilized as
an optional, intermediate step in the construction
of a large regulation network (Bossy et al., 2013a).
The annotation consists of 11 entity types, 12 bi-
nary relation types and a single Action event type.
The predicted events can be automatically con-
verted to the regulation network, or the network
can be produced by other means. In either case,
the final evaluation is performed on the network,
using the Slot Error Rate (SER) metric (Makhoul
et al., 1999), where lower is better and a value of
less than one is expected for decent predictions.

TEES 2.1 produced the event format submis-
sion, and with conversion to the regulation net-
work achieved an SER of 0.86, placing in the mid-
dle of the five teams, all of which had an SER of
less than one. A downloadable evaluator program
was provided early enough in the development pe-
riod to be integrated in TEES 2.1, allowing direct
optimization against the official task metrics. As
SER was a metric not used before with TEES, the
relaxed F-score was instead chosen as the opti-
mization target, with the assumption that it would
provide a predictable result also on the hidden test
set. In training it was also observed that the param-
eters for the optimal relaxed F-score also produced
the optimal SER result.

3.6 Bacteria Biotopes (BB)
Along with the GENIA task, the BB task is the
only task to continue from earlier BioNLP Shared
Tasks. The BB task concerns the detection of
statements about bacteria habitats and relevant en-
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vironmental properties and is divided into three
subtasks (Bossy et al., 2013b).

In task 1 the goal is to detect boundaries of bac-
teria habitat entities and for each entity, assign one
or more terms from 1700 concepts in the Onto-
Biotope ontology. While the TEES entity detector
could be used to detect the entities, assigning the
types falls outside the scope of the system, and is
not directly approachable as the sort of classifica-
tion task used in TEES. Therefore, BB task 1 was
the only task for which TEES 2.1 was not applied.

BB tasks 2 and 3 are a direct continuation of
the 2011 BB task, with the goal being extraction
of relations between bacteria entities and habitat
and geographical places entities. Only three entity
and two relation types are used in the annotation.
In task 2 all entities are provided and only rela-
tions are detected, in task 3 also the entities must
be predicted. The BB task was the only 2013 task
in which we used (limited) task specific resources,
as TEES 2.0 resources developed for the 2011 BB
task were directly applicable to the 2013 tasks. A
dictionary of bacteria name tokens, derived from
the List of Prokaryotic names with Standing in
Nomenclature3 (Euzéby, 1997) was used to im-
prove entity detection performance. Unlike the
2011 task, WordNet features were not used.

TEES 2.1 achieved F-scores of 42% and 14%
for tasks 2 and 3 respectively, reaching first place
in both tasks. The low overall performance is how-
ever indicative of the complexity of these tasks.

4 Conclusions

We applied TEES version 2.1 to the BioNLP 2013
Shared Task. An automated annotation scheme
learning system was built to speed up development
and enable application of the system to novel event
corpora. The system could be used as is in al-
most all BioNLP 2013 tasks, achieving good over-
all performance, including several first places.

The GRO task highlighted the limitations of a
purely classification based approach in situations
with very many small classes, in a sense the same
issue as with the ontology concept application in
BB task 1. Despite these minor limitations, the
basic stepwise SVM based approach of TEES con-
tinues to demonstrate good generalization ability
and high performance.

We made our system public during the task de-
velopment phase and provided precalculated anal-

3http://www.bacterio.cict.fr/

yses to all participants. While we consider it un-
fortunate that these analyses did not enjoy greater
popularity, we are also looking forward to the var-
ied approaches and methods developed by the par-
ticipating teams. However, the encouraging re-
sults of the GENIA task, not to mention earlier
positive reports on system combination (Kano et
al., 2011; Riedel et al., 2011) indicate that there is
untapped potential in merging together the strong
points of various systems.

TEES 2.1 had very good performance on many
tasks, but it must be considered that as an es-
tablished system it was already capable of do-
ing much of the basic processing that many other
teams had to develop for their approaches. In
particular, previous BioNLP Shared Tasks have
shown that the TEES internal micro-averaged
edge-detection F-score provides a very good ap-
proximation of the official metrics of most tasks.
It is unfortunate that official evaluator programs
were only available in some tasks, and often only
at the end of the development period, potentially
leading to a situation where different teams were
optimizing for different goals. In our opinion it
is of paramount importance that in shared tasks
not only the official evaluation metric is known
well ahead of time, but a downloadable evalua-
tor program is provided, as the complexity of the
tasks means that independent implementations of
the evaluation metric are error prone and an un-
necessary burden on the participating teams.

As with previous versions of TEES, the 2.1 ver-
sion is publicly available both as a downloadable
program and as a full, open source code repository.
We intend to continue developing TEES, and will
hopefully in the near future improve the automated
annotation learning system to overcome its cur-
rent limitations. We find the results of the BioNLP
2013 Shared Task encouraging, but as with previ-
ous iterations, note that there is still a long way
to go for truly reliable text mining. We think
more novel approaches, better machine learning
systems and careful utilization of the research so
far will likely lead the field of biomedical event
extraction forward.
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Type Name Arguments
ENTITY Anaphora
ENTITY Entity
ENTITY Protein
EVENT Binding Site[0,1](Entity) / Theme[1,2](Protein)
EVENT Gene expression Theme[1,1](Protein)
EVENT Localization Theme[1,1](Protein) / ToLoc[0,1](Entity)
EVENT Negative regulation Cause[0,1](Acetylation, Binding, Gene expression, Negative regulation, Phospho-

rylation, Positive regulation, Protein, Protein catabolism, Regulation, Ubiquitina-
tion) / Site[0,1](Entity) / Theme[1,1](Binding, Gene expression, Localization, Neg-
ative regulation, Phosphorylation, Positive regulation, Protein, Protein catabolism,
Regulation, Transcription, Ubiquitination)

EVENT Phosphorylation Cause[0,1](Protein) / Site[0,1](Entity) / Theme[1,1](Protein)
EVENT Positive regulation Cause[0,1](Acetylation, Binding, Gene expression, Negative regulation, Phospho-

rylation, Positive regulation, Protein, Protein catabolism, Regulation, Ubiquitina-
tion) / Site[0,1](Entity) / Theme[1,1](Binding, Deacetylation, Gene expression, Lo-
calization, Negative regulation, Phosphorylation, Positive regulation, Protein, Pro-
tein catabolism, Protein modification, Regulation, Transcription, Ubiquitination)

EVENT Protein catabolism Theme[1,1](Protein)
EVENT Protein modification Theme[1,1](Protein)
EVENT Regulation Cause[0,1](Binding, Gene expression, Localization, Negative regulation, Phos-

phorylation, Positive regulation, Protein, Protein modification, Regulation) /
Site[0,1](Entity) / Theme[1,1](Binding, Gene expression, Localization, Nega-
tive regulation, Phosphorylation, Positive regulation, Protein, Protein catabolism,
Protein modification, Regulation, Transcription)

EVENT Transcription Theme[1,1](Protein)
EVENT Ubiquitination Cause[0,1](Protein) / Theme[1,1](Protein)
RELATION Coreference, directed Subject(Anaphora) / Object(Anaphora, Entity, Protein)
RELATION SiteParent, directed Arg1(Entity) / Arg2(Protein)
MODIFIER negation Binding, Gene expression, Localization, Negative regulation, Phosphorylation,

Positive regulation, Protein catabolism, Regulation, Transcription
MODIFIER speculation Binding, Gene expression, Localization, Negative regulation, Phosphorylation,

Positive regulation, Protein catabolism, Regulation, Transcription, Ubiquitination
TARGET ENTITY Acetylation, Anaphora, Binding, Deacetylation, Entity, Gene expression,

Localization, Negative regulation, Phosphorylation, Positive regulation, Pro-
tein catabolism, Protein modification, Regulation, Transcription, Ubiquitination

TARGET INTERACTION Cause, Coreference, Site, SiteParent, Theme, ToLoc

Table 1: Automatically learned GENIA 2013 task event annotation scheme. The entities are the nodes
of the graph. Targets define the types of nodes and edges to be automatically extracted. Events and
relations are defined by their type and arguments. Relations are optionally directed, and always have two
arguments, with specific valid target node types. Events can have multiple arguments, and in addition
to valid target node types, the minimum and maximum amount of each argument per event are defined.
Modifiers are binary attributes defined by their type and the types of nodes they can be defined for.
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Jean Paul Marie Euzéby. 1997. List of Bacterial
Names with Standing in Nomenclature: a Folder
Available on the Internet. Int J Syst Bacteriol,
47(2):590–592.

Kai Hakala, Sofie Van Landeghem, Tapio Salakoski,
Yves Van de Peer, and Filip Ginter. 2013. EVEX
in ST’13: Application of a large-scale text mining
resource to event extraction and network construc-
tion. In Proceedings of BioNLP Shared Task 2013
Workshop, Sofia, Bulgaria, August. Association for
Computational Linguistics.

Daniel G. Jamieson, Martin Gerner, Farzaneh Sarafraz,
Goran Nenadic, and David L. Robertson. 2012.
Towards semi-automated curation: using text min-
ing to recreate the hiv-1, human protein interaction
database. Database, 2012.

Yoshinobu Kano, Jari Björne, Filip Ginter, Tapio
Salakoski, Ekaterina Buyko, Udo Hahn, K Bre-
tonnel Cohen, Karin Verspoor, Christophe Roeder,
Lawrence Hunter, Halil Kilicoglu, Sabine Bergler,
Sofie Van Landeghem, Thomas Van Parys, Yves
Van de Peer, Makoto Miwa, Sophia Ananiadou,
Mariana Neves, Alberto Pascual-Montano, Arzu-
can Ozgur, Dragomir Radev, Sebastian Riedel,

Rune Saetre, Hong-Woo Chun, Jin-Dong Kim,
Sampo Pyysalo, Tomoko Ohta, and Jun’ichi Tsujii.
2011. U-compare bio-event meta-service: compati-
ble bionlp event extraction services. BMC Bioinfor-
matics, 12(1):481.

Jin-Dong Kim, Tomoko Ohta, Sampo Pyysalo, Yoshi-
nobu Kano, and Jun’ichi Tsujii. 2009. Overview
of BioNLP’09 Shared Task on Event Extraction. In
Proceedings of the BioNLP 2009 Workshop Com-
panion Volume for Shared Task, pages 1–9, Boulder,
Colorado. ACL.

Jin-Dong Kim, Sampo Pyysalo, Tomoko Ohta, Robert
Bossy, and Jun’ichi Tsujii. 2011. Overview of
BioNLP Shared Task 2011. In Proceedings of
the BioNLP 2011 Workshop Companion Volume for
Shared Task, Portland, Oregon, June. Association
for Computational Linguistics.

Jin-Dong Kim, Yue Wang, and Yamamoto Yasunori.
2013a. The genia event extraction shared task,
2013 edition - overview. In Proceedings of BioNLP
Shared Task 2013 Workshop, Sofia, Bulgaria, Au-
gust. Association for Computational Linguistics.

Jung-Jae Kim, Xu Han, Vivian Lee, and Dietrich
Rebholz-Schuhmann. 2013b. GRO task: Populat-
ing the gene regulation ontology with events and re-
lations. In Proceedings of BioNLP Shared Task 2013
Workshop, Sofia, Bulgaria, August. Association for
Computational Linguistics.

John Makhoul, Francis Kubala, Richard Schwartz, and
Ralph Weischedel. 1999. Performance measures for
information extraction. In Proceedings of DARPA
Broadcast News Workshop, pages 249–252.

David McClosky. 2010. Any domain parsing: auto-
matic domain adaptation for natural language pars-
ing. Ph.D. thesis, Department of Computer Science,
Brown University.

Makoto Miwa and Sophia Ananiadou. 2013. NaCTeM
EventMine for BioNLP 2013 CG and PC tasks. In
Proceedings of BioNLP Shared Task 2013 Work-
shop, Sofia, Bulgaria, August. Association for Com-
putational Linguistics.

Makoto Miwa, Sampo Pyysalo, Tadayoshi Hara, and
Jun’ichi Tsujii. 2010. A comparative study of
syntactic parsers for event extraction. In Proceed-
ings of the 2010 Workshop on Biomedical Natural
Language Processing, BioNLP ’10, pages 37–45,
Stroudsburg, PA, USA. Association for Computa-
tional Linguistics.

Mariana Neves, Alexander Damaschun, Nancy
Mah, Fritz Lekschas, Stefanie Seltmann, Harald
Stachelscheid, Jean-Fred Fontaine, Andreas Kurtz,
and Ulf Leser. 2013. Preliminary evaluation of
the cellfinder literature curation pipeline for gene
expression in kidney cells and anatomical parts.
Database, 2013.

24



Tomoko Ohta, Sampo Pyysalo, Rafal Rak, Andrew
Rowley, Hong-Woo Chun, Sung-Jae Jung, Sung-Pil
Choi, and Sophia Ananiadou. 2013. Overview of
the pathway curation (PC) task of bioNLP shared
task 2013. In Proceedings of BioNLP Shared Task
2013 Workshop, Sofia, Bulgaria, August. Associa-
tion for Computational Linguistics.

Sampo Pyysalo, Antti Airola, Juho Heimonen, Jari
Björne, Filip Ginter, and Tapio Salakoski. 2008.
Comparative analysis of five protein-protein interac-
tion corpora. BMC Bioinformatics, 9(Suppl 3):S6.

Sampo Pyysalo, Tomoko Ohta, Makoto Miwa, Han-
Cheol Cho, Jun’ichi Tsujii, and Sophia Ananiadou.
2012. Event extraction across multiple levels of bi-
ological organization. Bioinformatics, 28(18):i575–
i581.

Sampo Pyysalo, Tomoko Ohta, and Sophia Ananiadou.
2013. Overview of the cancer genetics (CG) task
of bioNLP shared task 2013. In Proceedings of
BioNLP Shared Task 2013 Workshop, Sofia, Bul-
garia, August. Association for Computational Lin-
guistics.

Sebastian Riedel, David McClosky, Mihai Surdeanu,
Andrew McCallum, and Christopher D. Manning.
2011. Model combination for event extraction in
bionlp 2011. In Proceedings of the BioNLP Shared
Task 2011 Workshop, BioNLP Shared Task ’11,
pages 51–55, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Isabel Segura-Bedmar, Paloma Martı́nez, and Maria
Herrero-Zazo. 2013. SemEval-2013 Task 9: Ex-
traction of Drug-Drug Interactions from Biomedical
Texts. In Proceedings of the 7th International Work-
shop on Semantic Evaluation (SemEval 2013).

Pontus Stenetorp, Wiktoria Golik, Thierry Hamon,
Donald C. Comeau, Rezarta Islamaj Dogan, Haibin
Liu, and W. John Wilbur. 2013. BioNLP shared
task 2013: Supporting resources. In Proceedings
of BioNLP Shared Task 2013 Workshop, Sofia, Bul-
garia, August. Association for Computational Lin-
guistics.

Ioannis Tsochantaridis, Thorsten Joachims, Thomas
Hofmann, and Yasemin Altun. 2005. Large margin
methods for structured and interdependent output
variables. Journal of Machine Learning Research
(JMLR), 6(Sep):1453–1484.

25



Proceedings of the BioNLP Shared Task 2013 Workshop, pages 26–34,
Sofia, Bulgaria, August 9 2013. c©2013 Association for Computational Linguistics

EVEX in ST’13: Application of a large-scale text mining resource
to event extraction and network construction

Kai Hakala1, Sofie Van Landeghem3,4, Tapio Salakoski1,2,
Yves Van de Peer3,4 and Filip Ginter1

1. Dept. of Information Technology, University of Turku, Finland
2. Turku Centre for Computer Science (TUCS), Finland

3. Dept. of Plant Systems Biology, VIB, Belgium
4. Dept. of Plant Biotechnology and Bioinformatics, Ghent University, Belgium
kahaka@utu.fi, solan@psb.ugent.be, yvpee@psb.ugent.be,

ginter@cs.utu.fi, tapio.salakoski@utu.fi

Abstract

During the past few years, several novel
text mining algorithms have been de-
veloped in the context of the BioNLP
Shared Tasks on Event Extraction. These
algorithms typically aim at extracting
biomolecular interactions from text by in-
specting only the context of one sen-
tence. However, when humans inter-
pret biomolecular research articles, they
usually build upon extensive background
knowledge of their favorite genes and
pathways. To make such world knowl-
edge available to a text mining algorithm,
it could first be applied to all available lit-
erature to subsequently make a more in-
formed decision on which predictions are
consistent with the current known data. In
this paper, we introduce our participation
in the latest Shared Task using the large-
scale text mining resource EVEX which
we previously implemented using state-of-
the-art algorithms, and which was applied
to the whole of PubMed and PubMed Cen-
tral. We participated in the Genia Event
Extraction (GE) and Gene Regulation Net-
work (GRN) tasks, ranking first in the for-
mer and fifth in the latter.

1 Introduction

The main objective of our entry was to test the
usability of the large-scale text mining resource
EVEX to provide supporting information to an
existing state-of-the-art event extraction system.
In the GE task, EVEX is used to extract addi-
tional features for event extraction, capturing the
occurrence of relevant events in other documents
across PubMed and PubMed Central. In the GRN
task, EVEX is the sole source of information, i.e.

our entry consists of a modified subset of EVEX,
rather than a new text mining system specifically
trained for the task.

In the 2011 GE task, the majority of partici-
pating systems used features solely extracted from
the immediate textual context of the event candi-
date, typically restricted to a single sentence (Kim
et al., 2012; McClosky et al., 2012; Björne et al.,
2012b; Vlachos and Craven, 2012). Several stud-
ies have subsequently incorporated coreference re-
lations, capturing information also from surround-
ing sentences (Yoshikawa et al., 2011; Miwa et al.,
2012). However, no prior work exists on extend-
ing the event context to the information extracted
from other documents on a large scale. The moti-
vation for this entry is thus to test whether a gain
can be obtained by aggregating information across
documents with mutually supporting evidence.

In the following sections, we first introduce
EVEX as the underlying text mining resource, and
then describe the methods developed specifically
for the GRN and GE task entries. Finally, a de-
tailed error analysis of the results offers insight
into the performance of our systems and provides
possible directions of future development.

2 EVEX

EVEX1 is a text mining resource built on top
of events extracted from all PubMed abstracts
and PubMed Central Open-Access full-text doc-
uments (Van Landeghem et al., 2013a). The ex-
traction was carried out using a combination of
the BANNER named entity detector (Leaman and
Gonzalez, 2008) and the TEES event extraction
system as made publicly available subsequent to
the last Shared Task (ST) of 2011 (Björne et al.,
2012a). Specifically, this version of TEES was
trained on the ST’11 GE data.

1http://www.evexdb.org

26



On top of the individual event occurrences,
EVEX provides event generalizations, allowing
the integration and summarization of knowledge
across different articles (Van Landeghem et al.,
2011). For instance, the canonicalization algo-
rithm deals with small lexical variations by re-
moving non-alphanumerical characters (e.g. ‘Esr-
1’ to ‘esr1’). The canonical generalization then
groups those events together with the same event
type and the same canonicalized arguments. Addi-
tionally, gene normalization data has recently been
integrated within the EVEX resource, assigning
taxonomic classification and database identifiers
to gene mentions in text using the GenNorm sys-
tem (Wei and Kao, 2011). Finally, the assignment
of genes to homologous families allows a more
coarse-grained generalization of the textual data.
For each generalized event, a confidence score is
automatically calculated based upon the original
TEES classification procedure, with higher values
representing more confident predictions.

Finally, the EVEX resource provides a network
interpretation which transforms events into pair-
wise gene/protein relations to represent a typed,
directed network. The primary advantage of such
a network, as compared to the complex, recursive
event structures, is that a network is more eas-
ily analysed and integrated with other external re-
sources (Kaewphan et al., 2012; Van Landeghem
et al., 2013b).

3 GRN Task

The Gene Regulatory Network subtask of the
ST’13 aims at evaluating the ability of text min-
ing systems to automatically compile a gene regu-
lation network from the literature. The task is fo-
cused specifically on sporulation in Bacillus sub-
tilis, a thoroughly studied process.

3.1 Challenge definition

The primary goal of our participation in this task
was assessing the ability to reconstruct regulatory
networks directly from the EVEX resource. Con-
sequently, we have applied the EVEX data as it
is publicly available. This decision has two major
consequences. First, we have used the predicted
BANNER entities rather than the gold-standard
entity annotation, artificially rendering the chal-
lenge more difficult. Second, we did not adapt the
EVEX events, which follow the ST’11 GE formal-
ism, to the novel annotation scheme of the GRN

EVEX type GRN type
Binding Binding
Regulation* of Transcription Transcription
Regulation* of Gene expression Transcription
Positive regulation of Any* Activation
Negative regulation of Any* Inhibition
Regulation of Any* Regulation

Table 1: Conversion of EVEX event types to the
GRN types. The table is traversed from top to
bottom, and the first rule that matches is applied.
Regulation* refers to any type of regulatory event,
and Any* refers to any other non-regulatory event
type.

challenge, but rather derived the network data di-
rectly from the EVEX interactions. For example,
given these trigger annotations
T1 Protein 37 43 sigmaB
T2 Gene 54 58 katX
T3 Transcription 59 69 expression

a GE Transcription event looks like
E1 Transcription:T3 Theme:T2 Cause:T1

while the GRN annotation is given by
R1 Transcription Target:E1 Agent:T1
E1 Action_Target:T3 Target:T2

However, both formalisms can easily be trans-
lated into the required GRN network format:
sigB Interaction.Transcription katX

where ‘sigB’ is annotated as the Gene identifier
of ‘sigmaB’. These gene identifiers are provided
in the gold-standard entity annotations. Note that
in this context, “gene identifiers” are standardized
gene symbols rather than numeric identifiers, and
full gene normalization is thus not required.

3.2 From EVEX to GRN data
As a first step towards creating a gene regula-
tory network directly from EVEX, we have down-
loaded all pairwise relations of the canonical gen-
eralization (Section 2). For each such relation,
we also obtain important meta-data, including the
confidence value, the PubMed IDs in which a re-
lation was found, whether or not those articles
describe Bacillus subtilis research, and whether
or not those articles are part of the GRN train-
ing or test set. In the most stringent setting, we
could then limit the EVEX results only to those
relations found in the articles of the GRN dataset
(72 in training, 45 in the development set, 55 in
the test set). Additionally, we could test whether
performance can be improved by also adding all
Bacillus subtilis articles (17,065 articles) or even
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GRN event type Possible target types Possible agent types
Interaction.Binding Protein Gene
Interaction.Transcription Protein, PolymeraseComplex Gene, Operon
Interaction.Regulation

Protein, PolymeraseComplex Gene, Operon, Protein, ProteinComplexInteraction.Activation
Interaction.Inhibition

Table 2: Entity-type filtering of event predictions. Only those events for which the arguments (the target
as well as the agent) have the correct entity types, are retained in the result set.

all EVEX articles in which at least one event was
found (4,107,953 articles).

To match the canonicalized BANNER entities
from EVEX to the standardized gene symbols
required for the GRN challenge, we have con-
structed a mapping based on the GRN data. First,
we have scanned all gold-standard entities and
removed non-alphanumerical characters from the
gene symbols as tagged in text. Next, these canon-
ical forms were linked to the corresponding stan-
dardized gene symbols in the gold-standard anno-
tations. From the EVEX data, we then only re-
tained those relations that could be linked to two
gene symbols occurring together in a sentence.

Finally, it was necessary to convert the origi-
nal EVEX event types to the GRN relation types.
This mapping is summarized in Table 1. Because
EVEX Binding events are symmetrical and GRN
Bindings are not, we add both possible directions
to the result set. Note that some GRN types could
not be mapped because they have no equivalent
within the EVEX resource, such as the GRN type
‘Requirement’ or ‘Promoter’.

3.3 Filtering the data

After converting the EVEX pairwise relations to
the GRN network format, it is necessary to fur-
ther process the set of predictions to obtain a co-
herent network. One additional filtering step con-
cerns the entity types of the arguments of a specific
event type. From the GRN data, we can retrieve
a symbol-to-type mapping, recording whether a
specific symbol referred to e.g. a gene, protein
or operon in a certain article. After careful in-
spection of the GRN guidelines and the training
data, we enforced the filtering rules as listed in
Table 2. For example, this procedure success-
fully removes protein-protein interactions from
the dataset, which are excluded according to the
GRN guidelines. Even though these rules are oc-
casionally more restrictive than the original GRN
guidelines, their effectiveness to prune the data
was confirmed on the training set.

Further, the GRN guidelines specify that a set
of edges with the same Agent and Target should
be resolved into a single edge, giving preference
to a more specialized type, such as Transcription
in favour of Regulation. Further, contradictory
types between a specific entity pair (e.g. Inhibition
and Activation) may occur simultaneously in the
GRN data. For the EVEX data however, it is more
beneficial to try and pick one single correct event
type from the set of predictions, effectively reduc-
ing the false positive rate. To this end, the EVEX
confidence values are used to determine the single
most plausible candidate. Further analyses on the
training data suggested that the best performance
could be achieved when only retaining the ‘Mech-
anism’ edges (Transcription and Binding) in cases
when no regulatory edge was found. Finally, we
noted that the EVEX Binding events more often
correspond to the GRN Transcription type, and
they were thus systematically refactored as such
(after entity-type filtering). We believe this shift
in semantics is caused by the fact that a promoter
binding is usually extracted as a binding event by
the TEES classifier, while it can semantically be
seen as a Transcription event, especially in those
cases where the Theme is a protein name, and the
Cause a gene symbol (Table 2).

3.4 Results

Table 3 lists the results of our method on the GRN
training data, which was primarily used for tun-
ing the parameters described in Section 3.3. The
highest recall (42%) could be obtained when using
all EVEX data, without restrictions on entity types
and without restricting to Bacillus subtilis articles.
As a result, this set of predictions may contain re-
lations between homologs in related species which
have the same name. While the relaxed F-score
(41%) is quite high, the Slot Error Rate (SER)
score (1.56) is unsatisfying, as SER scores should
be below 1 for decent predictions.

When applying entity type restrictions to the
prediction set, relaxed precision rises from 39%
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Dataset ETF SER F Rel. P Rel. R Rel. F Rel. SER
All EVEX data no 1.56 8.86 39.29% 41.98% 40.59% 1.23
All EVEX data yes 1.15 11.53 59.74% 35.11% 44.23% 0.89
B. subtilis PMIDs yes 0.954 20.81 71.43% 22.90% 34.68% 0.86
GRN PMIDs yes 0.939 17.39 80.00% 18.32% 29.81% 0.86

Table 3: Performance measurement of a few different system settings, applied on the training data. The
SER score is the main evaluation criterion of the GRN challenge. The relaxed precision, recall, F and
SER scores are produced by scoring the predictions regardless of the specific event types. ETF refers to
entity type filtering.

to 60%, the relaxed F-score obtains a maximum
score of 44%, and the SER score improves to
1.15. The SER score can further be improved
when restricting the data to Bacillus subtilis arti-
cles (0.954). The optimal SER score is obtained by
further limiting the prediction set to only those re-
lations found in the articles from the GRN dataset
(0.939), maximizing at the same time the relaxed
precision rate (80%).

The final run which obtained the best SER score
on the training data was subsequently applied on
the GRN test data. It is important to note that the
parameter selection of our system was not overfit-
ted on the training data, as the SER score of our
final submission on the test data is 0.92, i.e. higher
than the best run on the training data.

Table 4 summarizes the official results of all
participants to the GRN challenge. Interestingly,
the TEES classifier has been modified to retrain
itself on the GRN data and to produce event
annotations in the GRN formalism (Björne and
Salakoski, 2013), obtaining a final SER score of
0.86. It is remarkable that this score is only 0.06
points better than our system which needed no re-
training, and which was based upon the original
GE annotation format and predicted gene/protein
symbols rather than gold-standard ones. Addition-
ally, the events in EVEX have been produced by a
version of TEES which was maximized on F-score
rather than SER score, and these measurements
are not mutually interchangeable (Table 3). We
conclude that even though our GRN system ob-
tained last place out of 5 participants, we believe
that its relative close performance to the TEES
submission demonstrates that large-scale text min-
ing resources can be used for gene regulatory net-
work construction without the need for retraining
the text mining component.

3.5 Error analysis

To determine the underlying reasons of our rela-
tively low recall rate, we have analysed the 117

SER Relaxed SER
University of Ljubljana 0.73 0.64
K.U.Leuven 0.83 0.66
TEES-2.1 0.86 0.76
IRISA-TexMex 0.91 0.60
EVEX 0.92 0.81

Table 4: Official GRN performance rates.

false negative predictions of our final run on the
training dataset. We found that 23% could be at-
tributed to a missing or incompatible BANNER
entity, 59% to a false negative TEES prediction,
15% to a wrong GRN event type and 3% to incor-
rectly mapping the gene symbol to the standard-
ized GRN format. Analysing the 16 false positives
in the same dataset, 25% could be attributed to an
incorrectly predicted event structure, and 62.5% to
a wrongly predicted event type. One case was cor-
rectly predicted but from a sentence outside the
GRN data, and in one case a correctly predicted
negation context was not taken into account. In
conclusion, future work on the GRN conversion of
TEES output should mainly focus on refining the
event type prediction, while general performance
could be enhanced by further improving the TEES
classification system.

4 GE Task

Our GE submission builds on top of the TEES 2.1
system2 as available just prior to the ST’13 test pe-
riod. First applying the unmodified TEES system,
we subsequently re-ranked its output and enforced
a cut-off threshold with the objective of removing
false positives from the TEES output (Section 4.1).
In the official evaluation, this step results in a mi-
nor 0.23pp increase of F-score compared to unpro-
cessed TEES output (Table 5). This yields the first
rank in the primary measure of the task with TEES
ranking second.

The main motivation for the re-ranking ap-
2https://github.com/jbjorne/TEES/wiki/

TEES-2.1
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P R F
EVEX 58.03 45.44 50.97
TEES-2.1 56.32 46.17 50.74
BioSEM 62.83 42.47 50.68
NCBI 61.72 40.53 48.93
DlutNLP 57.00 40.81 47.56

Table 5: Official precision, recall and F-score rates
of the top-5 GE participants, in percentages.

proach was the ability to incorporate external in-
formation from EVEX to compare the TEES event
predictions and identify the most reliable ones.
Further, such a re-ranking approach leads to an in-
dependent component which is in no way bound to
TEES as the underlying event extraction system.
The component can be combined with any system
with sufficient recall to justify output re-ranking.

4.1 Event re-ranking

The output of TEES is re-ranked using SVMrank,
a formulation of Support Vector Machines which
is trained to optimize ranking, rather than classifi-
cation (Joachims, 2006). It differs from the basic
linear SVM classifier in the training phase, when a
query structure is defined as a subset of instances
which can be meaningfully compared among each
other — in our case all events from a single sen-
tence. During training, only instances within a
single query are compared and the SVM does not
aim to learn a global ranking across sentences and
documents. We also experimented with polyno-
mial and radial basis kernels, feature vector nor-
malization and broadening the ranking query sets
to whole sections or narrowing them to only events
with shared triggers, but none of these settings
were found to further enhance the performance.

The re-ranker assigns a numerical score to each
event produced by TEES, and all events below
a certain threshold score are removed. To set
this threshold, a linear SVM regressor is applied
with the SVMlight package (Joachims, 1999) to
each sentence individually, i.e. we do not apply a
data-wide, pre-set threshold. Unlike the re-ranker
which receives features from a single event at a
time, the regressor receives features describing the
set of events in a single sentence.

Re-ranker features
Each event is described using a number of fea-
tures, including the TEES prediction scores for
triggers and arguments, the event structure, and
the EVEX information about this as well as simi-

lar events. Events can be recursively nested, with
the root event containing other events as its ar-
guments. The root event is of particular impor-
tance as the top-most event. A number of fea-
tures are thus dedicated specifically to this root
event, while other features capture properties of
the nested events.
Features derived from TEES confidence scores:

• TEES trigger detector confidence of the root
event and its difference from the confidence
of the negative class, i.e. the margin by which
the event was predicted by TEES.

• Minimum and maximum argument confi-
dences of the root event.

• Minimum and maximum argument confi-
dences, including recursively nested events
(if any).

• Minimum and maximum trigger confidences,
including recursively nested events (if any).

• Difference between the minimum and max-
imum argument confidences compared to
other events sharing the same trigger word.

Features describing the structure of the event:

• Event type of the root trigger.
• For each path in the event from the root to

a leaf argument, the concatenation of event
types along the path.

• For each path in the event from a leaf argu-
ment to another leaf argument, the concate-
nation of event types along the path.

• The event structure encoded in the bracketed
notation with leaf (T)heme and (C)ause argu-
ments replaced by a placeholder string, e.g.
Regulation(C:_, T:Acetylation(T:_)).

Features describing other events in the same sen-
tence:

• Event counts for each event type.
• Event counts for each unique event structure

given by the bracketed structure notation.

All event counts extracted from EVEX are rep-
resented as their base-10 logarithm to compress
the range and suppress differences in counts of
very common events.

The following features are generated in two ver-
sions, one by grouping the events according to the
EVEX canonical generalization and one for the
Entrez Gene generalization (Section 2)3.

3The generalizations based on gene families were evalu-
ated as well, but did not result in a positive performance gain.
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• All occurrences of the given event in EVEX.
• For each path from root to a leaf gene/protein,

all occurrences of that exact path in EVEX.
• For each pair of genes/proteins in the event,

all occurrences of that pair in the network in-
terpretation of EVEX.

• For each pair of genes/proteins in the event,
all occurrences of that pair with a different
event type in the network interpretation of
EVEX.

For each event, path, or pair under considera-
tion, features are created for the base-10 logarithm
of the count in EVEX and of the number of unique
articles in which it was identified, as well as for
the minimum, maximum, and average confidence
values, discretized into six unique categories.

Regressor features
While the re-ranker features capture a single event
at a time, the threshold regressor features aggre-
gate information about events extracted within one
sentence. The features include:

• For each event type, the average and mini-
mum re-ranker confidence score, as well as
the count of events of that type.

• For each event type, the count of events shar-
ing the same trigger.

• For each event type, the count of events shar-
ing the same arguments.

• Minimum and maximum confidence values
of triggers and arguments in the TEES out-
put for the sentence.

• The section in the article in which the sen-
tence appears, as given in the ST data.

4.2 Training phase
To train the re-ranker and the regressor, false pos-
itive events are needed in addition to the true pos-
itive events in the training data. We thus apply
TEES to the training data and train the re-ranker
using the correct ranking of the extracted events.
A true positive event is given the rank 1 and a false
positive event gets the rank -1. A query structure
is then defined, grouping all events from a sin-
gle sentence to avoid mutual comparison of events
across sentences and documents during the train-
ing phase.

The trained re-ranker is then again applied to
the training data. For every sentence, the optimal
threshold is set to be the re-ranker score of the last
event which should be retained so as to maximize

# P R F
Simple events 833 -0.08 -0.36 -0.23
Protein mod. 191 +0.09 -2.09 -1.12
Binding 333 +0.43 -1.20 -0.44
Regulation 1944 +2.38 -0.67 +0.36
All 3301 +1.71 -0.73 +0.23

Table 6: Performance difference in percentage
points against the TEES system in the official test
set results, shown for different event types.

the F-score. In case the sentence only contains
false positives, the highest score is used, increased
by an empirically established value of 0.2. A sim-
ilar strategy is applied for sentences only contain-
ing true positives by using the lowest score, de-
creased by 0.2.

In both steps, the SVM regularization parameter
C is set by a grid search on the development set.

Applying TEES and the re-ranker back to the
training set results in a notably smaller propor-
tion of false positives than would be expected on
a novel input. To obtain a fully realistic train-
ing dataset for the re-ranker and threshold regres-
sor would involve re-training TEES in a cross-
validation setting, but this was not feasible due to
the tight schedule constraints of the shared task,
and is thus left as future work.

4.3 Error analysis

Although the re-ranking approach resulted in a
consistent gain over the state-of-the-art TEES sys-
tem on both the development and the test sets,
the overall improvement is only modest. As sum-
marized in Table 6, the gain over the TEES sys-
tem can be largely attributed to regulation events
which exhibit a 2.38pp gain in precision for a
0.67pp loss in recall. Regulation events are at the
same time by far the largest class of events, thus
affecting the overall score the most.

In this section, we analyse the re-ranker and
threshold regressor in isolation to understand their
individual contributions to the overall result and to
identify interesting directions for future research.

To isolate the re-ranker from the threshold re-
gressor and to identify the maximal attainable per-
formance, we set an oracle threshold in every sen-
tence so as to maximize the sentence F-score and
inspect the performance at this threshold, effec-
tively bypassing the threshold regressor. This,
however, provides a very optimistic estimate for
sentences where all predicted events are false pos-
itives, because the oracle then simply obtains the
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All events P R F
B-C oracle (re-ranked) 81.32 39.61 53.27
W-C oracle (re-ranked) 54.92 39.61 46.02
W-C oracle (random) 51.06 39.19 44.34
Current system 47.15 39.61 43.05
TEES 45.46 40.39 42.77
Single-arg. events
B-C oracle (re-ranked) 81.37 50.58 62.38
W-C oracle (re-ranked) 56.09 50.58 53.19
W-C oracle (random) 52.73 50.00 51.33
Current system 48.66 50.44 49.53
TEES 47.16 51.09 49.04
Multiple-arg. events
B-C oracle (re-ranked) 81.02 16.83 27.87
W-C oracle (re-ranked) 48.61 16.83 25.00
W-C oracle (random) 42.66 16.75 24.05
Current system 39.64 17.12 23.91
TEES 37.57 18.17 24.50

Table 7: Performance comparison of the best case
(B-C) and worst case (W-C) oracles, the current
system with the re-ranker and threshold regressor,
and TEES. As an additional baseline, the worst
case oracle is also calculated for randomly ranked
output. All results are reported also separately for
single and multiple-argument events.

decisions from the gold standard and the rank-
ing itself is irrelevant. This effect is particu-
larly pronounced in sentences where only a sin-
gle, false positive event is predicted (15.9% of all
sentences with at least one event). Therefore, in
addition to this best case oracle score, we also de-
fine a worst case oracle score, where no events
are removed from sentences containing only false-
positives. This error analysis is carried out on the
development set using our own implementation of
the performance measure to obtain per-event cor-
rectness judgments.

The results are shown in Table 7. Even for the
worst case oracle, the re-ranked output has the po-
tential to provide a 9.5pp increase in precision for
a 0.8pp loss in recall over the baseline TEES sys-
tem. How much of this potential gain is realized
depends on the accuracy of the threshold regres-
sor. In the current system, only a 1.7pp precision
increase for a 0.8pp recall loss is attained, demon-
strating that the threshold regressor leaves much
room for improvement.

The best case oracle precision is 26.4pp higher
than the worst case oracle, indicating that substan-
tial performance losses can be attributed to sen-
tences with purely false positive events. Indeed,
sentences only containing one or two incorrect
events account for 26% of all sentences with at
least one predicted event. Due to their large impact

TEES 1-arg N-arg Full
Simple events 64.43 +0.07 ±0.00 +0.07
Protein mod. 40.47 +0.06 ±0.00 +0.06
Binding 82.03 ±0.00 ±0.00 ±0.00
Regulation 30.34 +0.70 -0.14 +0.53
All events 45.04 +0.66 ±0.00 +0.64

Table 8: Performance of the system on the de-
velopment set when applied to single-argument
events only (1-arg), to multiple-argument events
only (N-arg), and to all events (Full).

on the overall system performance, these cases
may justify a focused effort in future research.

To establish the relative merit of the re-ranker,
we compare the worst-case oracle scores of the re-
ranked output against random ranking, averaged
over 10 randomization runs. While the difference
between TEES output and the random ranking re-
flects the effect of using an oracle to optimize per-
sentence score, the difference between the ran-
dom ranking and the re-ranker output shows an
actual added value of the re-ranker, not attained
from the use of oracle thresholds. Here it is of
particular interest to note that this difference is
more pronounced for events with multiple argu-
ments (5.95pp of precision) as opposed to single-
argument events (3.36pp of precision), possibly
due to the fact that such events have a much richer
feature representation and also employ the EVEX
resource. To assess the contribution of EVEX
data, a re-ranker was trained solely on features de-
rived from EVEX. This re-ranker achieved an F-
score of 1.26pp higher than randomized ranking,
thus suggesting that these features have a positive
influence on the overall score.

To verify these results and measure their im-
pact on the official evaluation, Table 8 summa-
rizes the performance on the development set us-
ing the official evaluation service. To study the
effect on single-argument events (column 1-arg),
the re-ranker score for multiple-argument events
is artificially increased to always fall above the
threshold. A similar strategy is used to study
the effect on multiple-argument events (column
N-arg). These results confirm that the overall
performance gain of our system on top of TEES
is obtained on single-argument events. Further,
multiple-argument events have only a negligible
effect on the overall score, demonstrating that, due
to their low frequency, little can be gained or lost
purely on multiple-argument events.

To summarize the error analysis, the results in
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Table 7 suggest that the re-ranker is more effec-
tive on multiple-argument events where it receives
more features including external information from
EVEX. On the other hand, the results in Table 8
clearly demonstrate that the system is overall more
effective on single-argument events. This would
suggest a “mismatch” between the re-ranker and
the threshold regressor, each being more effective
on a different class of events. One possible expla-
nation is the fact that the threshold regressor pre-
dicts a single threshold for all events in a sentence,
regardless of their type and number of arguments.
If these cannot be distinguished by one threshold,
it is clear that the threshold regressor will optimize
for the largest event type, i.e. a single-theme regu-
lation. Studying ways to allow the regressor to act
separately on various event types will be important
future work.

4.4 Discussion and future work

One of the main limitations of our approach is
that it can only increase precision, but not recall,
since it removes events from the TEES output, but
is not able to introduce new events. As TEES
utilizes separate processing stages for predicting
event triggers and argument edges, recall can be
adjusted by altering either of these steps. We
have briefly experimented with modifying TEES
to over-generate events by artificially lowering the
prediction threshold for event triggers. However,
this simple strategy of over-generating triggers
leads to a number of clearly incorrect events and
did not provide any performance gain. As future
work, we thus hope to explore effective ways to
over-generate events in a more controlled and ef-
fective fashion. In particular, a more detailed eval-
uation is needed to assess whether the rate of trig-
ger over-generation should be adjusted separately
for each event type. Another direction to explore
is to over-generate argument edges. This will en-
tail a detailed analysis of partially correct events
with a missing argument in TEES output. As in
the case of triggers, it is likely that each event type
will need to be optimized separately.

A notable amount of sentences include only
false positive predictions, severely complicating
the threshold regression. In an attempt to over-
come this issue, we trained a sentence classifier
for excluding sentences that should not contain
any events. This classifier partially utilized the
same features as the threshold regressor, as well

as bag of words and bag of POS tags. This
method showed some promise when used together
with trigger over-generation, but the gain was not
enough to surpass the lost precision caused by the
over-generation. If the event over-generation can
be improved, the feasibility of this method should
be re-evaluated.

5 Conclusions

We have presented our participation in the latest
BioNLP Shared Task by mainly relying on the
large-scale text mining resource EVEX. For the
GRN task, we were able to produce a gene reg-
ulatory network from the EVEX data without re-
training specific text mining algorithms. Using
predicted gene/protein symbols and the GE for-
malism, rather than gold standard entities and the
GRN annotation scheme, our final result on the
test set only performed 0.06 SER points worse
as compared to the corresponding TEES submis-
sion. This encouraging result warrants the use of
generic large-scale text mining data in network bi-
ology settings. As future work, we will extend the
EVEX dataset with information on the entity types
to enable pruning of false-positive events and
more fine-grained classification of event types,
such as the distinction between promoter binding
(Protein-Gene Binding) and protein-protein inter-
actions (Protein-Protein Binding).

In the GE task, we explored a re-ranking ap-
proach to improve the precision of the TEES
event extraction system, also incorporating fea-
tures from the EVEX resource. This approach
led to a modest increase in the overall F-score
of TEES and resulted in the first rank on the GE
task. In the subsequent error analysis, we have
demonstrated that the re-ranker provides an oppor-
tunity for a substantial increase of performance,
only partially realized by the regressor which sets
a per-sentence threshold. The analysis has identi-
fied numerous future research directions.
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Abstract

The Genia Event (GE) extraction task of
the BioNLP Shared Task addresses the ex-
traction of biomedical events from the nat-
ural language text of the published litera-
ture. In our submission, we modified an
existing system for learning of event pat-
terns via dependency parse subgraphs to
utilise a more accurate parser and signifi-
cantly more, but noisier, training data. We
explore the impact of these two aspects of
the system and conclude that the change in
parser limits recall to an extent that cannot
be offset by the large quantities of training
data. However, our extensions of the sys-
tem to extract modification events shows
promise.

1 Introduction

In this paper, we describe our submission to the
Genia Event (GE) information extraction subtask
of the BioNLP Shared Task. This task requires the
development of systems that are capable of iden-
tifying bio-molecular events as those events are
expressed in full-text publications. The task rep-
resents an important contribution to the broader
problem of converting unstructured information
captured in the biomedical literature into struc-
tured information that can be used to index and
analyse bio-molecular relationships.

This year’s task builds on previous instantia-
tions of this task (Kim et al., 2009; Kim et al.,
2012), with only minor changes in the task defini-
tion introduced for 2011. The task organisers pro-
vided full text publications annotated with men-
tions of biological entities including proteins and
genes, and asked participants to provide annota-
tions of simple events including gene expression,
binding, localization, and protein modification, as
well as higher-order regulation events (e.g., pos-

itive regulation of gene expression). In our sub-
mission, we built on a system originally developed
for the BioNLP-ST 2011 (Liu et al., 2011) and ex-
tended in more recent work (Liu et al., 2013a; Liu
et al., 2013b). This system learns to recognise sub-
graphs of syntactic dependency parse graphs that
express a given bio-molecular event, and matches
those subgraphs to new text using an algorithm
called Approximate Subgraph Matching.

Due to the method’s fundamental dependency
on the syntactic dependency parse of the text, in
this work we set out to explore the impact of
substituting the previously employed dependency
parsers with a different parser which has been
demonstrated to achieve higher performance than
other commonly used parsers for full-text biomed-
ical literature (Verspoor et al., 2012).

In addition, we aimed to address the relatively
lower recall of the method through incorporation
of large quantities of external training data, ac-
quired through integration of previously automat-
ically extracted bio-molecular events available in
a web repository of such extracted events, EVEX
(Van Landeghem et al., 2011; Van Landeghem
et al., 2012), and additional bio-molecular events
generated from a large sample of full text pub-
lications using one of the state-of-the-art event
extraction systems, TEES (Björne and Salakoski,
2011). Since the performance of the subgraph
matching method, as an instance-based learning
strategy (Alpaydin, 2004), is dependent on having
good training examples that express the events in a
range of syntactic structures, the motivation under-
lying this was to increase the amount of training
data available to the system, even if that data was
derived from a less-than-perfect source. The aug-
mentation of training corpora with external unla-
belled data that is automatically processed to gen-
erate additional labels has been explored for re-
training the same system, in an approach known as
self-training. This approach has been shown to be
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very effective for improving parsing performance
(McClosky et al., 2006; McClosky and Charniak,
2008). Self-training of the TEES system has been
previously explored (Bjorne et al., 2012), with
somewhat mixed results, but with evidence sug-
gesting it could be useful with an appropriate strat-
egy for selecting training examples. Here, rather
than training our system with its own output over
external data, we explore a semi-supervised learn-
ing approach in which we train our system with the
outputs of a different system (TEES) over external
data.

2 Methodology

2.1 Base Event Extraction System

The event extraction algorithm is essentially the
same as the one used in Liu et al. (2013b). A fuller
description can be found there, but we summarise
the most important aspects of it here.

2.1.1 Event Extraction with ASM
The principal method used in event extraction is
Approximate Subgraph Matching, or ASM (Liu et
al., 2013a). Broadly, we learn subgraph patterns
from the event structures in the training data, and
then apply them by looking for matches with the
patterns of the learned rules, using ASM to allow
for non-exact matches of the patterns.

The first stage in this is learning the rules which
link subgraphs to associated patterns. The input
is a set of dependency-parsed articles (the setup
is described in §2.1.2), and a set of gold-standard
annotations of proteins and events in the shared
task format. Using the standoff annotations in the
training data, every protein and trigger is mapped
to one or more nodes in the corresponding depen-
dency graphs. In addition, the textual content of
every protein is replaced with a generic string en-
abling abstraction over individual protein names.
Then, for each event annotation in the training
data, we retrieve the nodes from the graph corre-
sponding to the associated trigger and protein en-
tities. We determine the shortest path (or paths, in
case of a tie) connecting the graph trigger to each
of the event argument nodes. For arguments which
are themselves events (e.g., for regulatory events),
the node corresponding to the trigger of the event
argument is used instead of a protein node. Where
there are multiple arguments, we take the union of
the shortest paths to each individual argument.

This path is then used as the pattern compo-

nent of an event rule. The rule also consists of an
event type, and a mapping from event arguments
to nodes from the pattern graph, or to an event
type/node pair for nested event arguments. Af-
ter processing all training documents, we get on
the order of a few thousand rules; this can be de-
creased slightly by removing rules with subgraphs
that are isomorphic to those of other rules.

In principle, this set of rules could then be di-
rectly applied to the test documents, by searching
for any matching subgraphs. However, in practice
doing so leads to very low recall, since the pat-
terns are not general enough to get a broad range of
matches on new data. We can alleviate this by re-
laxing the strictness of the subgraph matching pro-
cess. Most basically, we relax node matching. In-
stead of requiring an exact match between both the
token and the part-of-speech of the nodes of the
sentence graph and those from the rule subgraph,
we also allow a match on the basis of the lemma
(according to BioLemmatizer (Liu et al., 2012)),
and a coarse-grained POS-tag (where there is only
one POS-tag for nouns, verbs and adjectives).

More importantly, we also relax the require-
ments on how closely the graphs must match, by
using ASM. ASM defines distances measures be-
tween subgraphs, based on structure, edge labels
and edge directions, and uses a set of specified
weights to combine them into an overall subgraph
distance. We have a pre-configured set of distance
thresholds for each event type, and for each sen-
tence/rule pairing, we extract events for any rules
with subgraphs under the given threshold.

The problem with this approximate matching is
that some rules now match too broadly, and pre-
cision is reduced. This is mitigated by adding
an iterative optimisation phase. In each iteration,
we run the event extraction using the current rule
set over some dataset – usually the training set,
or a subset of it. We check the contribution of
each rule in terms of postulated events and actual
events which match the gold standard. If the ra-
tio of matched to postulated events is too low (for
the work reported here, the threshold is 0.25), the
rule is discarded. This process is repeated until no
more rules are discarded. This can take multiple
iterations since the rules are interdependent due to
the presence of nested event arguments.

The optimisation step is by far the most time-
consuming step of our process, especially for the
large rule sets produced in some configurations.
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We were able to improve optimisation times some-
what by parallelising the event extraction, and
temporarily removing documents with long ex-
traction times from the optimisation process un-
til as late as possible, but it remained the primary
bottleneck in our experimentation.

2.1.2 Parsing Pipeline
In our parsing pipeline, we first split sentences
using the JULIE Sentence Boundary Detector, or
JSBD (Tomanek et al., 2007). We then parse
using a version of clearnlp1 (Choi and McCal-
lum, 2013), a successor to ClearParser (Choi and
Palmer, 2011), which was shown to have state-
of-the-art performance over the CRAFT corpus
of full-text biomedical articles (Verspoor et al.,
2012). We use dependency and POS-tagging mod-
els trained on the CRAFT corpus (except where
noted); these pre-trained models are provided with
clearnlp. Our fork of clearnlp integrates to-
ken span marking into the parsing process, so the
dependency nodes can easily be matched to the
standoff annotations provided with the shared task
data. This pipeline is not dependent on any pre-
annotated data, so can thus be trivially applied to
extra data not provided as part of the shared task.
In addition the parsing is fast, requiring roughly 46
wall-clock seconds (processing serially) to parse
the 5059 sentences from the training and develop-
ment sets of the 2013 GE task – an average of 9 ms
per sentence. The ability to apply the same pars-
ing configuration to new text was useful for adding
extra training data, as discussed in §2.2.

The usage of clearnlp as the parser is the pri-
mary point of difference between our system and
that of Liu et al. (2013b), who use the Charniak-
Johnson parser with the McClosky biomedical
model (CJM; McClosky and Charniak (2008)), al-
though there are other minor differences in tokeni-
sation and sentence splitting. We expected that the
higher accuracy of clearnlp over biomedical text
would translate into increased accuracy of event
detection in the shared task; we consider this ques-
tion in some detail below.

2.2 Adding Noisy Training Data
One of the limitations of the ASM approach is that
the high precision comes at the cost of lower re-
call. Our hypothesis is that adding extra training
instances, even if some are errors, will raise re-
call and improve overall performance. We utilised

1https://code.google.com/p/clearnlp/

two sources of automatically-annotated data: the
EVEX database, and running an automatic event
annotator over documents from PubMed Central
(PMC) and MEDLINE.

To test our hypothesis, we utilise one of the
best performing automatic event extractors in pre-
vious BioNLP tasks: TEES (Turku Event Extrac-
tion System)2 (Björne et al., 2011). We expand our
pool of training examples by adding the highest-
confidence events TEES identifies in unlabelled
text. We explored different approaches to ranking
events based on classifier confidence empirically.

TEES relies on multi-class SVMs both for trig-
ger and event classification, and produces confi-
dence scores for each prediction. We explored
ranking events according to: (i) score of the trig-
ger prediction, (ii) score of the event-type predic-
tion, and (iii) sum of trigger and event type predic-
tions. We also compared the performance when
selecting the top-k events overall, versus choos-
ing the top-k events for each event type. We also
tested adding as many instances per event-type as
there were in the manually-annotated dataset, with
different multiplying factors. Finally, we evalu-
ated the effect of using different splits of the data
for the evaluation and optimisation steps of ASM.
This is the full list of parameters that we tested
over held-out data:

• Original confidence scores: we ranked events
according to the three SVM scores mentioned
above: trigger prediction, event-type predic-
tion, and combined.

• Overall top-k: we selected the top 1,000,
5,000, 10,000, 20,000, 30,000, 40,000, and
50,000 for the different experimental runs.

• Top-k per type: for each event type, we se-
lected the top 400, 1,000, and 2,000.

• Training bias per type: we add as many in-
stances from EVEX per type as there are in
the manually annotated data. We experiment
with adding up to 6 times as many as in man-
ually annotated data.

• Training/optimisation split: we combine
manually and automatically annotated data
for training. For optimisation we tested
different options: manually annotated only,
manual + automatic, manual + top-100
events, and manual + top-1000 events.

2http://jbjorne.github.com/TEES/
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We did not explore all these settings exhaus-
tively due to time constraints, and we report here
the most promising settings. It is worth mention-
ing that most of the configurations contributed to
improve the baseline performance. We only ob-
served drops when using automatically-annotated
data in the optimisation step.

2.2.1 Data from EVEX
Conveniently, the developers of TEES have re-
leased the output of their tool over the full 2009
collection of MEDLINE, consisting of abstracts of
biomedical articles, in a collection known as the
EVEX dataset. We used the full EVEX dataset as
provided by the University of Turku, and explored
different ways of ranking the full list of events as
described above.

2.2.2 Data from TEES
To augment the training data, we annotated two
data sets with TEES based on MEDLINE and
PubMed Central (PMC). The developers of TEES
released a trained model for the GE 2013 training
data that we utilised.

Due to the long pre-processing time of TEES,
which includes gene named entity recognition,
part-of-speech tagging and parsing, we used the
EVEX pre-processed MEDLINE, which required
some adaptation of the EVEX XML to the XML
format accepted by TEES. Once this adaptation
was finished, the files were processed by TEES.

Then, we have selected articles from PMC us-
ing a query containing specific MeSH headings
related to the GE task and limiting the result to
only the Open Access part of PMC. From the al-
most 600k articles from the PMC Open Access set,
we reduced the total number of articles to around
155k. The PMC query is the following:

(Genetic Phenomena[MH] OR Metabolic
Phenomena[MH] OR Cell Physiological
Phenomena[MH] OR Biochemical
Processes[MH]) AND open access[filter]

Furthermore, the articles were split into sections
and specific sections from the full text like Intro-
duction, Background and Methods were removed
to reduce the quantity of text to be annotated by
TEES. The PMC files produced by this filtering
were processed by TEES on the NICTA cluster.

2.3 Modification Detection
To evaluate the utility of ASM for a diverse range
of tasks, we also applied it to the task of detect-
ing modification (SPECULATION or NEGATION)

NEGATION cues
• Basic: not, no, never, nor, only, neither, fail, cease,

stop, terminate, end, lacking, missing, absent, absence,
failure, negative, unlikely, without, lack, unable

• Data-derived: any, prevention, prevent, disrupt, dis-
ruption

SPECULATION cues:
• Basic: analysis, whether, may, should, can, could, un-

certain, questionable, possible, likely, probable, prob-
ably, possibly, conceivable, conceivably, perhaps, ad-
dress, analyze, analyse, assess, ask, compare, consider,
enquire, evaluate, examine, experiment, explore, inves-
tigate, test, research, study, speculate

• Data-derived: measure, measurement, suggest, sug-
gestion, value, quantify, quantification, determine, de-
termination, detect, detection, calculate, calculation

Table 1: Modification cues

of events. In event detection, triggers are explic-
itly annotated, so the linguistic cue which indi-
cates that an event is occurring is easy to identify.
As described in Section 3.2, these triggers are im-
portant for learning event patterns.

The event extraction method is based on paths
between dependency graph nodes, so it is neces-
sary to have at least two relevant graph nodes be-
fore we can determine a path between them. For
learning modification rules, one graph node is the
trigger of the event which is subjec to modifica-
tion. However here we needed a method to deter-
mine another node in the sentence which provided
evidence that NEGATION or SPECULATION was
occurring, and could thus form an endpoint for a
semantically relevant graph pattern. To achieve
this, we specified a set cue lemmas for NEGATION

and SPECULATION. The basic set of cue lemmas
came from a variety of sources. Some were man-
ually specified and some were derived from previ-
ous work on modification detection (Cohen et al.,
2011; MacKinlay et al., 2012). We manually ex-
panded this cue list to include obvious derivational
variants. This gave us a basic set of 34 SPECULA-
TION and 21 NEGATION cues.

We also used a data-driven strategy to find ad-
ditional lemmas indicative of modification. We
adapted the method of Rayson and Garside (2000)
which uses log-likelihood for finding words that
characterise differences between corpora. Here,
the “corpora” are sentences attached to all events
in the training set, and sentences attached to events
which are subject to NEGATION or SPECULATION

(treated separately). We build a frequency distri-
bution over lemmas in each set of sentences, and
calculate the log-likelihood for all lemmas, us-
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ing the observed frequency from the modification
events and the expected frequency over all events.
Sorting by decreasing log-likelihood, we get a
list of lemmas which are most strongly associated
with NEGATION or SPECULATION. We manually
examined the highest-ranked lemmas from these
two lists and noted lemmas which may occur,
according to human judgment, in phrases which
would denote the relevant modification type. We
found seven extra SPECULATION cues and three
extra NEGATION cues. Expanding with morpho-
logical variants as described above yielded 47
SPECULATION cues and 26 NEGATION cues to-
tal. These cues are shown, divided into basic and
data-derived, in Table 1.

For every node N with a lemma in the appro-
priate set of cue lemmas, we create a rule based
on the shortest path between the cue lemma node
N and the event trigger node. The trigger lem-
mas are replaced with generic lemmas which only
reflect the POS-tag of the trigger, to broaden the
range of possible matches. Each rule thus consists
of the POS-tag of an event trigger, and a subgraph
pattern including the abstracted event trigger node.

At modification detection time, the rules are ap-
plied in a similar way to the event rules. After
detecting events, we look for matches of each ex-
tracted event with every modification rule. A rule
R is considered to match if the event trigger node
POS tag matches the POS tag of the rule, and the
subgraph pattern of the rule matches the graph of
the sentence, including a node corresponding to
the event trigger node. If R is found to match
for a given event and sentence, any events which
have the trigger defined in the rule are marked as
SPECULATION or NEGATION as appropriate. As
in event extraction, we use ASM to allow a looser
match between graphs, but initial experimentation
showed that increasing the match thresholds be-
yond a relatively small distance was detrimental.
We have not yet added an optimisation phase for
modification, which might allow larger ASM dis-
tance threshold to have more benefit.

3 Results

We present our results over development data,
and the official test. We report the Approximate
Span/Approximate Recursive metric in all our ta-
bles, for easy comparison of scores. We describe
the data split used for development, explain our
event extraction results, and finally describe our

performance in modification detection.

3.1 Data division for development

In the data provided by the task organisers, the
split of data between training and development
sets, with 249 and 222 article sections respec-
tively, was fairly even. If we had used such a split,
we would have had an unfeasibly small amount
of data to train from during development, and
possible unexpected effects when we sharply in-
creased the amount of training data for running
over the held-out test set. We instead used our
own data set split during development, pooling
the provided training and development sets, and
randomly selecting six PMC articles (PMC IDs
2626671, 2674207, 3062687, 3148254, 3333881
and 3359311) for the development set, with the
remainder available for training. We respected ar-
ticle boundaries in the new split to avoid training
and testing on sentences taken from different sec-
tions of the same article. Results over the devel-
opment set reported in this section are over this
data split. We will refer to our training subset as
GE13tr, and to the testing subset as GE13dev.

For our runs over the official test of this chal-
lenge, we merged all the manually annotated data
from 2013 to be used as training. We also per-
formed some experiments with adding the exam-
ples from the 2011 GE task to our training data.

3.2 Event Extraction

For our first experiment, we evaluated the contri-
bution of the automatically annotated data over us-
ing GE13tr data only. We performed a set of ex-
periments to explore the parameters described in
Section 2.2 over two sources of extra examples:
EVEX and TEES.

Using EVEX data in training resulted in clear
improvements in performance when only manu-
ally annotated data was consulted for optimisa-
tion. The increase was mainly due to the better
recall, with small variations in precision over the
baseline for the majority of experiments. Our best
run over the GE13dev data followed this setting:
rank events according to trigger scores, include all
top-30000 events (without considering the types of
the events), and use only manually annotated data
for the optimisation step. Other settings also per-
formed well, as we will see below.

For TEES, we selected noisy examples from
MEDLINE and PMC to be used as additional
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System Prec. Rec. F-sc.
GE13tr 60.40 27.02 37.34
+TEES 59.27 29.89 39.74
+TEES +EVEX (top5k) 46.93 30.78 37.18
+TEES +EVEX (top20k) 56.32 31.90 40.73
+TEES +EVEX (top30k) 55.34 32.48 40.93
+TEES +EVEX (pt1k) 58.54 30.96 40.50
+TEES +EVEX (trx4) 57.83 31.23 40.56

Table 2: Impact of adding extra training data to the
ASM method. top5k,20k,30k: using the top 5,000,
20,000, and 30,000 events. pt1k: using the top
1,000 events per event-type. trx4: following the
training bias of events, with a multiplying factor
of four. For TEES we always use the top 10,000
events. Evaluated over GE13dev.

training data. Initial results showed that when us-
ing only MEDLINE annotated data in the train-
ing step, the performance decreased compared to
not using any additional data. This might have
been due to differences between the EVEX pre-
processed data that we used and what TEES was
expecting, so the MEDLINE set was not consid-
ered for further experimentation. Using PMC ar-
ticles annotated with TEES in the training step se-
lected by the evidence score of TEES shows an in-
crease of recall while slightly decreasing the pre-
cision, which was expected. We selected the top
10000 events from the PMC set based on the evi-
dence score as additional training data.

Table 2 summarises the results of combin-
ing different settings of EVEX with TEES. We
achieve a considerable boost in recall, at the cost
of precision for most configurations. The only set-
ting where there is a slight drop in F-score is the
experiment with only 5000 events from EVEX; in
the remaining runs we are able to alleviate the drop
in precision, and improve the F-score. Consider-
ing the addition of top-events according to their
type, the increment in recall is slightly lower, but
these runs are able to reach similar F-score to the
best ones, using less training data. Results with
TEES might be slightly overoptimistic since the
PMC annotation is based on a TEES model trained
on the 2013 GE data and our configurations are
evaluated on a subset of this data.

For our next experiment, we tested the contribu-
tion of adding the dataset from the 2011 GE task
to the training dataset. We use this data both in
the training and optimisation steps. The results are

Train Prec. Rec. F-sc.
GE13tr 60.40 27.02 37.34
+GE11 53.41 32.62 40.50

Table 3: Adding GE11 data to the training and op-
timisation steps. Evaluated over GE13dev.

Parser Train Prec. Rec. F-sc.

clearnlp
GE13 60.40 27.02 37.34
+GE11 53.41 32.62 40.50

CJM
GE13 60.96 33.11 42.91
+GE11 64.11 38.93 48.44

Table 4: Performance depending on the applied
parsing pipeline (clearnlp for this work against
the CJM pipeline of Liu et al. (2013b)) over
GE13dev. For each run, the available data was
used both in training and optimisation.

given in Table 3, where we can observe a boost in
recall at the cost of precision. Overall, the im-
proved F-score suggests that this dataset would
make a useful contribution to the system.

We also compared our system to that of Liu
et al. (2013b), where the primary difference
(although not the only difference, as noted in
§2.1.2) is the use of clearnlp instead of the CJM
(Charniak-Johnson/McClosky) pipeline. It is thus
somewhat surprising to see in Table 4 that the
CJM pipeline outperforms our clearnlp pipeline
by 5.5–8% in F-score, depending on the train-
ing data. For the smaller GE13-only training set,
the gap is smaller, and the precision figures are
in fact comparable. However, the recall is uni-
formly lower, suggesting that the rules learned
from clearnlp parses are for some reason less gen-
erally applicable. Another interesting difference
is that our clearnlp pipeline gets a smaller benefit
from the addition of the GE11 training data. We
consider possible reasons for this in §4.1.

Table 5 contains the evaluation of different ex-
periments on the official test data. We tested the
baseline system using the training and develop-
ment data from 2011 and 2013 GE tasks and the
addition of TEES and EVEX data. The additional
data improves the recall slightly compared to not
using it, while, as expected, it decreases the pre-
cision. Table 5 also shows the results for our of-
ficial submission (+TEES+EVEX sub), which due
to time constraints was a combination of the opti-
mised rules of different data splits and has a lower
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Train Prec. Rec. F-sc.
GE11, GE13 65.71 32.57 43.55
+TEES+EVEX 63.67 33.50 43.91
+TEES+EVEX * 50.68 36.99 42.77

Table 5: Test set results, always optimised over
gold data only. * denotes the official submission.

performance compared to the other results.

3.3 Modification Detection

We show results for selected modification detec-
tion experiments in Table 6. In all cases we used
all of the available gold training data from the
GE11 and GE13 datasets. To assess the impact of
modification cues, we show results using the basic
set as well as with the addition of the data-derived
cues. It has often been noted (MacKinlay et al.,
2012; Cohen et al., 2011) that modification detec-
tion accuracy is strongly dependent on the quality
of the upstream event annotation, so we provide an
oracle evaluation, using gold-standard event anno-
tations rather than automatic output.

The performance over the automatically-
annotated runs is respectable, given that the recall
is fundamentally limited by the recall of the input
event annotations, which is only around 30% for
the configurations shown. With the oracle event
annotations, the results improve substantially,
with considerable gains in precision, and recall
increasing by a factor of 4–6. This boost in recall
in particular is more than we would naively expect
from the roughly threefold increase in recall over
the events. It seems that many of the modification
rules we learned were even more effective over
events which our pipeline was unable to detect.
The modification rules were learned from oracle
event data, but this does not fully explain the
discrepancy. Regardless, our algorithm for mod-
ification detection showed excellent performance
over the oracle annotations. Over the 2009 version
of the BioNLP shared task data, MacKinlay et al.
(2012) report F-scores of 54.6% for NEGATION

and 51.7% for SPECULATION. These are not
directly comparable with those in Table 6, but
running our newer algorithm over the same 2009
data gives F-scores of 84.2% for NEGATION and
69.1% for SPECULATION.

For the official run, which conflates event
extraction and modification detection accuracy,
our system was ranked third for NEGATION and

SPECULATION out of the three competing teams,
although the other teams had event extraction F-
scores of roughly 8% higher than our system. For
SPECULATION, our system had the highest preci-
sion of 34.15%, while the F-score of 20.22% was
close to the best result of 23.92%. Our NEGA-
TION detection was less competitive, with an F-
score of 20.94% – roughly 6% lower than the other
teams. We cannot extrapolate directly from the or-
acle evaluation in Table 6, but it seems to indicate
that an increase in event extraction accuracy would
have flow-on benefits in modification detection.

4 Discussion

4.1 Detrimental Effects of Parser Choice

The biggest surprise here was that clearnlp, a
more accurate dependency parser for the biomed-
ical domain, as evaluated on the CRAFT tree-
bank, gave a substantially lower event extrac-
tion F-score than the CJM parser. To determine
whether preprocessing caused the differences, we
replaced the existing modules (sentence-splitting
from JSBD and tokenisation/POS-tagging from
clearnlp) with the BioC-derived versions from the
CJM pipeline, but this yielded only an insignifi-
cant decrease in accuracy.

Over the same training data, the optimised rules
from CJM have an average of 2.6 nodes per sub-
graph path, compared to 3.9 nodes per path using
clearnlp. A longer path is less likely to match
than a shorter path, so this may help to explain
the lower generalisability of the clearnlp-derived
rules. While it is possible for a longer subgraph
to match just as generally, if the test sentences
are parsed consistently, in general there are more
nodes and edges which can fail to match due to mi-
nor surface variations. One way to mitigate this is
to raise the ASM distance thresholds to compen-
sate for this; preliminary experiments suggest it
would provide a small (∼ 1%) boost in F-score but
this would not close the gap between the parsers.

Both parsers produce outputs with Stanford
Dependency labels (de Marneffe and Manning,
2008), so we might naively expect similar graph
topology and subgraph pattern lengths. However,
the CJM pipeline produces graphs in the “CCpro-
cessed” SD format, which are simpler and denser.
If a node N has a link to a node O with a conjunc-
tion link to another node P (from e.g. and), an ex-
tra link with the same label is added directly from
N to P in the CCprocessed format. This means
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NEGATION SPECULATION

Eval Events (F-sc) Cues P / R / F P / R / F

Dev
GE13+TEES+EVEX (40.93) Basic 32.69 / 13.71 / 19.32 37.04 / 14.49 / 20.83
GE13+TEES+EVEX (40.93) B + Data 32.69 / 12.88 / 18.48 39.71 / 17.20 / 24.00
Oracle (100.0) B + Data 82.48 / 71.07 / 76.35 78.79 / 67.71 / 72.83

Test
GE11+GE13 (43.55) B + Data 39.53 / 13.99 / 20.66 50.00 / 13.85 / 21.69
GE11+GE13+TEES+EVEX * (42.77) B + Data 32.76 / 15.38 / 20.94 34.15 / 14.36 / 20.22

Table 6: Results for SPECULATION and NEGATION using automatically-annotated events (showing the
F-score of the configuration), as well as using oracle event annotations from the gold standard, over our
development set and the official test set. Rules are learned from GE13+GE11 gold data (excluding any
test data). Cues for learning rules are either the basic manually-specified set (34 SPEC/21 NEG) or the
augmented set with data-driven additions (47 SPEC/26 NEG). * denotes the official submission.

there are more direct links in the graph, match-
ing the semantics more closely. The shortest path
from N to P is now direct, instead of via O, which
could enable the CJM pipeline to produce more
general rules.

To evaluate how much this detrimentally af-
fects the clearnlp pipeline, as a post hoc in-
vestigation, we implemented a conversion mod-
ule. Using Stanford Dependency parser code,
we replicated the CCprocessed conversion on the
clearnlp graphs, reducing the average subgraph
pattern length to 2.8, and slightly improving ac-
curacy. Over our development set, compared to
the results in Table 3 it gave a 0.7% absolute F-
score boost over using GE13 training-data only,
and 1.1% over using GE11 and GE13 training data
(in both cases improving recall). Over the test
set, the improvement was greater, with a P/R/F
of 35.66/64.99/46.05, a 2.5% increase in F-score
compared to the results in Table 5 and only 2.9%
less than the official Liu et al. (2012) submission.

Clearly some of the inter-parser discrepancies
are due to surface features and post-processing,
and as noted above, we can also achieve small im-
provements by relaxing ASM thresholds, so some
problems may be caused by the default parameters
being suboptimal for the parser. However, the ac-
curacy is still lower where we would expect it to
be higher, and this remaining discrepancy is diffi-
cult to explain without performing a detailed error
analysis, which we leave for future work.

4.2 Effect of additional data

Our initial intuition that using additional noisy
training data during the training of the system
would improve the performance is supported by
the results in Table 2. Table 3 shows that us-

ing a larger set of manually annotated data based
on 2011 GE task data also improves performance.
However, these tables also indicate that adding
manually annotated data produces an increase in
performance comparable to adding the noisy data,
despite its smaller size, and when using this man-
ually annotated set together with the noisy data,
the improvement resulting from the noisy data is
smaller (Table 5). Noisy data was only used dur-
ing training, which limits its effectiveness—any
rule extracted from automatically acquired anno-
tations that are not seen during optimisation of the
rule set will have a lower weight. On the other
hand, we found that using noisy data for optimi-
sation seemed to decrease performance. Together,
these results suggest that studying strategies, pos-
sibly self-training, for selection of events from the
noisy data to be used during rule set optimisation
in the ASM method are warranted.

5 Conclusion

Using additional training data, whether manually
annotated or noisy, improves the performance of
our baseline event extraction system. The gains
that we achieved by adding training data, however,
were outweighed by a loss of performance due to
our parser substitution, with longer dependency
subgraphs limiting rule generalisability the most
likely explanation. Our experiments demonstrate
that while a given parser might be ‘better’ in one
evaluation context, that advantage may not trans-
late to improved performance in a downstream
task that depends strongly on the parser output.
We presented an extension of the subgraph match-
ing methodology to extract modification events
which, when based on a good core event extrac-
tion system, shows very promising results.
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Abstract

This paper describes the HDS4NLP en-
try to the BioNLP 2013 shared task on
biomedical event extraction. This system
is based on a pairwise model that trans-
forms trigger classification in a simple
multi-class problem in place of the usual
multi-label problem. This model facili-
tates inference compared to global models
while relying on richer information com-
pared to usual pipeline approaches. The
HDS4NLP system ranked 6th on the Ge-
nia task (43.03% f-score), and after fix-
ing a bug discovered after the final submis-
sion, it outperforms the winner of this task
(with a f-score of 51.15%).

1 Introduction

Huge amounts of electronic biomedical docu-
ments, such as molecular biology reports or ge-
nomic papers are generated daily. Automatically
organizing their content in dedicated databases en-
ables advanced search and ease information re-
trieval for practitioners and researchers in biology,
medicine or other related fields. Nowadays, these
data sources are mostly in the form of unstruc-
tured free text, which is complex to incorporate
into databases. Hence, many research events are
organized around the issue of automatically ex-
tracting information from biomedical text. Efforts
dedicated to biomedical text are necessary because
standard Natural Language Processing tools can-
not be readily applied to extract biomedical events
since they involve highly domain-specific jargon
and dependencies (Kim et al., 2011).

This paper describes the HDS4NLP entry to one
of these challenges, the Genia task (GE) of the
BioNLP 2013 shared task. The HDS4NLP sys-
tem is based on a novel model designed to directly
extract events having a pairwise structure (trigger,

Figure 1: Part of a sentence and corresponding events for the
BioNLP 2013 GE task.

argument), in contrast to standard pipeline models
which first extract the trigger and then search for
the argument. Combining these two steps enables
to use more sophisticated event features while
largely avoiding error propagation. The model us-
age is also simple, in the sense that it does not rely
on any complex and costly inference process as
required by joint global systems based on Integer
Linear Programming.

The official HDS4NLP entry was only ranked
6th on the GE task (with 43.03% f-score). How-
ever, after fixing a bug discovered after the final
submission, the HDS4NLP system outperformed
the winner of the GE task, with a f-score 51.15%
to be compared to the 50.97% of EVEX.

2 BioNLP Genia Task
BioNLP Genia task aims at extracting event for-
mulas from text sentences, which are defined as
sequences of tokens (words, numbers, or sym-
bols). Events are constituted of two elements: an
event trigger and one or several arguments. The
event trigger is a sequence of tokens that indicates
an event is mentioned in the text. The arguments
of an event are participants, which can be pro-
teins, genes or other biomedical events. Figure 1
illustrates the GE task: given 3 proteins “Tax”,
“CBP” and “p300”, one must detect “recruit” as
an event trigger and then extract two formulas:
( “recruit”, Theme:“Tax”, Theme2:“CBP”) and
(“recruit”, Theme:“Tax”, Theme2:“p300”), both
with event type Binding.

In our work, we process tokens differently de-
pending on whether they are marked as proteins in
the annotation or not; the latter are termed candi-
date tokens. A key part of the task is to detect the
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trigger tokens among the candidates. The BioNLP
2013 GE task considers 13 types of events, but we
only dealt with the 9 types already existing in the
2011 GE task, because there was not enough data
on the newly defined event types for proper train-
ing or model selection.

Table 1 lists these events and their properties.
The 9 event types may be merged into three main
groups: the first 5 have a single argument, a
Theme; the Binding event can accept up to two
arguments (2 Themes); the last 3 types also ac-
cept up to two arguments, a Theme and an optional
Cause. In the following, we refer to the first 6
types as non-regulation events and to the remain-
ing 3 as regulation ones.

Event type Principal arg Optional arg
Gene_expression Theme (P)
Transcription Theme (P)
Protein_catabolism Theme (P)
Phosphorylation Theme (P)
Localization Theme (P)
Binding Theme (P) Theme2 (P)
Regulation Theme (E/P) Cause (E/P)
Positive_regulation Theme (E/P) Cause (E/P)
Negative_regulation Theme (E/P) Cause (E/P)

Table 1: Main types of events with their arguments (P stands
for Protein, E for Event).

3 Previous Work
The preceding approaches falls into two main cat-
egories: pipeline incremental models and joint
global methods.

Pipeline approaches (Sætre et al., 2009; Co-
hen et al., 2009; Björne et al., 2009) are the sim-
plest way to tackle the problem of event extrac-
tion. A sequence of classifiers are ran on the text to
successively (1) detect non-regulation event trig-
gers, (2) assign them arguments, (3) detect regula-
tion event triggers and (4) assign them arguments.
Such systems are relatively easy to set up but suf-
fer from error cascading. Besides, they detect trig-
gers using classifiers solely taking tokens as in-
put, or involve dependency parse information by
tree depth other than a concrete potential argument
(Björne et al., 2009).

In the corpuses used in 2009 and 2011 for the
GE task, some tokens belong to several events of
different types; their classification thus requires to
solve a multi-label problem. We believe that de-
tecting triggers in isolation breaks the structured
problem down to excessively fine-grained sub-
tasks, with contextual information loss that leads
to ill-posed problems.

Global approaches (Riedel et al., 2009; Mc-
Closky et al., 2011) aim at solving the whole task
at once, so as to resolve the drawbacks of pipeline
models. In (McClosky et al., 2011), event an-
notations are converted into pseudo-syntactic rep-
resentations and the task is solved as a syntactic
extraction problem by traditional parsing meth-
ods. (Riedel et al., 2009; Riedel and McCallum,
2011a; Riedel et al., 2011; Riedel and McCallum,
2011b) encode the event annotations as latent bi-
nary variables indicating the type of each token
and the relation between each pair of them (pro-
tein or candidate) in a sentence. The state of these
variables is predicted by maximizing the global
likelihood of an Integer Linear Program.This joint
model achieves good performance (winner of the
2011 GE task), but might be overly complicated,
as it considers all possible combinations of tokens,
even unlikely ones, as potential events together.

4 Pairwise Model
Our new pairwise approach operates at the sen-
tence level. We denote CS = {ei}i the set of can-
didate tokens, AS = {aj}j the set of candidate
arguments in a given sentence S, and the set of
event types (augmented by None) is denoted Y .

The first step of a pipeline model assigns labels
to candidate tokens ei ∈ CS . Instead, our pair-
wise model addresses the problem of classifying
candidate-argument pairs (ei, aj) ∈ CS×AS . De-
noting fk the binary classifier predicting the event
type k ∈ Y , event extraction is performed by:

∀(ei, aj) ∈ CS ×AS , ŷij = arg max
k∈Y

fk(ei, aj) .

Variable ŷij encodes the event type of the pair
made of the candidate token ei and the argument
aj , an event being actually extracted when ŷij 6=
None. For the fk classifiers, we use Support Vec-
tor Machines (SVMs) (using implementation from
scikit-learn.org) in a one-vs-rest setting.
We used procedures from (Duan et al., 2003; Platt,
1999; Tax and Duin, 2002) to combine the outputs
of these binary classifiers in order to predict a sin-
gle class from Y for each pair (ei, aj).

This simple formulation is powerful because
classifying a pair (ei, aj) as not-None jointly de-
tects the event trigger ei and its argument aj . For
all event types with a single argument, predicting
ŷ variables directly solves the task. Working on
pairs (ei, aj) also allows to take into account in-
teractions, in particular through dedicated features
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describing the connection between the trigger and
its argument (see Section 6). Finally, classifying
pairs (ei, aj) is conceptually simpler than classi-
fying ei: the task is a standard classification prob-
lem instead of a multi-label problem. Note that
entity ei may still be assigned to several categories
through the allocation of different labels to pairs
(ei, aj) and (ei, ak).

Though being rather minimalist, the pairwise
structure captures a great deal of trigger-argument
interactions, and the simplicity of the structure
leads to a straightforward inference procedure.
Compared to pipeline models, the main drawback
of the pairwise model is to multiply the number of
examples to classify by a card(AS) factor. How-
ever, SVMs can scale to large numbers of exam-
ples and card(AS) is usually low (less than 10).

5 Application to BioNLP Genia Task
For any given sentence, our system sequentially
solves a set of 4 pairwise relation extraction prob-
lems in the following order:

1. Trigger-Theme pair extraction (T-T),
2. Binding-Theme fusion (B-T),
3. Regulation-Theme pair extraction (R-T),
4. Regulation-Cause assignment (R-C).

Steps T-T and R-T are the main event extrac-
tion steps because they detect the triggers and one
argument. Since some events can accept multi-
ple arguments, we supplement T-T and R-T with
steps B-T and R-C, designed to potentially add ar-
guments to events. All steps are detailed below.

Steps T-T & R-T Both steps rely on our pair-
wise model to jointly extract event triggers, deter-
mine their types and corresponding themes. How-
ever, they detect different triggers with different
potential argument sets: for step T-T, AS con-
tains only proteins and Y = {Gene_expression,
Transcription, Protein_catabolism, Phosphoryla-
tion, Localization, Binding, None}. For step R-
T, AS contains proteins and all predicted trig-
gers, Y = {Regulation, Positive_regulation, Neg-
ative_regulation, None}.

Steps B-T & R-C These steps attempt to assign
optional arguments to Binding or regulation events
detected by T-T or R-T respectively. They proceed
similarly. Given an extracted event (ei, aj) and a
candidate argument set AS = {ak}, all combina-
tions {(ei, aj , ak)|k 6= j} are classified by a bi-
nary SVM. For B-T, AS contains all the proteins

Type Features
Surface features Stem

String after ’-’
String while pruning ’-’ and/or ’/’
Prefix of token

Semantic features Lemma from WordNet
Part-of-speech (POS) tag
Token annotated as protein

Table 2: Word features.

of the sentence S that were extracted as argument
of a Binding event by T-T. For R-C, AS contains
all proteins and triggers detected by T-T. In both
cases, a post-processing step is used to select the
longest combination.

6 Features
We present here our features and preprocessing.

Candidate set For each sentence S, the set CS
is built using a trigger gazetteer: candidates are
recursively added by searching first the longest to-
kens sequences from the gazetteer. For candidates
with several tokens, a head token is selected using
an heuristic based on the dependency parse.

Candidate tokens Three types of features are
used, either related to the head token, a word win-
dow around it, or its parent and child nodes in the
dependency tree. Table 2 lists word features.

Proteins The protein name is a useless feature,
so the word features of the head token were re-
moved for proteins. Word features of the neigh-
boring tokens and of the parent node in the de-
pendency tree were still included. Proteins are
also described using features extracted from the
Uniprot knowledge base (uniprot.org).

Pairwise relations Our pairwise method is apt
to make use of features that code interactions be-
tween candidate triggers and arguments. These
patterns are defined from the path linking two to-
kens in the dependency parse tree of the sentence.

Special care was taken to perform tokenization
and sentence splitting because this has an impor-
tant impact on the quality of the dependency parse
trees. Data was split in sentences using both the
nltk toolkit (nltk.org) and the support anal-
ysis provided for the BioNLP 2013 GE task. To-
kenization was carried out using a slightly mod-
ified version of the tokenizer from the Stanford
event parser (McClosky et al., 2011). The de-
pendency parse trees were finally obtained using
phrase structure parser (McClosky et al., 2010)
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combined with post-processing using the Stanford
corenlp package (De Marneffe et al., 2006).

Incorporating dependency information into the
pairwise model relies on the process encoding the
path into feature vectors. Many formatting meth-
ods have been proposed in previous works, such
as E-walks, that format the path into triplets (dep,
word, dep), V-walks that use triplets (word, dep,
word) or simply N-grams of words, following the
dependency parse: words are usually encoded via
stem and POS tags, and dep by the dependency
labels (Miwa et al., 2010). All these imperfect
representations lose a lot of information and can
even add noise, especially when the path is long.
Hence dependency parse features are processed
only for pairs for which the candidate-argument
path length is below a threshold whose value is a
hyper-parameter.

7 Experimental Results
The hyper-parameters of our system have been op-
timized on the BioNLP 2013 GE task development
set, after training on the corresponding training
set. Using these hyper-parameter values, the fi-
nal model submitted for test evaluation on the GE
task server has been trained on all documents from
training and development sets of BioNLP 2011
and 2013 GE tasks.

Table 3 lists the test results of our official sub-
mission. Our system achieved the best score for
SIMPLE ALL and second best for PROT-MOD
ALL, but it suffered from a rather poor perfor-
mance on REGULATION ALL, causing a low
overall score relegating the submission to the 6th
place in the competition.

Event Class recall prec. f-score
SIMPLE ALL 75.27 83.27 79.07
Binding 41.74 33.74 37.32
PROT-MOD ALL 70.68 75.84 73.17
REGULATION ALL 16.67 30.86 21.64
EVENT ALL 37.11 51.19 43.03

Table 3: Official test evaluation results.

After the test results were disclosed, we sus-
pected that our poor results on REGULATION
ALL were due to a bug, which was eventually dis-
covered in the post-processing step of R-C. We
re-trained our system after having fixed the bug
on the latest revision of the training set (our of-
ficial entry used revision 2 of the training set in-
stead of revision 3, which resulted in slightly dif-
ferent annotations for Binding events). This led

Event Class recall prec. f-score
Binding 43.24 34.37 38.30
REGULATION ALL 31.43 47.70 37.89
EVENT ALL 45.96 57.66 51.15

Table 4: Test evaluation results after bug fix.

to the results displayed in Table 4 (we only show
results that differ from Table 3). Our system ac-
tually achieves a EVENT ALL f-score of 51.15%,
instead of 43.03%: this rating is higher than the
best score of the BioNLP 2013 GE task (50.97%).

To compare to previous models, we also trained
our system on BioNLP2011 GE task training set
and evaluated it on development set. Our ap-
proach reaches a EVENT ALL f-score of 51.28%,
which is lower than that of this challenge’s winner,
the FAUST system (Riedel et al., 2011) (55.9%).
However, FAUST is a combination of several dif-
ferent models, compared to the UMass model
(Riedel and McCallum, 2011a), which is the main
constituent of FAUST, we achieve a higher EVT
score (74.93% vs 74.7%) but a lower overall score
(51.28% vs 54.8%). Our system is outperformed
on Binding and Regulation events; this indicates
the directions in which it should be improved.

8 Conclusion

This paper introduced a pairwise model designed
for biomedical event extraction, which, after bug
fix, outperforms the best performance of the
BioNLP 2013 GE task. This system decomposes
the overall task into the multi-class problem of
classifying (trigger, argument) pairs. Relying of
this pairwise structure for input examples allows
to use joint (trigger, argument) features, to avoid
costly global inference procedures over sentences
and to solve a simple multi-class problem instead
of a multi-label multi-class one.

Still, some issues remain. We currently cannot
extract regulation events whose arguments are an-
other regulation event. We are also subject to some
cascading error between steps T-T and R-T. In fu-
ture works, we intend to improve our system by
turning it into a dynamic online process that will
perform recursive event extraction.
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Abstract 

Semantic querying over the biomedical litera-
ture has gained popularity, where a semantic 
representation of biomedical documents is re-
quired. Previous BioNLP Shared Tasks exer-
cised semantic event extraction with a small 
number of pre-defined event concepts. The 
GRO task of the BioNLP’13-ST imposes the 
challenge of dealing with over 100 GRO con-
cepts. Its annotated corpus consists of 300 
MEDLINE abstracts, and an analysis of inter-
annotator agreement on the annotations by two 
experts shows Kappa values between 43% and 
56%. The results from the only participant are 
promising with F-scores 22% (events) and 
63% (relations), and also lead us to open is-
sues such as the need to consider the ontology 
structure. 

1 Background 

As semantic resources in the biomedical domain, 
including ontologies and linked data, increase, 
there is a demand for semantic querying over the 
biomedical literature, instead of the keyword 
searching supported by conventional search en-
gines (e.g. PubMed). The semantic search re-
quires adapting Semantic Web technologies to 
the literature, to analyze the complex semantics 
described in biomedical documents and to repre-
sent them with ontology concepts and relations. 
The ontology-based formal semantics will then 
form a Semantic Web. The GRO task of the 
BioNLP Shared Tasks 2013 is to provide a plat-
form to develop and evaluate systems for identi-

fying complex semantic representation of bio-
medical documents in the domain of gene regula-
tion. 
   There are solutions for servicing the ontology 
concepts recognized in the biomedical literature, 
including TextPresso (Müller et al., 2004) and 
GoPubMed (Doms and Schroeder, 2005). They 
utilize term recognition methods to locate the 
occurrences of ontology terms, together with 
terminological variations. Systems like EBIMed 
(Rebholz-Schuhmann et al., 2007) and FACTA 
(Tsuruoka et al., 2008) go further to collect and 
display co-occurrences of ontology terms. How-
ever, they do not extract events and relations of 
the semantic types defined in ontologies. 

The annotation of those ontology event and re-
lation instances described in text was initiated in 
the biomedical domain by the GENIA corpus 
(Kim et al., 2003), and the tasks of the BioNLP 
Shared Tasks 2009 and 2011 aimed at automati-
cally identifying such ontological annotations. 
However, the tasks dealt only with a small num-
ber of ontology concepts (less than 20 unique 
concepts in total), considering the thousands of 
concepts defined in standard biomedical ontolo-
gies (e.g. Gene Ontology, anatomy ontologies). 
The goal of the Gene Regulation Ontology 
(GRO) task is to confirm if text mining tech-
niques can be scaled up to cover hundreds of 
(and eventually thousands of) concepts, and 
thereby to address the complex semantic repre-
sentation of biomedical documents. 

The GRO task is to automatically annotate bi-
omedical documents with the Gene Regulation 
Ontology (Beisswanger et al., 2008). GRO is a 
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conceptual model of gene regulation and in-
cludes 507 concepts, which are cross-linked to 
such standard ontologies as Gene Ontology and 
Sequence Ontology and are integrated into a 
deep hierarchical structure via is-a and part-of 
relations. Note that many of the GRO concepts 
are more specific than those used in the previous 
BioNLP Shared Tasks. The GRO is one of the 
first ontological resources that bring together 
different types of ontology concepts and relations 
in a coherent structure. It has two top-level cate-
gories of concepts, Continuant and Occurrent, 
where the Occurrent branch has concepts for 
processes that are related to the regulation of 
gene expression (e.g. Transcription, 
RegulatoryProcess), and the Continuant branch 
has concepts mainly for physical entities that are 
involved in those processes (e.g. Gene, Protein, 
Cell). It also defines semantic relations (e.g. 
hasAgent, locatedIn) that link the instances of the 
concepts. The GRO task in the BioNLP Shared 
Task (ST) 2013 assumes that the instances of 
Continuant concepts are provided and focuses on 
extracting the instances of the events and rela-
tions defined in the GRO. 

This paper is organized as follows: We de-
scribe the manual construction of the training 
and test datasets for the task in Section 2 and ex-
plain the evaluation criteria and the results in 
Section 3. 

2 Corpus annotation 

2.1 Annotation elements 

The BioNLP’13-ST GRO task follows the repre-
sentation and task setting of the ST’09 and ST’11 
main tasks. The representation involves three 
primary categories of annotation elements: enti-
ties (i.e. the instances of Continuant concepts), 
events (i.e. those of Occurrent concepts) and re-
lations. Mentions of entities in text can be either 
contiguous or discontinuous spans that are as-
signed the most specific and appropriate Contin-
uant concepts (e.g. TranscriptionFactor, 
CellularComponent). The event annotation is 
associated with the mention of a contiguous span 

in text (called event trigger) that explicitly sug-
gests the annotated event type (e.g. ‘controls’ - 
RegulatoryProcess). If a participant of an event, 
either an entity or another event, can be explicit-
ly identified with a specific mention in text, the 
participant is annotated with its role in the event. 
In this task, we consider only two types of roles 
(i.e. hasAgent, hasPatient), where an agent of an 
event is the entity that causes or initiates the 
event (e.g. a protein that causes a regulation 
event), and a patient of an event is the entity up-
on which the event is carried out (e.g. the gene 
that is expressed in a gene expression event) 
(Dowty, 1991). The semantic relation annotation 
is to annotate other semantic relations (e.g. 
locatedIn, fromSpecies) between entities and/or 
events, without event triggers. Figure 1 illustrates 
some of the annotations.  

2.2 Document selection  

The corpus texts are selected based on the rele-
vance to the topic of gene regulation in humans. 
Specifically, we first obtained a list of human 
transcription factors (TFs) and then used Pub-
Med to collect a set of candidate documents. A 
random subset of 300 documents was then se-
lected for the GRO task from the collection. We 
annotated entities, events, and relations in them, 
and divided them into three subsets of 150 (train-
ing), 50 (development), and 100 (test) docu-
ments. In fact, 100 out of the 200 documents for 
training and development are from Kim et al. 
(2011a), though we revised and updated their 
annotations based on new annotation guidelines, 
some of which are explained below.  

2.3 Annotation guidelines 

The first step of annotating ontology concepts in 
the text is the recognition of a word or a phrase 
that refers to a concept of the GRO. Such a word 
or phrase, called mention, is one of the names of 
the concept, its synonyms, or expressions that are 
semantically equivalent to or subsumed by the 
concept. For each mention, we annotate it with 
the single, most specific and appropriate concept, 
but not with any general concept. For example, if 

Figure 1. Example annotations of the GRO corpus 
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a protein is clearly mentioned as a transcription 
factor in the text, we annotate it with the GRO 
concept TranscriptionFactor, not with Protein. 

There are many issues in the annotation, and 
we here introduce our guidelines on two of them 
about complex noun phrases and overlapping 
concepts.  

1) If a noun phrase refers to an event that cor-
responds to an Occurrent concept and includes 
mentions of other concepts, we consider sepa-
rately annotating the multiple mentions in the 
phrase with concepts and relations. For example 
in the phrase “nephric duct formation”, we anno-
tate it as follows:  

• “formation”:CellularProcess hasPatient 
“nephric duct”:Cell 

This means that the phrase indicates an individu-
al of CellularProcess, which is an event of form-
ing an entity of Cell, which is nephric duct. An-
other example noun phrase that involves multiple 
mentions is “Sim-2 mRNA expression”, which is 
annotated as follows: 

• “expression”:GeneExpression hasPatient 
(“mRNA”:MessangerRNA encodes 
“Sim-2”:Gene) 

However, we do not allow such multi-mention 
annotation on e.g.  

• “mRNA expression”, because this phrase 
is too generic and frequent so that a mul-
ti-mention annotation for it, “expres-
sion”:GeneExpression hasPatient 
“mRNA”:MessangerRNA, does not en-
code any ‘useful’ information 

•  “nuclear factor”, because this factor is 
not always located in nucleus. 

Therefore, we decided that, in general, we avoid 
annotation of generic information, but consider a 
thread of information specific only if it involves 
specific entities like individual gene/protein and 
cell (e.g. Sim-2, nephric duct). Also, we did not 
divide a noun phrase to multiple mentions if the 
relation between the mentions is not always true 
(cf. “nuclear factor” – “factor”:Protein locatedIn 
“nuclear”:Nucleus). 

2) As some GRO concepts are overlapping, we 
made the following guidelines: 
(a) When there is ambiguity between Increase 

(Decrease), Activation (Inhibition), and 
PositiveRegulation (NegativeRegulation), we 
annotate 
o binary relations with PositiveRegulation, 

ignoring Activation 
(e.g., “augment”:PositiveRegulation hasAgent 
“Nmi”:Protein hasPatient (“recruit-

ment”:Transport hasPatient “coactivator pro-
tein”: TranscriptionCoactivator)) 

o unary relations with Increase 
(e.g., “enhance”:Increase hasPatient “transcrip-
tion”:Transcription) 
   Note that we cannot exchange the two concepts 
of PositiveRegulation and Increase in the two 
examples due to the arity restriction. 
(b) Binding concepts are ambiguous. We anno-

tate as follows: 
o For such a GRO concept as "Binding of 

A to B", A should be the agent and B the 
patient. 

(For example, when we annotate 
BindingOfProteinToDNA and 
BindingOfTFToTFBindingSiteOfProtein, Protein 
and TF will be agents, and DNA and 
BindingSiteOfProtein will be patients, respec-
tively.) 

o For such a GRO concept as "Binding to 
A" for binary relation between two enti-
ties of the same type, both entities should 
be patients. 

(For example, in the events of binding between 
proteins with BindingToProtein and of binding 
between RNAs with BindingToRNA, the pro-
teins and the RNAs, respectively, will all be pa-
tients.) 

Other annotation guidelines can be found at the 
task homepage1. 

2.4 Annotation 

Two annotators with biology background anno-
tated the documents with GRO entities, events 
and relations. They used the Web-based annota-
tion tool brat (Stenetorp et al., 2012) for the an-
notation. Annotator A is the one who annotated 
the earlier version of the corpus (Kim et al., 
2011a). He first revised the earlier version of 100 
abstracts (named Set 1) and drafted the new an-
notation guidelines. Annotator B studied the 
drafted annotations and guidelines and then fur-
ther revised them, and the two annotators togeth-
er updated and made agreements on final ver-
sions of the annotations and guidelines. They 
selected two more sets of 100 abstracts each 
(named Sets 2 and 3), where Set 2 was combined 
with Set 1 to become the training and develop-
ment datasets, and Set 3 became the test dataset. 
They updated the guidelines after annotating Sets 
2 and 3 independently and together combining 
their annotations. 

                                                 
1 http://nlp.sce.ntu.edu.sg/wiki/projects/bionlpst13grotask/ 
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We estimated the inter-annotator agreement 
(IAA) between the two annotators for Sets 2 and 
3 with Kappa measures as shown in Table 1. The 
Kappa values between 43% and 56% are moder-
ately acceptable, though not substantial, which is 
expected with the high degree of the ontology’s 
complexity and also with the high number of 
mentions (56 per abstract; see Table 2). Note that 
the agreement is met, only when the two annota-
tors annotate the same concept on the same men-
tion with the same boundaries and, if any, the 
same roles/arguments, not considering the gener-
alization criteria used for evaluation (see Section 
3 for details). If we relax the boundary restriction 
(i.e. approximate span matching of (Kim et al., 
2009)), the Kappa values for events slightly in-
crease to 47% (Set 2) and 45% (Set 3). Also note 
that the agreement on relations is higher than 
those on entities and events.  

We analyzed the different annotations by the 
two annotators as follows: As for the entity anno-
tations, 84% of the differences are boundary 
mismatches, while the rest are due to mismatch 
of entity types and to missing by either of the 
annotators. As for the event annotations, 56% of 
the differences are also boundary mismatches, 
and 31% are missed by either of the annotators. 
The majority (71%) of the differences in relation 
annotations are due to missing by either annota-
tor, while the rest are mostly due to the differ-
ences in the entity annotations. 

One negative finding is that the agreement did 
not always increase from Set 2 to Set 3, which 
means the two annotators did not improve the 
alignment of their understanding about the anno-
tation even after making agreements on Set 2 
annotations. It may be too early to conclude, and 
the Kappa value might increase as the annotators 
examine more examples, since the annotation 
corpus size in total (Sets 1,2,3 together) is still 
small compared to the total number of GRO con-
cepts. After examining the IAA, we integrated 
the independently annotated sets and released the 
final versions of the three datasets at the task 
homepage. 
 
Table 1. Inter-annotator agreement re-
sults 
 Set 2 Set 3 
Entities  44.6% 43.8% 
Events  45.8% 43.2% 
Relations  54.7% 55.9% 
All 46.2% 45.3% 
 

2.5 Statistics 

Table 2 shows the number of MEDLINE ab-
stracts in each of the three datasets: training, de-
velopment, and test datasets. It also shows the 
number of instances for each of the following 
annotation types: entities (i.e. instances of Con-
tinuant concepts), event mentions (i.e. event trig-
gers), event instances (i.e. instances of Occurrent 
concepts), and relation instances. Note that rela-
tion instances are not associated with mentions 
like event instances. It also shows the number of 
unique entity/event types (i.e. unique GRO con-
cepts) used in the annotation of each dataset. The 
total number of unique entity types in the three 
datasets is 174, and that of unique event types is 
126. 
 
Table 2. Number of annotation elements 
 Train Dev. Test 
No. of documents 150 50 100
No. of entity mentions 5902 1910 4007
No. of event mentions 2005 668 2164
No. of event instances 2175 747 2319
No. of event instances 
with agents 

693 251 625

No. of event instances 
with patients 

1214 451 1467

No. of relation instances 1964 581 1287
No. of unique entity types 128 94 147
No. of unique event types 98 72 100
 
  Note that the frequency of event instances in the 
test dataset (23.2 per document) is much higher 
than those in the training and development da-
tasets (14.5 and 14.9 per document, respective-
ly). We compared the three datasets and ob-
served that several event types (e.g. 
GeneticModification), which are popular in the 
test dataset (e.g. GeneticModification is the 12th 
frequent type (2.3%)), seldom appear in the other 
two datasets. It may indicate that the annotators 
were getting aware of (or familiar with) more 
GRO concepts as they annotate more documents, 
where the test dataset is the last annotated. This 
sudden increase of frequency did not happen for 
the entity annotations, possibly because the two 
annotators were provided with candidate entity 
annotations, though of low quality, from a pre-
liminary dictionary-based entity recognition 
method and modified them. 
  Table 3 shows the number of mentions for the 
most frequent top-level Continuant concepts 
such as InformationBiopolymer, whose sub-
concepts include Gene and Protein, Cell, and 
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ExperimentalMethod. Please note that these fre-
quent concepts are closely related to the topic of 
gene regulation, and that this distribution may 
reflect to some degree the distribution of terms in 
the sub-domain of gene regulation, but not that in 
the whole MEDLINE. If you like to see the de-
scendant concepts of those top-level concepts, 
please refer to the latest version of the GRO2.  
 
Table 3. Number of mentions for frequent 
top-level Continuant concepts 
Level 2 Level 3 Level 4 Count 
Continuant/PhysicalContinuant 3647 
 MolecularEntity 2805 
 InformationBiopo

lymer 
2508 

 ComplexMolecula
rEntity 

140 

 Chemical 127 
 Ligand 27 
 LivingEntity 584 
 Cell 306 
 Organism 268 
 Tissue 170 
 CellComponent 77 
Continuant/NonPhysicalContinuant 359 
 ExperimentalMethod 123 
 Function 111 
 MolecularStructure 66 
 Locus 25 
 Phenotype 11 
 
  Table 4 shows the number of event instances 
for the most frequent top-level Occurrent con-
cepts. Table 5 shows the number of instances for 
each relation. 
 
Table 4. Number of event instances for 
frequent top-level Occurrent concepts 
Level 3 Level 4 Count 
Occurrent/Process/RegulatoryProcess 782 
 PositiveRegulation 217 
 NegativeRegulation 186 
Occurrent/Process/MolecularProcess 422 
 IntraCellularProcess 189 
Occurrent/Process/PhysiologicalProcess 418 
 OrganismalProcess 143 
Occurrent/Process/PhysicalInteraction 312 
 Binding 296 
Occurrent/Process/Mutation 82 
Occurrent/Process/Localization 77 

                                                 
2 http://www.ebi.ac.uk/Rebholz-srv/GRO/GRO.html 

 Transport 16 
Occurrent/Process/Decrease 73 
Occurrent/Process/Affecting 64 
 Maintenance 20 
Occurrent/Process/ExperimentalInterve
ntion 
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 GeneticModification 54 
Occurrent/Process/Increase 49 
Occurrent/Process/ResponseProcess 38 
 ResponseToChemicalStimul

us 
13 

 
Table 5. Number of relation instances 
Relation Count Relation Count 
locatedIn 405 hasPart 403 
fromSpecies 274 hasFunction 82 
resultsIn 56 encodes 49 
precedes 17 hasQuality 1 
 

3 Evaluation 

There was one submission for the GRO task of 
the BioNLP’13-ST, designated as “TEES-2.1” 
(Björne and Salakoski, 2013). For comparison 
purposes, the GRO task organizers produced re-
sults with a preliminary system by adapting our 
existing system, designated as OSEE (Kim and 
Rebholz-Schuhmann, 2011b), for event extrac-
tion and developing a simple machine learning 
model for relation identification. We describe 
these two systems briefly and compare their re-
sults with several criteria. 

3.1 System descriptions 

TEES-2.1 is based on multi-step SVM classifica-
tion, which automatically learns event annotation 
rules to train SVM classifiers and applies the 
classifiers for 1) locating triggers, 2) identifying 
event arguments, and 3) selecting candidate 
events.  

OSEE is a pattern matching system that learns 
language patterns for event extraction from the 
training dataset and applies them to the test da-
taset. It performs the three steps of TEES-2.1 in a 
single step of pattern matching, thus requiring a 
huge amount of patterns (eventually, a pattern for 
each combination of the features from the three 
steps) and failing to consider that many features 
of a step are independent from other steeps and 
also from event types and can thus be general-
ized.  

We added a simple Naïve Bayes model to the 
system for identifying (binary) semantic relations 
between entities, which utilizes such features as 
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entity strings, the distance between them, and the 
shortest path between the two entities in the de-
pendency structure of the source sentence, which 
is identified by Enju parser (Sagae et al., 2007). 

3.2 Evaluation criteria 

The GRO task follows some of the evaluation 
criteria of the Genia Event Extraction (GE) task 
of BioNLP-ST 2009 (Kim et al., 2009), includ-
ing strict and approximate matching, and also 
introduce new criteria that consider 1) the hierar-
chical structure of the GRO and 2) parent and/or 
grandparent of answer concept. We here explain 
these new criteria in detail. 

1) In this scheme of evaluation, the event re-
sults of a participant are classified into the GRO 
concepts at the third level (see Table 4 for exam-
ples), which are ancestors of their labeled clas-
ses, and the evaluation results are accumulated 
for each of those concepts at the third level. This 
scheme may give us insights on which categories 
the participant system shows strength or weak-
ness. 

2) This scheme is to deal with such a case that 
the answer class is "GeneExpression", but a par-
ticipant gives "IntraCellularProcess" or 
"MolecularProcess", which are the parent and 
grandparent of the answer class, thus not entirely 
wrong nor too generic. For example, the scheme 
"Allowing parents" allows "IntraCellularProcess" 
to be a correct match to the answer class 
"GeneExpression", as well as the answer class 
itself. "Allowing grandparents" accepts the 
grandparents of answer classes as well as the 
parents. 

3.3 Evaluation results 

Table 6 shows the evaluation results of the two 
systems. Note that all the evaluation results in 
terms of precision, recall, and F-score in all the 
tables are percentages. The performance of the 
TEES-2.1 systems, which is clearly better than 
the OSEE system, is lower than its performance 
for other tasks of the BioNLP’13-ST, which is 
understandable, considering 1) the higher num-
ber of GRO concepts than those for the other 
tasks and 2) the low Kappa value of the inter-
annotator agreement. 

It also shows that the evaluation scheme that al-
lows the parents/grandparents of answer con-
cepts for acceptance does not greatly help in-
creasing the performance, which may mean that 
the systems are designed to aim individual con-
cepts, not considering the ontology structure. 
This issue of considering the structure of the on-

tology in event extraction can be an interesting 
future work. 
 
Table 6. Evaluation results (percentage) 
Evaluation 
scheme 

TEES-2.1 OSEE 
R P F R P F 

Strict match-
ing 

15 37 22 10 18 13 

Approximate 
boundary 
matching 

16 39 23 10 20 14 

Approximate 
recursive 
matching 

16 39 23 12 20 15 

Allowing par-
ents 

16 38 23 10 19 13 

Allowing 
grandparents 

16 38 23 10 19 13 

 
Table 7 shows the performance of the systems 
for different event categories in the third level of 
the GRO. It shows that the systems are good at 
extracting events of the categories of 
MolecularProcess (e.g. GeneExpression) and 
Localization (e.g. Transport), but are, expectedly, 
poor at extracting events of the categories with 
small number of training data (e.g. Decrease, 
ResponseProcess). 
 
Table 7. Evaluation results grouped into 
3rd-level GRO concepts (%) 
3rd-level con-

cept 
TEES-2.1 OSEE 

R P F R P F 
RegulatoryPr

ocess 
12 24 16 10 11 11

MolecularPro
cess 

30 60 40 23 51 31

Physiological
Process 

9 78 17 6 25 9

PhysicalIntera
ction 

18 33 24 3 6 4

Mutation 16 39 23 1 8 2
Localization 21 62 31 16 55 24

Decrease 3 12 4 0 0 0
Affecting 2 50 3 0 0 0
Increase 8 8 8 0 0 0

ResponseProc
ess 

3 8 4 5 50 10

 
  Table 8 shows the performance of the systems 
for the most frequent concepts and also for some 
selected infrequent concepts. From the results, 
we observe that the system performance for an 
event class does not reflect the number of train-
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ing data of the class, and that the performance of 
the syntactic pattern matching system OSEE is 
high for the event classes, for which the machine 
learning system TEES-2.1 also performs well. 
These observations may indicate that the current 
approaches to event extraction deal with event 
types independently, not considering the hierar-
chical (or semantic) relations between the event 
types nor relations between entity types. 
 
Table 8. Evaluation results for frequent 
and infrequent individual concepts (%) 

Event class 
(Count) 

TEES-2.1 OSEE 
R P F R P F 

RegulatoryPr
ocess (224) 

18 23 20 13 13 13

PositiveRegul
ation (217) 

11 22 15 11 9 9

NegativeRegu
lation (186) 

12 23 16 14 10 12

GeneExpressi
on (160) 

59 72 65 46 67 55

Disease (143) 0 0 0 1 100 3
Decrease (73) 3 12 4 0 0 0
Localization 

(61) 
16 71 27 20 60 30

Development
alProcess (61) 

23 82 36 23 78 35

BindingOfPro
teinToDNA 

(55) 

13 15 14 0 0 0

GeneticModif
ication (54) 

0 0 0 0 0 0

 
  Table 9 shows the performance of the systems 
for the GRO relations. These results of TEES in 
the relation identification of the GRO task (F-
scores between 50% and 87%) are much higher 
than the best results of relation identification 
(40% F-score) in the Bacteria Biotopes (BB) task 
(Nédellec et al., 2013), which is to extract rela-
tions of localization and part-of. Though the two 
relation identification tasks of GRO and BB can-
not be directly compared due to many differ-
ences (e.g. entity types, relation types, corpus 
sources), it may indicate that the GRO task cor-
pus has been annotated consistently enough to 
train a model with such high performance and 
that the low performance of event extraction 
compared to relation identification may be due to 
the big number of event types and would be re-
solved as the corpus size increases. 
 

Table 9. Evaluation results for relations 
(%) 

Relation TEES-2.1 OSEE 
R P F R P F 

locatedIn 45 83 58 66 38 48
hasPart 45 81 58 76 22 34

fromSpecies 80 96 87 89 41 56
hasFunction 38 73 50 62 20 30

encodes 49 89 63 45 2 5
Total 49 86 63 72 23 35

 

4 Conclusion 

The main challenge in this task is the increased 
size of the underlying ontology (i.e. GRO) and 
the more complex semantic representation in 
GRO compared to those in other ontologies used 
for ontology-based event extraction. The com-
plex structure of the GRO enables us to evaluate 
participant systems at different abstrac-
tion/generalization levels. The evaluation results 
of the participant are quite promising, leading us 
to open issues in this direction, including the in-
corporation of ontology structure in event extrac-
tion. We plan to extend the corpus semi-
automatically by incrementally updating the 
event extraction system with more training data. 
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Abstract

We present the design, preparation, results
and analysis of the Cancer Genetics (CG)
event extraction task, a main task of the
BioNLP Shared Task (ST) 2013. The CG
task is an information extraction task tar-
geting the recognition of events in text,
represented as structured n-ary associa-
tions of given physical entities. In addition
to addressing the cancer domain, the CG
task is differentiated from previous event
extraction tasks in the BioNLP ST series
in addressing a wide range of pathological
processes and multiple levels of biological
organization, ranging from the molecular
through the cellular and organ levels up to
whole organisms. Final test set submis-
sions were accepted from six teams. The
highest-performing system achieved an F-
score of 55.4%. This level of performance
is broadly comparable with the state of
the art for established molecular-level ex-
traction tasks, demonstrating that event ex-
traction resources and methods generalize
well to higher levels of biological orga-
nization and are applicable to the analy-
sis of scientific texts on cancer. The CG
task continues as an open challenge to
all interested parties, with tools and re-
sources available from http://2013.
bionlp-st.org/.

1 Introduction

Despite decades of focused research efforts, can-
cer remains one of the leading causes of death
worldwide. It is now well understood that cancer
is a broad class of diseases with a complex genetic
basis, involving changes in multiple molecular
pathways (Hanahan and Weinberg, 2000; Haber
et al., 2011). The scientific literature on cancer is

enormous, and our understanding of cancer is de-
veloping rapidly: a query of the PubMed literature
database for cancer returns 2.7 million scien-
tific article citations, with 140,000 citations from
2012. To build and maintain comprehensive, up-
to-date knowledge bases on cancer genetics, auto-
matic support for managing the literature is thus
required.

The BioNLP Shared Task (ST) series has been
instrumental in encouraging the development of
methods and resources for the automatic extrac-
tion of bio-processes from text, but efforts within
this framework have been almost exclusively fo-
cused on normal physiological processes and on
molecular-level entities and events (Kim et al.,
2011a; Kim et al., 2011b). To be relevant to can-
cer biology, event extraction technology must be
generalized to be able to address also pathologi-
cal processes as well as physical entities and pro-
cesses at higher levels of biological organization,
including e.g. mutation, cell proliferation, apop-
tosis, blood vessel development, and metastasis.
The CG task aims to advance the development of
such event extraction methods and the capacity for
automatic analysis of texts on cancer biology.

The CG task introduces a novel corpus cover-
ing multiple subdomains of cancer biology, based
in part on a previously introduced angiogenesis
subdomain resource (Pyysalo et al., 2012a). To
extend event extraction to upper levels of biolog-
ical organization and pathological processes, the
task defines a set of 18 entity and 40 event types
based on domain ontologies such as the Com-
mon Anatomy Reference Ontology and Gene On-
tology, more than doubling the number of entity
and event types from those considered in previous
BioNLP ST extraction tasks.

This paper presents the design of the CG task,
introduces the groups and systems taking part in
the task, and presents evaluation results and anal-
ysis.
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Gene or gene product Gene expression Positive regulation Carcinogenesis
Theme ThemeCause

treatment with L-NAME inhibited growth of adenocarcinoma

Planned process Simple chemical Negative regulation Growth Cancer
ThemeInstrument Theme

Cause

Figure 1: Examples of CG task entities and event structures. Visualizations generated using the BRAT

tool (Stenetorp et al., 2012).

2 Task definition

The CG task goal is the automatic extraction of
events (Ananiadou et al., 2010) from text. The
applied representation and task setting extend on
those first established in the BioNLP ST 2009
(Kim et al., 2011a). Each event has a type such as
GROWTH or METASTASIS and is associated with
a specific span of characters expressing the event,
termed the event trigger. Events can take any num-
ber of arguments, each of which is identified as
participating in the event in a specific role (e.g.
Theme or Cause). Event arguments may be either
(physical) entities or other events, allowing com-
plex event structures that capture e.g. one event
causing or preventing another. Finally, events may
be marked by flags identifying extra-propositional
aspects such as occurrence in a speculative or neg-
ative context. Examples of CG task extraction tar-
gets are shown in Figure 1.

The following sections present the categories
of annotation and the specific annotated types in-
volved in the CG task: entities, relations, events,
and event modifications. To focus efforts on novel
challenges, the CG task follows the general con-
vention of the BioNLP ST series of only requiring
participants to extract events and their modifica-
tions. For other categories of annotation, correct
(gold standard) annotations are provided also for
test data.

2.1 Entities

The entity types defined in the CG task are shown
in Table 1. The molecular level entity types largely
match the scope of types such as PROTEIN and
CHEMICAL included in previous ST tasks (Kim et
al., 2012; Pyysalo et al., 2012b). However, the CG
types are more fine grained, and the types PRO-
TEIN DOMAIN OR REGION and DNA DOMAIN OR

REGION are used in favor of the non-specific type
ENTITY, applied in a number of previous tasks
for additional event arguments (see Section 2.3).
The definitions of the anatomical entity types are

Type
ORGANISM
Anatomical entity

ORGANISM SUBDIVISION
ANATOMICAL SYSTEM
ORGAN
MULTI-TISSUE STRUCTURE
TISSUE
DEVELOPING ANATOMICAL STRUCTURE
CELL
CELLULAR COMPONENT
ORGANISM SUBSTANCE
IMMATERIAL ANATOMICAL ENTITY
PATHOLOGICAL FORMATION

CANCER
Molecular entity

GENE OR GENE PRODUCT
PROTEIN DOMAIN OR REGION
DNA DOMAIN OR REGION
SIMPLE CHEMICAL

AMINO ACID

Table 1: Entity types. Indentation corresponds to
is-a structure. Labels in gray identify groupings
defined for organization only, not annotated types.

progression of chronic myeloid leukemia (CML)

Development Cancer Cancer
EquivTheme

Figure 2: Example Equiv relation.

drawn primarily from the Common Anatomy Ref-
erence Ontology (Haendel et al., 2008), a small,
species-independent upper-level ontology based
on the Foundational Model of Anatomy (Rosse
and Mejino Jr, 2003). We refer to Ohta et al.
(2012) for more detailed discussion of the anatom-
ical entity type definitions.

2.2 Relations

The CG task does not target the extraction of
any standalone relations. However, following the
model of past BioNLP ST tasks, the CG corpus is
annotated by Equiv (equivalence) relations, sym-
metric, transitive relations that identify two entity
mentions as referring to the same entity (Figure 2).
These relations primarily mark local aliases and
are applied only in evaluation. When determining
whether a predicted event matches a gold event,
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Type Core arguments Additional arguments
Anatomical

DEVELOPMENT Theme (Anatomy)
BLOOD VESSEL DEVELOPMENT Theme?(Anatomy) AtLoc?

GROWTH Theme (Anatomy)
DEATH Theme (Anatomy)

CELL DEATH Theme?(CELL)
BREAKDOWN Theme (Anatomy)
CELL PROLIFERATION Theme (CELL)
CELL DIVISION Theme (CELL)
CELL DIFFERENTIATION Theme (CELL) AtLoc?
REMODELING Theme (TISSUE)
REPRODUCTION Theme (ORGANISM)

Pathological
MUTATION Theme (GGP) AtLoc?, Site?
CARCINOGENESIS Theme?(Anatomy) AtLoc?
CELL TRANSFORMATION Theme (CELL) AtLoc?
METASTASIS Theme?(Anatomy) ToLoc
INFECTION Theme?(Anatomy), Participant?(ORGANISM)

Molecular
METABOLISM Theme (Molecule)

SYNTHESIS Theme (SIMPLE CHEMICAL)
CATABOLISM Theme (Molecule)

AMINO ACID CATABOLISM Theme?(Molecule)
GLYCOLYSIS Theme?(Molecule)

GENE EXPRESSION Theme+(GGP)
TRANSCRIPTION Theme (GGP)
TRANSLATION Theme (GGP)
PROTEIN PROCESSING Theme (GGP)

PHOSPHORYLATION Theme (Molecule) Site?
(other chemical modifications defined similarly to PHOSPHORYLATION)

PATHWAY Participant (Molecule)
General

BINDING Theme+(Molecule) Site?
DISSOCIATION Theme (Molecule) Site?
LOCALIZATION Theme+(Molecule) AtLoc?, FromLoc?, ToLoc?

REGULATION Theme (Any), Cause?(Any)
POSITIVE REGULATION Theme (Any), Cause?(Any)
NEGATIVE REGULATION Theme (Any), Cause?(Any)

PLANNED PROCESS Theme*(Any), Instrument*(Entity)

Table 2: Event types and their arguments. Nesting corresponds to ontological structure (is-a/part-of ).
The affixes ?, *, and + denote zero or one, zero or more, and one or more, respectively. GGP abbreviates
for GENE OR GENE PRODUCT. For brevity, additional argument types are not shown in table: Loc
arguments take an anatomical entity type, and Site PROTEIN/DNA DOMAIN OR REGION.

differences in references to equivalent entities are
ignored, so that e.g. an event referring to CML
as its Theme instead of chronic myeloid leukemia
would be considered to match the event shown in
Figure 2.

2.3 Events

Table 2 summarizes the event types defined in the
CG task. As in most previous BioNLP ST task
settings, the event types are defined primarily with
reference to the Gene Ontology (GO) (Ashburner
et al., 2000). However, GO explicitly excludes
from its scope pathological processes, which are
critically important to the CG task. To capture
pathological processes, we systematically expand
the scope GO-based event types to include also

analogous processes involving pathological enti-
ties. For example, statements such as “cancer
growth” are annotated with GROWTH events by
analogy to processes such as “organ growth”. Sec-
ond, we introduce a number of event types ex-
plicitly accounting for pathological processes with
no analogous normal physiological process, such
as METASTASIS. Finally, many important effects
are discussed in the literature through statements
involving experimenter action such as transfect
and treat (Figure 1). To capture such state-
ments, we introduce the general PLANNED PRO-
CESS type, defined with reference to the Ontol-
ogy for Biomedical Investigations (Brinkman et
al., 2010).

The event argument roles largely match those

60



Domain Documents Query terms
Carcinogenesis 150 cell transformation, neoplastic AND (proteins OR genes)
Metastasis 100 neoplasm metastasis AND (proteins OR genes)
Apoptosis 50 apoptosis AND (proteins OR genes)
Glucose metabolism 50 (glucose/metabolism OR glycolysis) AND neoplasms

Table 3: Queries for document selection. All query terms were restricted to MeSH Term matches only
(e.g. "apoptosis"[MeSH Terms])

established in previous BioNLP ST tasks (Kim et
al., 2012; Pyysalo et al., 2012b): Theme identifies
the arguments undergoing the primary effects of
the event, Cause those that are responsible for its
occurrence, and Participant those whose precise
role is not stated. Site is used to identify specific
parts of Theme entities affected (e.g. phosphory-
lated residues) and the Loc roles entities where the
event takes place (AtLoc) and start and end points
of movement (FromLoc and ToLoc).

2.4 Event modifications

The CG task follows many previous BioNLP ST
tasks in including the event modification types
NEGATION and SPECULATION in its extraction
targets. These modifications apply to events,
marking them as explicitly negated and specula-
tively stated, respectively (Kim et al., 2011a).

2.5 Evaluation

The CG task evaluation follows the criteria orig-
inally defined in the BioNLP ST’09, requiring
events extracted by systems to otherwise match
gold standard events exactly, but allowing trigger
spans to differ from gold spans by single words
(approximate span matching) and not requiring
matching of additional arguments (see Table 2) for
events referred from other events (approximate re-
cursive matching). These criteria are discussed in
detail by Kim et al. (2011a).

3 Corpus

3.1 Document selection

The corpus texts are the titles and abstracts of pub-
lications from the PubMed literature database, se-
lected on the basis of relevance to cancer genet-
ics, specifically with respect to major subdomains
relating to established hallmarks of cancer (Hana-
han and Weinberg, 2000). Of the 600 documents
forming the CG task corpus, 250 were previously
released as part of the MLEE corpus (Pyysalo
et al., 2012a) involving the angiogenesis subdo-
main. The remaining 350 were selected by iter-

Item Train Devel Test Total
Documents 300 100 200 600
Words 66 082 21 732 42 064 129 878
Entities 11 034 3 665 6 984 21 683
Relations 466 176 275 917
Events 8 803 2 915 5 530 17 248
Modifications 670 214 442 1 326

Table 4: Corpus statistics

atively formulating PubMed queries consisting of
MeSH terms relevant to subdomains such as apop-
tosis and metastasis (Table 3). Following initial
query formulation, random sets of abstracts were
selected from each domain and manually exam-
ined to select a final set of documents that specifi-
cally discuss both the target process and its molec-
ular foundations.

3.2 Annotation process

The corpus annotation was created using the BRAT

annotation tool (Stenetorp et al., 2012) by a single
PhD biologist with extensive experience in event
annotation (Tomoko Ohta). For the entity anno-
tation, we created preliminary annotation using
the following automatic named entity and entity
mention taggers: BANNER (Leaman and Gonza-
lez, 2008) trained on the GENETAG corpus (Tan-
abe et al., 2005) for GENE OR GENE PRODUCT

entities, Oscar4 (Jessop et al., 2011) for SIMPLE

CHEMICAL and AMINO ACID entities, NERsuite1

trained on the AnEM corpus (Ohta et al., 2012)
for anatomical entities, and LINNAEUS (Gerner
et al., 2010) for ORGANISM mentions. Process-
ing was performed on a custom pipeline originally
developed for the BioNLP ST’11 (Stenetorp et al.,
2011). Following preliminary automatic annota-
tion, all entity annotations were manually revised
to create the final entity annotation.

By contrast to entity annotation, no automatic
preprocessing was applied for event annotation to
avoid any possibility of bias introduced by ini-
tial application of automatic methods. The event
annotation extended the guidelines and manual

1http://nersuite.nlplab.org
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Team Institution Members
TEES-2.1 University of Turku 1 BI (Björne and Salakoski, 2013)
NaCTeM National Centre for Text Mining 1 NLP (Miwa and Ananiadou, 2013)
NCBI National Center for Biotechnology Information 3 BI (Liu et al., 2013)
RelAgent RelAgent Private Ltd. 1 LI, 1 CS (Ramanan and Nathan, 2013)

UET-NII University of Engineering and Technology, Vietnam 6 CS (Tran et al., 2013)and National Institute of Informatics, Japan
ISI Indian Statistical Institute 2 ML, 2 NLP -

Table 5: Participating teams and references to system descriptions. Abbreviations: BI=Bioinformatician,
NLP=Natural Language Processing researcher, CS=Computer Scientist, LI=Linguist, ML=Machine
Learning researcher.

NLP methods Events Resources
Team Lexical Syntactic Trigger Arg Group Modif. Corpora Other
TEES-2.1 Porter McCCJ + SD SVM SVM SVM SVM GE hedge words
NaCTeM Snowball Enju, GDep SVM SVM SVM SVM - triggers
NCBI MedPost, BLem McCCJ + SD Joint, subgraph matching - GE, EPI -
RelAgent Brill fnTBL, custom rules rules rules rules - -
UET-NII Porter Enju SVM MaxEnt Earley - - triggers
ISI CoreNLP CoreNLP NERsuite Joint, MaltParser - - -

Table 6: Summary of system architectures. Abbreviations: CoreNLP=Stanford CoreNLP, Porter=Porter
stemmer, BLem=BioLemmatizer, Snowball=Snowball stemmer, McCCJ=McClosky-Charniak-Johnson
parser, Charniak=Charniak parser, SD=Stanford Dependency conversion

annotation process introduced by Pyysalo et al.
(2012a). Following the initial annotation, a num-
ber of revision passes were made to further im-
prove the consistency of the annotation using a va-
riety of automatically supported methods.2

3.3 Corpus statistics

Table 4 summarizes the corpus statistics for the
training, development and test sets, representing
50%, 17%, and 33% of the documents, respec-
tively. The CG task corpus is the largest of the
BioNLP ST 2013 corpora by most measures, in-
cluding the number of annotated events.

4 Participation

Final results to the CG task were successfully sub-
mitted by six teams, from six different academic
groups and one company, representing a broad
range of expertise ranging from biology to ma-
chine learning, natural language processing, and
linguistics (Table 5).

The characteristics of the participating systems
are summarized in Table 6. There is an interesting
spread of extraction approaches, with two systems
applying SVM-based pipeline architectures shown

2There was no opportunity to train a second annotator in
order to evaluate IAA specifically for the new CG corpus an-
notation. However, based on our previous evaluation using
the same protocol (Pyysalo et al., 2012a), we expect the con-
sistency of the final annotation to fall in the 70-80% F-score
range (primary task evaluation criteria).

successful in previous BioNLP ST events, one
applying a joint pattern matching approach, one
a rule-based approach, and two systems parsing-
based approaches to event extraction. Together,
these systems represent all broad classes of ap-
proaches applied to event extraction in previous
BioNLP ST events. Three of the six systems ad-
dressed also the event modification (negation and
speculation) extraction aspects of the task.

Although all systems perform syntactic analy-
sis of input texts, there is a fair amount of vari-
ety in the applied parsers, which include the parser
of Charniak and Johnson (2005) with the biomed-
ical domain model of McClosky (2009) and the
Stanford Dependency conversion (de Marneffe
et al., 2006) – the choice in many systems in
BioNLP ST’11 – as well as Enju (Miyao and Tsu-
jii, 2008), GDep (Sagae and Tsujii, 2007), Stan-
ford CoreNLP3, and a custom parser by RelAgent
(Ramanan and Nathan, 2013). Simple stemming
algorithms such as that of Porter (1980) remain
popular for word-level processing, with just the
NCBI system using a dedicated biomedical do-
main lemmatizer (Liu et al., 2012).

The task setting explicitly allows the use of any
external resources, including other corpora, and
previously released event resources contain sig-
nificant numbers of annotations that are relevant

3http://nlp.stanford.edu/software/
corenlp.shtml
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Team recall prec. F-score
TEES-2.1 48.76 64.17 55.41
NaCTeM 48.83 55.82 52.09
NCBI 38.28 58.84 46.38
RelAgent 41.73 49.58 45.32
UET-NII 19.66 62.73 29.94
ISI 16.44 47.83 24.47

Table 7: Primary evaluation results

to the molecular level events annotated in the CG
task. Nevertheless, only the TEES and NCBI
teams made use of corpora other than the task
data, both using the GE corpus (Kim et al., 2012)
and NCBI using also the EPI corpus (Pyysalo et
al., 2012b). In addition to corpora annotated for
events, lexical resources derived from such cor-
pora, containing trigger and hedge expressions,
were applied by three teams.

We refer to the descriptions presented by each
of the participating teams (see Table 5) for further
detail on the systems and their implementations.

5 Results

The primary evaluation results are summarized in
Table 7. The highest performance is achieved by
the established machine learning-based TEES sys-
tem, with an F-score of 55%. Previous versions
of the same system achieved the highest perfor-
mance in the BioNLP ST’09 (52% F-score) and
in four out of eight tasks in BioNLP ST’11 (53%
F-score for the comparable GE task) (Björne and
Salakoski, 2011). The performance of the system
ranked second, EventMine (Miwa et al., 2012),
is likewise broadly comparable to the results for
the same system on the GE task considered in
BioNLP ST’09 and ’11. The NCBI submis-
sion also extends a system that participated in the
ST’11 GE task, then achieving a somewhat lower
F-score of 41.13% (Liu et al., 2011). By con-
trast, the RelAgent, UET-NII and ISI submissions
involve systems that were not previously applied
in BioNLP ST events. Thus, in each case where
system performance for previously proposed event
extraction tasks is known, the results indicate that
the systems generalize to CG task extraction tar-
gets without loss in performance.

These parallels with results for previously intro-
duced tasks involving molecular-level events are
interesting, in particular considering that the CG
task involves more than twice the number of en-
tity and event types included in previously con-

sidered BioNLP ST tasks. The results suggest
not only that event extraction methods generalize
well to higher levels of biological organization,
but also that overall performance is not primar-
ily limited by the number of targeted types. It is
also notable that the complexity of the task set-
ting does not exclude rule-based systems such as
that of RelAgent, which scores within 10% points
of the highest-ranking system. While the parser-
based systems of UET-NII and ISI perform be-
low others here, it should be noted that related ap-
proaches have achieved competitive performance
in previous BioNLP ST tasks (McClosky et al.,
2011), suggesting that further development could
lead to improvements for systems based on these
architectures. As is characteristic for event extrac-
tion systems in general, all systems show notably
higher precision than recall, with the performance
of the UET-NII and ISI systems in particular pri-
marily limited by low recall.

The F-score results are shown separately for
each event type in Table 8. As suggested by the
overall results, the novel categories of events in-
volving anatomical and pathological entities are
not particularly challenging for most systems,
with results roughly mirroring performance for
molecular level events; the best results by event
category are 77% F-score for anatomical, 68%
for pathological, and 73% for molecular. Of
the newly introduced CG event categories, only
planned processes involving intentional human in-
tervention appear to represent difficulties, with the
best-performing system for PLANNED PROCESS

reaching only 41% F-score. Two previously es-
tablished categories of events remain challenging:
general events – best 53% F-score – including
BINDING (often taking multiple arguments) and
LOCALIZATION (frequent additional arguments),
and regulation category events, which often form
complex event structures by involving events as ar-
guments. Event modifications, addressed by three
of the six participating teams, show comparatively
low levels of extraction performance, with a best
result of 40% F-score for NEGATION and 30%
for SPECULATION. However, as in previous tasks
(Kim et al., 2011a), this is in part due to the com-
pound nature of the problem: for an event modifi-
cation attribute to be extracted correctly, the event
that it attaches to must also be correct.

Further details on system performance and anal-
yses are available on the shared task home page.
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Event TEES-2.1 NaCTeM NCBI RelAgent UET-NII ISI
DEVELOPMENT 71.43 64.77 67.33 66.31 61.72 53.66
BLOOD VESSEL DEVELOPM 85.28 78.82 81.92 79.60 21.49 13.56
GROWTH 75.97 59.85 66.67 76.92 70.87 65.52
DEATH 81.74 73.17 74.07 64.71 77.78 63.16
CELL DEATH 73.30 75.18 78.05 66.98 25.17 7.35
CELL PROLIFERATION 80.00 78.33 72.73 64.39 71.43 57.40
CELL DIVISION 0.00 0.00 0.00 0.00 0.00 0.00
CELL DIFFERENTIATION 56.34 48.48 48.98 54.55 59.26 24.14
REMODELING 30.00 22.22 21.05 40.00 20.00 23.53
REPRODUCTION 100.00 100.00 100.00 100.00 100.00 100.00

Anatomical total 77.20 71.31 73.68 70.82 50.04 38.86
MUTATION 38.00 41.05 25.11 27.36 27.91 9.52
CARCINOGENESIS 77.94 72.18 67.14 64.12 35.96 24.72
CELL TRANSFORMATION 81.56 82.54 71.13 67.07 57.14 32.39
BREAKDOWN 76.74 70.13 76.54 42.42 58.67 50.70
METASTASIS 70.91 51.05 52.69 47.79 56.41 26.20
INFECTION 69.57 76.92 69.23 33.33 11.76 0.00

Pathological total 67.51 59.78 54.19 48.14 46.90 25.17
METABOLISM 83.87 70.27 74.29 80.00 68.75 71.43
SYNTHESIS 78.26 71.11 78.26 53.57 64.71 48.65
CATABOLISM 63.64 36.36 38.10 23.08 20.00 36.36
GLYCOLYSIS 0.00 100.00 95.45 97.78 0.00 0.00
AMINO ACID CATABOLISM 0.00 66.67 66.67 66.67 0.00 0.00
GENE EXPRESSION 78.21 79.96 73.69 69.45 58.01 53.28
TRANSCRIPTION 37.33 42.86 51.55 28.12 32.00 20.93
TRANSLATION 40.00 22.22 0.00 0.00 0.00 0.00
PROTEIN PROCESSING 100.00 100.00 100.00 0.00 100.00 100.00
ACETYLATION 100.00 100.00 66.67 100.00 66.67 66.67
GLYCOSYLATION 100.00 100.00 100.00 100.00 100.00 100.00
PHOSPHORYLATION 63.33 70.37 53.12 64.15 58.33 50.00
UBIQUITINATION 100.00 100.00 0.00 100.00 0.00 100.00
DEPHOSPHORYLATION 0.00 80.00 100.00 100.00 0.00 0.00
DNA METHYLATION 66.67 66.67 30.30 42.11 32.43 33.33
DNA DEMETHYLATION 0.00 0.00 0.00 0.00 0.00 0.00
PATHWAY 71.30 59.07 51.14 34.29 18.31 35.64

Molecular total 72.60 72.77 67.33 60.72 49.35 46.70
BINDING 45.35 43.93 37.89 32.69 33.94 11.92
DISSOCIATION 0.00 0.00 0.00 0.00 0.00 0.00
LOCALIZATION 54.83 57.20 47.58 45.22 44.94 35.94

General total 52.20 53.08 44.70 40.89 41.76 29.59
REGULATION 32.66 28.73 14.19 26.48 5.51 4.57
POSITIVE REGULATION 45.89 44.18 34.70 38.40 13.00 12.33
NEGATIVE REGULATION 47.79 43.17 33.20 40.47 10.30 12.16

Regulation total 43.08 39.79 29.21 35.58 10.30 10.29
PLANNED PROCESS 39.43 40.51 34.28 28.57 22.74 21.22

Sub-total 56.75 53.50 48.56 46.37 31.72 25.90
NEGATION 40.00 29.55 0.00 34.64 0.00 0.00
SPECULATION 27.14 30.35 0.00 25.90 0.00 0.00

Modification total 34.66 29.95 0.00 30.88 0.00 0.00
Total 55.41 52.09 46.38 45.32 29.94 24.47

Table 8: Primary evaluation F-scores by event type

6 Discussion and conclusions

We have presented the Cancer Genetics (CG) task,
an information extraction task introduced as a
main task of the BioNLP Shared Task (ST) 2013.
The task is motivated by the needs of maintain-
ing up-to-date knowledge bases of the enormous
and fast-growing literature on cancer genetics, and
extends previously proposed BioNLP ST tasks in
several aspects, including the inclusion of enti-
ties and events at levels of biological organiza-

tion above the molecular and the explicit inclusion
of pathological and planned processes among ex-
traction targets. To address these extraction goals,
we introduced a new corpus covering various sub-
domains of cancer genetics, annotated for 18 en-
tity and 40 event types and marking over 17,000
manually annotated events in 600 publication ab-
stracts.

Final submissions to the CG task were received
from six groups, who applied a variety of ap-
proaches including machine learning-based clas-
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sifier pipelines, parsing-based approaches, and
pattern- and rule-based systems. The best-
performing system achieved an F-score of 55.4%,
a level of performance comparable to the state of
the art in established molecular level event extrac-
tion tasks. The results indicate that event extrac-
tion methods generalize well across the novel as-
pects introduced in the CG task and that event ex-
traction is applicable to the automatic processing
of the cancer literature.

Following convention in the BioNLP Shared
Task series, the Cancer Genetics task will con-
tinue as an open challenge available to all inter-
ested participants. The CG task corpus, supporting
resources and evaluation tools are available from
http://2013.bionlp-st.org/.
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Cornelius Rosse and José LV Mejino Jr. 2003. A refer-
ence ontology for biomedical informatics: the foun-
dational model of anatomy. Journal of biomedical
informatics, 36(6):478–500.

Kenji Sagae and Jun’ichi Tsujii. 2007. Dependency
parsing and domain adaptation with lr models and
parser ensembles. In Proceedings of the CoNLL
Shared Task Session of EMNLP-CoNLL 2007, pages
1044–1050.

Pontus Stenetorp, Goran Topić, Sampo Pyysalo,
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Abstract

We present the Pathway Curation (PC)
task, a main event extraction task of
the BioNLP shared task (ST) 2013.
The PC task concerns the automatic ex-
traction of biomolecular reactions from
text. The task setting, representation
and semantics are defined with respect
to pathway model standards and ontolo-
gies (SBML, BioPAX, SBO) and docu-
ments selected by relevance to specific
model reactions. Two BioNLP ST 2013
participants successfully completed the
PC task. The highest achieved F-
score, 52.8%, indicates that event extrac-
tion is a promising approach to support-
ing pathway curation efforts. The PC
task continues as an open challenge with
data, resources and tools available from
http://2013.bionlp-st.org/

1 Introduction

Following developments in molecular biology, bi-
ological phenomena are increasingly understood
on the molecular level, as the products of complex
systems of molecular reactions. Pathway mod-
els formalizing biomolecules and their reactions
in machine readable representations are a key way
of sharing and communicating human understand-
ing of these phenomena and of developing com-
putational models of biological systems (Kitano,
2002). Many pathway models integrate knowl-
edge from hundreds or thousands of scientific pub-
lications, and their curation requires substantial
manual effort. To support this effort, we have de-
veloped PathText (Kemper et al., 2010) which pro-
vides a seamless environment integrating a path-
way visualizer, text mining systems and annota-
tion tools. Furthermore, automatic processing of
the domain literature could thus potentially play

pyruvate kinase catalyzes the conversion of PEP to pyruvate.

GGP +Regulation Conversion Chem Chemical
ThemeCause Theme

Product

Figure 1: Event representation for a conversion re-
action.

an important role in the support of pathway cura-
tion.

Information extraction targeting biomolecular
reactions has been a major focus of efforts in
biomedical natural language processing, with sev-
eral tasks, resources, and tools addressing in par-
ticular protein-protein interactions (Krallinger et
al., 2007; Pyysalo et al., 2008; Tikk et al., 2010).
However, most such efforts have employed sim-
ple representations, such as entity pairs, that are
not sufficient for capturing molecular reactions to
the level of detail required to support the curation
of pathway models. Additionally, previous efforts
have not directly involved the semantics (e.g. re-
action type definitions) of such models. Perhaps
in part due to these reasons, natural language pro-
cessing and information extraction methods have
not been widely embraced by biomedical pathway
curation communities (Ohta et al., 2011c; Ohta et
al., 2011a).

We believe that the extraction of structured
event representations (Figure 1) pursued in the
BioNLP Shared Tasks offers many opportuni-
ties to make significant contributions to support
the development, evaluation and maintenance of
biomolecular pathways. The Pathway Curation
(PC) task, a main task of the BioNLP Shared Task
2013, is proposed as a step toward realizing these
opportunities. The PC task aims to evaluate the ap-
plicability of event extraction systems to pathway
curation and to encourage the further development
of methods for related tasks. The design of the
task aims to address current issues in information
extraction for pathway curation by explicitly bas-
ing its representation and extraction targets on ma-
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Figure 2: Illustration of pathway reaction (left), matching representation as an idealized text-bound event
structure (middle) and applied event representation for statements actually appearing in text (right).

jor standards developed in the biomolecular path-
way curation community, such as SBML (Hucka
et al., 2003) and BioPAX (Mi et al., 2011), and
ontologies such as the Systems Biology Ontology1

(SBO) (Courtot et al., 2011). Further, The corpus
texts are selected on the basis of relevance to a se-
lection of pathway models from PANTHER Path-
way DB2 (Mi and Thomas, 2009) and BioMod-
els3 (Li et al., 2010) repositories. The PC task set-
ting and its document selection protocol aim to ac-
count for both signalling and metabolic pathways,
the latter of which has received comparatively lit-
tle attention in recent domain IE efforts (Li et al.,
2013).

2 Task setting

The PC task is formulated as an event extraction
task (Ananiadou et al., 2010) following the general
representation and task setting first introduced in
the BioNLP ST 2009 (Kim et al., 2011). The pri-
mary aim is the extraction of event structures, or
events, each of which can involve any number of
physical entities or other events in specific roles.

The event representation is sufficiently expres-
sive to allow the definition of event structures that
closely parallel the definition of reactions in path-
way representations such as SBML and BioPAX.
These pathway representations differentiate be-
tween three primary groups of reaction partici-
pants: reactants (“inputs”), products (“outputs”),
and modifiers, where the specific roles of modi-
fiers can be further identified to differentiate e.g.

1http://www.ebi.ac.uk/sbo/main/
2http://www.pantherdb.org/pathway/
3http://www.ebi.ac.uk/biomodels-main/

reaction catalysts from inhibitors. Correspond-
ingly, the PC task applies the Theme role defined
in previous BioNLP ST tasks to capture reactants,
introduces a new Product role for products, and
applies the previously defined Cause role and reg-
ulatory events to capture modifiers (Figure 2; see
also Section 2.3).

It is important to note that while the event repre-
sentation allows a one-to-one mapping to reactions
in principle, an annotation scheme cannot guar-
antee that actual statements in text map to fully
specified reactions: in free-form text, authors fre-
quently omit mention of some entities taking part
in reactions, perhaps most typically to avoid re-
dundancies such as in “p38γ is phosphorylated
into phospho-p38γ” (Figure 2b). Representations
extracted from explicit statements in text will thus
in some cases omit aspects of the corresponding
complete reactions in pathway models.

Systems addressing the PC task are expected to
extract events of specific types given 1) free-form
text and 2) gold standard annotation for mentions
of physical entities in that text. The task annota-
tions also include equivalence relations and event
modifications, a secondary extraction target. The
annotation types are detailed below.

2.1 Entities

The entity annotation marks mentions of physical
entities using start and end offsets in text (contigu-
ous span) and a type selected from a fixed set. The
following four entity types are marked in the PC
task: SIMPLE CHEMICAL, annotated with refer-
ence to the Chemical Entities of Biological Inter-
est (ChEBI) resource (Degtyarenko et al., 2008);
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Entity type Scope Reference Ontology ID
SIMPLE CHEMICAL simple, non-repetitive chemical entities ChEBI SBO:0000247
GENE OR GENE PRODUCT genes, RNA and proteins gene/protein DBs SBO:0000246
COMPLEX entities of non-covalently linked components complex DBs SBO:0000253
CELLULAR COMPONENT parts of cell and extracellular environment GO-CC SBO:0000290

Table 1: Entity types, definitions, and reference resources.

Event type Core arguments Additional arguments Ontology ID
CONVERSION Theme:Molecule, Product:Molecule SBO:0000182

PHOSPHORYLATION Theme:Molecule, Cause:Molecule Site:SIMPLE CHEMICAL SBO:0000216
DEPHOSPHORYLATION Theme:Molecule, Cause:Molecule Site:SIMPLE CHEMICAL SBO:0000330

(Other modifications, such as ACETYLATION, defined similarly.)
LOCALIZATION Theme:Molecule At/From/ToLoc:CELL. COMP. GO:0051179

TRANSPORT Theme:Molecule From/ToLoc:CELL. COMP. SBO:0000185
GENE EXPRESSION Theme:GENE OR GENE PRODUCT GO:0010467

TRANSCRIPTION Theme:GENE OR GENE PRODUCT SBO:0000183
TRANSLATION Theme:GENE OR GENE PRODUCT SBO:0000184

DEGRADATION Theme:Molecule SBO:0000179
BINDING Theme:Molecule, Product:COMPLEX SBO:0000177
DISSOCIATION Theme:COMPLEX, Product:Molecule SBO:0000180
REGULATION Theme:ANY, Cause:ANY GO:0065007

POSITIVE REGULATION Theme:ANY, Cause:ANY GO:0048518,
GO:0044093

ACTIVATION Theme:Molecule, Cause:ANY SBO:0000412

NEGATIVE REGULATION Theme:ANY, Cause:ANY GO:0048519,
GO:0044092

INACTIVATION Theme:Molecule, Cause:ANY SBO:0000412
PATHWAY Participant:Molecule SBO:0000375

Table 2: Event types and arguments. “Molecule” refers to an entity annotation of any of the types
SIMPLE CHEMICAL, GENE OR GENE PRODUCT, or COMPLEX, and “ANY” refers to an annotation of
any type, either entity or event. The indentation corresponds to ontological relationships between the
event types: for example, PHOSPHORYLATION is-a CONVERSION and TRANSCRIPTION part-of
GENE EXPRESSION.

GENE OR GENE PRODUCT, annotated with refer-
ence to gene and protein databases such as UniProt
(Consortium, 2011), Entrez Gene (Maglott et al.,
2005) and PFam (Finn et al., 2010); COMPLEX,
annotated with reference to database resources
covering complexes; and CELLULAR COMPO-
NENT, annotated following the scope of the Gene
Ontology cellular component subontology
(Ashburner et al., 2000) (Table 1). For discussion
of the relation between these types and the repre-
sentations applied in pathway models, we refer to
Ohta et al. (2011c).

In terms of mention types in text, the annotation
for SIMPLE CHEMICAL, GENE OR GENE PROD-
UCT and COMPLEX covers entity name mentions
only, while the annotation for CELLULAR COM-
PONENT covers entity name mentions, nominal
mentions, and adjectival references (e.g. “mito-
chondrial”).

2.2 Relations

The PC task defines one relation type, Equiv
(equivalence), which can hold between entity

mitogen-activated protein kinase (MAPK, also known as ERK)

Gene or gene product GGP GGP
EquivEquiv

Figure 3: Example Equiv annotation.

mentions of the same type and specifies that they
refer to the same real-world entity (Figure 3).
These relations are only applied to determine if
two events match during evaluation, where entities
connected by an Equiv relation are considered in-
terchangeable. Gold standard Equiv relations are
applied also for test data, and systems participat-
ing in the task are not expected to extract these
relations.

2.3 Events
The event annotation marks references to reac-
tions, processes and comparable associations in
scope of the annotation using the event represen-
tation. For the definition and scope of the event
annotation, we rely primarily on the Systems Biol-
ogy Ontology (SBO), drawing some general types
not in scope of this ontology from the Gene Ontol-
ogy (GO). Table 2 presents the event types anno-
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Pathway Repository ID Publication
mTOR BioModels MODEL1012220002 (Caron et al., 2010)
mTORC1 upstream regulators BioModels MODEL1012220003 (Caron et al., 2010)
TLR BioModels MODEL2463683119 (Oda and Kitano, 2006)
Yeast Cell Cycle BioModels MODEL1011020000 (Kaizu et al., 2010)
Rb BioModels MODEL4132046015 (Calzone et al., 2008)
EGFR BioModels MODEL2463576061 (Oda et al., 2005)
Human Metabolic Network BioModels MODEL6399676120 (Duarte et al., 2007)
NF-kappaB pathway - - (Oda et al., 2008)
p38 MAPK PANTHER DB P05918 -
p53 PANTHER DB P00059 -
p53 feedback loop pathway PANTHER DB P04392 -
Wnt signaling pathway PANTHER DB P00057 -

Table 3: Pathway models used to select documents for the task, with pathway repository model identifiers
and publications presenting each model (when applicable).

tated in the PC task and their arguments. We refer
again to Ohta et al. (2011c) for detailed discussion
of the relation between these types and other rep-
resentations applied in pathway models.

The role in which each event argument (entity
or other event) participates in an event is specified
as one of the following:

Theme entity/event that undergoes the effects of
the event. For example, the entity that is tran-
scribed in a TRANSCRIPTION event or transported
in a TRANSPORT event.

Cause entity/event that is causally active in the
event. Marks, for example, “P1” in “P1 inhibits P2

expression”.

AtLoc,FromLoc,ToLoc : location in which the
Theme entity of a LOCALIZATION event is local-
ized (At) in LOCALIZATION events not involving
movement or is transported (or moves) from/to
(From/To) in LOCALIZATION and TRANSPORT

events involving movement.

Site site on the Theme entity that is modified in
the event. Can be specified for modification events
such as PHOSPHORYLATION.

Participant general role type identifying an en-
tity that participates in some underspecified way in
a high-level process. Only applied for the PATH-
WAY type.

2.4 Event modifications

In addition to events, the PC task defines a sec-
ondary extraction target, event modifications. Two
modification types are defined: NEGATION and
SPECULATION. Both are binary flags that mod-
ify events, the former marking an event as be-
ing explicitly stated as not occurring (e.g. “P is

not phosphorylated”) and the latter as being stated
in a speculative context (“P may be phosphory-
lated.”). Both are defined in terms of annotation
scope and semantics identically as in the BioNLP
ST’09 (Kim et al., 2009).

2.5 Evaluation
The PC task evaluation applies the standard evalu-
ation criteria established in the BioNLP ST 2009.
These criteria relax exact matching between gold
and predicted events in two aspects: approximate
trigger boundary matching, and approximate re-
cursive event matching. The former allows pre-
dicted event triggers to differ from gold triggers
by one word, and the latter requires recursively re-
ferred events to only match in their core arguments
(see Table 2). We refer to Kim et al. (2011) for a
detailed definition of these criteria.

3 Corpus

This section presents the PC task corpus and its
annotation process.

3.1 Document selection
To assure that the documents annotated for the PC
task corpus are relevant to pathway reactions, we
applied two complementary approaches, both se-
lecting documents on the basis of relevance to a
specific pathway reaction. First, we selected from
the BioModels repository those pathway models
with the largest numbers of manually created an-
notations referencing a specific PubMed document
identifier. For each of these models, we extracted
literature references, selected a random subset,
downloaded the documents, and manually filtered
to select abstracts that explicitly discuss relevant
molecular reactions. Second, as only a small sub-
set of models include explicit references to the
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literature providing evidence for specific pathway
reactions, we applied an alternative strategy where
reactions from a selection of PANTHER DB mod-
els were entered into the PathText system (Kem-
per et al., 2010),4 which is capable of suggest-
ing documents relevant to given reactions based
on an SBML model. We then selected a random
set of reactions to query the system, and manually
evaluated the highest-ranking documents to iden-
tify those whose abstracts explicitly discuss the se-
lected reaction. We refer to Miwa et al. (2013a)
for a detailed description of this approach. Table 3
presents the pathway models on which the docu-
ment selection was based.

3.2 Annotation process

The base entity annotation for the PC corpus was
created automatically using state-of-the-art entity
mention taggers for each of the targeted entity
types. For SIMPLE CHEMICAL tagging, the OS-
CAR4 system (Jessop et al., 2011) trained on
the chemical named entity recognition corpus of
Corbett and Copestake (2008) was applied. For
GENE OR GENE PRODUCT mention detection, the
NERsuite5 system trained on the BioCreative 2
Gene Mention task (Wilbur et al., 2007) corpus
was used. NERsuite was also applied for CEL-
LULAR COMPONENT mention detection, for this
task trained on the Anatomical Entity Mention
(AnEM) corpus (Ohta et al., 2012). Finally, COM-
PLEX annotations were created using a combi-
nation of a dictionary and heuristics making use
of the GENE OR GENE PRODUCT annotation (for
mentions such as “cyclin E/CDK2 complex”). To
support the curation process, these tools were in-
tegrated into the NaCTeM text-analysis workflow
system Argo (Rak et al., 2012).

Based on the evaluations of each of these tools
in the studies presenting them, we expected initial
automatic tagging performance to be in the range
80-90% in both precision and recall. Following
initial automatic annotation, the entity mention an-
notation was manually revised to improve quality
and consistency. As the entity annotation is not
itself a target of extraction in the shared task, we
did not separately evaluate the consistency of the
revised entity mention annotation.

To assure that the quality and consistency of
the event annotation are as high as possible, ini-

4http://nactem.ac.uk/pathtext/
5http://nersuite.nlplab.org/

Item Train Devel Test Total
Documents 260 90 175 525
Words 53811 18579 35966 108356
Entities 7855 2734 5312 15901
Events 5992 2129 4004 12125
Modifications 317 80 174 571

Table 4: PC corpus statistics

tial event annotation was created entirely man-
ually, without automatic support. This annota-
tion effort was carried out using the BRAT anno-
tation tool (Stenetorp et al., 2012) by a group of
biologists in collaboration between NaCTeM and
KISTI. Following initial annotator training and re-
finement of guidelines based on the event type def-
initions provided by the reference ontologies, the
primary event annotation was created by three bi-
ologists. To evaluate and maintain annotation con-
sistency, a random 20% of documents were an-
notated redundantly by all annotators, and these
overlapping annotations were periodically evalu-
ated and differences in annotation were discussed
between the annotators and annotation coordina-
tors. Following initial annotation, a round of semi-
automatic consistency checks were applied using
BRAT. Evaluation of the redundantly annotated
documents using the primary task evaluation cri-
teria gave an inter-annotator agreement of 61.0%
in F-score. For the final corpus, the redundantly
annotated documents were evaluated separately by
an annotation coordinator to select the best of each
set.6

The overall statistics of the corpus are summa-
rized in Table 4. We note that the among the
previous BioNLP ST corpora, only the GENIA
(GE) task corpus has a larger number of annotated
events than the PC corpus.

4 Results

4.1 Participation

Two groups submitted final results to the PC
task, one from the National Centre for Text Min-
ing (NaCTeM) and one from the University of
Turku BioNLP group (TEES-2.1) (Table 5). Both
participants applied their well-established, state-
of-the-art event extraction systems, EventMine7

(Miwa et al., 2012) (NaCTeM) and the Turku

6This selection implies that the consistency of the event
annotation of the final corpus is expected to exceed the 61%
F-score of the IAA experiment. Consistency after selection
was not separately evaluated.

7http://nactem.ac.uk/EventMine/
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NLP Events Other resources
Rank Team Org Word Parse Trig. Arg. Group. Modif. Corpora Other
1 NaCTeM 1NLP Snowball Enju, GDep SVM SVM SVM SVM (see text) triggers
2 TEES-2.1 1BI Porter McCCJ + SD SVM SVM SVM SVM GE hedge words

Table 5: Participants and summary of system descriptions. Abbreviations: BI=Bioinformatician,
NLP=Natural Language Processing researcher, McCCJ=McClosky-Charniak-Johnson parser, Char-
niak=Charniak parser, SD=Stanford Dependency conversion, GE=GE task corpus.

Team recall prec. F-score
NaCTeM 52.23 53.48 52.84
TEES-2.1 47.15 55.78 51.10

Table 6: Primary evaluation results

Event Extraction System8 (Björne et al., 2011)
(TEES). The two systems share the same over-
all architecture, a one-best pipeline with SVM-
based stages for event trigger detection, trigger-
argument relation detection, argument grouping
into event structures, and modification prediction.
The feature representations of both systems draw
on substructures of dependency-like representa-
tions of sentence syntax, derived from full parses
of input sentences. TEES applies the Charniak
and Johnson (2005) parser with the McClosky
(2009) biomedical model, converting the phrase-
structure parses into dependencies using the Stan-
ford tools (de Marneffe et al., 2006). By contrast,
EventMine uses a combination of the predicate-
argument structure analyses created by the deep
parser Enju (Miyao and Tsujii, 2008) and the out-
put of the the GDep best-first shift-reduce depen-
dency parser (Sagae and Tsujii, 2007). All three
parsers have models trained in part on the biomed-
ical domain GENIA treebank (Tateisi et al., 2005).

Interestingly, both systems make use of the GE
task data, but the application of EventMine ex-
tends on this considerably by applying a stacked
model (Miwa et al., 2013b) with predictions also
from models trained on the BioNLP ST 2011 EPI
and ID tasks (Pyysalo et al., 2012) as well as from
four corpora introduced outside of the shared tasks
by Thompson et al. (2011), Pyysalo et al. (2011),
Ohta et al. (2011b) and Ohta et al. (2011c).

4.2 Evaluation results

Table 6 summarizes the primary evaluation results.
The two systems demonstrate broadly similar per-
formance in terms of F-scores, with NaCTeM
achieving an 1.7% point higher overall result.

8http://jbjorne.github.io/TEES/

However, the systems show quite different per-
formance in terms of the precision/recall balance:
while the NaCTeM system has little difference
between precision and recall, TEES-2.1 shows a
clear preference for precision, with 8.6% lower re-
call than precision.

Results are shown separately for each event type
in Table 7. The results largely mirror the over-
all performance, with the NaCTeM system show-
ing better performance for 13 out of the 21 event
types present in the test data and more balanced
precision and recall than TEES-2.1, which em-
phasizes precision over recall for almost all event
types. Although the results do not include evalu-
ation of EventMine with a reduced set of stacked
models in training, the modest difference in per-
formance suggests that comprehensive use of pre-
viously released event resources in EventMine did
not confer a decisive advantage, perhaps in part
due to differences in the event definitions between
the PC task and previous resources.

Overall, the two systems appear quite similar
not only in architecture but also performance, with
the clearest systematic difference observed being
the different emphases on precision vs. recall. As
both systems are based on machine learning meth-
ods with real-valued outputs, it would be relatively
straightforward to use prediction confidences to
analyse performance over the entire precision-
recall curve instead of a single fixed point. Such
analysis could provide further insight into the rel-
ative strengths and weaknesses of these two sys-
tems.

5 Discussion

Although participation in this initial run of the PC
task was somewhat limited, the two participating
systems have been applied to a large variety of
event extraction tasks over the last years and have
shown consistently competitive performance with
the state of the art (Björne and Salakoski, 2011;
Miwa et al., 2012). It is thus reasonable to as-
sume that the higher performance achieved by the
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NaCTeM TEES-2.1
Event recall prec. F-score recall prec. F-score
CONVERSION 34.33 35.48 34.90 35.82 42.86 39.02
PHOSPHORYLATION 62.46 55.94 59.02 53.40 66.00 59.03
DEPHOSPHORYLATION 45.00 56.25 50.00 35.00 77.78 48.28
ACETYLATION 69.57 72.73 71.11 82.61 76.00 79.17
DEACETYLATION 33.33 33.33 33.33 0.00 0.00 0.00
METHYLATION 42.86 60.00 50.00 57.14 80.00 66.67
DEMETHYLATION 100.00 100.00 100.00 100.00 100.00 100.00
UBIQUITINATION 52.94 64.29 58.06 58.82 76.92 66.67
DEUBIQUITINATION 100.00 100.00 100.00 100.00 100.00 100.00
LOCALIZATION 42.25 61.22 50.00 43.66 54.39 48.44
TRANSPORT 65.52 61.29 63.33 56.55 59.85 58.16
GENE EXPRESSION 90.65 83.15 86.74 84.55 79.39 81.89
TRANSCRIPTION 71.15 82.22 76.29 57.69 73.17 64.52
TRANSLATION 0.00 0.00 0.00 50.00 100.00 66.67

Simple-total 66.42 64.80 65.60 60.40 67.87 63.92
DEGRADATION 78.57 89.19 83.54 78.57 78.57 78.57
ACTIVATION 78.54 70.96 74.56 72.06 72.06 72.06
INACTIVATION 44.62 55.77 49.57 38.46 45.45 41.67
BINDING 64.96 47.30 54.74 53.96 53.96 53.96
DISSOCIATION 38.46 46.88 42.25 35.90 45.16 40.00
PATHWAY 84.91 75.50 79.93 70.94 75.50 73.15

General-total 69.07 62.69 65.72 61.16 65.74 63.37
REGULATION 33.33 33.97 33.65 29.73 39.51 33.93
POSITIVE REGULATION 35.49 42.81 38.81 34.51 45.45 39.23
NEGATIVE REGULATION 45.75 50.64 48.07 41.02 47.37 43.97

Regulation-total 37.73 42.79 40.10 35.17 44.76 39.39
Sub-total 53.47 53.96 53.72 48.23 56.22 51.92

NEGATION 24.52 35.87 29.13 25.16 41.30 31.27
SPECULATION 15.79 22.22 18.46 0.00 0.00 0.00

Modification-total 23.56 34.65 28.05 22.41 40.00 28.73
Total 52.23 53.48 52.84 47.15 55.78 51.10

Table 7: Primary evaluation results by event type.

task participants, a balanced F-score of 52.8%, is
a good estimate of the performance level that can
be attained for this task by present event extraction
technology.

The results achieved by the two systems are
broadly comparable to the best results achieved by
any system in similar previously introduced event
extraction tasks (Kim et al., 2012; Pyysalo et al.,
2012). Given the novelty of the task domain and
reference resource and the broad selection of doc-
uments, we find the results highly encouraging re-
garding the applicability of event extraction tech-
nology to supporting the development, evaluation,
and maintenance of pathway models.

6 Conclusions

This paper presented the Pathway Curation (PC)
task, a main event extraction task of the BioNLP
ST 2013. The task was organized in collaboration
between groups with an interest in pathway cura-
tion with the aim of evaluating and advancing the
state of the art in event extraction toward methods
for developing, evaluating and maintaining formal
pathway models in representations such as SBML
and BioPAX. We introduced an event extraction
task setting with reference to pathway model stan-
dards and the Systems Biology Ontology, selected
a set of 525 publication abstracts relevant to spe-
cific model reactions, and created fully manual
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event annotation marking over 12,000 event struc-
tures in the corpus.

Two participants in the BioNLP ST 2013 sub-
mitted final predictions to the PC task, applying
established, state-of-the-art event extraction sys-
tems, EventMine and the Turku Event Extrac-
tion System. Both systems achieved F-scores
over 50%, with the EventMine system achiev-
ing the best overall result of 52.8%. This level
of performance is broadly comparable with re-
sults achieved in comparable previously proposed
tasks, indicating that current event extraction tech-
nology is applicable to the projected pathway cu-
ration support tasks.

To allow the further development and evalua-
tion of event extraction methods for the task, the
PC task continues as an open challenge to all inter-
ested participants, with the annotated corpus data,
supporting resources, and evaluation tools avail-
able under open licenses from the task homepage,
http://2013.bionlp-st.org/
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Claude Perreault, Philippe P Roux, and Hiroaki Kitano.
2010. A comprehensive map of the mtor signaling net-
work. Molecular systems biology, 6(1).

Eugene Charniak and Mark Johnson. 2005. Coarse-to-Fine
n-Best Parsing and MaxEnt Discriminative Reranking. In
Proceedings of ACL’05, pages 173–180.

The UniProt Consortium. 2011. Ongoing and future devel-
opments at the universal protein resource. Nucleic Acids
Research, 39(suppl 1):D214–D219.

Peter Corbett and Ann Copestake. 2008. Cascaded classifiers
for confidence-based chemical named entity recognition.
BMC Bioinformatics, 9(Suppl 11):S4.
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Abstract

We participated in the BioNLP 2013 shared
tasks, addressing the GENIA (GE) and the Can-
cer Genetics (CG) event extraction tasks. Our
event extraction is based on the system we re-
cently proposed for mining relations and events
involving genes or proteins in the biomedical
literature using a novel, approximate subgraph
matching-based approach. In addition to han-
dling the GE task involving 13 event types uni-
formly related to molecular biology, we gener-
alized our system to address the CG task tar-
geting a challenging set of 40 event types re-
lated to cancer biology with various arguments
involving 18 kinds of biological entities. More-
over, we attempted to integrate a distributional
similarity model into our system to extend the
graph matching scheme for more events. In ad-
dition, we evaluated the impact of using paths of
all possible lengths among event participants as
key contextual dependencies to extract potential
events as compared to using only the shortest
paths within the framework of our system.

We achieved a 46.38% F-score in the CG task
and a 48.93% F-score in the GE task, ranking
3rd and 4th respectively. The consistent perfor-
mance confirms that our system generalizes well
to various event extraction tasks and scales to
handle a large number of event and entity types.

1 Introduction

Understanding the sophisticated interactions between
various components of biological systems and conse-
quences of these biological processes on the function
and behavior of the systems provides profound im-
pacts on translational biomedical research, leading to
more rapid development of new therapeutics and vac-
cines for combating diseases. For the past five years,
the BioNLP shared task series has served as an in-
strumental platform to promote the development of

text mining methodologies and resources for the au-
tomatic extraction of semantic events involving genes
or proteins such as gene expression, binding, or reg-
ulatory events from the biomedical literature (Kim et
al., 2009; Kim et al., 2011). An event typically cap-
tures the association of multiple participants of vary-
ing numbers and with diverse semantic roles (Anani-
adou et al., 2010). Since events often serve as partic-
ipants in other events, the extraction of such nested
event structures provides an integrated, network view
of these biological processes.

Previous shared tasks focused exclusively on
events at the molecular and sub-cellular level. How-
ever, biological processes at higher levels of organi-
zation are equally important, such as cell prolifer-
ation, organ growth and blood vessel development.
While preserving the classic event extraction tasks
such as the GE task, the BioNLP-ST 2013 broad-
ens the scope of application domains by introducing
many new issues in biology such as cancer genetics
and pathway curation. On behalf of NCBI (National
Center for Biotechnology Information), our team par-
ticipated in the GENIA (GE) task and the Cancer Ge-
netics (CG) task. Compared to the GE task that aims
for 13 types of events concerning the protein NF-κB,
the CG task targets a challenging set of 40 types of
biological processes related to the development and
progression of cancer involving 18 entity types. This
additionally requires that event extraction systems be
able to associate entities and events at the molecular
level with anatomy level effects and organism level
outcomes of cancer biology.

Our event extraction is based on the system we re-
cently proposed for mining relations and events in-
volving genes or proteins in the biomedical litera-
ture using a novel, Approximate Subgraph Matching-
based (ASM) approach (Liu et al., 2013a). When
evaluated on the GE task of the BioNLP-ST 2011, its
performance is comparable to the top systems in ex-
tracting 9 types of biological events. In the BioNLP-
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ST 2013, we generalized our system to investigate
both CG and GE tasks. Moreover, we attempted to in-
tegrate a distributional similarity model into the sys-
tem to extend the graph matching scheme for more
events. The graph representation that considers paths
of all possible lengths (all-paths) between any two
nodes has been encoded in graph kernels used in
conjunction with Support Vector Machines (SVM),
and led to state-of-the-art performance in extracting
protein-protein (Airola et al., 2008) and drug-drug in-
teractions (Zhang et al., 2012). Borrowing from the
idea of the all-paths representation, in addition, we
evaluated the impact of using all-paths among event
participants as key contextual dependencies to extract
potential events as compared to using only the short-
est paths within the framework of our system.

The rest of the paper is organized as follows: In
Section 2, we briefly introduce our ASM-based event
extraction system. Section 3 describes our experi-
ments aiming to extend our system. Section 4 elab-
orates some implementation details and Section 5
presents our results and discussion. Finally, Section
6 summarizes the paper and introduces future work.

2 ASM-based Event Extraction

The underlying assumption of our event extraction
approach is that the contextual dependencies of each
stated biological event represent a typical context for
such events in the biomedical literature. Our ap-
proach falls into the machine learning category of
instance-based reasoning (Alpaydin, 2004). Specif-
ically, the key contextual structures are learned from
each labeled positive instance in a set of train-
ing data and maintained as event rules in the form
of subgraphs. Extraction of events is performed
by searching for an approximate subgraph isomor-
phism between key dependencies and input sen-
tence graphs using an approximate subgraph match-
ing (ASM) algorithm designed for literature-based
relational knowledge extraction (Liu et al., 2013a).
By introducing error tolerance into the graph match-
ing process, our approach is capable of retrieving
events encoded within complex dependency contexts
while maintaining the extraction precision at a high
level. The ASM algorithm has been released as open
source software1. See (Liu et al., 2013a) for more de-
tails on the ASM algorithm, its complexity and the
comparison with existing graph distance metrics.

Figure 1 illustrates the overall architecture of our
ASM-based system with three core components high-

1http://asmalgorithm.sourceforge.net

lighted: rule induction, sentence matching and rule
set optimization. Our approach focuses on extract-
ing events expressed within the boundaries of a single
sentence. It is also assumed that entities involved in
the target event have been annotated. Next, we briefly
describe the core components of the system.

Rule Induction

Preprocessing

Sentence Matching

Postprocessing

Training data Testing data

Rule Set

Optimization

Figure 1: ASM-based Event Extraction Framework

2.1 Rule Induction

Event rules are learned automatically using the fol-
lowing method. Starting with the dependency graph
of each training sentence, for each annotated event,
the shortest dependency path connecting the event
trigger to each event argument in the undirected ver-
sion of the graph is selected. While additional in-
formation such as individual words in each sentence
(bag-of-words), sequences of words (n-grams) and
semantic concepts is typically used in the state-of-
the-art supervised learning-based systems to cover a
broader context (Airola et al., 2008; Buyko et al.,
2009; Björne et al., 2012), the shortest path be-
tween two tokens in the dependency graph is par-
ticularly likely to carry the most valuable informa-
tion about their mutual relationship (Bunescu and
Mooney, 2005a; Thomas et al., 2011b; Rinaldi et
al., 2010). In case there exists more than one short-
est path, all of them are considered. For multi-token
event triggers, the shortest path connecting every trig-
ger token to each event argument is extracted, and the
union of the paths is then computed for each trigger.
For regulatory events that take a sub-event as an ar-
gument, the shortest path is extracted so as to connect
the trigger of the main event to that of the sub-event.

For complex events that involve multiple argu-
ments, we computed the dependency path union of
all shortest paths from trigger to each event argument,
resulting in a graph in which all event participants are
jointly depicted. Individual dependency paths con-
necting triggers to each argument are also considered
to determine event arguments independently. If the
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resulting arguments share the same event trigger, they
are grouped together to form a potential event. In our
approach, the individual paths aim to retrieve more
potential events while the path unions retain the pre-
cision advantage of joint inference.

While the dependencies of such paths are used as
the graph representation of the event, a detailed de-
scription records the participants of the event, their
semantic role labels and the associated nodes in the
graph. All participating biological entities are re-
placed with a tag denoting their entity type, e.g. “Pro-
tein” or “Organism”, to ensure generalization of the
learned rules. As a result, each annotated event is
generalized and transformed into a generic graph-
based rule. The resulting event rules are categorized
into different target event types.

2.2 Sentence Matching
Event extraction is achieved by matching the induced
rules to each testing sentence and applying the de-
scriptions of rule tokens (e.g. role labels) to the cor-
responding sentence tokens. Since rules and sentence
parses all possess a graph representation, event recog-
nition becomes a subgraph matching problem. We
introduced a novel approximate subgraph matching
(ASM) algorithm (Liu et al., 2013a) to identify a sub-
graph isomorphic to a rule graph within the graph of
a testing sentence. The ASM problem is defined as
follows.

Definition 1. An event rule graph Gr =
(Vr, Er) is approximately isomorphic to a subgraph
Ss of a sentence graph Gs = (Vs, Es), denoted
by Gr

∼=t Ss ⊆ Gs, if there is an injective
mapping f : Vr → Vs such that, for a given
threshold t, t ≥ 0, the subgraph distance be-
tween Gr and Gs satisfies 0 ≤ subgraphDistf (Gr,
Gs) ≤ t, where subgraphDistf (Gr, Gs) = ws ×
structDistf (Gr, Gs) + wl × labelDistf (Gr, Gs) +
wd × directionalityDistf (Gr, Gs).

The subgraph distance is proposed to be the
weighted summation of three penalty-based measures
for a candidate match between the two graphs. The
measure structDist compares the distance between
each pair of matched nodes in one graph to the
distance between corresponding nodes in the other
graph, and accumulates the structural differences.
The distance in rule graphs is defined as the length
of the shortest path between two nodes. The distance
in sentence graphs is defined as the length of the path
between corresponding nodes that leads to minimum
structural difference with the distance in rule graphs.

Because dependency graphs are edge-labeled, ori-
ented graphs, the measures labelDist and direction-
alityDist evaluate respectively the overall differences
in edge labels and directionalities on the compared
path between each pair of matched nodes in the two
graphs. The real numbers ws, wl and wd are non-
negative weights associated with the measures.

The weights ws, wl and wd are defaulted to be
equal but can be tuned to change the emphasis of the
overall distance function. The distance threshold t
controls the isomorphism quality of the retrieved sub-
graphs from sentences. A smaller t allows only lim-
ited variations and always looks for a sentence sub-
graph as closely isomorphic to the rule graph as pos-
sible. A larger t enables the extraction of events de-
scribed in complicated dependency contexts, thus in-
creasing the chance of retrieving more events. How-
ever, it can incur a bigger search cost due to the eval-
uation of more potential solutions.

An iterative, bottom-up matching process is used
to ensure the extraction of complex and nested events.
Starting with the extraction of simple events, simple
event rules are first matched with a testing sentence.
Next, as potential arguments of higher level events,
obtained simple events continue to participate in the
subsequent matching process between complex event
rules and the sentence to initiate the iterative process
for detecting complex events with nested structures.
The process terminates when no new candidate event
is generated for the testing sentence.

During the matching phase we relax the event
rules that contain sub-event arguments such that any
matched event can substitute for the sub-event. We
believe that the contextual structures linking anno-
tated sub-events of a certain type are generalizable
to other event types. This relaxation increases the
chance of extracting complex events with nested
structures but still takes advantage of the contextual
constraints encoded in the rule graphs.

2.3 Rule Set Optimization

Typical of instance-based reasoners, the accuracy of
rules with which to compare an unseen sentence is
crucial to the success of our approach. For instance, a
Transcription rule encoding a noun compound mod-
ification dependency between “TNF” and “mRNA”
derived from an event context “expression of TNF
mRNA” should not produce a Transcription event
for the general phrase “level of TNF mRNA” even
though they share a matchable dependency. Such
matches result in false positive events.
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Therefore, we measured the accuracy of each rule
ri in terms of its prediction result via Eq.(1). For rules
that produce at least one prediction, we ranked them
byAcc(ri) and excluded the ones with aAcc(ri) ratio
lower than an empirical threshold, e.g. 1:4.

Acc(ri) =
#correct predictions by ri

#total predictions by ri
(1)

Because of nested event structures, the removal
of some rules might incur a propagating effect on
rules relying on them to produce arguments for the
extraction of higher order events. Therefore, an it-
erative rule set optimization process, in which each
iteration performs sentence matching, rule ranking
and rule removal sequentially, is conducted, lead-
ing to a converged, optimized rule set. While the
ASM algorithm aims to extract more potential events,
this performance-based evaluation component en-
sures the precision of our event extraction framework.

3 Extensions to Event Extraction System

In the BioNLP-ST 2013, we attempted two different
ways to extend the current event extraction system:
(1) integrate a distributional similarity model into the
system to extend the graph matching scheme for more
events; (2) use paths of all possible lengths (all-paths)
among event participants as key contextual depen-
dencies to extract events. We next elaborate these
system extensions in detail.

3.1 Integrating Distributional Similarity Model
The proposed subgraph distance measure of the ASM
algorithm focuses on capturing differences in the
overall graph structure, edge labels and directional-
ities. However, when determining the injective node
mapping between graphs, the matching remains at the
surface word level.

In the current setting, various node features can be
considered when comparing two graph nodes, result-
ing in different matching criteria. The features in-
clude POS tags (P), event trigger (T), token lemmas
(L) and tokens themselves (A). For instance, a match-
ing criterion, “P*+L”, requires that the relaxed POS
tags (P*) and the lemmatized form (L) of tokens be
identical for each rule node to match with a sentence
node. The relaxed POS allows the plural form of
nouns to match with the singular form, and the con-
jugations of verbs to match with each other. How-
ever, the inability to go beyond surface level match-
ing prevents node tokens that share similar meaning
but possess distinct orthography from matching with

each other. For instance, a mismatch between rule
token “crucial” and a sentence token “critical’ could
lead to an undiscovered Positive regulation event.

We attempted to use only POS information in the
node matching scheme and observed a nearly 14%
increase in recall (Liu et al., 2013b). However, the
precision drops sharply, resulting in an undesirable
F-score. This indicates that the lexical information
is a critical supplement to the contextual dependency
constraints in accurately capturing events within the
framework of our system. Moreover, we attempted to
extend the node matching using the synsets of Word-
Net (Fellbaum, 1998) to allow tokens to match with
their synonyms (Liu et al., 2011). However, since
WordNet is developed for the general English lan-
guage, it relates biomedical terms e.g., “expression”
with general words such as “aspect” and “face”, thus
leading to incorrect events.

In this work, we integrated a distributional simi-
larity model (DSM) into our node matching scheme
to further improve the generalization of event rules.
A distributional similarity model is constructed
based on the distributional hypothesis (Harris, 1954):
words that occur in the same contexts tend to share
similar meanings. We expect that the incorporation
of DSM will enable our system to capture matching
tokens in testing sentences that do not appear in the
training data while maintaining the extraction pre-
cision at a high level. There have been many ap-
proaches to compute the similarity between words
based on their distribution in a corpus (Landauer and
Dumais, 1997; Pantel and Lin, 2002). The output is a
ranked list of similar words to each word. We reim-
plemented the model proposed by (Pantel and Lin,
2002) in which each word is represented by a fea-
ture vector and each feature corresponds to a context
where the word appears. The value of the feature
is the pointwise mutual information (Manning and
Schütze, 1999) between the feature and the word. Let
c be a context and Fc(w) be the frequency count of a
word w occurring in context c. The pointwise mutual
information, miw,c between c and w is defined as:

miw,c =
Fc(w)

N∑
i

Fi(w)

N
×

∑
j

Fc(j)

N

(2)

where N =
∑
i

∑
j

Fi(j) is the total frequency count

of all words and their contexts.
Since mutual information is known to be biased

towards infrequent words/features, the above mutual

79



information value is multiplied by a discounting fac-
tor as described in (Pantel and Lin, 2002). The simi-
larity between two words is then computed using the
cosine coefficient (Salton and McGill, 1986) of their
mutual information vectors.

We experimented with two different approaches to
integrate the DSM into our event extraction system.
First, the model is directly embedded into the node
matching scheme. Once a match cannot be deter-
mined by surface tokens, the DSM is invoked to allow
a match if the sentence token appears in the list of the
top M most similar words to the rule token. Sec-
ond, additional event rules are generated by replac-
ing corresponding rule tokens with their top M most
similar words, rather than allow DSM to participate
in the node matching. While the first method mea-
sures the consolidated extraction ability of an event
rule by combining its DSM-generalized performance,
the second approach provides a chance to evaluate the
impact of each DSM-introduced similar word indi-
vidually on event extraction.

3.2 Adopting All-paths for Event Rules

Airola et al. proposed an all-paths graph (APG) ker-
nel for extracting protein-protein interactions (PPI),
in which the kernel function counts weighted shared
dependency paths of all possible lengths (Airola et
al., 2008). Thomas et al. adopted this kernel as
one of the three models used in the ensemble learn-
ing for extracting drug-drug interactions (Thomas et
al., 2011a) and won the recent DDIExtraction 2011
challenge (Segura-Bedmar et al., 2011). The JULIE
lab adapted the APG kernel to event extraction us-
ing syntactically pruned and semantically enriched
dependency graphs (Buyko et al., 2009).

The graph representation of the kernel consists of
two sub-representations: the full dependency parse
and the surface word sequence of the sentence where
a pair of interacting entities occurs. At the expense
of computational complexity, this representation en-
ables the kernel to explore broader contexts of an
interaction, thus taking advantage of the entire de-
pendency graph of the sentence. When comparing
two interaction instances, instead of using only the
shortest path that might not always provide suffi-
cient syntactic information about relations, the ker-
nel considers paths of all possible lengths between
any two nodes. More recently, a hash subgraph pair-
wise (HSP) kernel-based approach was also proposed
for drug-drug interactions and adopts the same graph
representation as the APG kernel (Zhang et al., 2012).

In contrast, the graph representation that our ASM
algorithm searches in a sentence is inherently re-
stricted to the shortest path among target entities in
event rules, as described in Section 2.2. Borrowing
from the idea of the all-path graph representation, in
this work we attempted to explore contexts beyond
the shortest paths to enrich our rule set. We evalu-
ated within the framework of our system the impact
of using acyclic paths of all possible lengths among
event participants as key contextual dependencies to
populate the event rule set as compared to using only
the shortest paths in the current system setting.

4 Implementation

4.1 Preprocessing

We employed the preprocessed data in the
BioC (Comeau et al., 2013) compliant XML format
provided by the shared task organizers as supporting
resources. The BioC project attempts to address
the interoperability among existing natural language
processing tools by providing a unified BioC XML
format. The supporting analyses include tokeniza-
tion, sentence segmentation, POS tagging and
lemmatization. Different syntactic parsers analyze
text based on different underlying methodologies, for
instances, the Stanford parser (Klein and Manning,
2003) performs joint inference over the product of an
unlexicalized Probabilistic Context-Free Grammar
(PCFG) parser and a lexicalized dependency parser
while the McClosky-Charniak-Johnson (Charniak)
parser (McClosky and Charniak, 2008) is based on
N -best parse reranking over a lexicalized PCFG
model. In order to take advantage of multiple aspects
of structural analysis of sentences, both Stanford
parser and Charniak parser, which are among the best
performing parsers trained on the GENIA Treebank
corpus, are used to parse the training sentences and
produce dependency graphs for learning event rules.
Only the Charniak parser is used on the testing
sentences in the event extraction phase.

4.2 ASM Parameter Setting

The GE task includes 13 different event types. Since
each type possesses its own event contexts, an indi-
vidual threshold te is assigned to each type. Together
with the 3 distance function weights ws, wl and wd,
the ASM requires 16 parameters for the GE event ex-
traction task. Similarly, the ASM requires 43 param-
eters to cater to the 40 diverse event types of the CG
task. As reported in (Liu et al., 2013a), we used a
genetic algorithm (GA) (Cormen et al., 2001) to au-
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tomatically determine values of the 12 ASM param-
eters for the 2011 GE task using the training data.
We inherited these previously determined parameters
and adapted them into the 2013 tasks according to
the event type and its argument configuration. For in-
stance, “Pathway” events in the CG task is assigned
the same te as the “Binding” events in the GE task as
they possess similar argument configurations.

Table 1 shows the parameter setting for the 2013
GE task with the equal weights ws = wl = wd con-
straint. The graph node matching criterion “P*+L”
that requires the relaxed POS tags and the token lem-
mas to be identical is used in the ASM.

Parameter Value Parameter Value
tGene expression 8 tUbiquitination 3
tTranscription 7 tBinding 7
tProtein catabolism 10 tRegulation 3
tPhosphorylation 8 tPositive regulation 3
tLocalization 8 tNegative regulation 3
tAcetylation 3 ws 10
tDeacetylation 3 wl 10
tProteinmodification 3 wd 10

Table 1: ASM parameter setting for the 2013 GE task

4.3 Distributional Similarity Model
In our implementation, we made following improve-
ments to the original Pantel model (Pantel and Lin,
2002): (1) lemmas of words generated by the Bi-
oLemmatizer (Liu et al., 2012) are used to achieve
generalization. The POS information is combined
with each lemmatized word to disambiguate its cat-
egory. (2) instead of the linear context where a
word occurs, we take advantage of dependency con-
texts inferred from dependency graphs. For instance,
“toxicity→amod” is extracted as a feature of the to-
ken “nonhematopoietic JJ”. It captures the dependent
token, the type and the directionality of the depen-
dency. (3) the resulting miw,c is scaled into the [0, 1]

range by
λ ·miw,c

1 + λ ·miw,c
to avoid greater miw,c values

dominating the similarity calculation between words.
An empirical λ = 0.01 is used. (4) while only the
immediate dependency contexts of a word are used
in our model, our implementation is flexible so that
contexts of various dependency depths could be taken
into consideration.

In order to cover a wide range of words and capture
the diverse usages of them in biomedical texts, in-
stead of resorting to an existing corpus, our distribu-
tional similarity model is built based on a random se-
lection of 5 million abstracts from the entire PubMed.
When computing miw,c, we filtered out contexts of

each word where the word occurs less than 5 times.
Eventually, the model contains 2.8 million distinct to-
kens and 0.4 million features. When it is queried with
an amino acid, e.g, “lysine”, the top 15 tokens in the
resulting ranked list are all correct amino acid names.

5 Results and Discussion

This section reports our results on the GE and the CG
tasks respectively, including the attempted extensions
to our ASM-based event extraction system.

5.1 GE task

5.1.1 Datasets
The 2013 GE task dataset is composed of full-text
articles from PubMed Central, which are divided into
smaller segments by the task organizers according to
various sections of the articles. Table 2 presents some
statistics of the GE dataset.

Attributes Counted Training Development Testing
Full article segments 222 249 305
Proteins 3,571 4,138 4,359
Annotated events 2,817 3,199 3,301

Table 2: Statistics of BioNLP-ST 2013 GE dataset

As distributed, the development set is bigger than
the training set. For better system generalization, we
randomly reshuffled the data and created a 353/118
training/development division, a roughly 3:1 ratio
consistent with the settings in previous GE tasks.
The results reported on the training/development data
thereafter are based on our new data partition.

5.1.2 GE Results on Development Set
Table 3 shows the event extraction results on the 118
development documents based on event rules derived
from different parsers. Only the numbers of unique,
optimized rules are reported and those that possess
isomorphic graph representations determined by an
Exact Subgraph Matching (ESM) algorithm (Liu et
al., 2013b) are removed. The ensemble rule set com-
bines rules derived from both parsers and achieves
a better performance than that of using individual
parsers. It makes sense that the Charniak parser is
favored and leads to a performance close to the en-
semble performance because sentences from which
events are extracted are parsed by the Charniak parser
as well. However, we retained the additional rules
from the Stanford parser in the hope that they may
contribute to the testing data.

When embedding the distributional similarity
model (DSM) directly into the graph node matching
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Parser Type Event Rule Recall Precision F-score
Charniak 2,923 47.01% 66.01% 54.91%
Stanford 3,305 43.66% 67.67% 53.08%
Ensemble 4,617 47.45% 65.65% 55.09%

Table 3: Performance of using different parsers

scheme, we performed the DSM on all rule tokens ex-
cept biological entities, meaning that for each rule to-
ken, if a match will be granted if a rule token appears
in the top M most similar word list of a sentence to-
ken, e.g., “DSM 3” denotes the top 3 similar words
determined by the DSM. We further performed DSM
only on trigger tokens for comparison, as presented
in Table 4.

All Tokens Recall Precision F-score
DSM 1 47.98% 52.56% 50.17%
DSM 3 48.68% 35.07% 40.77%
DSM 10 53.43% 19.38% 28.44%
Trigger Tokens Recall Precision F-score
DSM 1 48.06% 54.22% 50.95%
DSM 3 48.59% 37.00% 42.01%
DSM 10 53.35% 24.65% 33.72%

Table 4: Performance of integrated DSM

Even though the DSM helps to substantially in-
crease the recall to 53.43%, we observed a significant
precision drop which leads to an inferior F-score to
the ensemble baseline in Table 3. A close evaluation
of the generated graph matches reveals that antonyms
produced by the DSM contributes to most of the false
positive events. For instance, the most similar words
for the verb “increase” and the adjective “high” re-
turned by the model are “decrease” and “low” be-
cause they tend to occur in the same contexts. Fur-
ther investigation is needed to automatically filter out
the antonyms. When generating additional rules us-
ing the top M most similar words from the DSM,
since all the rules undergo the optimization process,
the event extraction precision is ensured. However,
the recall increase from simple events is diluted by
the counter effect of the introduced false positives in
detecting regulation-related complex events, result-
ing in a comparable performance to the baseline.

Table 5 gives the performance comparison of us-
ing all-paths and the shortest paths in our event ex-
traction system. Using all-paths does not bring in a
significant improvement in F-score but takes 27 it-
erations to optimize as compared to the 5-iteration
optimization on shortest paths. Most of the rules in-
duced from all-paths are eventually discarded by the
optimization process. The all-paths graph represen-
tation was motivated by the observation that short-

est paths between candidate entities often exclude
relation-signaling words when detecting binary re-
lationships (Airola et al., 2008). Exploring broader
contexts ensures such words to be considered. In the
event extraction task, however, since triggers have
been annotated, they are naturally incorporated into
the shortest paths connecting trigger to each event ar-
gument. This in part explains why contexts beyond
shortest paths did not bring in an appreciable benefit.

All Tokens Recall Precision F-score
All-paths 48.77% 64.64% 55.59%
Shortest paths 47.45% 65.65% 55.09%

Table 5: Performance of using all-paths

5.1.3 GE Results on Testing Set
Since integrating the DSM and all-paths do not pro-
vide significant performance improvements to our
system, we decided to retain the original settings in
the ASM when extracting events from the testing
data. While most of the 2011 shared task datasets are
composed of PubMed abstracts compared to full-text
articles in the 2013 GE task, our system focuses on
extracting events expressed within the boundaries of
a single sentence. Therefore, in order to take advan-
tage of existing annotated resources, we incorporated
the annotated data of 2011 GE task and EPI (Epi-
genetics and Post-translational Modifications) task to
enrich the training instances of corresponding event
types of the 2013 GE task. Eventually, we obtained a
total of 14,448 rules of different event types from our
training data. In practice, it takes the ASM less than a
second to match the entire rule set with one document
and return results.

Our submitted system achieves a 48.93% F-score
on the 305 testing documents of the GE task, ranking
4th among 12 participating teams. Table 6 presents
the performance of the top eight systems.

System Recall Precision F-score
EVEX 45.44% 58.03% 50.97%

TEES 2.1 46.17% 56.32% 50.74%
BioSEM 42.47% 62.83% 50.68%

NCBI 40.53% 61.72% 48.93%
DlutNLP 40.81% 57.00% 47.56%

HDS4NLP 37.11% 51.19% 43.03%
NICTANLM 36.99% 50.68% 42.77%

USheff 31.69% 63.28% 42.23%

Table 6: Performance of top 8 systems in GE task

Our performance is within a reasonable mar-
gin from the best-performing system “EVEX”, and
shows an overall superior precision over most partic-
ipating teams; only two of the top 5 systems obtained
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a precision in the 60% range. Particularly for the
regulation-related complex events, we are the only
team that achieved a precision over 55% among all
12 participating systems. This indicates that event
rules automatically learned and optimized over train-
ing data generalize well to the unseen text, and have
the ability to identify precisely corresponding events.

We further evaluated the impact of the additonal
training instances from 2011 tasks and the ensemble
rule set derived from different parsers as presented
in Table 7. With the help from the 2011 data, our
F-score is increased by 3% and we became the only
team that detected “Ubiquitination” events from test-
ing data. In addition, rules derived from the Stanford
parser do not provide additional benefits on the test-
ing data compared to using the Charniak parser alone.

System Attribute Recall Precision F-score
Ensemble 2013 + 2011 data 40.53% 61.72% 48.93%
Ensemble 2013 data 35.63% 63.91% 45.75%
Charniak 2013 data 35.29% 65.71% 45.92%

Table 7: Impact of 2011 data and ensemble rule set

5.2 CG task

5.2.1 Datasets
The CG task dataset is prepared based on a previ-
ously released corpus of angiogenesis domain ab-
stracts (Wang et al., 2011). It targets a challenging
set of 40 types of biological processes related to the
development and progression of cancer involving 18
entity types (Pyysalo et al., 2012). Table 8 presents
some statistics of the CG dataset.

Attributes Counted Training Development Testing
Abstracts 300 100 200
Entities 10,935 3,634 6,955
Annotated events 8,803 2,915 5,972

Table 8: Statistics of BioNLP-ST 2013 CG dataset

5.2.2 CG Results on Testing Set
We generalized our event extraction system to the CG
task and the corresponding annotated data of the 2011
tasks is also incorporated in the training phase to ob-
tain the optimized event rule set. Due to time con-
straints, the impact of integrating the DSM and all-
paths is not evaluated on the CG task. We achieved
a 46.38% F-score on the 200 testing documents of
the CG task, ranking 3rd among the 6 participating
teams. Table 9 gives the primary evaluation results of
the 6 participating teams; only “TEES-2.1” and we
participated in both GE and CG tasks. The detailed

results of each of the targeted 40 event types is avail-
able from the official CG task website.

Team Recall Precision F-score
TEES-2.1 48.76% 64.17% 55.41%
NaCTeM 48.83% 55.82% 52.09%
NCBI 38.28% 58.84% 46.38%
RelAgent 41.73% 49.58% 45.32%
UET-NII 19.66% 62.73% 29.94%
ISI 16.44% 47.83% 24.47%

Table 9: Performance of all systems in 2013 CG task

Inconsistent with other biological entities, the en-
tity annotation for the optional “Site” argument in-
volved in events such as “Binding”, “Mutation” and
“Phosphorylation” are not provided by the task orga-
nizers. We consider that detecting “Site” entities is
related to entity detection and we would like to focus
our system on the event extraction itself. Thus, we
decided to ignore the “Site” argument in our system.
However, a problem will arise that even though the
other arguments are correctly identified for an event,
it might still be evaluated as false positive if a “Site”
argument is not detected. This results in both false
positive and false negative events. In addition, since
we did not perform the secondary task which requires
us to detect modifications of the predicted events, in-
cluding negation and speculation, about 7.5% anno-
tated instances in the testing data are thus missed,
causing damage to our recall in the overall evalua-
tion. The organizers have agreed to issue an additonal
evaluation that will focus on core event extraction tar-
gets excluding optional arguments such as “Site” and
the secondary task. We will conduct more detailed
analysis on the results once they are made available.

6 Conclusion and Future Work

In the BioNLP-ST 2013, we generalized our ASM-
based system to address both GE and CG tasks.
We attempted to integrate a distributional similarity
model into our system to extend the graph match-
ing scheme. We also evaluated the impact of using
paths of all possible lengths among event participants
as key contextual dependencies to extract potential
events as compared to using only the shortest paths
within the framework of our system.

We achieved a 46.38% F-score in the CG task and
a 48.93% F-score in the GE task, ranking 3rd and
4th respectively. While the distributional similarity
model did not improve the overall performance of our
system in the tasks, we would like to further investi-
gate the antonym problem introduced by the model in
our future work.
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Abstract

We tested a linguistically motivated rule-
based system in the Cancer Genetics task 
of the BioNLP13 shared task challenge. 
The performance of the system was very 
moderate, ranging from 52% against the 
development set to 45% against the test 
set. Interestingly, the performance of the 
system did not change appreciably when 
using only  entities tagged by the inbuilt 
tagger as compared to performance using 
the gold-tagged entities. The lack of an 
event anaphoric module, as well as prob-
lems in reducing events generated by a 
large trigger class to the task-specific 
event subset, were likely major contribut-
ory factors to the rather moderate per-
formance.

1 Introduction

The Cancer Genetics (CG) task of the BioN-
LP-13 shared task (Pyysalo et al., 2013) has 
event types defined from a strict subset of GO 
biological processes. However, the events in the 
CG task have arguments that span a range of en-
tities from molecules to system-wide processes, 
the latter focused primarily on cancer. Thus the 
CG task is an interesting case-study for text min-
ing from a biological point of view, in that the 
task spans the literature from molecular events to 
behaviors linked to phenotypes, and thus con-
siders a broader context than earlier BioNLP 
shared tasks (Kim et al., 2009, 2011). 

An early article by Swanson (1988) explored 
the value of literature-based discovery (LBD) in 
discovering relations that span scientific sub-spe-
cializations. The LBD program of Swanson in-
volves 3 nominally independent subtasks: (i) ac-

curate representations of events within a docu-
ment (b) normalization of entities to a standard 
representation to facilitate inter-document span-
ning and (c) a strategy to span event graphs 
across multiple documents. We explored the CG 
task primarily in the context of subtask (a) of this 
LBD program.

2 Methods

Our system currently consists of the following 
major components (a) Cocoa, a NER module that 
detects over 20 biomedical entity classes,  in-
cluding macromolecules, chemicals, 
protein/DNA parts, complexes, organisms, pro-
cesses, anatomical parts, locations, physiological 
terms, parameters, values, experimental tech-
niques, surgical procedures, and foods and (b) 
Peaberry, a 'stitcher' that combines local predic-
ate-argument  structures  to produce a  depend-
ency-parse like output. The system also resolves 
sortal/pronominal anaphora and coreferences.

2.1 Entity detection

As entity detection is not part of the CG task, 
we provide only a brief overview of this module. 
However, as we did not use the entities provided 
by the event organizers on the test set, this de-
scription may be of interest given that our results 
with and without gold entities on the develop-
ment and test sets are comparable (please see the 
Results section below).

The Cocoa entity detection system consists of 
the following modules run as a pipeline: (a) sen-
tence boundary detection (b) acronym detection 
(c) a POS tagger based on Brill's tagger, post-
modified for the biological domain (d) a fnTBL-
based chunker, also heavily postmodified for the 
biomedical domain (e) an entity tagging module, 
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driven by dictionaries based both on words as 
well as morphological features, primarily pre-
fixes and suffixes for biomedical entities, but 
also using infixes for chemical entities (f) entity 
tag based correction of chunks, primarily mis-
tagged VP chunks (g) a narrow context/trigger 
based tagging of entities that are orthographically 
defined (presence of caps or numbers) such as 
assigning a protein tag for Cx43 from the phrase 
'phosphorylation of Cx43' (h) a multi-word entity 
aggregator (i) a shallow coordination module for 
NPs (j) a limited set of hypernymic and apposi-
tional relations, followed by reuse of tags for or-
thographically defined unlabeled entities (k) a 
chemical formula detector. The entity tagger per-
forms reasonably against proteins, anatomical 
parts and diseases as evaluated against existing 
tagged datasets (RelAgent, 2012).

2.2 Event Detection

The main steps here are: (a) detecting voice/fi-
niteness of verbs (b) predicate-argument  struc-
ture  extraction  for trigger words (c) argument 
merging and discourse connective parser (d) ana-
phora detection (e) discourse-connective based 
filling of empty themes and (f) sense disambigu-
ation (WSD) of trigger words based on argument 
structure.  A block-level pipeline of the system is 
given in Figure 1.

Figure  1.  Block  level  pipeline  of  the  system. 
Blocks with a light gray background are part of 
the  event  detection  system (Peaberry),  and  are 
discussed here. The other blocks are part of the 
Cocoa entity tagger. WSD = Word sense disam-
biguation.
 

We will use a single sentence throughout to il-
lustrate processing by the various modules:

 "Concomitantly, immunostaining for apoptosis 
inducing factor (AIF) showed a time-dependent 
translocation from the mitochondria to the nucle-
us."

2.2.1 Voice detection

The voice detection module uses about 150 
rules to detect the voice of a verb. It also classi-
fies the verb as finite/nonfinite while marking its 
presence in a reduced or finite relative clause. 
The module determines these various aspects of 
a verb primarily with the local context, but uses 
the aspects of a previous verb in cases of co-
ordinated verbs. Voice detection is facilitated by 
specific handling of (a)  middle verbs, which ap-
pear to be in the active voice, but whose theme is 
the subject ('The protein translocated to the nuc-
leus')  (b) ergative verbs,  which act  like middle 
verbs when they do not have a direct object, but 
behave regularly when they are used transitively 
('Protein levels increased' vs 'Application of the 
chemical increased protein levels') (c) intransit-
ives, which are verbs that do not take a direct ob-
ject, but whose subject is the agent ('The patient 
fell'), (d)  verbs in the active voice, but with an 
object separated from the verb  by a  preposition 
('leads to', 'resulted in', 'binds to'). Voice markup 
is therefore determined primarily by the roles of 
the  subject/object,  and  is  thus  a  little  different 
from  the  voice  markings  as  conventionally 
defined.

In the sample sentence, there is only one verb, 
and the output reads:

"[ Concomitantly AV] , [ immunostaining NP] 
for [ apoptosis inducing factor (AIF) NP] [ 
showed VP_Af] [ a time -dependent transloca-
tion NP] from [ the mitochondria NP] to [ the 
nucleus NP] ."
where the verb phrase 'showed' is in the active 
voice ('A') and is finite ('f'). Another sentences 
better illustrates a wider range in voice markings:

[ Adult naive T cells NP] , which [ are 
VP_Pfcr] at [ rest NP] in [ normal conditions 
NP] , [ proliferate strongly VP_Pf] when [ trans-
ferred VP_Pnd] to [ lymphopenic hosts NP] .

Here 'VP_Pfcr' stands for passive voice ('P'), fi-
nite ('f'), copula ('c'), and relative clause ('r'), 
while 'VP_Pnd' stands for Passive ('P'), non-fin-
ite ('n') and reduced ('d').
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2.2.2 Argument extraction

Local arguments are extracted for all verbs in 
a sentence, as well as all nominals marked as po-
tential  triggers  by  the  entity  tagger.  Currently, 
there  are  approximately  60  classes  of  predic-
ate-argument structures based both on the partic-
ular prepositions heading noun phrases as well as 
entity tags; these classes cover about 500 specific 
trigger words. Additionally, there are generic ar-
gument  structures  for  verbs  and  nominals  not 
covered in the specific classes above. We accom-
modate  3  additional  arguments  apart  from  the 
agent/theme, such as FromLoc, ToLoc and AtLoc 
for movement-type trigger words. In addition, we 
also mark the subject/object nature of the argu-
ments. 

The argument  structures  for  the  sample sen-
tence are shown in a pipe separated format (verb|
cause|theme):

immunostaining  |  -  |  apoptosis  inducing  factor 
(AIF)
showed  |  immunostaining  |  a  time  -dependent 
translocation
-dependent | time | translocation
translocation | - | - | FromLoc:the nucleus| ToLoc: 
the mitochondria

2.2.3 Argument stitching and connectives

We link argument  structures  for  individual 
triggers  by looking for missing syntactical con-
stituents for verbs (subject/object) or semantic 
constituents for nominals (agent/theme). For 
verbs, we use the voice/finite aspects of the cur-
rent verb to locate previous verbs with which the 
current verb is associated with, either through 
embedding or by coordination. For example, in 
the sentence fragment: '...  had no effect on the 
ability  of  beta-adrenergic  agonists  to  stimulate 
internalization  of  beta2ARs  ,  but  blocked  the 
ability of ...”,  'blocked' coordinates with the fi-
nite  verb  'had'  but  not  with  the  non-finite  'to 
stimulate'. An example of an embedding is: 'With 
major  interfering  currents  inhibited,  NaCaEC 
was measured as the current that is sensitive to 
the  nickel  (Ni)  during  a  descending  voltage 
ramp.'. Here the VP  'was measured' is finite, and 
this allows its object 'the current' to be identified 
as the subject of 'is sensitive'. 

Other examples of rules for resolving the argu-
ments  of  relative  clauses  (RCs)  are:  (a)  Dis-
course  connectives  ('whereas,  'whereby, 
'because')  form  clausal  boundaries  and  should 
not be crossed (b) Certain coordination markers 

('besides',  'via')  also  should  not  be  crossed  for 
RC's (c) If an RC is recognized as coordinated 
with a prior RC, the arguments are transferred.

A general point in inferring missing arguments 
is that the nature of the current trigger word can 
also determine the nature  of  the  induced argu-
ment. Certain trigger words ('induce', 'cause', en-
hance',  'prevent')  can take an event as an argu-
ment ,  although most  trigger  words  do not 
(theme argument for 'methylation'). Triggers in 
the former class are primarily regulatory actions 
and/or belief statements, which can take a clause 
or  a  nominal as an  argument.  The  distinction 
between these two types of trigger words is re-
lated  to  that  between  'embedding  propositions' 
and 'atomic propositions' noted in Kilicoglu and 
Bergler  (2012).  An  example  is:  'Promoter 
methylation may interfere with AP1 binding to 
the  promoter  to  cause  aberrant  Cx43 gene  ex-
pression.', where it is the interference that causes 
aberrant expression.

The stitcher/parser  does not examine  the in-
ternal structure of chunks to locate missing argu-
ments  for  predicates.  This  rule  is  violated  for 
trigger  words  that  can  accept  events  as  argu-
ments, where the presence of an event trigger (as 
marked  by  the  NER  tagger)  inside  a  NP  is 
checked  for.  While  this  makes  the  process  in 
some sense 'domain-neutral',  it  may also  intro-
duce errors unless the  predicate-argument rules 
are  complete  and comprehensive for individual 
triggers.

The parser also locates discourse connectives 
('whereas', 'because' , 'via', 'when') and assembles 
argument frames for these connectives, based on 
finiteness of verbs when possible. Connectives 
('by') that can take nominals as arguments ('Loc-
alization ... by fusing') are also handled by the 
parser. Hypernymic and appositional relations 
are also detected at this stage. A final check loc-
ates all unattached prepositional phrases in the 
sentence and attaches them as verbal phrases to 
the nearest verb in a greedy step. At any point, 
the parser looks back no more than 2 verbs back 
for resolution, with parse time thus ~ O(2x), 
where 'x' is the number of trigger words in a sen-
tence.

We  recognize  that  the  description  of  the 
'stitching' process above is somewhat brief, but 
feel that a full description may not be appropriate 
here due to the large number of rules and interde-
pendencies in the system. We note that:  (a) the 
final output of the process is similar to a depend-
ency parse, except that semantic roles are identi-
fied (b) the stitching is done in a shallow manner, 
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with two verbs look-back at most, and is hence 
reasonably fast and (c) the implementation is our 
own, and does not borrow from existing parsers. 
We plan to describe this system in greater detail 
in a separate publication elsewhere.

As an example, in the paraphrase 'X activates 
Y to increase Z', the arguments are:

activates | X | Y
increase  | - | Z

and the stitcher recognizes the infinitival 'to' con-
struct, and transfers the previous event as the 
agent for 'increase':

activates | X         | Y
increase  | activates | Z

2.3 Anaphora

We implemented the algorithm of Lappin and 
Leass (1994) for pronominal anaphora, as imple-
mented by Kennedy and Boguraev (1996), with 
additional weights for matching entity tags for 
headwords. The weights were refined against 
handpicked abstracts, but are  yet to be com-
pletely validated. In addition, we also resolved 
sortal anaphora  ('this protein', 'these genes') and 
prenominal anaphora ('its binding partner', 'their 
properties')  by the same rules  as  used for  pro-
nominal anaphors ('it', 'they'), but with different 
weights. We also implemented event anaphora, 
i.e. reference of one trigger word to another trig-
ger word with the same root (lemma) or another 
event in the same class (for regulation triggers). 
Due to lack of time, we could not completely test 
the performance of event anaphora, and they 
were dropped in the test set. Coreference resolu-
tion with the determiner 'the' ('the gene') was not 
implemented.

2.4 Transferring arguments across events

Certain arguments can be resolved by compar-
ing argument structures for events linked by dis-
course connectives (DCs), such as :

'found to overexpress eph mRNAs without 
gene amplification' (DC: 'without')

'Upon retroviral transduction of the mouse c-
myc gene, Rat 6 cells showed mildly altered 
morphology' (DC: 'Upon')

'SCAI acts on the RhoA-Dia1 signal transduc-
tion pathway and localizes in the nucleus, where 
it binds and inhibits the myocardin-related tran-
scription factor MAL by forming a ternary com-
plex with serum response factor (SRF).' (ana-

phoric resolution for 'it' followed by a discourse 
connective:'by')

When events are linked by a discourse con-
nective, arguments can be transferred if the 
events are in the same event class. Even if the 
events are of different classes, the theme can be 
transferred if it satisfies the entity type con-
straints of the recipient event. Further, certain be-
lief/demonstration trigger words ('display', 
'show', 'exhibit', 'demonstrate') that take an event 
as the theme have a similar structure: 'Cloning of 
a  human  phosphoinositide  3-kinase  with  a  C2 
domain  that  displays  reduced sensitivity  to  the 
inhibitor wortmannin.' or 'X exhibits cytotoxicity 
against  cell  lines'.  Agent arguments for such 
verbs are transferred to the appropriate argument 
slot of the theme event. In certain contexts, verbs 
such as  'act'   which can take  an infinitival  'to' 
complement behave similarly:   'p15 may act as 
an effector of TGF-beta-mediated cell cycle ar-
rest.'.

For the sample sentence, the trigger/belief 
word 'showed' causes a transfer of the theme slot 
of its cause process ('immunostaining', a 
Planned_process in the CG task) to the same slot 
in the theme event ('translocation'):

immunostaining | - | apoptosis inducing factor 
(AIF)
showed | immunostaining | a time -dependent 
translocation
-dependent | time | translocation
translocation | - | apoptosis inducing factor (AIF) 
| FromLoc:the nucleus| ToLoc: the mitochondria

2.5 Runtimes

The run-time of the system is about 100 
ms/sentence on a 2007 vintage dual-core system. 
This time was estimated by processing whole ab-
stracts varying from 10-15 sentences. This figure 
includes the time for all components, including 
entity recognition, parsing, intra-document ana-
phora resolution (both sortal/pronominal and 
event), event extraction and final A1/A2 output. 
The extrapolated time of processing for the entire 
Medline corpus (1.2 x 10^8 sentences in 2013) is 
about 180 CPU-days.

3 Results

We first tested the system against the develop-
ment  set  by  using  the  internal  entity  detector 
(Cocoa) to tag entities, and using these tags alone 
till  the  end of  the  event  extraction  phase,  and 
only then remapping the Cocoa-tagged entities to 
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entities in the gold annotations ('a1' entities) giv-
en by the task organizers. This gave a score (f-
measure) of 52.2% with the evaluation options '-
s  -p'  which  stand  respectively  for  soft  span 
matching  and  partial  recursive  matching.  We 
then reran the event extraction module after re-
moving  all  internally  generated  entity  tags  for 
chemicals, proteins and anatomical parts and tag-
ging only such entities as were specified in the 
gold 'a1' files. To our surprise, the f-measure was 
2% lower on the development set when using the 
gold  entities.  This  probably  indicates  an  un-
wanted dependence of the event extraction mod-
ule on some peculiarities in the way the internal 
Cocoa tagger tags entities. We are currently ana-
lyzing the results for such dependencies (see Dis-
cussion  for  some  examples).  Nevertheless,  the 
results  are  encouraging in  that  the  system per-
formance is similar with or without reference en-
tities and thus may be indicative of performance 
on a new document collection where entities are 
not specified manually beforehand.

As the task allows only one submission,  we 
submitted the results of the system with entities 
tagged by the internal tagger and mapped only at 
the  end  to  the  gold  tagged  entities.  This  was 
based on the better performance of this approach 
against the development set. However, the results 
of the system were considerably lower on the test 
set (f = 45.3%; best score by TEES 2.1 system = 
55.4%; Pyysalo et  al.,  2013).  Using  the evalu-
ation portal for the test dataset, the results with 
gold-tagged  entities  improved  the  performance 
only by 0.3%, confirming that, at least at the per-
formance levels of this system, the inbuilt Cocoa 
entity tags can substitute for pre-annotated entit-
ies.

The  performance  on  the  test  set  was  low 
primarily  against  the  events  in  the  regulation 
class (f=35.6%),  which form about 40% of the 
events in both the test and development sets. This 
is  similar  to  the  result  in  the  development  set, 
where  the  performance  in  the  regulation  class 
was also quite low at f=37%. Part of the reason 
for this is that the system's rules for regulatory 
triggers generally give preference to other events 
over entities as causes/agents. Thus for example 
in  the  sentence  fragment  (PMID:21963494) 
'AglRhz  induced  activation  of  caspase-3  and 
poly(ADP-ribose) polymerase (PARP), and DNA 
fragmentation in HT-29 cells, leads to induction 
of apoptosis as well as suppression of tumorigen-
icity of HT-29 cells.', the gold annotations state 
that  'AglRhz'  is  the  cause for  the  trigger  word 
'leads',  while  the  Peaberry  system  prefers  the 

trigger  word  'induced'  for  the  causative  agent. 
However, we have not done a detailed study to 
examine  if  such  differences  account  for  more 
than a small minority of the errors that contribute 
to low performance in the regulatory class. Over-
all, and surprisingly for a rule-based system, the 
precision  was  quite  low  on  both  the  test  set 
(49%) and the development set (54%). The low 
overall  precision was dominated by the corres-
ponding number for regulatory events (37% and 
44% on test and development sets respectively), 
but  the  precision of  non-regulatory events  was 
quite dismal as well (please see Discussion sec-
tion below). 

The  low recall  for  regulatory  events  can  be 
caused by low recall for those primary (i.e. non-
regulatory) events that are regulated. In the de-
velopment set, the recall for these non-regulatory 
classes varied between 55% and 75%, but in the 
test set the recall for some primary event classes 
(Pathology and General event classes) dropped to 
~30-40% (see Table 1 below). Another reason for 
low recall is the absence of themes for primary 
events  when these  themes  are  lifted/transferred 
from mentions of the same trigger word in previ-
ous  sentences.  Our  lack  of  a  event  anaphora 
module would thus certainly have contributed to 
the low recall  for such primary events.  We are 
analyzing the gold annotations to determine other 
causes for the low precision and recall in the de-
velopment dataset.

Event Class Recall Precision Fscore

Anatomy 63.34 80.29 70.82

Pathology 43.30 54.20 48.14

Molecule 57.46 64.38 60.72

General 34.67 49.82 40.89

Regulation 34.22 37.05 35.58

Modifier 26.24 37.50 30.88

Total 41.73 49.58 45.32

Table 1. Summary of results for the Test set. Re-
call,  precision and F-score are shown for event 
classes  for anatomical  changes,  pathology,  mo-
lecular processing events,  general events (bind-
ing and movement), regulatory events, modifiers 
(negation and speculation) and the total score.

4 Discussion

We have developed a rule-based linguistically 
motivated system for tagging entities and extract-
ing events from biomedical documents.  A major 
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problem with our linguistically-based system is 
the large open-ended number of trigger words 
that generate events. This explosive event gener-
ation occurs as the system generates predicate ar-
gument structures for all verbs in a document as 
well as for generically defined nominal processes 
(which are marked as event triggers by morpho-
logical considerations, such as words  ending in 
"ation"). Moreover, the entity tagger also marks a 
variety of other words as event triggers when 
they are known to stand for biological or disease 
processes, in the Gene Ontology for example. 
Projecting the system output into a limited sets of 
trigger words for a particular task was somewhat 
problematic for us, although a good training ex-
ercise on transferring arguments (e.g. the theme) 
from 'other' trigger words into the subset of trig-
ger words sufficient for the task. It is possible 
that defects  in  this argument transfer process 
could account for some of the low performance 
in the test set.

Developing a rule-based system involves a 
large amount of manual work in tuning the vari-
ous aspects of the system to the task at hand. 
This is true even if the framework for the system 
is already in place. For example, with the CG 
task, the predicate-argument structures  for each 
individual trigger have to be exhaustively 
worked out to handle all possible locations of ar-
gument structures. For certain triggers, the theme 
in the CG task is somewhat indirect, as in the 
sentence: 'Almost all patients respond to G-CSF 
with increased neutrophils, reduced infections, 
and improved survival.', where the theme of 're-
sponse' are not the patients but the 'increased 
neutrophils'. This is perhaps clearer in the para-
phrase: "Organism responded to Drug with 
Symptoms", and cellular symptoms are the ap-
propriate theme for the trigger 'responded' in the 
CG task. Distinguishing such a sentence from a 
syntactically similar but semantically distinct 
sentence ' Organism responded well to Drug' is a 
challenging, and perhaps arduous, task for a rule-
based linguistically motivated system. We note 
that the CG task annotations are quite consistent 
in this aspect, as the theme is again Symptoms in 
the paraphrase 'Drug protects Organism from 
Symptoms'.

Further, in certain sentences, it is somewhat 
hard to express the meaning in the A2 notation. 
This is particularly true for adjectives which 
refer to the state of an entity rather than an event. 
Consider (PMID 17367752): "These results sug-
gest that SWAP-70 may be required for oncogen-
ic transformation and contributes to cell growth 

in MEFs transformed by v-Src." where one of the 
gold annotations transcribes functionally as 

'contributes ( Agent: SWAP-70, Theme: trans-
formed ( Theme: MEFs ) )'

which suggests that SWAP-70 contributes to the 
transformation of MEF's, whereas 'transformed' 
is only an attribute of the MEF's for this annota-
tion. These aspects of the CG task annotations 
are particularly hard to capture in a rule-based 
system. A similar problematic sentence is 'recom-
binant  EBVs  that  lack  the  BHRF1  miRNA 
cluster display a reduced ability to transform B 
lymphocytes in vitro' where the gold annotations 
read:

reduced  (Agent:  recombinant_EBVs  Theme: 
transform (B_lymphocytes))

The sentence however suggests that it is the 'lack' 
of a 'miRNA cluster'  in the EBV's that reduces 
the transformation. Again, this reading is some-
what hard to express in A2 notation.

As an additional example of the task com-
plexity, we noted that distinguishing between the 
role of the trigger word 'transform' as 'Cell_trans-
formation' and its role as a 'Planned_process' 
seems to require some level of discourse analysis 
at least in the CG training data.

Some defects in the system output arise from 
differences  in  interpretation.  In  the  sentence 
'Merlin protein might contribute to the initiation 
of metastasis of NSCLC.', (PMID:2174350), the 
gold annotations read: 

'contribute(Agent:Merlin,  Theme:  initiation 
(Theme: NSCLC))' 
'contribute  (Agent:  Merlin  Theme:  metastasis 
(Theme: NSCLC))

where NSCLC is a cancer. Peaberry gives instead 

'contribute  (Agent:  Merlin,  Theme: 
initiation(Theme: metastasis(Theme: NSCLC)))

As  'initiation'  generally  requires  an  event/pro-
cess/disease as a theme, its theme could be either 
'metastasis' or 'NSCLC', and the system makes a 
greedy choice in this case. As changes in this lo-
gic would have a system-wide impact,  this ex-
ample perhaps shows the inflexibility of the sys-
tem.

A straightforward example shows the costs of 
missed  anaphora:  'Gene  silencing  and over-ex-
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pression  techniques  were  used  to  modulate 
RASSF1C  expression  in  human  breast  cancer 
cells.' The system misses both events 'expression 
(Theme:RASSF1C)'  and  'over-expression 
(Theme:  RASSF1C)',  both  themes  resolving  to 
the anaphoric entity 'Gene', which needs resolu-
tion.  Similar  considerations  apply  for  the  sen-
tence:  'knockdown  of  HDGF,  an  up-regulated 
protein and a target of NF-kappaB, induced cell 
apoptosis',  where  'protein'  and  not  'HDGF'  is 
seen as the theme of the trigger 'up-regulated'.

Rule based systems have been used in previ-
ous  BioNLP shared  tasks.  Such  a  system,  de-
scribed  by  Kilicoglu  and  Bergler  (2012),  was 
employed for the BioNLP shared task 2011. This 
system used  output  from the  Stanford  depend-
ency parser together with the notion of embed-
ding to construct a semantic graph, from which 
propositions were extracted.  These propositions 
were converted into events,  and semantic roles 
were derived depending on the nature of the pre-
dicate trigger word.  In comparing the perform-
ance  of  this  system  on  the  2011  GENIA task 
against our system on the CG task in common 
categories, the striking difference is that our pre-
cision is far lower in most categories (see Table 
2), even while recall is comparable. In particular, 
the difference in precision in non-regulation cat-
egories is quite noticeable. We are yet to under-
stand the reasons for these low precision scores 
in the Peaberry system.

Event Class GENIA CG

Localization 90.36 59.43

Binding 49.66 34.69

Gene expression 86.84 71.46

Transcription 58.95 100.00

Phosphorylation 94.56 70.83

Regulation 45.85 37.05

Modifier 40.89 37.50

Total 59.58 49.58

Table 2.  Comparison of  precision  between two 
rule-based systems for similar event classes: (a) 
system of  Kilicoglu  and Bergler  (2012)  in  the 
GENIA task of BioNLP 11 (b) current system in 
the CG task of BioNLP 13.
 

We noted in the Results section that perform-
ance of the system with and without gold-tagged 
entities (tagged in the latter case by the internal 
Cocoa tagger) was similar, 0.7% better with the 
gold entities in the test run, and 2% better with 
internal entities on the development set.  A pre-

liminary  analysis  shows  that  the  reduction  in 
some cases with gold entities was due to peculi-
arities in the way the system handles acronyms. 
The internal  tagger lumps together an acronym 
with its  expansion as a  single token, while the 
gold annotations tokenizes the acronym and the 
definition  separately.  This  affects  downstream 
processing,  especially  in  the  stitching  module. 
The gold annotations also do not markup sortal 
anaphors  ('gene'  in  'this  gene'),  and the system 
depends on entities being marked up in such ana-
phors to find a referent. Altogether, while the res-
ults  may initially  seem surprising,  they  do  not 
support  any notion that  automatically predicted 
entities are somehow better than gold annotated 
entities for event extraction systems. At most, the 
similarities in results with and without gold an-
notated  entities  are  indicative  of  a  comparable 
performance, a very moderate f =~ 0.45, of the 
complete system on a new document collection 
without gold annotations.

We note that it seems possible that the rules 
developed for the CG task can be extended 
without major modifications to the PC and the 
GE tasks, whose set of event triggers are a subset 
of the CG task, without degrading the perform-
ance of the CG task. This may be one of the few 
advantages of a labor-intensive rule-based sys-
tem; however, we are yet to validate such a sup-
position.  

Cancer is founded at the 
molecular/genetic/cellular level and is localized 
to an individual organ/tissue before metastasis. It 
would thus seem that the text processing logic 
used for the CG task should be generalizable (at 
least) to diseases of individual organs. However, 
cancer is not a true multi-organ systemic prob-
lem of the type that characterizes life-style dis-
eases such as diabetes and cardiovascular dis-
ease, which are both linked to multiple genomic 
loci as well as to multiple organs, and it would be 
interesting to explore coverage of event extrac-
tion schemes for these diseases with the text min-
ing techniques developed in the CG task. In this 
context, we note that automatic annotation of all 
events in a document needs to be followed by 
highlighting of the novel events/properties in the 
document, which may require some discourse 
analysis.
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Abstract

This paper describes NaCTeM entries for
the Cancer Genetics (CG) and Pathway
Curation (PC) tasks in the BioNLP Shared
Task 2013. We have applied a state-of-
the-art event extraction system EventMine
to the tasks in two different settings: a
single-corpus setting for the CG task and
a stacking setting for the PC task. Event-
Mine was applicable to the two tasks with
simple task specific configuration, and it
produced a reasonably high performance,
positioning second in the CG task and first
in the PC task.

1 Introduction

With recent progress in biomedical natural lan-
guage processing (BioNLP), automatic extraction
of biomedical events from texts becomes practi-
cal and the extracted events have been success-
fully employed in several applications, such as
EVEX (Björne et al., 2012; Van Landeghem et
al., 2013) and PathText (Miwa et al., 2013a).
The practical applications reveal a problem in that
both event types and structures need to be cov-
ered more widely. The BioNLP Shared Task 2013
(BioNLP-ST 2013) offers several tasks addressing
the problem, and especially in the Cancer Genetics
(CG) (Pyysalo et al., 2013) and Pathway Curation
(PC) (Ohta et al., 2013) tasks, new entity/event
types and biomedical problems are focused.

Among dozens of extraction systems proposed
during and after the two previous BioNLP shared
tasks (Kim et al., 2011; Kim et al., 2012; Pyysalo
et al., 2012b), EventMine (Miwa et al., 2012)1

has been applied to several biomedical event ex-
traction corpora, and it achieved the state-of-the-
art performance in several corpora (Miwa et al.,
2013b). In these tasks, an event associates with

1http://www.nactem.ac.uk/EventMine/

a trigger expression that denotes its occurrence
in text, has zero or more arguments (entities or
other events) that are identified with their roles
(e.g.,Theme, Cause) and may be assigned hedge
attributes (e.g.,Negation).

This paper describes how EventMine was ap-
plied to the CG and PC tasks in the BioNLP-ST
2013. We configured EventMine minimally for
the CG task and submit the results using the mod-
els trained on the training and development data
sets with no external resources. We employed a
stacking method for the PC task; the method ba-
sically trained the models on the training and de-
velopment data sets, but it also employed features
representing prediction scores of models on seven
external corpora.

We will first briefly describe EventMine and its
task specific configuration in the next section, then
show and discuss the results, and finally conclude
the paper with future work.

2 EventMine for CG and PC Tasks

This section briefly introduces EventMine and the
PC and CG tasks, and then explains its task spe-
cific configuration.

2.1 EventMine

EventMine (Miwa et al., 2012) is an SVM-based
pipeline event extraction system. For the de-
tails, we refer the readers to Miwa et al. (2012;
2013b). EventMine consists of four modules: a
trigger/entity detector, an argument detector, a
multi-argument detector and a hedge detector.
The trigger/entity detector finds words that match
the head words (in their surfaces, base forms
by parsers, or stems by a stemmer) of trig-
gers/entities in the training data, and the detector
classifies each word into specific entity types (e.g.,
DNA domainor region), event types (Regulation)
or a negative type that represents the word does
not participate in any events. The argument
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detector enumerates all possible pairs among
triggers and arguments that match the semantic
type combinations of the pairs in the training data,
and classifies each pair into specific role types
(e.g., Binding:Theme-Geneor geneproduct) or
a negative type. Similarly, the multi-argument
detector enumerates all possible combina-
tions of pairs that match the semantic type
structures of the events in the training data,
and classifies each combination into an event
structure type (e.g.,Positiveregulation:Cause-
Geneor geneproduct:Theme-Phosphorylation)
or a negative type. The hedge detector attaches
hedges to the detected events by classifying the
events into specific hedge types (Speculationand
Negation) or a negative type.

All the classifications are performed by one-vs-
rest support vector machines (SVMs). The detec-
tors use the types mentioned above as their clas-
sification labels. Labels with scores larger than
the separating hyper-plane of SVM and the label
with the largest value are selected as the predicted
labels; the classification problems are treated as
multi-class multi-label classification problems and
at least one label (including a negative type) needs
to be selected in the prediction.

Features for the classifications include charac-
ter n-grams, word n-grams, shortest paths among
event participants on parse trees, and word n-
grams and shortest paths between event partici-
pants and triggers/entities outside of the events on
parse trees. The last features are employed to cap-
ture the dependencies between the instances. All
gold entity names are replaced with their types,
the feature space is compressed to220 by hash-
ing to reduce space cost, the positive instances are
weighted to reduce class imbalance problems, the
feature vectors are normalised, and theC parame-
ter for SVM is set to 1.

In the pipeline approach, there is no way to de-
tect instances if the participants are missed by the
preceding modules. EventMine thus aims high
recall in the modules by the multi-label setting
and weighting positive instances. EventMine also
avoids training on instances that cannot be de-
tected by generating the training instances based
on predictions by the preceding modules since the
training and test instances should be similar.

EventMine is flexible and applicable to several
event extraction tasks with task specific configura-
tion on entity, role and event types. This configu-

ration is described in a separate file2.

2.2 CG and PC Tasks

The CG task (Pyysalo et al., 2013) aims to extract
information on the biological processes relating to
the development and progression of cancer. The
annotation is built on the Multi-Level Event Ex-
traction (MLEE) corpus (Pyysalo et al., 2012a),
which EventMine was once applied to. The PC
task (Ohta et al., 2013), on the other hand, aims
to support the curation of bio-molecular pathway
models, and the corpus texts are selected to cover
both signalling and metabolic pathways.

Both CG and PC tasks offer more entity, role
and event types than most previous tasks like GE-
NIA (Kim et al., 2012) does, which may make the
classification problems more difficult.

2.3 Configuration for CG and PC Tasks

We train models for the CG and PC tasks in simi-
lar configuration, except for the incorporation of a
stacking method for the PC task. We first explain
the configuration applied to both tasks and then in-
troduce the stacking method for the PC task.

We employ two kinds of type generalisations
for both tasks: one for the classification labels
and features and the other for the generation of in-
stances. After the disambiguation of trigger/entity
types by the trigger/entity detector, we reduce the
number of event role labels and event structure
labels by the former type generalisations. The
generalisations are required to reduce the com-
putational costs that depend on the number of
the classification labels. Unfortunately, we can-
not evaluate the effect of the generalisations on
the performance since there are too many pos-
sible labels in the tasks. The generalisations
may alleviate the data sparseness problem but
they may also induce over-generalised features
for the problems with enough training instances.
For event roles, we generalise regulation types
(e.g.,Positiveregulation, Regulation) into a single
REGULATIONtype and post-transcriptional mod-
ification (PTM) types (e.g.,Acetylation, Phos-
phorylation) into a singlePTM type for trigger
types, numbered role types into a non-numbered
role type (e.g.,Participant2→Participant) for role

2This file is not necessary since the BioNLP ST data for-
mat defines where these semantic types are described, but this
file is separated for the type generalisations explained later
and the specification of gold triggers/entities without repro-
ducing a1/a2 files.
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types, and event types into a singleEVENTtype
and entity types into a singleENTITY type for
argument types. For event structures, we apply
the same generalisations except for the general-
isations of numbered role types since the num-
bered role types are important in differentiating
events. Unlike other types, the numbered role
types in events are not disambiguated by any other
modules. The generalisations are also applied to
the features in all the detectors when applicable.
These generalisations are the combination of the
generalisations for the GENIA, Epigenetics and
Post-translational Modifications (EPI), and Infec-
tious Diseases (ID) (Pyysalo et al., 2012b) of the
BioNLP-ST 2011 (Miwa et al., 2012).

The type generalisations on labels and fea-
tures are not directly applicable to generate pos-
sible instances in the detectors since the gen-
eralisations may introduce illegal or unrealis-
tic event structures. Instead, we employ sep-
arate type generalisations to expand the possi-
ble event role pair and event structure types and
cover types, which do not appear in the training
data. For example, if there areRegulation:Theme-
Geneexpressioninstances but there are noPosi-
tive regulation:Theme-Geneexpressioninstances
in the training data, we allow the creation of the
latter instances by generalising the triggers, i.e.,
REGULATION:Theme-Geneexpression, and we
used all the created instances for classification.
The type generalisations may incorporate noisy in-
stances but they pose the possibility to find unan-
notated event structures. To avoid introducing un-
expected event structures, we apply the generali-
sations only to the regulation trigger types.

We basically follow the setting for EPI in
Miwa et al. (2012). We employ a deep syntactic
parser Enju (Miyao and Tsujii, 2008) and a de-
pendency parser GDep (Sagae and Tsujii, 2007).
We utilise liblinear-java (Fan et al., 2008)3 with
the L2-regularised L2-loss linear SVM setting for
the SVM implementation, and Snowball4 for the
stemmer. We, however, use no external resources
(e.g., dictionaries) or tools (e.g., a coreference
resolver) except for the external corpora in the
stacked models for the PC task.

We train models for the CG task using the con-
figuration described above. For PC, in addition
to the configuration, we incorporated a stacking

3http://liblinear.bwaldvogel.de/
4http://snowball.tartarus.org/

Setting Recall Precision F-score
– 42.87 47.72 45.16

+Exp. 43.37 46.42 44.84
+Exp.+Stack. 43.59 48.77 46.04

Table 1: Effect of the type generalisations for ex-
panding possible instances (+Exp.) and stacking
method (+Stack.) on the PC development data set.

method (Wolpert, 1992) using the models with the
same configuration for seven other available cor-
pora: GENIA, EPI, ID, DNA methylation (Ohta
et al., 2011a), Exhaustive PTM (Pyysalo et al.,
2011), mTOR (Ohta et al., 2011b) and CG. The
prediction scores of all the models are used as ad-
ditional features in the detectors. Although some
corpora may not directly relate to the PC task and
models trained on such corpora can produce noisy
features, we use all the corpora without selection
since the stacking often improve the performance,
e.g., (Pyysalo et al., 2012a; Miwa et al., 2013b).

3 Evaluation

We first evaluate the type generalisations for ex-
panding possible event structures and the stack-
ing method in Table 1. The scores were calcu-
lated using the evaluation script provided by the
organisers with the official evaluation metrics (soft
boundary and partial recursive matching). The
generalisations improved recall with the loss of
precision, and they slightly degraded the F-score
in total. The generalisations were applied to the
test set in the submission since this result was ex-
pected as explained in Section 2.3 and the slightly
high recall is favourable for the practical applica-
tions like semantic search engines (Miwa et al.,
2013a). Although the improvement by the stack-
ing method (+Exp.+Stack. compared to +Exp.) is
not statistically significant (p=0.14) using the ap-
proximate randomisation method (Noreen, 1989;
Kim et al., 2011), this slight improvement indi-
cates that the corpus in the PC task shares some
information with the other corpora.

Tables 2 and 3 show the official scores of our
entries on the test data sets for the CG and PC
tasks5. EventMine ranked second in the CG task
and first in the PC task. The scores of the best sys-
tem among the other systems (TEES-2.1 (Björne
and Salakoski, 2013)) are shown for reference.

5We refer to the websites of the tasks for the details of the
event categories.
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Task System Rec. Prec. F-Score
CG EventMine 48.83 55.82 52.09

TEES-2.1 48.76 64.17 55.41
PC EventMine 52.23 53.48 52.84

TEES-2.1 47.15 55.78 51.10

Table 2: Official best and second best scores on
the CG and PC tasks. Higher scores are shown in
bold.

Task Category EventMine TEES-2.1
CG ANATOMY 71.31 77.20

PATHOL 59.78 67.51
MOLECUL 72.77 72.60
GENERAL 53.08 52.20
REGULAT 39.79 43.08
PLANNED 40.51 39.43
MOD 29.95 34.66

PC SIMPLE 65.60 63.92
NON-REG 65.72 63.37
REGULAT 40.10 39.39
MOD 28.05 28.73

Table 3: F-scores on the CG and PC tasks for event
categories. Higher scores are shown in bold.

EventMine achieved the highest recall for both
tasks, and this is favourable as mentioned above.
This high recall is reasonable since EventMine
solved the problems as multi-label classification
tasks, corrected the class imbalance problem as
explained in Section 2.1 and incorporated the type
generalisations for expanding possible event struc-
tures. The performance (in F-score) on both CG
and PC tasks is slightly lower than the perfor-
mance on the GENIA and ID tasks in the BioNLP-
ST 2011 (Miwa et al., 2012), and close to the per-
formance on the EPI task. This may be partly be-
cause the GENIA and ID tasks deal with a fewer
number of event types than the other tasks.

EventMine performed worse than the best sys-
tem in the CG task, but this result is promis-
ing considering that we did not incorporate any
other resources and tune the parameters (e.g.,C
in SVM). The detailed comparison with TEES-
2.1 shows that EventMine performed much worse
than TEES-2.1 in anatomical and pathological
event categories, which contained relatively new
event types. This indicates EventMine missed
some of the new structures in the new event types.

The range of the scores is similar to the

scores on the MLEE corpus (52.34–53.43% in F-
Score (Pyysalo et al., 2012a)) although we can-
not directly compare the results. The ranges of
the scores are around 60% to 70% for non-nested
events (e.g.,SIMPLE), 40% for nested events
(e.g.,REGULAT) and 30% for modifications (e.g.,
MOD). This large spread of the scores may be
caused by a multiplication of errors in predicting
their participants, since similar spread was seen
in the previous tasks (e.g., (Miwa et al., 2012)).
These results indicate that we may not be able
to improve the performance just by increasing the
training instances.

These results show that EventMine performed
well on the PC task that is a completely novel task
for EventMine, and the stacking would also work
effectively on the test set.

4 Conclusions

This paper explained how EventMine was ap-
plied to the CG and PC tasks in the BioNLP-
ST 2013. EventMine performed well on these
tasks and achieved the second best performance
in the CG task and the best performance in the
PC task. We show the usefulness of incorporat-
ing other existing corpora in the PC task. The
success of this application shows that the Event-
Mine implementation is flexible enough to treat
the new tasks. The performance ranges, however,
shows that we may need to incorporate other novel
techniques/linguistic information to produce the
higher performance.

As future work, we will investigate the cause
of the missed events. We also would like to ex-
tend and apply other functions in EventMine, such
as co-reference resolution, and seek a general ap-
proach that can improve the event extraction per-
formance on all the existing corpora, using the
training data along with external resources.
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Abstract

This paper describes the technical con-
tribution of the supporting resources pro-
vided for the BioNLP Shared Task 2013.
Following the tradition of the previous
two BioNLP Shared Task events, the task
organisers and several external groups
sought to make system development easier
for the task participants by providing auto-
matically generated analyses using a vari-
ety of automated tools. Providing analy-
ses created by different tools that address
the same task also enables extrinsic evalu-
ation of the tools through the evaluation of
their contributions to the event extraction
task. Such evaluation can improve under-
standing of the applicability and benefits
of specific tools and representations. The
supporting resources described in this pa-
per will continue to be publicly available
from the shared task homepage
http://2013.bionlp-st.org/

1 Introduction

The BioNLP Shared Task (ST), first organised in
2009, is an ongoing series of events focusing on
novel challenges in biomedical domain informa-
tion extraction. In the first BioNLP ST, the or-
ganisers provided the participants with automat-
ically generated syntactic analyses from a variety
of Natural Language Processing (NLP) tools (Kim
et al., 2009) and similar syntactic analyses have
since then been a key component of the best per-
forming systems participating in the shared tasks.
This initial work was followed up by a similar ef-
fort in the second event in the series (Kim et al.,
2011), extended by the inclusion of software tools
and contributions from the broader BioNLP com-

munity in addition to task organisers (Stenetorp et
al., 2011).

Although no formal study was carried out to es-
timate the extent to which the participants utilised
the supporting resources in these previous events,
we note that six participating groups mention us-
ing the supporting resources in published descrip-
tions of their methods (Emadzadeh et al., 2011;
McClosky et al., 2011; McGrath et al., 2011;
Nguyen and Tsuruoka, 2011; Björne et al., 2012;
Vlachos and Craven, 2012). These resources have
been available also after the original tasks, and
several subsequent studies have also built on the
resources. Van Landeghem et al. (2012) applied a
visualisation tool that was made available as a part
of the supporting resources, Vlachos (2012) em-
ployed the syntactic parses in a follow-up study
on event extraction, Van Landeghem et al. (2013)
used the parsing pipeline created to produce the
syntactic analyses, and Stenetorp et al. (2012) pre-
sented a study of the compatibility of two different
representations for negation and speculation anno-
tation included in the data.

These research contributions and the overall
positive reception of the supporting resources
prompted us to continue to provide supporting re-
sources for the BioNLP Shared Task 2013. This
paper presents the details of this technical contri-
bution.

2 Organisation

Following the practice established in the
BioNLP ST 2011, the organisers issued an
open call for supporting resources, welcoming
contributions relevant to the task from all authors
of NLP tools. In the call it was mentioned that
points such as availability for research purposes,
support for well-established formats and access
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Name Annotations Availability

BioC Lemmas and syntactic constituents Source
BioYaTeA Terms, lemmas, part-of-speech and syntactic constituencies Source
Cocoa Entities Web API

Table 1: Summary of tools/analyses provided by external groups.

to technical documentation would considered
favourable (but not required) and each supporting
resource provider was asked to write a brief
description of their tools and how they could
potentially be applied to aid other systems in the
event extraction task. This call was answered
by three research groups that offered to provide
a variety of semantic and syntactic analyses.
These analyses were provided to the shared
task participants along with additional syntactic
analyses created by the organisers.

However, some of the supporting resource
providers were also participants in the main event
extraction tasks, and giving them advance access
to the annotated texts for the purpose of creating
the contributed analyses could have given those
groups an advantage over others. To address this
issue, the texts were made publicly available one
week prior to the release of the annotations for
each set of texts. During this week, the supporting
analysis providers annotated the texts using their
automated tools and then handed the analyses to
the shared task organisers, who made them avail-
able to the task participants via the shared task
homepage.

3 Analyses by External Groups

This section describes the tools that were applied
to create supporting resources by the three exter-
nal groups. These contributions are summarised in
Table 1.

BioC Don Comeau, Rezarta Islamaj, Haibin
Liu and John Wilbur of the National Center for
Biotechnology Information provided the output of
the shallow parser MedPost (Smith et al., 2004)
and the BioLemmatizer tool (Liu et al., 2012),
supplied in the BioC XML format1 for annota-
tion interchange (Comeau et al., 2013). The BioC
format address the problem of interoperability be-
tween different tools and platforms by providing a
unified format for use by various tools. Both Med-
Post and BioLemmatizer are specifically designed

1http://bioc.sourceforge.net/

for biomedical texts. The former annotates parts-
of-speech and performs sentence splitting and to-
kenisation, while the latter performs lemmatisa-
tion. In order to make it easier for participants
to get started with the BioC XML format, the
providers also supplied example code for parsing
the format in both the Java and C++ programming
languages.

BioYaTeA Wiktoria Golik of the French Na-
tional Institute for Agricultural Research (INRA)
and Thierry Hamon of University Paris 13 pro-
vided analyses created by BioYaTeA2 (Golik et
al., 2013). BioYaTeA is a modified version of the
YaTeA term extraction tool (Aubin and Hamon,
2006) adapted to the biomedical domain. Working
on a noun-phrase level, BioYaTeA provides anno-
tations such as lemmas, parts-of-speech, and con-
stituent analysis. The output formats used were a
simple tabular format as well as BioYaTeA-XML,
an XML representation specific to the tool.

Cocoa S. V. Ramanan of RelAgent Private Ltd
provided the output of the Compact cover anno-
tator (Cocoa) for biological noun phrases.3 Co-
coa provides noun phrase-level entity annotations
for over 20 different semantic categories such as
macromolecules, chemicals, proteins and organ-
isms. These annotations were made available for
the annotated texts for the shared task along with
the opportunity for the participants to use the Co-
coa web API to annotate any text they may con-
sider beneficial for their system. The data format
used by Cocoa is a subset of the standoff format
used for the shared task entity annotations, and it
should thus be easy to integrate into existing event
extraction systems.

4 Analyses by Task Organisers

This section describes the syntactic parsers ap-
plied by the task organisers and the pre-processing

2http://search.cpan.org/˜bibliome/
Lingua-BioYaTeA/

3http://npjoint.com/
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Name Model Availability

Enju Biomedical Binary
Stanford Combination Binary, Source
McCCJ Biomedical Source

Table 2: Parsers used for the syntactic analyses.

and format conversions applied to their output.
The applied parsers are listed in Table 2.

4.1 Syntactic Parsers

Enju Enju (Miyao and Tsujii, 2008) is a deep
parser based on the Head-Driven Phrase Struc-
ture Grammar (HPSG) formalism. Enju analyses
its input in terms of phrase structure trees with
predicate-argument structure links, represented in
a specialised XML-format. To make the analyses
of the parser more accessible to participants, we
converted its output into the Penn Treebank (PTB)
format using tools included with the parser. The
use of the PTB format also allow for its output to
be exchanged freely for that of the other two syn-
tactic parsers and facilitates further conversions
into dependency representations.

McCCJ The BLLIP Parser (Charniak and John-
son, 2005), also variously known as the Charniak
parser, the Charniak-Johnson parser, or the Brown
reranking parser, has been applied in numerous
biomedical domain NLP efforts, frequently using
the self-trained biomedical model of McClosky
(2010) (i.e. the McClosky-Charniak-Johnson or
McCCJ parser). The BLLIP Parser is a con-
stituency (phrase structure) parser and the applied
model produces PTB analyses as its native out-
put. These analyses were made available to par-
ticipants without modification.

Stanford The Stanford Parser (Klein and Man-
ning, 2002) is a widely used publicly available
syntactic parser. As for the Enju and BLLIP
parsers, a model trained on a dataset incorporating
biomedical domain annotations is available also
for the Stanford parser. Like the BLLIP parser,
the Stanford parser is constituency-based and pro-
duces PTB analyses, which were provided to task
participants. The Stanford tools additionally in-
corporate methods for automatic conversion from
this format to other representations, discussed fur-
ther below.

4.2 Pre-processing and Conversions

To create the syntactic analyses from the Enju,
BLLIP and Stanford Parser systems, we first ap-
plied a uniform set of pre-processing steps in order
to normalise over differences in e.g. tokenisation
and thus ensure that the task participants can eas-
ily swap the output of one system for another. This
pre-processing was identical to that applied in the
BioNLP 2011 Shared Task, and included sentence
splitting of the annotated texts using the Genia
Sentence Splitter,4 the application of a set of post-
processing heuristics to correct frequently occur-
ring sentence splitting errors, and Genia Treebank-
like tokenisation (Tateisi et al., 2004) using a to-
kenisation script created by the shared task organ-
isers. 5

Since several studies have indicated that repre-
sentations of syntax and aspects of syntactic de-
pendency formalism differ in their applicability to
support information extraction tasks (Buyko and
Hahn, 2010; Miwa et al., 2010; Quirk et al., 2011),
we further converted the output of each of the
parsers from the PTB representation into three
other representations: CoNNL-X, Stanford De-
pendencies and Stanford Collapsed Dependencies.
For the CoNLL-X format we employed the con-
version tool of Johansson and Nugues (2007), and
for the two Stanford Dependency variants we used
the converter provided with the Stanford CoreNLP
tools (de Marneffe et al., 2006). These analyses
were provided to participants in the output for-
mats created by the respective tools, i.e. the TAB-
separated column-oriented format CoNLL and the
custom text-based format of the Stanford Depen-
dencies.

5 Results and Discussion

Just like in previous years the supporting resources
were well-received by the shared task participants
and as many as five participating teams mentioned
utilising the supporting resources in their initial
submissions (at the time of writing, the camera-
ready versions were not yet available). This level
of usage of the supporting resources by the partici-
pants is thus comparable to what was observed for
the 2011 shared task.

Following in the tradition of the 2011 support-

4https://github.com/ninjin/geniass
5https://github.com/ninjin/bionlp_

st_2013_supporting/blob/master/tls/
GTB-tokenize.pl
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ing resources, to aim for reproducibility, the pro-
cessing pipeline containing pre/post-processing
and conversion scripts for all the syntactic parses
has been made publicly available under an open
licence.6 The repository containing the pipeline
also contains detailed instructions on how to re-
produce the output and how it can potentially be
applied to other texts.

Given the experience of the organisers in
analysing medium-sized corpora with a variety of
syntactic parsers, many applied repeatedly over
several years, we are also happy to report that the
robustness of several publicly available parsers has
recently improved noticeably. Random crashes,
corrupt outputs and similar failures appear to be
transitioning from being expected to rare occur-
rences.

In this paper, we have introduced the supporting
resources provided for the BioNLP 2013 Shared
Task by the task organisers and external groups.
These resources included both syntactic and se-
mantic annotations and were provided to allow the
participants to focus on the various novel chal-
lenges of constructing event extraction systems by
minimizing the need for each group to separately
perform standard processing steps such as syntac-
tic analysis.
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Abstract 

In this paper we present a biomedical event 

extraction system for the BioNLP 2013 event 

extraction task. Our system consists of two 

phases. In the learning phase, a dictionary and 

patterns are generated automatically from 

annotated events. In the extraction phase, the 

dictionary and obtained patterns are applied to 

extract events from input text. When evaluated 

on the GENIA event extraction task of the 

BioNLP 2013 shared task, the system obtained 

the best results on strict matching and the third 

best on approximate span and recursive 

matching, with F-scores of 48.92 and 50.68, 

respectively. Moreover, it has excellent 

performance in terms of speed. 

1 Introduction 

A growing amount of biomedical data is 

continuously being produced, resulting largely 

from the widespread application of high-

throughput techniques, such as gene and protein 

analysis. This growth is accompanied by a 

corresponding increase of textual information, in 

the form of articles, books and technical reports. 

In order to organize and manage these data, 

several manual curation efforts have been set up 

to identify entities (e.g., genes and proteins), 

their interactions (e.g., protein-protein) and 

events (e.g., transcription and gene regulation). 

The extracted information is then stored in 

structured knowledge resources, such as 

MEDLINE and Swiss-Prot. However, manual 

curation of large quantities of data is a very 

demanding and expensive task, and it is difficult 

to keep these databases up-to-date. These factors 

have naturally led to an increasing interest in the 

application of text mining (TM) systems to 

support those tasks.  

Automatic recognition of biomedical events 

from scientific documents was highly promoted 

by the BioNLP challenges (Kim et al., 2009; 

2011), focusing on events that involve genes and 

proteins, such as gene expression, binding, and 

regulation. Such events are typically represented 

as the relation between a trigger and one or more 

arguments, which can be biomedical concepts or 

other events.  

Several approaches have been proposed to 

extract biological events from text (Kim et al., 

2009; 2011). Based on their characteristics and 

applied natural language processing (NLP) tools, 

these approaches can be categorized into two 

main groups, namely rule- and machine learning 

(ML)-based approaches. Rule-based approaches 

consist of a set of rules that are manually defined 

or automatically learned from training data (Bui 

& Sloot, 2011; Cohen et al,. 2009; Kaljurand et 

al., 2009; Kilicoglu & Bergler, 2011). To extract 

events from text, first event triggers are detected 

using a dictionary, then the defined rules are 

applied to the output of the NLP tools e.g., 

dependency parse trees, to find their arguments. 

On the other hand, ML-based approaches exploit 

various feature sets and learning algorithms to 

extract events (Björne & Salakoski, 2011; Miwa 

et al., 2010; 2012; Riedel & McCallum, 2011).  

This article presents an enhanced version of 

our biomedical event extraction system (Bui & 

Sloot, 2012). Here we simplify the way patterns 

are generated from training data and improve the 

method to extract events from text based on the 

obtained patterns. 
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2 System and methods 

The workflow of the system is illustrated in 

Figure 1. A text preprocessing step, which 

converts unstructured text into a structured 

representation, is applied for both learning and 

extraction phases. In the learning phase, a 

dictionary and patterns are generated 

automatically from annotated events. In the 

extraction phase, the dictionary and obtained 

patterns are applied to extract events from input 

text.  

 

2.1 Text preprocessing 

The text preprocessing step intends to break the 

input text into meaningful units, in order to 

reveal important linguistic features. This step 

consists of splitting input text into single 

sentences, tokenizing sentences, part-of-speech 

(POS) tagging, shallow parsing, and converting 

obtained chunks into simple clauses. An in-depth 

description of this step is provided in (Bui & 

Sloot, 2012). An example of a structured 

representation is illustrated in Figure 2. 

 

2.2 Building a dictionary 

The dictionary construction is carried out 

automatically using event triggers from training 

data. This process consists of four steps: 

grouping event triggers, calculating confidence 

scores, filtering out irrelevant triggers, and 

determining event types. First, we collect all 

event triggers annotated in the training dataset, 

convert them to lower-case and group them 

based on their text and event types. For each 

event trigger, we count the number of times it 

appears as an event trigger and the number of 

times it appears in the training dataset, in order to 

calculate its confidence score. Next, we filter out 

triggers that have POS tags not starting with 

“NN”, “VB”, or “JJ”, as well as triggers that 

consist of more than two words, as suggested in a 

previous study (Kilicoglu & Bergler, 2011). We 

further filter out more triggers by setting a 

frequency threshold and confidence score for 

each event type. Finally, we assign an event type 

for each event trigger based on its type annotated 

in the training data. If an event trigger belongs to 

more than one event group, we determine its 

event type based on the event group where it 

appears with highest frequency. For instance, the 

“effect” trigger appears in both “Regulation” and 

“Positive_regulation” groups, but its frequency 

in the “Regulation” group is higher, therefore it 

is assumed to be a “Regulation” event trigger. 

 

2.3 Predefined patterns 

When using a structured representation to 

express biomedical events, in most cases, an 

event can be mapped into a “container”, i.e., a 

chunk, a phrase, or a clause as shown in Figure 

2. Based on this representation, we define a list 

of the most common patterns that encode 

relations between an event trigger and its 

arguments. The predefined list of patterns is 

shown in Table 1. We skip all events that cannot 

be expressed within a simple clause. 

 

Train Test

Learning phase Extracting phase

Build 

dictionary - Sentence splitting

- Tokenization

- POS tagging

- Shallow parsing

- Chunk converter

Pre-processing

Generate 

patterns

Extract 

events

- Noun phrases

- Simple clauses

Dictionary

Patterns

Events

1 2

3

4

Figure 1: workflow of the system. 

 

Figure 2: Structured representation of biomedical 

events. 
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Table 1: Common patterns for relations between an 

event trigger and its arguments. Trg denotes event 

trigger, prep: preposition, arg1: event theme, and 

arg2: theme2 or cause of an event. 

2.4 Generating patterns 

To generate a pattern for each event, first we find 

a suitable container (e.g., chunk, phrase, or 

clause) that contains the event trigger and its 

arguments. If such a container is found, a pattern 

is generated by extracting features from that 

container using a list of defined feature set as 

shown in Table 2. Each generated pattern is then 

assigned a key by combining its event trigger, 

POS tag, pattern type, and container type. This 

key is used to retrieve this pattern in the 

extraction step. During the learning process, if a 

key of a newly generated pattern already exists, 

the system increases the frequency attribute of 

the existing pattern and updates the other 

attributes accordingly. 

 

Features Description and examples 

Trigger Event trigger. 

Prep1 Preposition between theme and trigger, e.g. of, 

in. 
Pattern type Defined in Table 1. 

Prep2 Preposition between cause/theme2 and trigger.  

Container The container which contains this event. 
Distance1 Distance (number of chunks) between theme and 

event trigger. 

Distance2 Distance (number of chunks) between 
cause/theme2 and event trigger. 

POS POS tag of the trigger e.g. NN, ADJ, and VBZ. 

Pro1 count Count number of events with a protein as theme. 

Even1 count Count number of events with an event as theme. 

Pro2 count Count number of events with a protein as 
theme2/cause. 

Even2 count Count number of events with an event as 

theme2/cause. 
Frequency Number of events sharing the same pattern key. 

This value is used to rank the patterns in the 

extraction step. 

 

Table 2: Feature set used to generate patterns. 

2.5 Extracting events 

In this step, we apply the obtained patterns to 

extract events from text. First, the input sentence 

is converted into a structured representation by 

applying the text preprocessing step. Next, 

tokens of each sentence are matched against the 

dictionary to detect candidate event triggers. For 

each candidate event trigger, a key is generated 

to retrieve its corresponding patterns. If patterns 

for the event trigger exist, we then apply the 

retrieved patterns using the order of the syntactic 

layers: chunk, phrase, and clause (see Figure 2). 

Furthermore, if there is more than one pattern 

available for a syntactic layer (e.g. chunk, 

phrase), the order to apply patterns is determined 

by the frequency of these patterns, which is 

calculated in the previous step. Patterns with 

higher frequency have higher priority. 

3 Results 

3.1 Datasets 

We used the training and development datasets 

provided by the BioNLP’11 and BioNLP’13 

shared tasks to train our system. The statistics of 

the datasets are presented in Table 3. 
 

Items Training  Test 

Abstracts (+full papers) 950 (+20) 0 (+10) 
Proteins 19089 4359 
Events 16403 3301 
Availability of events Yes Hidden 

Table 3: Characteristics of the training and test da-

tasets. 

 

All training data were used to build the 

dictionary and generate patterns. In our 

experiment, we used the same dictionary for the 

learning and extraction phases. The confidence 

score of all entries in the dictionary was set to 

0.1. In the extraction phase, the distance features 

(“Distance1” and “Distance2”) were set to a 

maximum of 10 chunks, and patterns that have a 

frequency lower than 3 were not used in order to 

reduce false-positive events. 

3.2 Event extraction  

Table 4 presents the results achieved by our 

system on the BioNLP 2013 GENIA test dataset 

using both strict and approximate matching. Our 

system achieves an F-score of 48.92 with strict 

matching, and an F-score of 50.68 with 

approximate matching. For relaxed matching, the 

Container Pattern type 

Chunk 

Trg – Arg1 

Arg2-Trg-Arg1 

Arg1-Trg 

Phrase 

Trg-Prep1- Arg1 

Trg-Prep1-Arg1-Prep2 –Arg2 

Trg-Prep2-Arg2-Prep1 –Arg1 

Arg2-Trg-Prep1-Arg1 

Arg1-Arg2-Trg 

Clause 

Arg1 – Trg 

Trg – Arg1 

Arg2 – Trg – Arg1 

Arg1 – Trg – Arg2 

106



data show that our system performs well on 

simple events (“simple all”) with an average F-

score of 76.11, followed by protein modification 

events (“prot-mod all”) with an average F-score 

of 74.37. The performance declines on binding 

events with an F-score of 49.76 and regulatory 

events (“regulation all”) with an average F-score 

of 35.80. When comparing the performance of 

our system between the two matching criteria, 

the data indicate that only Transcription events 

gain significant performance, with an F-score 

increase of 30 points. 
 
Event type Strict matching Approximate span 

R P F1 R P F1 

Gene expression 72.86 85.74 78.78 73.83 86.88 79.83 

Transcription 32.67 48.53 39.05 58.42 86.76 69.82 

Protein catabolism 42.86 75.00 54.55 42.86 75.00 54.55 

Localization 42.42 89.36 57.53 42.42 89.36 57.53 

Simple all 63.87 81.97 71.79 67.71 86.90 76.11 

Binding 47.45 52.32 49.76 47.45 52.32 49.76 

Phosphorylation 82.50 80.49 81.48 82.50 80.49 81.48 

Prot-mod all 69.11 80.49 74.37 69.11 80.49 74.37 

Regulation 12.50 30.25 17.69 13.19 31.09 18.53 

Positive regulation 30.62 49.93 37.96 31.68 51.66 39.28 

Negative regulation 28.33 49.17 35.95 28.90 50.17 36.67 

Regulation all 27.31 47.62 34.72 28.19 49.06 35.80 

Event total 40.99 60.67 48.92 42.47 62.83 50.68 

Table 4: Precision (P), recall (R) and F-score (F1) 

results achieved on the test set of BioNLP 2013, eval-

uated on strict matching and approximate span and 

recursive criteria. 

 

Table 5 presents a comparison of the overall 

performance results with the top-five performing 

systems in the BioNLP 2013 GENIA task. The 

data show that our system (BioSem) achieves the 

best results on strict matching, and ranks third on 

approximate matching, with a slight difference in 

F-score of 0.29 point compared to the best 

system. Furthermore, our system yields the best 

precision on both matching criteria, with a 

considerable difference on strict matching. 
 

Team Strict matching Approximate span 

R P F1 R P F1 

EVEX 42.99 54.89 48.22 45.44 58.03 50.97 

TEES-2.1 43.71 53.33 48.04 46.17 56.32 50.74 

NCBI 37.35 56.72 45.04 40.53 61.72 48.93 

DlutNLP 37.75 52.73 44.00 40.81 57.00 47.56 

BioSem 40.99 60.67 48.92 42.47 62.83 50.68 

Table 5: Performance comparison of overall Precision 

(P), recall (R) and F-score (F1) with the five best sys-

tems. 

 

A closer look at the official results (data not 

shown) reveals that our system obtains the best 

performance on Binding event with an F-score of 

49.76, which is significantly higher than the 

second-best system (F-score 43.32). 

Interestingly, our system also yields the highest 

F-score (58.77) when evaluated on themes only. 

When aiming for a large-scale relation 

extraction, system performance in terms of speed 

has to be taken into account. By employing a 

simple text processing and an effective event 

extraction algorithm, our system is very fast. On 

a standard PC with 4GB of RAM, it takes 49s to 

process the training dataset and 11s to process 

the test dataset.  

4 Conclusion and future work 

This article presents a system for biomedical 

event extraction that generates patterns 

automatically from training data. When 

evaluated on the test set, it presented the best 

results with strict matching and the third best 

with approximate span and recursive matching. 

Moreover, it obtains high precision on both 

evaluation criteria, and has an excellent 

performance in terms of speed.  

There are various ways to further improve the 

performance of the system. First, we believe that 

an ML-based approach for trigger recognition 

will improve its results, by minimizing 

ambiguity problems and improving recall, 

especially on regulatory events. Second, the final 

performance depends on the output of the text-

preprocessing step, especially the conversion of 

chunks into structured representations. If the 

performance of this step is improved, for 

example by using predicate argument structures 

as proposed by (Miwa et al., 2010) to obtain 

relations between subject-verb-object, then more 

precise patterns could be obtained in the learning 

phase. Consequently, the extraction phase would 

have a cleaner input (with less false positives and 

false negatives), which will eventually enhance 

the performance. Furthermore, as proposed in 

our previous study (Bui et al., 2011), the output 

of the current system can be used as the input for 

an ML classifier to further reduce false-positive 

events. The feature set used in the predefined 

patterns can also be used directly as feature set 

for the ML classifier. 
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Abstract 

We describe a system for extracting biomedi-

cal events among genes and proteins from 

biomedical literature, using the corpus from 

the BioNLP’13 Shared Task on Event Extrac-

tion. The proposed system is characterized by 

a wide array of features based on dependency 

parse graphs and additional argument informa-

tion in the second trigger detection. Based on 

the Uturku system which is the best one in the 

BioNLP’09 Shared Task, we improve the per-

formance of biomedical event extraction by 

reducing illegal events and false positives in 

the second trigger detection and the second ar-

gument detection. On the development set of 

BioNLP’13, the system achieves an F-score of 

50.96% on the primary task. On the test set of 

BioNLP’13, it achieves an F-score of 47.56% 

on the primary task obtaining the 5th place in 

task 1, which is 1.78 percentage points higher 

than the baseline (following the Uturku sys-

tem), demonstrating that the proposed method 

is efficient. 

1 Introduction 

Extracting knowledge from unstructured text is 

one of the most important goals of Natural Lan-

guage Processing and Artificial Intelligence. Re-

sources in the internet are expanding at an expo-

nential speed, especially in the biomedical do-

main. Due to the astronomical growth of biomed-

ical scientific literature, it is very important and 

urgent to develop automatic methods for know-

ledge extraction system. 

In the past few years, most researchers in the 

field of Biomedical Natural Language Processing 

focused on extracting information with simple 

structure, such as named entity recognition 

(NER), protein-protein interactions (PPIs) (Air-

ola et al., 2008; Miwa et al., 2009) and disease-

gene association (Chun et al., 2006). While PPIs 

concern the flat relational schemas with no 

nested structures, bio-molecular events describe 

the detailed behavior of bio-molecules, which 

capture the biomedical phenomena from texts 

well. The BioNLP’09 shared task (Kim et al., 

2009) provides the first entry to bio-event extrac-

tion. As described in BioNLP’09, a bio-event 

consists of a trigger and one or more arguments, 

where a trigger is a contiguous textual string con-

taining one or more tokens and an argument is a 

participant (event or protein) with a correspond-

ing type. For example, in the snippet “interferon 

regulatory factor 4 gene expression”, the event 

trigger is “expression” which is tagged by the 

event type “Gene_expression” and the event ar-

gument is “interferon regulatory factor 4”. Not-

ably, bio-events may have arbitrary arguments 

and even contain other events as arguments, re-

sulting in nested events. 

The complex event structure makes this task 

particularly attractive, drawing initial interest 

from many researchers. Björne et al.'s (2009) 

system (referred to hereinafter as Uturku system) 

was the best pipeline system in BioNLP’09, 

achieving an F-score of 51.95% on the test data 

sets. After that, Miwa et al. (2010a, 2010b) com-

pared different parsers and dependency represen-

tations on bio-event extraction task and obtained 

an F-score of 57.79% on development data sets 

and 56.00% on test data sets with parser ensem-

ble. In contrast to the pipeline system which di-

vided the event process into three stages, triggers 

detection, arguments detection and post 

processing, Poon and Vanderwende’s (2010) and 

Riedel et al.’s (2009) joint models combined 

trigger recognition and argument detection by 

using a Markov logic network learning approach. 

After the BioNLP’09, the Genia event task (Bi-

oNLP’11 task 1, hereafter) in the BioNLP’11 

Shared Task (Kim et al., 2011) introduced a 

same event extraction task on a new dataset. 

There were still some pipeline systems applied to 

Genia task 1, e.g. Björne et al.’s (2011) system 

and Quirk et al.’s (2011) system. To the best of 
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our knowledge, Miwa et al.’s (2012) pipeline 

system incorporating domain adaptation and co-

reference resolution, is the best biomedical event 

extraction system on BioNLP'11 task 1 so far. 

The Genia event extraction task (BioNLP'13 

task 1, hereafter) (Kim et al., 2013) in Bi-

oNLP'13 Shared Task is consistent with the Ge-

nia task in BioNLP'11 Shared task. Nevertheless, 

BioNLP'13 task 1 focuses on event extraction 

from full texts while BioNLP’11 task 1 contains 

abstracts and full texts. Furthermore, the corefe-

rence resolution task separated from event ex-

traction task in BioNLP'11 is integrated to Bi-

oNLP'13 task 1, and there are more event types 

in the BioNLP'13 task 1 than those in BioNLP'11 

task 1. The BioNLP’13 shared task contains 

three parts, the training corpus, the development 

corpus and the test corpus. The training corpus 

consists of 10 full texts containing 2792 events. 

The development corpus for optimizing the pa-

rameters involves 10 full texts containing 3184 

events, while the test corpus is composed of 14 

full texts including 3301 events. To avoid the 

researchers optimizing parameters on the test 

corpus, it is not published, and we have the per-

mission to combine the training corpus and the 

development corpus as training set. However, we 

extend BioNLP'13 training set by adding the ab-

stracts of training set and development set in Bi-

oNLP'11 task 1 rather than merging the devel-

opment set of BioNLP'13 into the training set.  

Our system generally follows the Uturku sys-

tem reported by Björne et al. (2009), and uses a 

simple but efficient way to reduce the cascading 

errors. The Uturku system was a pipeline of trig-

ger detection, argument detection and post-

processing. Each of its components was simple  

to implement by reducing event extraction task 

into independent classification of triggers and 

arguments. Moreover, the Uturku system devel-

oped rich features and made extensive use of 

syntactic dependency parse graphs, and the rules 

in the post-processing step were efficient and 

simple. However, the stages of the pipeline in-

troduced cascading errors, meaning that the trig-

ger missed in the trigger detection would never 

be recalled in the following stages. By changing 

the pipeline and adding argument information in 

trigger detection, we construct a model for ex-

tracting complex events using rich features and 

achieve better performance than the baseline sys-

tem implemented according to Björne et al.'s 

(2009) paper. 

2 Our Event Extraction System  

Fig.1 shows the overall architecture of the pro-

posed system. Since 97% of all annotated events 

are fully contained within a single sentence, our 

system deals with one sentence at a time, which 

does not incur a large performance penalty but 

greatly reduces the size and complexity of the 

machine learning problems (Björne et al., 2009). 

The system’s components are different from 

those of the Uturku system by adding a second 

trigger detection component and a second edge 

detection component (argument detection). Trig-

ger detection component is used to recognize the 

trigger words that signify the event, and edge 

detection component is used to identify the ar-

guments that undergo the change. Semantic post-

processing component generates events consis-

tent with the restrictions on event argument types 

and combinations defined in the shared task. 
 

Input data

Sentence splitting

Tokenization

Parsing

First Trigger 

detection

(multi-class SVM)

First Edge detection

(multi-class SVM)

Second Trigger 

detection

(multi-class SVM)

Second Edge 

detection

(multi-class SVM)

Semantic

 post-processing

(Rule based)

Output data

 

Figure 1. The flow chart of our system. 

In the following sections, we present the im-

plementation for these stages in our biomedical 

event extraction system in detail and evaluate our 

system on the BioNLP’13 data sets. 

2.1 Trigger Detection 

nuclear extracts showed decreased or absent p65 protein levels

Neg_reg Pro

Theme

 
Figure 2. An example of the trigger consisting of two 

head tokens 

Trigger detection assigns each token an event 

class or a negative class (if the token is not a 

trigger). The head token is chosen when the real 

trigger consists of several tokens, which does not
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Type Feature 

Primary features The token 

Part-Of-Speech of the token 

Base form 

The rest part of the token, getting rid of the stem word 

Token feature Token has a capital letter 

Token has a first letter of the sentence 

Token has a number 

Token has a symbol like “-”,”/”,”\” 

N-grams (n = 2, 3) of characters 

Govern and Dependent feature Dependency type 

Part-Of-Speech (POS) of the other token 

Combine the POS and the dependency type 

The word form of the other token 

Frequency features Number of named entities in the sentence 

Bag-of-word counts of token texts in the sentence 

Shortest path Token features of the token in the path 

N-grams of dependencies (n =2, 3, 4) 

N-grams of words (base form + POS) (n =2, 3, 4) 

N-grams of consecutive words (base form + POS) representing 

Governor-dependent relationships (n =1, 2, 3) 

Table 1: Features for the first trigger detection 

Type Feature 

Path feature The token in the path 

The POS of the token in the path 

The dependency type of edges in the path 

(all these features are combined with direction, length and the entity type) 

Table 2: Added feature for the second trigger detection 

incur performance penalty with the approximate 

span matching/approximate recursive matching 

mode (Kim et al., 2009).  Two head tokens may 

be chosen from one trigger when the trigger con-

sists of two appositives. For example, for the 

snippets “decreased or absent p65 protein le-

vels”, both “decreased” and “absent” are the 

head token of the trigger “decreased or absent”, 

shown in Fig 2. Rich features are extracted for 

the first trigger detection, shown in Table 1. 

To remove the erroneous events and correct 

the event type assigned in the first trigger detec-

tion, a second trigger detection is added in our 

system. Thus the second trigger detection is dif-

ferent from the first one. Uturku system shows 

that the trigger information improves the edge 

detection because of the constraints on the type 

of arguments. Naturally, the edge information is 

helpful for trigger detection with the same reason. 

As a result, this method can improve the preci-

sion of trigger performance. 

In order to leverage the argument information, 

we explore a lot of features of the edges which 

are the arguments detected in the first edge de-

tection. The edge information concerns the fea-

tures of the edges attached to the token. In the 

second trigger detection, we add all the path fea-

tures between the candidate trigger and argu-

ments attached to the candidate trigger detected 

in the first edge detection. These features contain 

the entity information of the argument, the de-

pendency path between the trigger and the argu-

ment and so on. Specially, the added features 

cannot contain any trigger type information ob-

tained in the first trigger detection, or the added 

features cannot do any help. The reason is that 

SVM classifier will classify samples only relying 

on the label feature if it is in the feature set. The 

added features are shown in Table 2. 
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Type Features 

N-grams N-grams of consecutive tokens(n=2,3,4) in the path 

N-grams of vertex walks 

Terminal node feature Token feature of the terminal nodes 

The entity type of the terminal nodes 

Re-normalized confidences of all event class 

Frequency feature The length of the path 

The number of entities in the sentence 

Edges feature in the path Dependency type of the edges in the path 

The POS of the tokens in the path 

The tokens in the path 

Table 3: Features for edge detection 

2.2 Edge Detection 

Similar to the trigger detector, the edge detector 

is based on a multi-class SVM classifier. An 

edge is from a trigger to a trigger or from a trig-

ger to a protein. The edge detector classifies each 

candidate edge as a theme, a cause, or a negative 

denoting the absence of an edge between the two 

nodes in the given direction. The features in edge 

detection are shown in Table 3. As the trigger 

information is helpful in edge detection, the ter-

minal node feature contains it. Additionally，the 

first edge detection is completely the same as the 

second one, that is, they share the same features 

and machine learning strategy. 

2.3 Semantic Post-processing 

After the trigger detection and edge detection, 

the biomedical event cannot be produced directly. 

Some simple events may be attached with sever-

al proteins, and complex events may form circles. 

We develop a custom rule-based method to gen-

erate events that are consistent with the restric-

tions on event argument types and combinations 

defined in the shared task. For details, Björne et 

al.’s (2009) paper can be referred to. 

3 Tools and Component Combination  

We use the support vector machine (SVM) mul-

ti-class classifier (Crammer and Singer (2002),  

Tsochantaridis et al. (2004)) in the trigger detec-

tion and edge detection. Besides, the dependency 

parser used in our system is McClosky-Charniak 

domain-adapted parser (McClosky and  Charniak 

(2008)) and the dependency parse was provided 

in the share task
1
. To optimize the precision-

recall trade-off, we introduce β that decreases the 

classifier confidence score given to the negative 

                                                 
1
 http://2013.bionlp-st.org/supporting-resources 

trigger class as formula (1) as the Uturku system 

does (2009).  

score = score-(1-β)*abs(score)       (1) 

where abs(score) means the absolute value of 

score and β∈[0,1]. 

4 Evaluations and Discussion 

4.1 Evaluations 

Firstly, our system is evaluated on the develop-

ment set. Table 4 compares the performance be-

tween our system and the baseline. The baseline 

is implemented based on Björne et al.’s (2009) 

paper. Compared to baseline, the precision of our 

system is 6.08 percentage points higher while the 

recall increases 0.91 percentage points. From 

Table 4 we can see that our system is 2.85 F-

score higher than the baseline system. 

 

 Recall  Precision F-score 

Baseline  43.15 54.37 48.12 

Ours 44.06 60.45 50.97 

Table 4: Performance comparison on the development 

set using approximate span and recursive matching 

Secondly, the performance of our system is 

evaluated on the test data set with online evalua-

tion
2
. Table 5 shows the results for the baseline 

and the proposed system with argument informa-

tion to evaluate the importance of argument in-

formation. Integrating argument information, our 

system archives 1.78% F-score improvement. 

Compared to the baseline, the performance for 

complex events is very encouraging with about 

7.5 percentage points improvement in the Phos-

phorylation events, 1.77 percentage points im-

provement in the regulation events, 2.91 percen- 

                                                 
2
 http://bionlp-st.dbcls.jp/GE/2013/eval-test/ 
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Event type # Our system Baseline 

R/P/F-score R/P/F-score 

Gene_expression 619 77.54/82.76/80.07 79.48/78.10/78.78 

Transcription 101 49.50/65.79/56.50 53.47/62.79/57.75 

Protein_catabolism 14 78.57/55.00/64.71 78.57/45.83/57.89 

Localization 99 35.35/89.74/50.72 38.38/84.44/52.78 

=[SIMPLE ALL]= 833 69.15/80.56/74.42 71.43/75.80/73.55 

Binding 333 40.84/44.16/42.43 42.64/44.65/43.63 

Protein_modification 1 0.00/0.00/0.00 0.00/0.00/0.00 

Phosphorylation 160 75.00/77.42/76.19 69.38/68.10/68.73 

Ubiquitination 30 0.00/0.00/0.00 0.00/0.00/0.00 

Acetylation 0 0.00/0.00/0.00 0.00/0.00/0.00 

Deacetylation 0 0.00/0.00/0.00 0.00/0.00/0.00 

=[PROT-MOD ALL]= 191 62.83/77.42/69.36 58.12/68.10/62.71 

Regulation 288 15.28/42.72/22.51 14.58/35.90/20.74 

Positive_regulation 1130 29.20/44.47/35.26 26.11/42.51/32.35 

Negative_regulation 526 26.81/41.47/32.56 25.10/35.11/29.27 

=[REGULATION ALL]= 1944 26.49/43.46/32.92 24.13/39.51/29.96 

==[EVENT TOTAL]== 3301 40.81/57.00/47.56 39.90/53.69/45.78 

Table 5: Approximate span matching/approximate recursive matching on test data set. 

Th(E1)

Triggering of the human interleukin-6 gene by interferon-gamma and tumor necrosis factor-alpha 

Binding Pro Pro Pro

Th(E2) Th(E1)
Th(E2)

  
(a) 

Th(E1)

Triggering of the human interleukin-6 gene by interferon-gamma and tumor necrosis factor-alpha 

Pos-Reg Pro Pro Pro

Cause(E2) Cause(E1)
Th(E2)

 
(b) 

Figure 3: (a) A result of a fragment using the first trigger detection. (b) A result of a fragment using the second 

trigger detection. 

tage points improvement in the positive regula-

tion events and 3.29 percentage points increase 

in the negative regulation events, but not much 

loss in other events. As a consequence, the total 

F-score of our system is 47.56%, 1.78 percentage 

points higher than the baseline system and ob-

tains the 5th place in BioNLP'13 task 1. 

4.2 Discussion 

Our system achieves better performance than the 

baseline thanks to the second trigger detection. 

The second trigger detection improves the per-

formance of event extraction in two ways. Firstly, 

the triggers that cannot form events are directly 

deleted, and therefore the corresponding errone-

ous events are deleted. Secondly, since the erro-

neous triggers are deleted or the triggers recog-

nized in the first trigger detection are given the 

right types in the second trigger detection, the 

corresponding arguments are reconstructed to 

form right events. Fig.3 shows an example. In 

the first trigger detection, the trigger “triggering” 

is recognized as the illegal type of “binding” so 

that “interferon-gamma” and “tumor necrosis 

factor-alpha” are illegally detected as theme ar-

guments of “triggering”, resulting in erroneous 

events. However, in the second trigger detection, 
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“triggering” is correctly revised as the type of 

positive regulation, so the arguments are recon-

structed, which makes the positive regulation 

events (E1 and E2) right. As a result, the preci-

sion of event detection increases as well as the 

recall. 

The proposed method is an efficient way to 

reduce cascading errors in pipeline system. 

Moreover, Riedel and McCallum (2011) pro-

posed a dual decomposition-based model, anoth-

er efficient method to get around cascading er-

rors. Following Riedel et al.’s (2011) paper, we 

implement a dual decomposition-based system 

using the same features in our system. Table 6 

shows the performance comparison on the devel-

opment set of BioNLP’09 between our system 

and dual decomposition-based system. The com-

parison indicates that the proposed method is 

comparable to the stat-of-the-art systems.  

 

 Recall  Precision F-score 

Dual Decom-

position 

50.08 63.66 56.06 

Ours 53.88 59.67 56.63 

Table 6: Performance comparison on the development 

set of BioNLP’09 using approximate span and recur-

sive matching based on different methods 

5 Conclusions 

We proposed a simple but effective method to 

improve event extraction by boosting the trigger 

detection. The added edge information in the 

second trigger detection improves the perfor-

mance of trigger detection. Features from the 

dependency parse graphs are the main features 

we use for event extraction. 

The future work includes: the first trigger de-

tection should classify a token into three classes: 

simple event type, complex event type and none 

event type; discovering some more helpful edge 

features in the second trigger detection; solving 

coreference problem with coreference resolution 

approach. Besides, the dual decomposition-based 

method will be improved and further compared 

with the pipeline system. 
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Abstract

We describe a biological event detec-
tion method implemented for the Genia
Event Extraction task of BioNLP 2013.
The method relies on syntactic depen-
dency relations provided by a general NLP
pipeline, supported by statistics derived
from Maximum Entropy models for can-
didate trigger words, for potential argu-
ments, and for argument frames.

1 Introduction

The OntoGene team at the University of Zurich
has developed text mining applications based on
a combination of deep-linguistic analysis and ma-
chine learning techniques (Rinaldi et al., 2012b;
Clematide and Rinaldi, 2012; Rinaldi et al., 2010).
Our approaches have proven competitive in sev-
eral shared task evaluations (Rinaldi et al., 2013;
Clematide et al., 2011; Rinaldi et al., 2008). Addi-
tionally, we have developed advanced systems for
the curation of the biomedical literature (Rinaldi
et al., 2012a).

Our participation in the Genia Event Extraction
task of BioNLP 2013 (Kim et al., 2013) was moti-
vated by the desire of testing our technologies on
a more linguistically motivated task. In the course
of our participation we revised several modules of
our document processing pipeline, however we did
not have sufficient resources to completely revise
the final module which generates the event struc-
tures, and we still relied on a module which we
had developed for our previous participation to the
BioNLP shared task.

The final submission was composed by our
standard preprocessing module (described briefly
in section 2) and novel probability models (section
3), combined within the old event generator (sec-
tion 4).

2 Preprocessing

The OntoGene environment is based on a pipeline
of several NLP tools which all operate on a com-
mon XML representation of the original docu-
ment.

Briefly, the pipeline includes modules for
sentence-splitting, tokenization, part-of-speech
tagging, lemmatization, stemming, term-
recognition (not used for the BioNLP shared
task), chunking, dependency-parsing and event
generation. Different variants of those modules
have been used in different instantiations of the
pipeline. For the BioNLP 2013 participation,
lingpipe was used for sentence splitting, tok-
enization and PoS tagging, morpha (Minnen et
al., 2001) was used for lemmatization, a python
implementation of the Porter stemmer for stem-
ming, LTTT (Grover et al., 2000), was used for
chunking, and the Pro3Gres parser (Schneider,
2008) for dependency analysis.

As we have made good experiences with a
rule based system for anaphora resolution in the
BioNLP 2011 shared task (Tuggener et al., 2011),
we implemented a similar approach that resolves
anaphors to terms identified during preprocessing.
Rules contain patterns like “X such as Y” or “X
is a Y”, and pronouns are resolved to the nearest
grammatical subject or object. Anaphora resolu-
tion led to an improvement of 0.2% recall on the
development set, while precision was hardly af-
fected.

3 Probability models

Several probability models have been computed
from the training data in order to be used to score
and filter candidate events generated by the sys-
tem. The following models played a role in the
final submission:

P (eventType | trigger candidate) (1)
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P (frame ∧ eventType | trigger candidate) (2)

P (role ∧ eventType | protein) (3)

P (role(t, d) | synpath(t, d)) (4)

For all of them we computed global Maximum
Likelihood Estimations (MLE), using the training
and development datasets from the 2013 and 2011
challenges. For all of the models above, except
for the last one, we also estimated the probabili-
ties by a Maximum Entropy (ME) approach. The
MegaM tool (Daumé III, 2004) allows for a super-
vised training of binary classifiers where the class
probability is optimized by adjusting the feature
weights and not just the binary classification deci-
sion itself. This helps to deal with the imbalanced
classes such as the distribution of true or false trig-
gerword candidates.

For the classification of trigger candidates
(Equation 1), a binary ME classifier for each event
type is separately trained, based on local and
global features as described below. The trigger-
word candidates are collected from the training
data using their stemmed representation as a selec-
tion criterion. We generally exclude triggerword
candidates that occur in less than 1% as true trig-
gers in the training set. Within the data, we found
that triggers that consist of more than one word are
rather rare (less than 5% of all triggers, most of
them occurring once). However, we transformed
these multiword triggers to singleword triggers,
replacing them by their first content word.

The choice of ME features, partly inspired by
(Ekbal et al., 2013), can be grouped into features
derived from the triggerword itself (word), fea-
tures from the sentence of the triggerword (con-
text), and features from article-wide information
(global).

Word features: (1) The text, lemma, part of
speech (PoS), stem and local syntactic dependency
of the triggerword candidate as computed by the
Pro3Gres parser. (2) Information whether a trig-
gerword candidate is head of a chunk as well as
whether the chunk is nominal or verbal

Context features: Unigrams and bigrams in a
window of variable size to left and right of the trig-
gerword candidate; three types of uni- and bigrams
are used: PoS, lemmas and stems; for unigrams we
also include the lower-cased words; for bigrams,
the triggerword candidate itself is included in the
first bigram to either side.

Global features: (1) Presence or absence of a
protein in a window of a given size around the
triggerword candidate (Boolean feature); only the
most frequent proteins of an article are considered.
(2) The zone in an article where the triggerword
candidate appears, e.g. Title/Abstract, Introduc-
tion, Background, Material and Methods, Results
and Discussion, Caption and Conclusion.

Feature engineering was done by testing differ-
ent combinations of settings (window size, thresh-
olds) with the aim of finding an optimal overall
ME model which reaches the lowest error rates for
all event types. The error rate of the candidate set
was measured as the cumulative error mass com-
puted from the assigned class probability as fol-
lows: if the trigger candidate is a true positive, the
error is 1 minus the probability assigned by the
classifier. If the candidate is a false positive, the
error is the probability assigned by the classifier.
Our approach does not allow us to compute an er-
ror rate for false negatives, because we simply rely
on the set of trigger words seen in the training data
as possible candidates.

In these experiments, we discovered that for
most event types an optimal setting for the context
features considers a wide span of about 20 tokens
to the left and right of the triggerword. Includ-
ing bigrams of lemmas, stems and PoS delivered
the best results compared to including only one or
two of these bigram types. Context features can be
parameterized according to how much positional
information they contain: the distance of a word
to the right and left of the trigger, only the direc-
tion (left or right) or no position information at all
(bag of unigrams/bigrams). We found that the ex-
act positional information is only important for the
first word to the left and right (adjacent to the trig-
gerword), whereas for all words that are further
away it is favorable to only use the direction in re-
lation to the trigger. A window size of 10 words
within which proteins are found in the context of
a triggerword gave the best results. The optimal
number of the most frequent proteins considered
within this window was found to be the 10 most
frequent proteins within an article.

The second type of ME classifier (Equation 2)
has the purpose of calculating the probabilities of
event frames for all event types given a trigger
word. We use the term frame for a combination of
arguments that an event is able to accept as theme
and cause and whether these arguments are real-
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ized as proteins or subevents.
For the classification of proteins (Equation 3),

again separate binary ME classifiers were built in
order to estimate the probability that a protein has
a role (theme or cause) in an event of a given type.

4 Event Generation

We tested two independent event generation mod-
ules, one based on a revision of our previous 2009
submission (Kaljurand et al., 2009) and one which
is a totally new implementation. We could do only
preliminary tests with the second module, which
however showed promising results, in particular
with much better recall than the older module (up
to 65.23%), despite the very little time that we
could invest in its development. The best F-score
that we could reach was still slightly inferior to the
one of the old module at the deadline for submis-
sion of results. In the rest of this paper we will
describe only the module which was used in the
official submission.

The event extraction process consists of three
phases. First, event candidates are generated,
based on trigger words and their context, using the
ME and MLE probabilities pT (equation 1).

Second, individual arguments of an event are
generated. We calculate the MLE probability pR

of an argument role (e.g. Theme) to occur as part
of a given event type, as follows:

pR(Role |EventType) =
f(Role ∧ EventType)

f(EventType)
(5)

We obtained the best results on the development
corpus when combining the probabilities as:

pA =
pT ∗ pT ∗ pR

pT + pT + pR
(6)

We generate arguments, using an MLE syntac-
tic path and an ME argument model, as follows.
The syntactic path between the trigger word and
every term (protein or subordinate event) is con-
sidered. If they are syntactically connected, and
if the probability of a syntactic path to express an
event is above a threshold, it is selected. As this is
a filtering step, it negatively affects recall.

We calculate the MLE probability ppath that
a syntactic configuration fills an argument slot.
Syntactic configurations consist of the head word
(trigger) HWord, the head event type HType, the
dependent word DWord, the dependent event type
DType, and the syntactic path Path between them.

In order to deal with sparse data, we use a
smoothed model.

ppath(Arg |HWord, HType, DWord, DType, Path) =
1

w1+w2+w3
∗ (

w1 ∗ f(HWord, HType, DWord, DType, Path∧Arg)
f(HWord, HType, DWord, DType, Path) +

w2 ∗ f(HType, DType, Path∧Arg)
f(HType, DType, Path) +

w3 ∗ f(HType, DType∧Arg)
f(HType, DType) ) (7)

The weights were emprically set as w1 = 4,
w2 = 2 and w3 = 1.5. The fact that the weights
decrease approximates a back-off model. The final
probability had to be larger than 0.2.

We have also used an ME model which delivers
the probability parg that a term is the argument of
a specific event, see formula 3. If this ME model
predicts with a probability of above 80% that the
term is not an argument, the search fails. Other-
wise, the probabilities are combined. On the de-
velopment corpus, we achieved best results when
using the harmonic mean:

pargument = 2 ∗ ppath ∗ parg

ppath + parg
(8)

As a last step, the several arguments of an event
are combined into a frame. We have tested mod-
els predicting an entire frame directly, and models
combining the individual arguments generated in
the previous step. The latter approach performed
better. Any permutation of the argument candi-
dates could constitute a frame. Only frames seen
in the training corpus for a given event type are
considered. We have again used an ME and an
MLE model for predicting frames.

The ME model predicts pframe.ME , see for-
mula 2. We have also used two MLE models:
the first one delivers the probability pframe.MLE

based on the event type only, the second one
pframeword.MLE also considers the trigger word
and is much sparser (a low default is thus used for
unseen words). The probability of the individual
arguments also needs to be taken into considera-
tion. We used the mean of the individual argu-
ments’ probabilities (pargs′mean).

5 Evaluation

In our analysis of errors, we noticed that frames
with more than one argument are created ex-
tremely rarely. The problem is that frames with
several arguments are rarer because the context
often does not offer the possibility to attach sev-
eral arguments. Therefore, we consistently un-
dergenerated with pargs′mean as outlined above.
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Event Class gold (match) answer (match) recall prec. fscore
SVT-TOTAL 1117 ( 619) 851 ( 619) 55.42 72.74 62.91
EVT-TOTAL 1490 ( 698) 1103 ( 698) 46.85 63.28 53.84
REG-TOTAL 1694 ( 168) 618 ( 168) 9.92 27.18 14.53
All events total 3184 ( 866) 1721 ( 866) 27.20 50.32 35.31

Table 1: Results on the development set, measured using “strict equality”.

Event Class gold (match) answer (match) recall prec. fscore
Gene expression 619 (400) 497 (400) 64.62 80.48 71.68
Transcription 101 (26) 100 (26) 25.74 26.00 25.87
Protein catabolism 14 (10) 15 (10) 71.43 66.67 68.97
Localization 99 (34) 39 (34) 34.34 87.18 49.28
=[SIMPLE ALL]= 833 (470) 651 (470) 56.42 72.20 63.34
Binding 333 (74) 264 (74) 22.22 28.03 24.79
Protein modification 1 (0) 0 (0) 0.00 0.00 0.00
Phosphorylation 160 (119) 168 (119) 74.38 70.83 72.56
Ubiquitination 30 (0) 0 (0) 0.00 0.00 0.00
Acetylation 0 (0) 0 (0) 0.00 0.00 0.00
Deacetylation 0 (0) 0 (0) 0.00 0.00 0.00
=[PROT-MOD ALL]= 191 (119) 168 (119) 62.30 70.83 66.30
Regulation 288 (23) 84 (23) 7.99 27.38 12.37
Positive regulation 1130 (129) 444 (129) 11.42 29.05 16.39
Negative regulation 526 (54) 166 (54) 10.27 32.53 15.61
=[REGULATION ALL]= 1944 (206) 694 (206) 10.60 29.68 15.62
==[EVENT TOTAL]== 3301 (869) 1777 (869) 26.33 48.90 34.23

Table 2: Results on the test data, measured using “strict equality”.

We have added a number of heuristics to boost
multi-argument frames. Multiplying the probabil-
ity of a frame by its cubed length (giving two-
argument slots 9 times higher probability), and
giving Cause-slots 50% higher scores globally led
to best results.

We mainly trained and evaluated using the
“strict equality” evaluation criteria as our refer-
ence. The results on the development data are
shown in table 1. With more relaxed equality def-
initions, the results were always a few percentage
points better. Our results in the official test run are
shown in table 2. In sum, our submitted system
has good performance for simple events, bad per-
formance for Binding events, and a bias towards
precision due to a syntactic-based filtering step.

6 Conclusions and Future work

Our participation in the 2013 BioNLP shared task
was a useful opportunity to revise components of
the OntoGene pipeline and begin the implemen-
tation of a novel event generator. Due to lack of
time, it was not completed in time for the official
submission. We will continue its development and
use the BioNLP datasets.
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Abstract

In this paper we propose a system which uses 
hybrid methods that combine both rule-based 
and machine learning (ML)-based approaches 
to solve GENIA Event Extraction of BioNLP 
Shared Task 2013. We apply UIMA1 Frame-
work to support coding. There are three main 
stages in model: Pre-processing, trigger detec-
tion and biomedical  event  detection.  We use 
dictionary and support vector machine classifi-
er to detect event triggers.  Event detection is 
applied on syntactic patterns which are com-
bined with features extracted for classification.

1 Introduction

The data in biomedicine is continuously bigger 
and bigger because of the incredible growth of 
literatures, researches or documents in that field. 
This huge resource has been attracted a signifi-
cant interest on developing methods to automati-
cally extract biological relations from text. Most 
of them are binary relation such as protein-pro-
tein  interactions,  gene-disease  and drug-protein 
relations.  However  there  are  more  complex 
events  in  origin  biomedical  data.  The  BioNLP 
Shared Task (BioNLP-ST) is one of the efforts to 
promote extracting fine-grained and complex re-
lations in biomedical domain.

BioNLP Shared Task 2013 has the six event 
extraction tasks such as GENIA Event Extraction 
(GE), Cancer Genetics (CG), Pathway Curation 
(PC),  Gene Regulation Ontology (GRO),  Gene 
Regulation  Network  (GRN)  and  Bacteria 
Biotopes (BB). The GE task has three subtasks, 
task 1 is detection of events with their main argu-
ments,  task 2 extends this to detection of sites 
defining the exact molecular location of interac-
tions, and task 3 adds the detection of whether 
1 http://uima.apache.org/

events are stated in a negated or speculative con-
text.

In event extraction, common approaches use 
Rule-based (Kaljurand et al., 2009; Kilicoglu and 
Bergler,  2011),  Machine  Learning  (ML)-based 
(Björne at al., 2009; Miwa et al., 2010) and hy-
brid methods (Ahmed et al., 2009; Riedel, Mc-
Closky  et  al.,  2011).  Recently,  (Riedel  et  al., 
2011) present an approach based on optimization 
of  scoring  sets  of  binary variables.  The  model 
and a variant model  (hybrid model)  gained the 
second and first place in BioNLP-ST 2011, prov-
ing the effect of their approach.  According to the 
summaries of BioNLP-ST 2009 and 2011 (Kim., 
2011), the results of ML-based method are better 
than the rule-based method. However ML is non-
trivial to apply. The summary also indicates that 
high  precision,  for  simple  events,  can  be 
achieved by Rule-based approach.

In  this  paper,  we  present  our  work  for  GE 
task. We try to apply our knowledge from gener-
al  information  extraction  to  a  specific  domain, 
biomedicine.  We propose a system which uses 
hybrid methods that combine both rule-based and 
machine learning (ML)-based approaches.

2 Proposed approach 

We use the UIMA framework to support all steps 
of  the  model.  The  UIMA  is  an  open  source 
framework  for  analyzing  general  unstructured 
data. This framework is applied mainly to save 
our time of coding. Thanks to it, we can take ad-
vantage of some developed modules and improve 
them easier. All modules are described in detail 
in the following sections.

2.1 Pre-processing

At first, we need to convert input texts into ob-
jects of the framework to store and process later. 
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From this part to the end, all analyzed and anno-
tated results will be stored in those objects. Sec-
ondly, natural language processing (NLP) is ap-
plied. It  includes splitting sentences, tokenized, 
POS tagger and deep parser. There are various li-
braries in NLP, both general and specific domain 
but  we  select  the  McClosky-Charniak-Johnson 
Parser2 for syntactic analyses. That parser is im-
proved  from  the  Stanford  parser  with  a  self-
trained  biomedical  model.  According  to  the 
shared task’s  statistics  (Kim et  al.,  2011),  it  is 
used by groups achieving high results. In addi-
tion, the NLP data of all datasets are prepard and 
provided for  participants.  We read and convert 
the  given results  into our  framework to  use  in 
further processing.  We also add other informa-
tion on the token such as stems of single token 
(using the Snowball stemmer), id in the sentence 
and the nearest dependent/governor token.

Finally, we convert all the annotated proteins 
of input into UIMA. These proteins are candidate 
arguments for events.  Similar  to NLP data, the 
annotations  are  provided by the shared task as 
supporting resources. Each single file has a sepa-
rate list  of given proteins appearing in its  con-
tent.

2.2 Trigger detection

In the shared task 2011, we used simple rules and 
dictionaries to annotate triggers or entities (Le, 
M.Q.,  2011), but  there were many ambiguities. 
Furthermore, a candidate trigger can belong to a 
few types. Consequently, the performance of that 
method  was  fairly  poor.  Thus,  we  decided  to 
change to  a  machine  learning  approach,  which 
needs less domain knowledge, in the shared task 
2013.

We need to classify a token into one of eleven 
groups (nine for  Event  Trigger,  one  for  Entity 
and one for nothing). We separate tokens instead 
of  phrases  for  the  following  reasons.  Firstly, 
Event Triggers and Entities which cover single 
token  are  more  popular.  Secondly,  the  official 
evaluation  of  the  shared  task  is  approximate 
span. The given span belonging to extended gold 
span is acceptable, so we detect only single to-
kens for simplification. In order to simplify and 
restrict the number of tokens needed to classify, 
some heuristic restrictions are applied.  We just 
consider  those  tokens  having  part-of-speech 
(POS) tags of noun, verb and adjective. Although 
triggers or entities have various POS tags, these 
three types take the largest proportion. Proteins 

2 http://bllip.cs.brown.edu/resources.shtml

in each sentence are replaced by a place holder 
“PROTEIN” instead of the original text.  Those 
tokens related to protein (spans of a token and a 
protein are overlapped) are ignored. Instead we 
use a simple dictionary built from training data to 
check whether or not those tokens are triggers.

We classify tokens by their syntactic context 
and morphological contents. Features for detec-
tion include the candidate token; two immediate 
neighbors on both the left and right hand sides; 
POS tags of these tokens; and the nearest depen-
dent and governor from the syntactic dependency 
path  of  the  candidate  token.  All  covered  text 
used in classification is in lemmatized form.

2.3 Event detection

After trigger detection, we combined rule-based 
with feature-based classifiers for event detection. 
We first run the rule-base system and then con-
tinued  to  combine  with  SVM  based  using  the 
output  of  the rule-based system in order to in-
crease  the  performance  of  our  system.  At  the 
SVM based phase, we generate features for all 
shortest  dependency  paths  between  predicted 
trigger  and  argument  (protein  or  event).  Each 
shortest  path  example  is  classified  as  positive 
and negative events. The overall best-performing 
system is the combination of all  events of rule 
base and feature-based classifiers. 

2.3.1 Rule-based approach

In this stage, rule-based approaches are applied. 
In order to add a supplement to our method, we 
attempt  to  combine  two  directions,  bottom up 
and top down. Both of them use linguistic infor-
mation, mostly syntactic and dependency graph. 
Two approaches  are  run  separately;  finally  the 
two result sets are combined.

The first approach is based on patterns of syn-
tactic graph. It follows the approach of (Björne et 
al.,  2009),  (Casillas  et  al.,  2011).  The  original 
parse  tree  of  each  sentence  containing  at  least 
one  trigger  is  retrieved.  Nodes  with  only  one 
branch are pruned and the top node is kept to re-
tain the most important parts. Concepts of candi-
date arguments  (name role)  and the trigger are 
assigned to appropriate tree-nodes according to 
their spans in the text. Next, we find the closest 
parent  of  all  arguments.  The  patterns  are  the 
string form of the sub-tree of the modified parse 
tree. Then the patterns are compared with those 
extracted from training data.

The second approach considered a part of syn-
tactic graph. Because of some similar properties 
between extracting events and protein-protein in-
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teractions (Bui et al., 2011), we construct some 
patterns  connecting  arguments  and  triggers. 
There  are  two  kinds  of  patterns:  noun  phrases 
(NP) and verb phrases (VP). Each phrase has to 
have one trigger and at least one Protein. In the 
case of the NP, it contains two nouns without any 
other phrase or it  includes a preposition phrase 
(PP) and the trigger has to be the head of this NP. 
In the second pattern, we find a VP which is a di-
rect parent of the trigger. If there is a Protein in 
those  phrases,  we  annotate  an  Event  with  the 
trigger and the Protein as core argument.

2.3.2 Feature-based classifier

For the featured-based classifier, we use a dictio-
nary of pairs of trigger - trigger, pairs of trigger – 
protein and event triggers. These dictionaries are 
built  from  the  training  and  development  data. 
Additionally, we extract features for all shortest 
dependency paths between trigger and argument 
(protein or event) by using used in the work of 
(Björne et al., 2009) and (Maha Amami, 2012).

Element  features:  trigger/argument  word, 
trigger/argument type and trigger/argument POS.

N-gram features:  n-grams  of  dependencies, 
n-grams  of  words  and  n-gram  of  consecutive 
words representing governor-dependent relation-
ship.

Frequency  features:  length  of  the  shortest 
path  between  trigger  and  argument  (protein  or 
event), number of arguments and event triggers 
per type in the sentence.

Dependency  features:  Directions  of  depen-
dency edges relative to the shortest path, types of 
dependency edges relative to the shortest path.

2.4 Post processing

In this section, we only scan all the annotated ob-
jects which are stored in the framework. Argu-
ments  of  events  are  arranged  and  duplicated 
events  are  limited.  Each  valid  detected  Event 
Trigger/Entity and Event will be written into the 
result file according to the standard format of the 
shared task. 

3 Experimental result

In order to perform evaluation, we implemented 
our event extraction system. Table 1 shows the 
latest results of our system as computed by the 
shared task organizers. We achieved an F-score 
of only 34.98%, ranked 10th among 10th partici-
pants and the result is far from satisfactory (the 
best result  of the shared task 2013 is 50.97%). 
We need a better solution of post-processing step 

to improve performance and restrict unexpected 
results.  Improving  results  of  trigger  detection 
also contributes to reduce false positive events. 
However, the gold data of the test set is not pro-
vided. It is therefore difficult to evaluate the ef-
fectiveness of the trigger annotation step and its 
impact on the event annotation step.

Event class Recall Precision F-score
Gene_expression
Transcription
Protein_catabolism
Localization
Phosphorylation
Binding
Regulation
Positive_regulation
Negative_regulation

78.84
32.67
64.29
32.32
77.50
38.74
9.72
19.91
24.33

61.77
50.77
52.94
52.46
57.67
26.99
10.22
19.58
26.18

69.27
39.76
58.06
40.00
66.13
31.81
9.96
19.75
25.22

ALL-TOTAL 36.23 33.80 34.98

Table 1: Evaluation results on test set

4 Conclusion

In this paper we present an event extraction sys-
tem based on combining rule-base with support 
vector machine modeling.  Our system used the 
GENIA corpus as the input for the pre-process-
ing phase such as Tokenization, Part-of-Speech, 
stop word removal and Stemming. In the trigger 
annotation,  we  extract  the  features  for  training 
and test  data  by using  support  vector  machine 
classifier. In order to annotate events, firstly we 
use rule-based and then build the nested features 
using support vector machine classifier for event 
classification. The goal  of  this  system is to in-
crease the performance in F-score of the event 
extraction system.

In future work, we plan to try to add more fea-
tures to improve our system both of trigger and 
event annotation and post-processing.
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Abstract

We describe our system to extract genia
events that was developed for the BioNLP
2013 Shared Task. Our system uses a su-
pervised information extraction platform
based on Support Vector Machines (SVM)
and separates the process of event clas-
sification into multiple stages. For each
event type the SVM parameters are ad-
justed and feature selection carried out.
We find that this optimisation improves
the performance of our approach. Overall
our system achieved the highest precision
score of all systems and was ranked 6th
of 10 participating systems on F-measure
(strict matching).

1 Introduction

The BioNLP 2013 Shared Task focuses on infor-
mation extraction in the biomedical domain and
comprises of a range of extraction tasks. Our sys-
tem was developed to participate within the Genia
Event Extraction task (GE), which focuses on the
detection of gene events and their regulation. The
task considers 13 different types of events which
can be divided into four groups: simple events,
bindings, protein modifications and regulations.
All events consist of a core event, which contains
a trigger word and a theme. With the exception of
regulation events, the theme always refer to a pro-
tein. A regulation event theme can either refer to
a protein or to another event. Binding events can
include up to two proteins as themes. In addition
to the core event, events may include additional
arguments such as ‘cause’ or ‘to location’.

Figure 1 shows examples of events from the
BioNLP 2013 corpus. More details about the Ge-
nia Event task can be found in Kim et al. (2011).

Previous editions of the BioNLP Shared Task
took place in 2009 (Kim et al., 2009) and 2011

Figure 1: Two events from the BioNLP 2013 GE
task: a phosphorylation event consisting of a trig-
ger and a protein and a positive-regulation event
consisting of a trigger, a theme referring to an
event and a cause argument.

(Kim et al., 2011). Promising approaches in the
most recent competition were event parsing (Mc-
Closky et al., 2011) and dual decomposition mod-
els (Riedel and McCallum, 2011). The winner of
the GE task 2011, FAUST (Riedel et al., 2011),
combined these two approaches by using result
from the event parser as an additional input fea-
ture for the dual decomposition.

The UTurku system of Björne et al. (2009) was
the winner of the GE task in 2009. The system
was based on a pipeline containing three main
stages: trigger detection, argument detection and
post-processing. Björne and Salakoski (2011) im-
proved the performance of this system for BioNLP
2011, but was outperformed by FAUST.

Our approach to the BioNLP Shared Task re-
lies on separating the process of event classifica-
tion into multiple stages and creates separate clas-
sifiers for each event type. Our system begins by
pre-processing the input text, followed by multiple
classification stages and a post-processing stage.
The pre-processing applies tokenization, sentence
splitting and dictionary-based trigger detection,
similar to Bui and Sloot (2011). Classification is
based on a Support Vector Machine (SVM) and
uses three main stages: trigger-protein detection,
trigger-event detection and event-cause detection.
Post-processing is a combination of classification
and rule-based approaches. We train a separate
classifier for each event type, rather that relying on
a single classifier to recognise trigger-theme rela-
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tionships for all event types. In addition, we also
optimise the SVM’s parameters and apply feature
selection for each event type.

Our system participated in subtask 1 of the
GE task, which involves the recognition of core
events, including identification of their ‘cause’.

The remainder of this paper describes our sys-
tem in detail (Section 2), presents results from the
Genia Event Extraction task (Section 3) and draws
the conclusions of this work (Section 4).

2 System Description

2.1 Preprocessing

Our system begins by preprocessing the input text,
by applying the sentence splitter and biomedical
named entity tagger from LingPipe1. The sentence
splitter is trained on the MEDLINE data set. The
text is then tokenised. Tokens containing punc-
tuation marks are split, as are tokens containing
a protein or suffixes which could be utilised as
a trigger word. For instance the term ‘Foxp3-
expression’ will be split into ‘Foxp3 - expression’,
since ‘Foxp3’ is as a protein and ‘expression’ a
suffix often used as trigger word. The tokens are
then stemmed using the Porter Stemmer from the
NLTK2 toolkit. The Stanford Parser3 is used to ex-
tract part-of-speech tags, syntax trees and depen-
dency trees.

2.1.1 Trigger Detection
The names of proteins in the text are provided in
the GE task, however the trigger words that form
part of the relation have to be identified. Our sys-
tem uses a dictionary-based approach to trigger
detection. The advantage of this approach is that it
is easy to implement and allows us to easily iden-
tify as many potential trigger words as possible.
However, it will also match many words which
are not true triggers. We rely on the classification
stage later in our approach to identify the true trig-
ger words.

A training corpus was created by combining the
training data from the 2013 Shared Task with all
of the data from the 2011 task. All words that are
used as a trigger in this corpus are extracted and
stored in a set of dictionaries. Separate dictionar-
ies are created for different event types (e.g. local-
ization, binding). Each type has its own dictionary,

1http://alias-i.com/lingpipe/index.html
2http://nltk.org/
3http://nlp.stanford.edu/software/lex-parser.shtml

with the exception of protein modification events
(protein modification, phosphorylation, ubiquiti-
nation, acetylation, deacetylation). The corpus did
not contain enough examples of trigger terms for
these events and consequently they are combined
into a single dictionary. The words in the dictio-
naries are stemmed and sorted by their frequency.
Irrelevant words (such as punctuations) are filtered
out.

Trigger detection is carried out by matching the
text against each of the trigger dictionaries, start-
ing with the trigger words with the highest fre-
quency. A word may be annotated as a trigger
word by different dictionaries. If a word is anno-
tated as a trigger word for a specific event then it
may not be annotated as being part of another trig-
ger word from the same dictionary. This restric-
tion prevents the generation of overlapping trigger
words for the same event as well as preventing too
many words being identified as potential triggers.

2.2 Classification

Classification of relations is based on SVM with
a polynomial kernel, using LibSVM (Chang and
Lin, 2011), and is carried out in three stages. The
first covers the core event, which consists of a trig-
ger and a theme referring to a protein. The second
takes all classified events and tries to detect regu-
lation events consisting of a trigger and a theme
that refers to one of these events (see positive-
regulation event in figure 1). In addition to a trig-
ger and theme, regulation and protein modification
events may also include a cause argument. The
third stage is responsible for identifying this addi-
tional argument for events detected in the previous
two stages.

Classification in each stage is always between
pairs of object: trigger-protein (stage 1), trigger-
event (stage 2), event-protein (stage 3) or event-
event (stage 3). At each stage the role of the clas-
sifier is to determine whether there is in fact a re-
lation between a given pair of objects. This ap-
proach is unable to identify binding events involv-
ing two themes. These are identified in a post-
processing step (see Section 2.3) which consid-
ers binding events involving the same trigger word
and decides whether they should be merged or not.

2.2.1 Feature Set
The classification process uses a wide range of
features constructed from words, stemmed words,
part of speech tags, NE tags and syntactic analysis.
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Object Features: The classification process
always considers a pair of objects (e.g. trigger-
protein, trigger-event, event-protein). Object fea-
tures are derived from the tokens (words, stemmed
words etc.) which form the objects. We consider
the head of this object, extracted from the depen-
dency tree, as a feature and all other tokens within
that object as bag of word features. We also con-
sider the local context of each object and include
the three words preceding and following the ob-
jects as features.

Sentence Features: The tokens between the
two objects are also used to form features. A
bag of word is formed from the tokens between
the features and, in addition, the complete se-
quence of tokens is also used as a feature. Differ-
ent sentence features are formed from the words,
stemmed words, part of speech tags and NE tags .

Syntactic Features: A range of features are ex-
tracted from the dependency and phrase-structure
trees generated for each sentence. These fea-
tures are formed from the paths between the the
objects within dependency tree, collapsed depen-
dency tree and phrase-structure tree. The paths are
formed from tokens, stemmed tokens etc.

The features are organised into 57 groups for
use in the feature selection process described later.
For example all of the features relating to the bag
of words between the two objects in the depen-
dency tree are treated as a single group, as are all
of the features related to the POS tags in the three
word range around one of the objects.

2.2.2 Generation of Training and Test Data

Using the training data, a set of positive and neg-
ative examples were generated to train our classi-
fiers. Pairs of entities which occur in a specific
relation in the training data are used to generate
positive examples and all other pairs used to gen-
erate negative ones. Since we do not attempt to
resolve coreference, we only consider pairs of en-
tities that occur within the same sentence.

Due to the fact that we run a dictionary-based
trigger detection on a stemmed corpus we might
cover many trigger words, but unfortunately also
many false ones. To handle this situation our clas-
sifier should learn whether a word serves as a trig-
ger of an event or not. To generate sufficient nega-
tive examples we also run the trigger detection on
the training data set, which already contains the
right trigger words.

2.2.3 Classifier optimisation

Two optimisation steps were applied to the rela-
tion classifiers and found to improve their perfor-
mance.

SVM bias adjustment: The ratio of positive
and negative examples differs in the training data
generated for each relation. For instance the data
for the protein catabolism event contains 156 pos-
itive examples and 643 negatives ones while the
gene expression event has 3617 positive but 34544
negative examples. To identify the best configura-
tion for two SVM parameters (cost and gamma),
we ran a grid search for each classification step
using 5-fold cross validation on the training set.

Feature Selection: We also perform feature se-
lection for each event type. We remove each fea-
ture in turn and carry out 5-fold cross validation on
the training data to identify whether the F-measure
improves. If improvement is found then the fea-
ture that leads to the largest increase in F-measure
is removed from the feature set for that event type
and the process repeated. The process is continued
until no improvement in F-measure is observed
when any of the features are removed. The set of
features which remain are used as the final set for
the classifier.

The feature selection shows the more positive
training examples we have for an event type the
fewer features are removed. For example, gene
expression events have the highest amount of pos-
itive examples (3617) and achieve the best F-
measure score without removing any feature. On
the other hand, there are just 156 training exam-
ples for protein catabolism events and the best re-
sults are obtained when 39 features are removed.
On average we remove around 14 features for each
event classifier. We observed that sentence fea-
tures and those derived from the local context of
the object are those which are removed most of-
ten.

2.3 Post-Processing

The output from the classification stage is post-
processed in order to reduce errors. Two stages of
post-processing are applied: one of which is based
on a classifier and another which is rule based.

Binding Re-Ordering: As already mentioned
in Section 2.2, our classification is only capable
of detecting single trigger-protein bindings. How-
ever if two binding events share the same trig-
ger, they could be merged into a single binding
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containing two themes. A classifier is trained to
decide whether to merge pairs of binding events.
The classifier is provided with the two themes that
share a trigger word and is constructed in the same
way as the classifiers that were used for relations.
We utilise the same feature set as in the other clas-
sification steps and run a grid search to adjust the
SVM parameter to decide whether to merge two
bindings or not.

Rule-Based Post-Processing: The second
stage of post-processing considers all the events
detected within a sentence and applies a set of
manually created rules designed to select the most
likely. Some of the most important rules include:

• Assume that the classifier has identified both
a simple event (e1) and regulation event (e2)
using the same trigger word and theme. If an-
other event uses a different trigger word with
e1 as its theme then e2 is removed.

• If transcription and gene expression events
are identified which use the same trigger and
theme then the gene expression event is re-
moved. This situation occurs since transcrip-
tion is a type of a gene expression and the
classifiers applied in Section 2.2 may identify
both types.

• Assume there are two events (e1 and e2) of
the same type (e.g. binding) that use the same
trigger word but refer to different proteins. If
the theme of a regulation event refers to e1

then a new regulation event referring to e2 is
introduced.

3 Results

Our approach achieved the highest precision score
(63.00) in the formal evaluation in terms of strict
matching in the GE task 1. The next highest preci-
sion scores were achieved by BioSEM (60.67) and
NCBI (56.72). We believe that the classifier opti-
misation (Section 2.2.3) for each event and the use
of manually created post-processing rules (Section
2.3) contributed to the high precision score. Our
system was ranked 6th place of 10 in terms of F-
measure with a score of 42.06.

Table 1 presents detailed results of our system
for the GE task. Our approach leads to high preci-
sion scores for many of the event types with a pre-
cision of 79.23 for all simple events and 92.68 for
protein modifications. Our system’s performance

is lower for regulation events than other types with
a precision of 52.69. Unlike other types of events,
the theme of a regulation event may refer to an-
other event. The detection of regulation events can
therefore be affected by errors in the detection of
simple events.

Results of our system are closer to the best re-
ported results when strict matching is used as the
evaluation metric. In this case the F-measure is
6.86 lower than the winning system (BioSEM).
However, when the approximate span & recursive
matching metric is used the results of our sys-
tem are 8.74 lower than the best result, which is
achieved by the EVEX system.

Event Class Recall Prec. Fscore
Gene expression 62.20 85.37 71.96
Transcription 33.66 45.33 38.64
Protein catabolism 57.14 53.33 55.17
Localization 23.23 85.19 36.51
SIMPLE ALL 54.02 79.23 64.24
Binding 31.53 46.88 37.70
Phosphorylation 47.50 92.68 62.81
PROT-MOD ALL 39.79 92.68 55.68
Regulation 11.46 42.86 18.08
Positive regulation 23.72 53.60 32.88
Negative regulation 20.91 54.19 30.18
REG. ALL 21.14 52.69 30.18
EVENT TOTAL 31.57 63.00 42.06

Table 1: Evaluation Results (strict matching)

4 Conclusion

Our approach to the BioNLP GE task 1 was to cre-
ate a separate SVM-based classifier for each event
type. We adjusted the SVM parameters and ap-
plied feature selection for each classifier. Our sys-
tem post-processed the outputs from these classi-
fiers using a further classifier (to decide whether
events should be merged) and manually created
rules (to select between conflicting events). Re-
sults show that our approach achieves the high-
est precision of all systems and was ranked 6th in
terms of F-measure when strict matching is used.

In the future we would like to improve the recall
of our approach and also aim to explore the use of
a wider range of features. We would also like to
experiment with post-processing based on a clas-
sifier and compare performance with the manually
created rules currently used.
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Abstract 

We describe a high precision system for ex-

tracting events of biomedical significance that 

was developed during the BioNLP shared task 

2013 and tested on the Cancer Genetics data 

set. The system achieved an F-score on the de-

velopment data of 73.67 but was ranked 5
th

 out 

of six with an F-score of 29.94 on the test data. 

However, precision was the second highest 

ranked on the task at 62.73. Analysis suggests 

the need to continue to improve our system for 

complex events particularly taking into ac-

count cross-domain differences in argument 

distributions.   

1 Introduction 

In this paper we present our approach to the Bi-

oNLP 2013 shared task on Cancer Genetics (CG) 

(Pyysalo et al., 2013, Pyysalo et al., 2012), 

aimed at identifying biomedical relations of sig-

nificance in the development and progress of 

cancer. Our system explored a multi-stage ap-

proach including trigger detection, edge detec-

tion and event composition. After trigger edge 

detection is finished we are left with a semantic 

graph from which we must select the optimal 

subset that is consistent with the semantic frames 

for each event type. Previous approaches have 

derived sub-graph matching rules using heuris-

tics (Jari Björne et al. 2009) or machine learning 

using graph kernels (Liu et al., 2013). Based on 

McClosky et al. (2011)’s observation that event 

structures have a strong similarity to dependency 

graphs, we proposed a novel method for the 

composition of ambiguous events used a proba-

bilistic variation of the Earley chart parsing algo-

rithm (Stolcke 1995) for finding best derived 

trigger-argument candidates. Our method uses 

the event templates and named entity classes as 

grammar rules. As an additional novel step our 

chart parsing approach incorporates a linear in-

terpolation mechanism for cross-domain adaptiv-

ity between the training and testing (develop-

ment)  data.   

2 Approach 

The system consists of five main modules: pre-

processing, trigger detection, edge detection, 

simple event extraction, complex event extrac-

tion. Each of these is described below with an 

emphasis on event composition where we ap-

plied a probabilistic variation on the Earley par-

ser.   

2.1 Experimental Setting 

As our team’s first attempt at the BioNLP shared 

task we decided to focus our attention on the 

Cancer Genetic Task. The CG Task aims to ex-

tract events related to the development and pro-

gression of cancer.  

A characteristic feature of the CG Task is that 

there are a large number of entity and event 

types: 18 entity classes, 40 types of event and 8 

types of arguments. Among these events, there 

are 7 that may have no arguments: Blood vessel 

development, Cell death, Carcinogenesis, Metas-

tasis, Infection, Amino acid catabolism and Gly-

colysis. On the other hand, some events may 

have more than one argument: Binding and Gene 

Expression may have more than one Theme ar-

gument, and Planned process may have more 

than one Instrument argument. 

We divided events into two groups based on 

definitions of Miwa et al.(2010) : simple and 

complex events. Simple events include 36 events 

whose arguments must be entities. Complex 

events include 4 event types whose arguments 

may be other events. 

2.2 Pre-processing 

Pre-processing conventionally made use of the 

GeniaTagger (Tsuruoka and Tsujii, 2005) for 

sentence splitting and tokenizing, and the HPSG 
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parser Enju
1
 (Miyao and Tsujii, 2008).  Both of 

these were provided in the supporting resources 

by the task organisers. Gold standard named enti-

ty annotations were also provided.  

2.3 Trigger Detection 

In the CG Task dataset, 95% of the triggers 

that indicate events are single token. We there-

fore treated trigger detection as a token labeling 

problem in a similar way to Björne et al. (2009). 

Here the system has to classify whether a token 

acts as a trigger for one of the forty event types 

or not.  We used the Liblinear-java library
2
 (Fan 

et al., 2008) with the L2-regularized logistic re-

gression method for both trigger detection and 

edge detection. We performed a manual grid 

search to select a C-value parameter of 0.5. This 

parameter value is same from that of the Turku 

system (Björne et al. (2009), in which the C-

values were tuned for all of their detectors. 

The major features used are primarily based 

on Miwa, et al. (2012) and shown in Table 1. In 

our experiments this led to a relatively large 

number of features: about 500k features for the 

trigger detection model, 900k features in the T-E 

model and 600k features in the EV-EV model. 

Our choice of the Liblinear library was partly 

motivated by its efficient performance with large 

feature sets. 

 
Feature Target 

Token feature - Current token 

Neighbouring word feature - Current token 

Word n-gram feature - Current token 

Trigger dictionary feature - Current token 

Pair n-gram feature - Between current token and 

named entities 

Parse tree shortest path 

feature 

- Between current token and 

named entities 

Table 1: Features in the trigger detection module. 

2.4 Event edge detection 

For edge detection, we used Liblinear to con-

struct two models: one model is designed primar-

ily to extract trigger-entity edges (T-E model), 

while the other system is designed primarily to 

extract event-event edges (EV-EV model). 

The T-E model classifies edge candidates to 

one of the 8 argument roles (theme, cause, site, 

atloc, toloc, fromloc, instrument, participant) 

and a negative argument class. Relation pairs are 

identified through the simple event extraction 

module (cf Section 2.5). 

                                                 
1
 http://www-tsujii.is.s.u-tokyo.ac.jp/enju/ 

2 http://www.bwaldvogel.de/liblinear-java/ 

The EV-EV model identifies relations in the 

sentences between 4 types of complex events 

(Regulation, Negative regulation, Positive Regu-

lation and Planned process) and other events 

(including events belonging to the 4 complex 

events). The relations are classified into three 

classes: the two argument roles (theme or cause) 

or NOT. 

The features used in these two models are 

mostly the same as those used in the earlier trig-

ger detection module. Table 2 shows features and 

their applied target objects used in T-E model, 

Table 3 shows features and target objects for 

each feature of EV-EV model.  

 
Feature Target  

Token feature - Current trigger 

- Trigger argument entity 

Class feature - Current trigger 

- Trigger argument entity 

Neighbouring word 

feature 

- Current trigger 

- Trigger argument entity 

Word n-gram feature - Current trigger 

- Trigger argument entity 

Pair n-gram feature - Between current trigger and 

argument entity 

Parse tree shortest 

path feature 

- Between current trigger and 

rigger argument entity 

Table 2: Features in the T-E model. 
 

Feature Target 

Token feature Current trigger, target trigger, cur-

rent arguments, target arguments 

Class feature Current trigger, target trigger, cur-

rent arguments, target arguments 

Neighbouring word 

feature 

Current trigger, target trigger, cur-

rent arguments, target arguments 

Word n-gram feature Current trigger, target trigger, cur-

rent arguments, target arguments 

Pair n-gram feature Between current trigger and target 

trigger, between current trigger and 

target arguments, between current 

arguments and target trigger, be-

tween current arguments and target 

arguments 

Parse tree shortest 

path feature 

Between current trigger and target 

trigger, between current trigger and 

target arguments, between current 

arguments and target trigger, be-

tween current arguments and target 

arguments 

Table 3: Features in the EV-EV model. 

2.5 Simple event extraction 

In order to minimise the incorrect combination 

of arguments and triggers it seemed natural to try 

and solve the edge classification problem first 

between triggers and entities (simple edge detec-

tion) and then apply these as features in a stacked 

model to the complex event recogniser (cf Sec-

tion 2.6). In the simple event extraction module, 
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Figure 1: An example of representing two complex events as two event trees. 

 

we combined edge candidates identified in the T-

E model into complete simple events. After this 

step, we had the results which belong to the 36 

simple event types and relations between 4 com-

plex events and entities. 

In order to select the edge candidates for each 

trigger, we used event-argument pattern based 

probabilities derived from the training set. An 

example of a Development event-arguments pat-

tern is:  

Development  Theme(Gene_expression) + At-

Loc(Cancer) 

In practice there are several problems that 

arose when opting for this simple strategy: 

 - Firstly, there may be multiple candidates 

with the same argument role label linking to a 

trigger (such triggers do not belong to Binding, 

Gene Expression and Planned process). We used 

the output probability from the logistic regres-

sion event edge classifiers to select the best can-

didate in these cases. 

- Secondly, there are triggers whose candidate 

edge types link to entities that do not match pat-

terns observed in the training set or do not have 

any relation. We introduced a rule-based seman-

tic post-processing step: triggers are checked to 

see if they belong to the 7 event types which 

have no argument; if they do not, we rejected 

these from the results. 

- Thirdly, there may be an imbalance between 

the argument distribution in the training and test-

ing data (development data). In the development 

data, we observed some event-argument patterns 

which do not occur in training set, this problem 

may lead to false negatives. For example: 

Cell_transformation  Theme(Cell) + At-

Loc(Cell) or Mutation  

Site(DNA_domain_or_region). This was one 

cause of false negatives in our system’s perfor-

mance (cf Section 3). 

2.6 Complex event extraction with proba-

bilistic Earley Parser 

For complex event extraction, based on the 

idea of McClosky et al. (2011) that treats event 

extraction as dependency parsing, we represent 

complex events in the form of event trees which 

are similar to dependency trees. Our idea differs 

from McClosky et al. in that they represented all 

events in a sentences within a single tree, where-

as we build a tree for each complex event. This 

solution helps avoid the problem of directed cy-

cles if there are two complex event that relate to 

the same entity or event. 

Figure 1 shows an example of representing 

two complex events as two event trees. To build 

the event tree, we create a virtual ROOT node; 

the complex event target will be linked directly 

to this ROOT node, and triggers and entities that 

do not belong to sub-structure of the target event 

will also have links to ROOT node, too. In the 

event tree, labels of entity classes and event 

types are retained while terms of triggers and 

entities are removed. 

For event tree parsing, we used the Earley 

parsing algorithm proposed by Jay Earley (1970) 

to find alternative structures. The event tree is 

stored in memory in the form of Earley rules. 

The inputs to the parser are the entities and trig-

gers which have been identified in the trigger 

detection module, and the outputs are the event 

tree candidates.  

To choose the best event tree candidates, we 

built a probabilistic Earley parser which devel-

oped from the idea of Hale (2001). As a first at-

tempt at introducing robustness for edge classifi-

er error our parser used linear interpolation on 

the probability from the edge detection module 

and the prior edge probabilities to calculate a 

score for each event tree candidate. The interpo-

lation parameter λ was set using a manual grid 
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search and reflects the confidence we have in the 

generalisability of the edge detection module on 

the testing (development) data.   

The scoring function for each node is: 

Occurrence

(edge | argrument)

(node) (arguments | node)
(edges)

edges node

P

Score P
num


 

  

where, 

 num(edge) is the number of edges that 

have a link to the node 

 POccurence(arguments|node) is a distribu-

tion which represents the co-occurrence of 

entity/trigger labels in the arguments of an 

event type. 

 (edge | argrument) (edge | argument)ClassifierP P  

        (1 )* (edge | argument)PriorP  

 λ is a linear interpolation parameter in 

the range of [0,1]  

 PClassifier(edge|argument) is the probabil-

ity obtained from the edge classifier. 

 PPrior(edge|argument) is the training set’s 

prior probability for the edge. 

Edges that linked directly to ROOT and did 

not relate to the target complex event had a de-

fault value of zero. The final score of an event 

tree candidate was calculated as ROOT’s value. 

We used a filter_threshold parameter to re-

move event tree candidates which had an edge 

with P(edge|argument) less than filter_threshold. 

On the other hand, we used a cut-off_threshold 

parameter to choose event tree candidates which 

have highest value. Event tree candidates which 

are sub-structure of other event tree candidates 

were removed from the final results. 

3 Results and Discussion 

We evaluated each component of the system 

on the training and held out data sets. The opti-

mal configuration of parameters was then used 

on the shared task test data. We set these as fol-

lows:α=0.5;filter_threshold=0.2;cutoff_threshol

d=0.45.  

Table 4 shows F-score performance for event 

composition on the development data set. We 

found that complex events such as regulation and 

planned process performed at the lower end of 

accuracy due to their high complexity. This re-

sulted in relatively low recall compared to preci-

sion (figures not shown). The three Regulation 

events in particular are very productive in terms 

of the variety of named entities and triggers they 

take as arguments and their distribution in the 

development data was quite different to the train-

ing data. 
Event F1 Event F1 

Development 86.67 Phosphorylation 68.45 

Blood vessel 

development 

84.15 Dephosphorylation 66.67 

Growth 76.77 DNA methylation 85.71 

Death 61.95 DNA demethyla-

tion 

- 

Cell death 53.06 Pathway 61.81 

Breakdown 77.68 Localization 66.11 

    

Cell proliferation 59.82 Binding 70.68 

Cell division 100.00 Dissociation 100.00 

Remodeling 60.00 Regulation 69.55 

Reproduction - Positive regulation 68.13 

Mutation 78.74 Negative regula-

tion 

68.57 

Carcinogenesis 60.67 Planned process 49.99 

Metastasis 74.39 Acetylation  100.00 

Metabolism 62.50 Glycolysis  69.89 

Synthesis 52.63 Glycosylation - 

Catabolism 59.27 Cell transformation  66.67 

Gene expression 79.18 Cell differentiation  71.18 

Transcription 75.00 Ubiquitination 75.00 

Translation 80.00 Amino acid ca-

tabolism 

100.00 

Protein pro-

cessing 

100.00 Infection  75.86 

  Total  73.67 

Table 4: Baseline results for event composi-

tion on the development data. 

 

From our analysis on the development set we 

found that trigger detection was performing well 

overall with F-scores in the range 78 to 80. We 

choose 50 false negative events at random for 

error analysis. There are 29 triggers and 21 

events missing. Table 5 shows a stratified analy-

sis by major error type (we note that errors may 

of course have multiple causes). 
Cause Trigger Event 

Ambiguity in event class 9  

Co-reference 6  

Do not match with any event argument 

patterns 

7  

No training instance 7 4 

Choose best argument entity in simple 

event extraction   

 5 

No argument  4 

No Earley parser rule  8 

Total 29 21 

Table 5: Error classification of 50 missing 

false negatives. 
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Performance on the shared task testing set was 

overall disappointing with an F-score of 29.94 

(Recall = 19.66, Precision = 62.73, F-score of 

simple event extraction = 47.96 and F-score of 

complex event extraction = 12.49) indicating low 

coverage caused by severe over-fitting issues. 

Analysis revealed that one cause of this was the 

imbalance in the distribution of arguments be-

tween training and testing sets. 

4 Conclusion  

We presented a system built on supervised 

machine learning with rich features, semantic 

post-processing rules and the dynamic program-

ming Earley parser. The system achieved an F-

score of 29.94 on the CG task with high preci-

sion of 62.73. Future work will focus on extend-

ing recall for complex events and looking at how 

we can avoid over-fitting to benefit cross-domain 

adaptivity.   
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Abstract

The BioNLP Shared Task 2013 is organ-
ised to further advance the field of in-
formation extraction in biomedical texts.
This paper describes our entry in the Gene
Regulation Network in Bacteria (GRN)
part, for which our system finished in sec-
ond place (out of five). To tackle this re-
lation extraction task, we employ a basic
Support Vector Machine framework. We
discuss our findings in constructing local
and contextual features, that augment our
precision with as much as 7.5%. We touch
upon the interaction type hierarchy inher-
ent in the problem, and the importance of
the evaluation procedure to encourage ex-
ploration of that structure.

1 Introduction

The increasing number of results in the biomedical
knowledge field has been responsible for attract-
ing attention and research efforts towards meth-
ods of automated information extraction. Of par-
ticular interest is the recognition of information
from sources that are formulated in natural lan-
guage, since a great part of our knowledge is still
in this format. Naturally, the correct detection of
biomedical events and relations in texts is a matter
which continues to challenge the scientific com-
munity. Thanks to the BioNLP Shared tasks, al-
ready in the third instalment, researchers are given
data sets and evaluation methods to further ad-
vance this field.
We participated in the Gene Regulation Network
(GRN) Task (Bossy et al., 2013), which is an
extension of the Bacteria Gene Interactions Task
from 2011 (Jourde et al., 2011). In this task, ef-
forts are made to automatically extract gene inter-
actions for sporulation, a specific cellular function
of the bacterium bacillus subtilis for which a sta-

ble reference regulatory network exists. An exam-
ple sentence can be seen below. Note that all en-
tities (except for event triggers, i.e. action entities
like transcription in figure 1) are given as input in
both training and test phases. Therefore, this task
makes abstraction of the entity recognition issue,
putting complete focus on the subproblem of rela-
tion detection.

sspG transcription also requires the DNA binding protein GerE .

Event

Interaction: Requirement

Agent
Target

Figure 1: Example sentence: there is an Interac-
tion:Requirement relation defined between entities
GerE and sspG, through the action event of tran-
scription. Full-line entities are given in the test
phase, while dashed-lined ones are not.

As this is our first participation in this task, we
have built a simple, yet adaptable framework. Our
contributions lie therefore more in the domain of
feature definition and exploration, rather than in
designing novel machine learning models.
Predictions could be given in two ways. Either
all events and relations could be predicted, from
which the regulation network would then be infer-
enced (cfr. figure 1, detect all dashed-lined enti-
ties, and the relations between them). Or, a speci-
fication of the regulation network itself is directly
predicted (in the example, this amounts to finding
GerE → sspG, and the type (Requirement)). We
chose to implement the latter method. In section
2 we will lay out the framework we constructed,
and the tools we used. In that section, we will also
look at some of the design choices for our feature
construction. Finally we discuss our results in sec-
tion 3, and touch upon opportunities to exploit the
available interaction hierarchy in this data.

135



2 Implementation

Basic Framework For this interaction detec-
tion task, we implement a Support Vector Ma-
chine (SVM) (Vapnik, 1995), with the use of the
SVMLight (Joachims, 1999) implementation in
the Shogun Machine Learning Toolbox. Per given
sentence, we construct our data points to be all
pairs of genic entities in that sentence, i.e., all pos-
sible interaction agent/target pairs. Note that since
the regulation network is a directed graph, the or-
der of the nodes matters; each such pair therefore
occurs twice in the data. It is obvious from this
construction that this leads to a great imbalance:
there are a lot more negatively labelled data points
than positive ones. To respond to this, we tried
applying differential weighing (as seen in (Shawe-
Taylor and Cristianini, 1999) and (Veropoulos et
al., 1999)). This amounts to appointing a big-
ger regularisation parameter C to the positive data
points when training the SVM, thus tightening the
boundary constraint on the margin for these points.
The results of this were unconvincing however, so
we decided not to implement it.
For each interaction type (there are 6 of them),
we then train a separate binary (local, hence one-
versus-all) SVM classifier1, with a Gaussian Ra-
dial Basis Function (RBF) kernel as in (Aĭzerman
et al., 1964) and (Schölkopf et al., 1997). We eval-
uated several types of kernels (linear, polynomial,
Gaussian) in a 25-fold cross-validation over the
union of training and validation set, and the RBF-
kernel consistently gave better results.

Feature Construction and Selection Consider
our data points (i.e., the agent/target pairs) xijk =
(eij , eik), j 6= k, where eij denotes the jth entity
of sentence i. For each such point, the basic (real-
valued) feature set-up is this:

f(xijk) = fent(eij )� fent(eik)� fextra(eij , eik),

a concatenation (the� operation) of the respective
feature vectors fent defined separately on the pro-
vided entities. To that we add fextra, which con-
tains the Stanford parse tree (Klein and Manning,
2003) distance of the two entities, and the location
and count (if any) of Promoter entities: these are
necessary elements for transcription without being
part of the gene itself. For any entity, we then con-

1There is a lot of scope for leveraging the hierarchy in the
interaction types; we touch upon this in the conclusion.

struct the feature vector as:

fent(eij ) =
1

Nij

∑
w∈eij

fbase(w)� fcontext(w, i),

whereNij is the number of words in eij . This is an
average over all words w that make up entity eij

2,
with the choice of averaging as a normalisation
mechanism, to prevent a consistent assignment of
relatively higher values to multi-word entities. In-
side the sum is the concatenation of the local fea-
ture function on the words (fbase) with fcontext,
which will later be seen as encoding the sentence
context.
The base feature function on a word is a vector
containing the following dimensions:

• The entity type, as values ∈ {0, 1};

• Vocabulary features: for each word in the dic-
tionary (consisting of all words encountered),
a similarity score ∈ [0, 1] is assigned that
measures how much of the beginning of the
word is shared3. In using a similarity scor-
ing instead of a binary-valued indicator func-
tion, we want to respond to the feature spar-
sity, aggravated by the low amount of data
(134 sentences in training + validation set).
While this introduces some additional noise
in the feature space, this is greatly offset by
a better alignment of dimensions that are ef-
fectively related in nature. Also note that,
due to the nature of the English language,
this approach of scoring similarities based on
a shared beginning, is more or less equiva-
lent to stemming (albeit with a bias towards
more commonly occurring stems). For our
cross-validations, utilisation of these similar-
ity scores attributed to an increase in F-score
of 7.6% (mainly due to an increase in re-
call of 7.0%, without compromising preci-
sion) when compared to the standard binary
vocabulary features.

• Part-of-speech information, using the
Penn-Treebank (maximum entropy) tagger,
through the NLTK Python library (Bird et
al., 2009). These are constructed in the same
fashion as the vocabulary features;

2Note that one entity can consist of multiple words.
3To not overemphasise small similarities (e.g. one or two

initial letters in common), we take this as a convex function
of the proportion of common letters.
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• Location of the word in its sentence (nor-
malised to be ∈ [0, 1]). Note that next to
being of potential importance in determining
an entity to be either target or agent, the sub-
space of the two location dimensions of the
respective entities in the data point xijk =
(eij , eik) also encodes the word distance be-
tween these.

• Depth in the parse tree (normalised to be ∈
[0, 1]).

Adding contextual features On top of these ba-
sic features, we add some more information about
the context in which the entities reside. To this ef-
fect, we concatenate to the basic word features the
tree context: a weighted average of all other words
in the sentence:

fcontext(w, i) =
1

Z

∑
wj∈sentencei

αdi(w,wj)fbase(wj)

with fbase the basic word features described
above, and weights given by α ≤ 14 and di(w,wj)
the parse tree distance from w to wj . The normal-
isation factor we use is

Z =
∑

wj∈sentencei

αdi(w,wj)

i.e., the value we would get if a feature would be
consistently equal to 1 for all words. This nor-
malisation makes sure longer sentences are not
overweighted. For the inner parse tree nodes we
then construct a similar vector (using only part-
of-speech and phrasal category information), and
append it to the word context vector.
Note that the above definition of fcontext also al-
lows us to define di(w,wj) to be the word distance
in the sentence, leaving out any grammatical (tree)
notion. We designate this by the term sentence
context.

3 Results and Conclusion

Cross-validation performance on training data
Because we have no direct access to the final test
data, we explore the model performance by con-
sidering results from a 25-fold cross-validation on
the combined training and validation set. Table 1

4We optimised α to be 0.4, by tuning on a 25-fold cross-
validation, only using training and validation set.

shows the numbers of three different implementa-
tions5: one with respectively no fcontext concate-
nated, and the tree context (the official submission
method) and sentence context versions. We see
that a model based uniquely on information from
the agent and target entities already performs quite
well; a reason for this could be the limited amount
of entities and/or interactions that come into play
in the biological process of sporulation, augment-
ing the possibility that a pair can already be ob-
served in the training data. Adding context infor-
mation increases the F-score by 2%, mainly due to
a substantial increase in precision, as high as 7.5%
for the sentence context. Recall performs better in
the tree variant however, pointing to the fact that
grammatical structure can play a role in identify-
ing relations.
Note that we only considered the sentence alter-
ation after the submission deadline, so the better
results seen here could no longer implore us to use
this version of the context features.

Context SER Prec. Recall F1
None 0.827 0.668 0.266 0.380
Tree 0.794 0.709 0.285 0.406
Sentence 0.787 0.743 0.278 0.405

Table 1: Results of the cross-validation for several
implementations of context features. (C = 5, σ =
8.75)

We can identify some key focus points to fur-
ther improve our performance. Generally, as can
be seen in the additional results of table 1, a low
recall is the main weakness in our system. These
low numbers can in part be explained by the lack
of great variation in the features, mainly due to
the low amount of data we have. Interesting to
note here, is the great diversity of performance of
the local classifiers separately: the SVM for Tran-
scription attains a recall of 42.0%, in part because
this type is the most frequent in our data. However,
the worst performers, Requirement and Regulation
(with a recall of 0.0% and 3.7% respectively) are
not per se the least frequent; in fact, Regulation
is the second most occurring. Considerable effort
should be put into addressing the general recall is-
sue, and gaining further insight into the reasons
behind the displayed variability.

5For simplicity, we keep all other parameters (C, and the
RBF kernel parameter σ) identical across the different entries
of the table. While in theory a separate parameter optimisa-
tion on each model could affect the comparison, this showed
to be of little qualitative influence on the results.
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Final results on test data On submission of the
output from the test data, our system achieved a
Slot Error Rate (SER) of 0.830 (precision: 0.500,
recall: 0.227, F1: 0.313), coming in second place
after the University of Ljubljana (Zitnik et al.,
2013) who scored a SER of 0.727 (precision:
0.682, recall: 0.341, F1: 0.455).

Exploring structure One of the main issues of
interest for future research is the inherent hierar-
chical structure in the interactions under consid-
eration. These are not independent of each other,
since there are the following inclusions:

Regulation

Inhibition Activation

Requirement

Binding

Transcription

So for example, each interaction of type Tran-
scription is also of type Binding, and Regula-
tion. This structure implicates additional knowl-
edge about the output space, and we can use this
to our benefit when constructing our classifier.
In our initial framework, we make use of local
classifiers, and hence do not leverage this addi-
tional knowledge about type structure. We have
already started exploring the design of techniques
that can exploit this structure, and preliminary re-
sults are promising.
One thing we wish to underline in this process
is the need for an evaluation procedure that is as
aware of the present structures as the classifier. For
instance, a system that predicts a Binding interac-
tion to be of type Regulation, is more precise than
a system that identifies it as an Inhibition. Both
for internal as external performance comparison,
we feel this differentiation could broaden the fo-
cus towards a more knowledge-driven approach of
evaluating.
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Abstract

In the perspective of annotating a text with
respect to an ontology, we have partici-
pated in the subtask 1 of the BB BioNLP-
ST whose aim is to detect, in the text,
Bacteria Habitats and associate to them
one or several categories from the Onto-
Biotope ontology provided for the task.
We have used a rule-based machine learn-
ing algorithm (WHISK) combined with a
rule-based automatic ontology projection
method and a rote learning technique. The
combination of these three sources of rules
leads to good results with a SER measure
close to the winner and a best F-measure.

1 Introduction

Ontology-based semantic annotation consists in
linking fragments of a text to elements of a do-
main ontology enabling the interpretation and the
automatic exploitation of the texts content. Many
systems annotate texts with respect to an ontology
(Dill et al., 2003). Some of them use machine-
learning techniques to automate the annotation
process (Ciravegna, 2000).

On one side, machine-learning techniques de-
pend strongly on the amount and quality of pro-
vided training data sets and do not use information
available in the ontology. On the other side, using
the ontology to project its elements onto the text
depends strongly on the richness of the ontology
and may neglect important information available
in texts.

Our participation in the subtask 1 (entity de-
tection and categorization) of the BB BioNLP-
ST leverages the provided OntoBiotope ontology
and the training and development data sets pre-
processed using our annotation platform based on
UIMA (Ferrucci and Lally, 2004) (section 2). We
first tested, on the development set, a rule-based

machine-learning algorithm (WHISK (Soderland
et al., 1999)) that used training set examples (sec-
tion 3). Its results are limited because of the weak-
nesses of training data (section 4). We, then, com-
puted a rule-based automatic ontology projection
method consisting in retrieving from the text field
information content provided by the ontology (eg.
name of the concept). Thanks to the wealth of
the OntoBiotope ontology, this method gave good
results (section 5) that have been improved by
adding a rote learning technique that uses train-
ing examples and some filtering techniques (sec-
tion 6). Finally, we combined our method with
WHISK results, which slightly improved the F-
measure (section 7) on the development data.

2 TextMarker and data preprocessing

In a rule-based information extraction or seman-
tic annotation system, annotation rules are usually
written by a domain expert. However, these rules
can be learned using a rule-based learning algo-
rithm. The TextRuler system (Kluegl et al., 2009)
is a framework for semi-automatic development
of rule-based information extraction applications
that contains some implementations of such algo-
rithms ((LP)2 (Ciravegna, 2001; Ciravegna, 2003),
WHISK (Soderland et al., 1999), RAPIER (Califf
and Mooney, 2003), BWI (Freitag and Kushmer-
ick, 2000) and WIEN (Kushmerick et al., 1997)).
TextRuler is based on Apache UIMA TextMarker
which is a rule-based script language.

TextMarker is roughly similar to JAPE (Cun-
ningham et al., 2000), but based on UIMA (Fer-
rucci and Lally, 2004) rather than GATE (Cun-
ningham, 2002). According to some users ex-
periences, it is even more complete than JAPE.
Here is an example that gives an idea about how
to write and use TextMarker rules: Given an
UIMA type system that contains the types SPACE
(whitespace) and Lemma (with a feature ”lemma”
containing the lemmatized form of the matched
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word), the following rule can be used to recognize
the term ”human body” in whatever form it ap-
pears in the text (singular, plural, uppercase, low-
ercase):
Lemma{FEATURE("lemma","human")}
SPACE Lemma{FEATURE("lemma","body")
--> MARK(Habitat, 1, 2, 3)};

This rule allows the creation of an annotation
called ”Habitat” that covers the three matched pat-
terns of the condition part of the rule.

To be able to use TextMarker, we have used our
annotation platform based on UIMA to preprocess
data with:

• Tokenisation, lemmatisation, sentence split-
ting and PoS-tagging of input data using
BioC (Smith et al., 2004; Liu et al., 2012).

• Term extraction using BioYatea (Golik et
al., 2013), a term extractor adapted to the
biomedical domain.

• Bacteria Habitat annotation to train learning
algorithms using annotation files provided in
this task (.a2).

For simplicity reasons, we do not take into ac-
count discontinuous annotations. We consider a
discontinuous annotation as the smallest segment
that include all fragments.

3 Rule Learning using WHISK

”In the subtask 1 of the BB BioNLP-ST, par-
ticipants must detect the boundaries of Bacteria
Habitat entities and, for each entity, assign one
or several concepts of the OntoBiotope ontology.”
Should we decompose the task into two subtasks
like it is suggested in the task formulation : (1) en-
tity detection and (2) categorization ? To answer
this question, we have conducted two experiments.

• Learning the root concept Habitat without as-
signing a Category to matched terms.

• Learning Bacteria Categories directly: each
Habitat Category is learned independently.

For the two experiments we considered only
Categories that have more than two examples in
the training set to train WHISK. Results are shown
in Table 1:

Experiment Precision Recall F-measure
Habitats learning 76.9% 24.5% 37.2%

Categories learning 77.3% 24% 36.6%

Table 1: Habitats learning vs Categories learning

WHISK gives an acceptable precision but a
low recall (the explanation is provided in sec-
tion 4) for both experiments. There is no big
difference between the two experiments’ results:
WHISK doesn’t generalize over Habitats Cate-
gories. Learning Habitat Categories seems to be
the easier and safer way to use WHISK in this task.

4 Weaknesses of training examples
explain poor rule learning results

Training Development Total
Nb. Concepts: 333 274 491

Nb. Habitat: 934 611 1545
Nb. Annotation: 948 626 1574

Nb. C. 1 Instance: 182 179 272
Nb. C. 2 Instances: 66 41 86

Nb. C. > 2 Instances: 27 15 133
Number of concepts in ontology: 1756

Table 2: Figures on provided data

A close look at data samples helps understand
why the WHISK algorithm did not obtain good re-
sults. Table 2 exhibits some figures on training and
development data:

• 158 of the 274 concepts (58%) present in the
development data do not appear in the train-
ing data.

• Concepts present in sample data account for
19% of the ontology for the training data,
16% for the development data and 28% for
their combination.

• Obviously, it is difficult for a machine learn-
ing algorithm to learn (i.e. generalize) on
only one instance. This is the case for 55%
(272) of the concepts considering both the
training and the development sample data.

• If we consider that at least 3 instances are
needed to apply a machine learning algo-
rithm, only 27% of concepts present in the
training or development data are concerned.
This means that the ontology coverage is less
than 8%.

The conclusion is that training data are too
small to lead to a high performance recall for a
machine learning algorithm based exclusively on
these data.

5 The wealth of the ontology helps build
an efficient ontology-based rule set

The BB BioNLP-ST’s subtask 1 provides the On-
toBiotope ontology used to tag samples. For ex-
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ample, the information provided by the ontology
for the concept MBTO:00001516 is
[Term]
id: MBTO:00001516
name: microorganism
exact_synonym: "microbe" [TyDI:23602]
related_synonym: "microbial" [TyDI:23603]
is_a: MBTO:00000297 ! living organism

Text segments tagged with this concept in ex-
amples are : microbe, microbial, microbes,
microorganisms, harmless stomach bugs.

One can notice that the name, exact synonym

and related synonym field information provided
by the ontology can help identify these segments.
If this strategy works, it will be a very robust one
because it is not sample dependent and it is ap-
plicable for all the 1756 concepts present in the
ontology.

The main idea is to directly search and tag in
the corpus the information provided by the con-
tent of fields name, exact synonym and related-

synonym of the ontology. Of course, projecting
them directly on samples raises inflection issues.
Our corpus provides two levels of lemmatisation
to avoid inflection problems: one from BioC and
the other from BioYaTeA. Our experiments show
that using the two of them in conjunction with the
token level (without any normalisation of words)
provides the best results. For example, the rules to
project name field of MBTO:00001516 are:
Token{REGEXP("ˆmicroorganism$")

-> MARKONCE(MBTO:00001516,1)} ;
Lemma{FEATURE("lemma","microorganism$")

-> MARKONCE(MBTO:00001516,1)} ;
Term{FEATURE("lemma","microorganism$")

-> MARKONCE(MBTO:00001516,1)} ;

Table 3 provides results obtained on develop-
ment data. We have also used training data to gen-
erate rote learning rules introduced in the next sec-
tion.

Rule set name Precision Recall F-measure
name: 67.4% 61.2% 64.2%

exact synonym: 61.2% 4.2% 7.8%
related synonym: 26.6% 5.9% 9.7%

rote learning: 63.6% 50.2% 56.1%
all together: 58.9% 73.8% 65.5%

Table 3: Performances of some sets of rules

6 Improving ontology-based rules

Rote learning rules
Results obtained for name and exact synonym

rules in Table 3 are very encouraging. We can

apply the same strategy of automatic rule genera-
tion from training data to text segments covered by
training examples. Projection rules are generated,
as described in section 5, for each example seg-
ment using the associated concept’s name as the
rule conclusion. This is a kind of rote learning.
Of course, we use an appropriate normalised ver-
sion of example segment to produce appropriate
rules based on BioC lemmatisation and BioYaTeA
lemmatisation1. For example, rote learning rules
for the segment harmless stomach bugs tagged
as MBTO:00000297 in trainning data are:
Token{REGEXP("ˆharmless$")}
Token{REGEXP("ˆstomach$")}
Token{REGEXP("ˆbugs$")
-> MARKONCE(MBTO:00001516,1,3)} ;

Lemma{FEATURE("lemma","harmless")}
Lemma{FEATURE("lemma","stomach")}
Lemma{FEATURE("lemma","bug")
-> MARKONCE(MBTO00001516,1,3)} ;

Rule sets filtering

Rule set name Precision Recall F-measure
name: 87.6% 55.1% 67.6%

exact synonym: 94.4% 2.7% 5.3%
related synonym: 71.4% 2.4% 4.6%

rote learning: 75.8% 44% 55.8%
all together: 80.9% 63.4% 71.1%

all together bis: 81.4% 63.4% 71.2%

Table 4: Performances of sets of filtered rules

A detailed analysis shows that our strategy
works well on the majority of concepts, but pro-
duces poor results for some concepts. To over-
come this limitation, we have adopted a strategy
consisting in filtering (deleting) rules that produce
lots of erroneous matches. More precisely, we
have deleted rules that match at least one time and
that conclude on a concept that obtains both a pre-
cision less or equal to 0.66 and a F-measure less or
equal to 0.66. This filtering is computed on train-
ing data. Table 4 shows performances on develop-
ment data obtained by filtered versions of rules of
table 3.

Rule sets combination
Our goal is to maximise the F-measure. F-
measure in table 4 for exact synonym and
related synonym rules is worse than in table 3 be-
cause of the decrease of the recall. But the com-
bination of the four simple rule sets allows to re-
cover some of the lost recall. The significative im-

1The information from BioYaTeA exists only for seg-
ments identified as a term.
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provement of precision finally leads to an overall
improvement of the F-measure (all together in ta-
ble 4). Removing either one of the four sets of
rules that constitute the all together set of rules
from table 4 leads systematically to a decrease of
the F-measure.

Embedded rules removing
We have noticed a phenomenon that decreases pre-
cision and that can be corrected when combining
ontology-based sets of rules with the rote learn-
ing set of rules. To illustrate it, the name of the
concept MBTO:00002027 is plant. Among exam-
ples tagged with this concept, we can find healthy

plants. The name rule set matches on plants

and tags it with MBTO:00002027 (which is a mis-
take), while the rote learning rule set matches on
healthy plants and tags it with MBTO:00002027.
It is possible to correct this problem by a simple
rule that unmarks such embedded rules:
MBTO:00002027{ PARTOFNEQ( MBTO:00002027 )

-> UNMARK( MBTO:00002027 ) } ;

We have generated such a rule systematically for
all the concepts of the ontology to remove a few
mistakes (all together bis set of rules in table 4).

7 Adding Learned rules

Finally, we have completed the all together bis
set of filtered rules with the rules produced by the
WHISK algorithm. The difference between all to-
gether bis + whisk set of rules and the submitted
set of rules is that, by mistake, the last one did not
contain the related synonym rule set.

It is important to mention that all rules may ap-
ply simultaneously. There is also no execution or-
der between them except for rules that remove em-
bedded ones which must be applied at the end of
the rules set but before WHISK rules.

Rule set name Precision Recall F-measure
all together bis: 81.4% 63.4% 71.2%
all[...] + whisk: 79.1% 65% 71.4%

submitted: 79.3% 64.4% 71.1%

Table 5: Performances of final sets of rules on dev
data

Table 5 summarises performances achieved by
our final rule sets. Precision, Recall and F-
measure are computed on the development data
with rules based on the training data.

Table 6 summarises performances on test data
with the evaluator’s measures achieved by our fi-

nal rule sets based on training plus development
data.

Rule set name Precision Recall F1 SER
all together bis: 66.5% 61.4% 63.9% 42.5%

all[...] + WHISK: 61.4% 64.4% 62.9% 46.0%
submitted: 60.8% 60.8% 60.8% 48.7%

IRISA-TexMex (winner): 48% 72% 57% 46%

Table 6: Performances of final sets of rules on test
data

The subtask 1 of the BB BioNLP-ST ranks
competitors using the SER measure that must be
as close as possible to 0. We are quite close to the
winner with a SER of 48.7% against 46%. Our
F-measure (60.8%) is even better than the win-
ner’s F-measure (57%). Without our mistake, we
would have been placed equal first with a far bet-
ter F-measure (62.9%). We can also notice that
the WHISK rule set contribution is negative while
it was not the case on the developement data.

8 Conclusion and perspectives

Given the wealth of the OntoBiotope ontology
provided for subtask 1 of the BB BioNLP-ST, we
have decided to use a method that consists in iden-
tifying Bacteria Habitats using information avail-
able in this ontology. The method we have used is
rule-based and allows the automatic establishment
of a set of rules, written in the TextMarker lan-
guage, that match every ontology element (Habitat
Category) with its exact name, exact synonyms or
related synonyms in the text. As expected, this
method has achieved good results improved by
adding a rote learning technique based on train-
ing examples and filtering techniques that elimi-
nate categories that don’t perform well on the de-
velopment set.

The WHISK algorithm was also used to learn
Bacteria Habitats Categories. It gives a good pre-
cision but a low recall because of the poverty
of training data. Its combination with the ontol-
ogy projection method improves the recall and F-
measure in developement data but not in the final
test data.

The combination of these sources of rules leads
to good results with a SER measure close to the
winner and a best F-measure.

Actually, due to implementation limitations,
WHISK rules are essentially based on the Token
level (inflected form) of the corpus. Improvements
can be made by ameliorating this implementation
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considering the lemmatized form of words, their
postags and also terms extracted by a term extrac-
tor. There is also another way of improvement
that consists in taking into account the is a rela-
tion of the ontology, both on WHISK rule set and
on ontology-based projection rules. Last, a closer
look at false positive and false negative errors can
lead to some improvements.
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Abstract
In this paper, we present the methods
we used to extract bacteria and biotopes
names and then to identify the relation
between those entities while participating
to the BioNLP’13 Bacteria and Biotopes
Shared Task. We used machine-learning
based approaches for this task, namely
a CRF to extract bacteria and biotopes
names and a simple matching algorithm to
predict the relations. We achieved poor re-
sults: an SER of 0.66 in sub-task 1, and a
0.06 F-measure in both sub-tasks 2 and 3.

1 Introduction

The BioNLP’13 Bacteria and Biotopes shared task
aims at extracting bacteria names (bacterial taxa)
and biotopes names (bacteria habitats; geographi-
cal and organization entities). The task comprises
three sub-tasks (Bossy et al., 2012b).

• Sub-task 1 aims at extracting habitat names
and linking those names to the relevant con-
cept from the OntoBiotope ontology.

• Sub-task 2 aims at identifying relations be-
tween bacteria and habitats among two kinds
of relations (localization, part-of) based on
a ground truth corpus of bacteria and habitat
names. The “localization” relation is the link
between a bacterium and the place where it
lives while the “part-of” relation is the rela-
tion between hosts and host parts (bacteria)
(Bossy et al., 2012a).

• Sub-task 3 aims at extracting all bacteria and
biotopes names (including both habitat and
geographical names), and then identifying re-
lations between these concepts.

In this paper, we present the methods we de-
signed as first time participant to the BioNLP Bac-
teria Biotopes Shared Task.

2 Background

Scientific documents provide useful information
in many domains. Because processing those docu-
ments is time-consuming for a human, NLP tech-
niques have been designed to process a huge
amount of documents quickly. The microorgan-
isms ecology domain involves a lot of microorgan-
isms (bacteria, living and dead cells, etc.) and
habitats (food, medical, soil, water, hosts, etc.)
that have been described in details in the literature.
NLP techniques would facilitate the access to in-
formation from scientific texts and make it avail-
able for further studies.

Bacteria and biotopes identification has been
addressed for the first time during the BioNLP
2011 Bacteria Biotopes shared task (Bossy et
al., 2012a; Kim et al., 2011). This task con-
sisted in extracting bacteria location events from
texts among eight categories (Host, HostPart, Ge-
ographical, Environment, Food, Medical, Water
and Soil).

Three teams participated in this task. All sys-
tems followed the same process: in a first stage,
they detected bacteria names, detected and typed
locations; then, they used co-reference to link the
extracted entities; the last stage focused on the
event extraction.

Björne et al. (2012) adapted an SVM-based
Named Entity Recognition system and used the
list of Prokaryotic Names with Standing in
Nomenclature. Nguyen and Tsuruoka (2011) used
a CRF-based system and used the NCBI web page
about the genomic BLAST. Ratkovic et al. (2012)
designed an ad hoc rule-based system based on the
NCBI Taxonomy. The participants obtained poor
results (Table 1) which underlines the complexity
of this task.
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Team R P F
Ratkovic et al. (2012) 0.45 0.45 0.45
Nguyen and Tsuruoka (2011) 0.27 0.42 0.33
Björne et al. (2012) 0.17 0.52 0.26

Table 1: Recall, Precision and F-measure at
BioNLP 2011 Bacteria and Biotopes Shared Task

3 Corpus

3.1 Presentation

The corpus comprises web pages about bacte-
rial species written for non-experts. Each text
consists of a description of individual bacterium
and groups of bacteria, in terms of first observa-
tion, characteristics, evolution and biotopes. Two
corpora have been released including both raw
textual documents and external reference annota-
tions. The training corpus contains 52 textual doc-
uments while the development corpus contains 26
documents. No tokenization has been performed
over the documents. In Table 2, we provide some
statistics on the annotations performed over both
corpora for each type of entity to be annotated
(bacteria, habitat, and geographical).

Corpus Training Development
# Documents 52 26
# Words 16,294 9,534
Avg # words/doc 313.3 366.7
# Bacteria 832 515
# Habitat 934 611
# Geographical 91 77

Table 2: Annotation statistics on both corpora

3.2 Corpus analysis

The bacteria names appear in the texts, either in
their longer form (Xanthomonas axonopodis pv.
citri), in a partial form (Xanthomonas) or in their
abbreviated form (Xac). The abbreviations are
case-sensitives since they follow the original form:
MmmSC is derived from M. mycoides ssp my-
coides SC.1 A few bacteria names can appear in
the text followed by a trigger word: Spirillum bac-
teria, but it will be abbreviated in the remainder of
the text, sometimes with a higher degree of speci-
ficity: S. volutans standing for Spirillum volutans.

1Mycoplasma mycoides subspecies mycoides Small
Colony in its longer form.

4 Methods

This year, the BioNLP organizers encouraged the
participants to use supporting resources in order
to reduce the time-investment in the challenge.
Those resources encompass sentence splitting, to-
kenization, syntactic parsing, and biological anno-
tations. Moreover, a specific ontology has been
released for the Bacteria Biotopes task.

We used some of the resources provided and
combined them with additional resources, in a
machine-learning framework we specifically de-
signed for this task.

4.1 Linguistic resources

4.1.1 The OntoBiotope Ontology
OntoBiotope2 is an ontology tailored for the
biotopes domain. The BioNLP-ST 2013 version
has been released in the OBO format. This ontol-
ogy integrates 1,756 concepts. Each concept has
been given a unique ID and is associated with ex-
act terms and related synonyms. The concept is
also defined in a “is a” relation. The normaliza-
tion of the habitat names in the first sub-task must
be based on this ontology.

For example, the concept microorganism
(unique id MBTO:00001516) is a living organ-
ism which unique id is MBTO:00000297. For this
concept, microbe is an exact synonym while mi-
crobial is a related synonym (see Figure 1).

[Term]
id: MBTO:00001516
name: microorganism
exact synonym: ”microbe” [TyDI:23602]
related synonym: ”microbial” [TyDI:23603]
is a: MBTO:00000297 ! living organism

Figure 1: The concept microorganism in the On-
toBiotope ontology

4.1.2 The NCBI taxonomy
In order to help our system to identify the bacte-
ria names, we built a list of 357,387 bacteria taxa
based on the NCBI taxonomy database3 (Feder-
hen, 2012). This taxonomy describes a small part
(about 10%) of the living species on earth, based
on public sequence databases.

2http://bibliome.jouy.inra.fr/
MEM-OntoBiotope/OntoBiotope_BioNLP-ST13.
obo

3http://www.ncbi.nlm.nih.gov/taxonomy/
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It includes twelve categories of information
from the biological domain (bacteria, inverte-
brates, mammals, phages, plants, primates, ro-
dents, synthetics, unassigned, viruses, vertebrates
and environmental samples).

We extracted from this taxonomy all names be-
longing to the Bacteria category, which represent
24.3% of the content. This output includes a few
variants of bacteria names (see Table 3).

tax id name txt name class
346 Xanthomonas citri (ex

Hasse 1915) Gabriel et al.
1989

authority

346 Xanthomonas citri
scientific
name

346 Xanthomonas axonopodis
pv. citri

synonym

346 Xanthomonas campestris
(pv. citri)

synonym

346 Xanthomonas campestris
pv. Citri (A group)

synonym

Table 3: Bacteria names from the NCBI taxonomy

4.1.3 The Cocoa annotations
Cocoa is a WebAPI annotator tool for biological
text.4 We used the Cocoa annotations provided by
the organizers as part of the supporting resources.
These annotations emphasize 37 pre-defined cate-
gories. We noticed a few categories are often tied
with one of the three kinds of entities we have to
process:

• Bacteria: Cell, Chemical, Mutant Organism,
Organism, Protein, Unknown;

• Habitat: Body part, Cell, Cellu-
lar component, Chemical, Disease, Food,
Geometrical part, Habitat, Location,
Multi-tissue structure, Organism, Organ-
ism subdivision, Pathological formation,
Tissue;

• Geographical: Company, Habitat, Technique,
Unknown.

We believe these categories should be useful to
identify bacteria and biotopes entities in the texts,
and we used them as features in the CRF model
(see column #10 in Table 4).

4Compact cover annotator for biological noun phrases,
http://npjoint.com/annotate.php

4.2 System

4.2.1 Formalisms
Depending on the sub-task to process, we used two
distinct formalisms implemented in the Wapiti tool
(Lavergne et al., 2010) to build our models:

• Conditional Random Fields (CRF) (Lafferty
et al., 2001; Sutton and McCallum, 2006)
to identify bacteria and biotopes names (sub-
tasks 1 and 3).

• Maximum Entropy (MaxEnt) (Guiasu and
Shenitzer, 1985; Berger et al., 1996) to pro-
cess the relationships between entities (sub-
tasks 2 and 3).

4.2.2 Bacteria biotopes features set
We used several sets of features, including “classi-
cal” internal features (columns #4 to #7 in Table 4:
typographic, digit, punctuation, length) and a few
semantic features. In table 4, we present a sam-
ple tabular file produced in order to train the CRF
model.

• Presence of the token in the NCBI taxonomy
(column #9);

• Presence of the token in the OntoBiotope on-
tology (column #8);

• Category of the token based on the Cocoa an-
notations (column #10);

• Unsupervised clusters (column #11) created
using Brown’s algorithm (Brown et al., 1992)
with Liang’s code5 (Liang, 2005).

Taxonomy feature. We noticed that 1,169 to-
kens out of 1,229 (95.1%) tokens we identified in
the NCBI taxonomy in both corpora correspond to
a Bacteria name in the reference (Table 5). This
characteristic should be useful to identify the bac-
teria names.

OntoBiotope feature. Regarding the presence
of the token in the OntoBiotope ontology, we no-
ticed that 1,487 tokens out of 1,906 (78.0%) from
both corpora correspond to a habitat name in the
reference (Table 6). The identification of habitat
names will benefit from this characteristic.

5http://www.cs.berkeley.edu/˜pliang/
software/
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1 2 3 4 5 6 7 8 9 10 11 12
33 8 Borrelia Mm O O 7 O NCBI Organism 11101010 B-Bacteria
42 7 afzelii mm O O 7 O NCBI Organism O I-Bacteria
49 1 . O Punct O 1 O O O 0010 O
51 4 This Mm O O 4 O O O 1001000 O
56 7 species mm O O 7 O O Organism1 100101100 O
64 3 was mm O O 3 O O O 0101000 O
68 8 isolated mm O O 7 O O O 1100100 O
77 4 from mm O O 4 O O O 011110110 O
82 1 a mm O O 1 O O O 1011000 O
84 4 skin mm O O 4 MBTO O Pathological 110111011 B-Habitat

formation
89 6 lesion mm O O 6 MBTO O Pathological 111101100 I-Habitat

formation
96 4 from mm O O 4 O O O 011110110 I-Habitat
101 1 a mm O O 1 O O O 1011000 I-Habitat
103 4 Lyme Mm O O 4 O O Disease 100010 I-Habitat
108 7 disease mm O O 7 O O Disease 110111101 I-Habitat
116 7 patient mm O O 7 MBTO O Organism2 1100110 I-Habitat
124 2 in mm O O 2 O O O 0111100 O
127 6 Europe Mm O O 6 MBTO O Habitat 111101101 B-Geographical
134 2 in mm O O 2 O O O 0111100 O
137 4 1993 O O Digit 4 O O O 111101101 O
141 1 . O Punct O 1 O O O 0010 O

Table 4: Tabular used for training the CRF model. Column 1: character offset; 2: length in characters;
3: token; 4: typographic features; 5: presence of punctuation; 6: presence of digit; 7: length in characters
(with a generic ’7’ category for length higher than seven characters); 8: presence of the token in the
OntoBiotope ontology; 9: presence of the token in the NCBI taxonomy; 10: category of the token from
the Cocoa annotations; 11: cluster identifier; 12: expected answer

Reference annotation
Token in the NCBI
Present Absent

Bacteria 1,169 1,543
Geographical 0 276
Habitat 2 2,466
O (out of annotation) 58 25,060

Table 5: Correspondence between the reference
annotation and the token based on the presence of
the token in the NCBI taxonomy

4.2.3 Normalization with OntoBiotope

Habitat names normalization consisted in linking
the habitat names to the relevant concept in the
OntoBiotope ontology using an exact match of the
phrase to be normalized. This exact match is based
on both singular and plural forms of the phrase
to normalize, using a home-made function that in-
cludes regular and irregular plural forms. Never-
theless, we did not manage discontinuous entities.

Reference annotation
Token in OntoBiotope
Present Absent

Bacteria 1 2,711
Geographical 156 120
Habitat 1,487 981
O (out of annotation) 262 24,856

Table 6: Correspondence between the reference
annotation and the token based on the presence of
the token in the OntoBiotope ontology

4.2.4 Relationships approaches
Relationships features set. Our MaxEnt model
only relies on the kind of entities that can be linked
together:

• Bacterium and Localization (Habitat) for a
“localization” relation,

• Host and Part for a “PartOf” relation (be-
tween two entities being of the same type).
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For example, Bifidobacterium is a bacteria
name, human and human gastrointestinal tract are
two habitats (localizations). A “localization” re-
lation can occur between Bifidobacterium and hu-
man while a “PartOf” relation occurs between hu-
man and human gastrointestinal tract.

Basic approach. For the official submission, we
did not use this model because of the following
remaining problems: (i) a few relations we pro-
duced were not limited to the habitat category but
also involved the geographical category, (ii) we
did not manage the relations we produced in du-
plicate, and (iii) the weight our CRF system gave
to each relation was not relevant enough to be used
(for a relation involving A with B, C, and D, the
same weight was given in each relation).

All of those problems led us to process the re-
lations between entities using a too much simple
approach: we only considered if the relation be-
tween two entities from the test exists in the train-
ing corpus. This approach is not robust as it does
not consider unknown relations.

5 Results and Discussion

5.1 Identification of bacteria and biotopes

In this subsection, we present the results we
achieved on the development corpus (Table 2) to
identify bacteria and biotopes names without link-
ing those names to the concept in the OntoBiotope
ontology. We built the model on the training cor-
pus and applied it on the development corpus. The
evaluation has been done using the conlleval.pl
script6 (Tjong Kim Sang and Buchholz, 2000)
that has been created to evaluate the results in the
CoNLL-2000 Shared Task. We chose this script
because it takes as input a tabular file which is
commonly used in the machine-learning process.
Nevertheless, the script does not take into account
the offsets to evaluate the annotations, which is
the official way to evaluate the results. We give
in Table 7 the results we achieved. Those re-
sults show our system succeed to correctly iden-
tify the bacteria and biotopes names. Neverthe-
less, the biotopes names are more difficult to pro-
cess than the bacteria names. Similarly, Kolluru
et al. (2011) achieved better results on the bacteria
category rather than on the habitat, confirming this
last category is more difficult to process.

6http://www.clips.ua.ac.be/conll2000/
chunking/

Category R P F
Bacteria 0.8794 0.9397 0.9085
Geographical 0.6533 0.7903 0.7153
Habitat 0.6951 0.8102 0.7482
Overall 0.7771 0.8715 0.8216

Table 7: Results on the bacteria biotopes identifi-
cation (development corpus)

There is still room for improvement, especially
in order to improve the recall in each category. We
plan to define some post-treatments so as to iden-
tify new entities and thus, increase the recall in
those three categories.

5.2 Official results

SER
Sub-task 1 0.66 4th/4

R P F
Sub-task 2 0.04 0.19 0.06 4th/4
Sub-task 3 0.04 0.12 0.06 2nd/2

Table 8: Official results and rank for LIMSI

5.2.1 Habitat entities normalization
General results. The first sub-task is evaluated
using the Slot Error Rate (Makhoul et al., 1999),
based on the exact boundaries of the entity to be
detected and the semantic similarity of the concept
from the ontology between reference and hypothe-
sis (Bossy et al., 2012b). This semantic similarity
is based on the “is a” relation between two con-
cepts.

We achieved a 0.66 SER which places us 4th
out of four participants. Other participants ob-
tained SERs ranging from 0.46 to 0.49. Our sys-
tem achieved high precision (0.62) but low recall
(0.35). It produced two false positives and 144
false negatives. Out of 283 predicted habitats,
175.34 are correct. There was also a high number
of substitutions (187.66).

Correct entity, incorrect categorization. On
the entity boundaries evaluation, our system SER
(0.45) was similar to that of the other participants
(from 0.46 to 0.42). We achieved a 1.00 preci-
sion, a 0.56 recall and a 0.71 F-measure (the best
from all participants). Those results are consistent
with those we achieved on the development cor-
pus (Table 7) and confirm the benefit of using a
CRF-based system for entity detection.
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While we correctly identified the habitat enti-
ties, the ontology categorization proved difficult:
we achieved an SER of 0.62 while other partic-
ipants obtained SERs ranging from 0.38 to 0.35.
For this task, we relied on exact match for map-
ping the concept to be categorized and the con-
cepts from the ontology, including both singular
and plural forms match. When no match was
found, because the categorization was mandatory,
we provided a default identifier—the first identi-
fier from the ontology—which is rarely correct.7

5.2.2 Relationships between entities

General results. The relation sub-task is evalu-
ated in terms of recall and precision for the pre-
dicted relations. On both second and third sub-
tasks, due to our too basic approach, we only
achieved a 0.06 F-measure. Obviously, because
considering only existing relations is not a robust
approach, the recall is very low (R=0.04). The
precision is not as high as we expected (P=0.19),
which indicates that if a relation exists in the train-
ing corpus for two entities, this relation does not
necessarily occur within the test for the two same
entities (two entities can occur in the same text
without any relation to be find between them). On
the second sub-task, other participants obtained
F-measures ranging from 0.42 to 0.27, while on
the third sub-task, the other participants obtained
a 0.14 F-measure, which underlines the difficulty
of the relation task.

Out of the two types of relation to be found,
this simple approach yielded better results for the
Localization relation (F=0.07) than for the PartOf
relation (F=0.02). While our results are probably
too bad to yield a definite conclusion, the results
of other participant also reflect a difference in per-
formance for relation Localization and PartOf.

Improvements. After fixing the technical prob-
lems we encountered, we plan to test other algo-
rithms such as SVM, which may be more adapted
for this kind of task.

6 Additional experiments

After the official submission, we carried out addi-
tional experiments.

7We gave the MBTO:00000001 identifier which is the id
for the concept “gaz seep”.

6.1 Habitat entities normalization
6.1.1 Beyond exact match
The improvements we made on the habitat enti-
ties normalization are only based on the mapping
between the predicted concept and the ontology.
In our official submission, we only used an exact
match. We tried to produce a more flexible map-
ping in several ways.

First, we tried to normalize the mention gather-
ing all words from the mention into a single word.
Indeed, the concept “rain forest” is not found in
the ontology while the concept “rainforest” in one
word exists.

Second, we split the mention into single words
and tried matching based on the features listed be-
low, in order to manage the subsumption of con-
cepts.

• all words except the first one: “savannah”
instead of “brazilian savannah”,

• all words except the last one: “glossina” in-
stead of “glossina brevipalpis”,

• the last three words (we did not find example
in the corpus),

• the first three words: “sugar cane fields” in-
stead of “sugar cane fields freshly planted
with healthy plants”,

• the last two words: “tsetse fly” instead of
“blood-sucking tsetse fly”,

• and the first two words: “tuberculoid gran-
ulomas” instead of “tuberculoid granulomas
with caseous lesions”.

If two parts of a mention can be mapped to two
concepts in the ontology, we added both concepts
in the output.

We also extended the coverage of the ontology
using the reference normalization from both train-
ing and development corpora, adding 316 entries
in the ontology. Those new concepts can be con-
sidered either as synonyms or as hyponyms:

• synonyms: “root zone” is a synonym of “rhi-
zosphere”. While only the second one occurs
in the ontology, we added the first concept
with the identifier from the second concept;

• hyponyms: “bacteriologist” and “entomol-
ogist” are both hyponyms of “researcher”.
We gave the hypernym identifier to the hy-
ponym concepts.
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At last, if no concept was found in the ontology,
instead of using the identifier of the first concept
in the ontology, we gave as a default identifier the
one of the more frequent concept in the corpora.8

This strategy improves system performance.

6.1.2 Results
The improvements we made allowed us to
achieved better results on the test corpus (table 9).
While on the official submission we achieved a
0.66 Slot Error Rate, we obtained a 0.53 SER
thanks to the improvements we made. This new
result does not lead us to obtain a better rank, but it
is closer to the ones the other participants achieved
(from 0.49 to 0.46).

Category
Official Additional

Evaluation Experiments
Substitution 187.66 121.99
Insertion 2 2
Deletion 144 144
Matches 175.34 241.01
Predicted 283 283
SER 0.66 0.53
Recall 0.35 0.48
Precision 0.62 0.85
F-measure 0.44 0.61

Table 9: Results on sub-task 1 on both the official
submission and the additional experiments

These improvements led us to obtain better re-
call, precision and F-measure. While our re-
call is still the lowest of all participants (0.48 vs.
[0.60;0.72]), our precision is the highest (0.85 vs.
[0.48;0.61]) and our F-measure is equal to the
highest one (0.61 vs. [0.57;0.61]).

6.2 Relationships between entities

6.2.1 Processing
On the relationships, as a first step, we fixed
the problems that prevented us to use the Max-
Ent model during the submission stage: (i) we
produced correct files for the algorithm, remov-
ing the geographical entities from our processing
accordingly with the guidelines, (ii) when deal-
ing with all possible combinations of entities that
can be linked together, we managed the relations
so as not to produce those relations in duplicate,

8The concept “human” with identifier MBTO:00001402
is the more frequent concept in all corpora while the concept
“gaz seep” with identifier MBTO:00000001 was never used.

and (iii) we better managed the confidence score
given by the CRF on each relation.

6.2.2 Results

We produced new models on the training corpus
based on the following features: entities to be
linked, category of each entity, and whether a re-
lation between those entities exists in the training
corpus. We performed two evaluations of those
models: (i) on the development corpus, using the
official evaluation script, and (ii) on the test cor-
pus via the evaluation server.9 As presented in
Table 10, we achieved worse results (F=0.02 and
F=0.03) than our official submission (F=0.06) on
the test corpus.

#
Sub-task 2 Sub-task 3
Dev Test Test

1
R 0.18 0.11 0.06
P 0.49 0.01 0.01
F 0.26 0.02 0.01

2
R 0.58 0.02 0.02
P 0.77 0.16 0.33
F 0.66 0.03 0.04

Table 10: Results on sub-tasks 2 and 3 based on
the additional experiments (#1 and #2)

We also noticed that we achieved very poor re-
sults on the test corpus while the evaluation on the
development corpus provided promising results,
with a F-measure decreasing from 0.26 to 0.02 on
the first experiment, and from 0.66 to 0.04 on the
second one. The difference between the results
from both development and test corpora is hard to
understand. We have to perform additional anal-
yses on the outputs we produced to identify the
problem that occurred.

Moreover, we plan to use more contextual fea-
tures (specific words that indicate the relation, dis-
tance between two entities, presence of relative
pronouns, etc.) to improve the model. Indeed, in
relations between concepts, not only the concepts
must be studied but also the context in which they
occur as well as the linguistic features used in the
neighborhood of those concepts.

9The reference annotations from the test corpus will not
be released to the participants. Instead of those relations, an
evaluation server has been opened after the official evaluation
took place.
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7 Conclusion

In this paper, we presented the methods we used
as first time participant to the BioNLP Bacteria
Biotopes Shared Task.

To detect bacteria and biotopes names, we used
a machine-learning approach based on CRFs. We
used several resources to build the model, among
them the NCBI taxonomy, the OntoBiotope on-
tology, the Cocoa annotations, and unsupervised
clusters created through Brown’s algorithm. The
normalization of the habitat names with the con-
cepts in the OntoBiotope ontology was performed
with a Perl script based on exact match of the en-
tity to be found, taking into account its plural form.
On this sub-task, we achieved a 0.66 Slot Error
Rate.

In order to process the relationships between en-
tities, our MaxEnt model was not ready for the of-
ficial submission. The simple approach we used
relies on the identification of the relation between
entities only if the relation exists in the training
corpus. This simple approach is not robust enough
to correctly process new data. On the relation sub-
tasks, due to the approach we used, we achieved a
0.06 F-measure.

On the first sub-task, we enhanced our habitat
entities normalization process, which led us to im-
prove our Slot Error Rate from 0.66 (official sub-
mission) to 0.53 (additional experiments).

On the relation detection, first, we plan to make
new tests with more features, including contextual
features. Second, we plan to test new algorithms,
such as SVM which seems to be relevant to pro-
cess relationships between entities.
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Abstract 

The goal of the Genic Regulation Network task 
(GRN) is to extract a regulation network that 
links and integrates a variety of molecular 
interactions between genes and proteins of the 
well-studied model bacterium Bacillus subtilis. It 
is an extension of the BI task of BioNLP-ST’11. 
The corpus is composed of sentences selected 
from publicly available PubMed scientific 
abstracts. The paper details the corpus 
specifications, the evaluation metrics, and it 
summarizes and discusses the participant results. 

1 Introduction  

The Genic Regulation Network (GRN) task 
consists of (1) extracting information on 
molecular interactions between genes and 
proteins that are described in scientific literature, 
and (2) using this information to reconstruct a 
regulation network between molecular partners 
in a formal way. Several other types of biological 
networks can be defined at the molecular level, 
such as metabolisms, gene expressions, protein-
protein interactions or signaling pathways.  All 
these networks are closely interconnected. For 
example, a gene codes for a protein that catalyzes 
the transformation of small molecules 
(metabolites), while the expression of the gene 
and its related regulation is controlled by other 
proteins. 
The concept of biological networks is not new. 
However, the development of new methods in 
molecular biology in the past twenty years has 
made them accessible at the level of an organism 
as a whole. These new methods allow for the 
design of large-scale experimental approaches 
with high throughput rates of data. They are then 
used to build static and dynamic models that 
represent the behavior of a cell in the field of 
Systems Biology (Kitano, 2002; de Jong, 2002). 
In this context, there has recently been a 

considerable focus on “biological network 
inference”, that is to say the process of making 
inferences and predictions about these networks 
(D'haeseleer, et al., 2000). Therefore, it is 
expected that Information Extraction (IE) from 
scientific literature may play an important role in 
the domain, contributing to the construction of 
networks (Blaschke et al., 1999). IE also plays a 
role in the design and the validation of large-
scale experiments, on the basis of detailed 
knowledge that has already been published. 

2 Context 

Extracting molecular interactions from scientific 
literature is one of the most popular tasks in IE 
challenges applied to biology. The GRN task 
adds a supplementary level that is closer to the 
biological needs: the participant systems have to 
extract a regulation network from the text that 
links and integrates basic molecular interactions.  
The GRN task is based on a series of previous 
challenges in IE that started with the LLL 
challenge in 2005 (Nédellec, 2005). The LLL 
corpus is a set of sentences of PubMed abstracts 
about molecular interactions of the model 
bacterium Bacillus subtilis. Originally, the LLL 
task defined a unique binary genic interaction 
relation between proteins and genes. Since then, 
it has evolved to include the description of 
interaction events in a fine-grained representation 
that includes the distinction between 
transcription, different types of regulations and 
binding events, as proposed by (Manine et al., 
2009). This new schema better captures the 
complexity of regulations at the molecular level. 
Entities other than genes and proteins were 
introduced, such as DNA sites (e.g. transcription 
promoter sites, transcriptional regulator binding 
sites). We proposed the Genic Interaction task 
(Bossy et al., 2012) in the BioNLP’11 Shared 
Task with a full re-annotation of the LLL corpus 
that follows this schema. The GRN task in 
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BioNLP-ST’13 builds on this corpus and 
includes annotation improvements and 
extensions that are detailed below. 

3 Task description 

The BioNLP-ST 2013 GRN task consists of the 
automatic construction of the regulation network 
that can be derived from a set of sentences. As 
usual in relation extraction tasks, the GRN 
corpus includes text-bound annotations. 
However the extraction target is the network, 
which is a structure with a higher level of 
abstraction. GRN thus also provides an explicit 
procedure to derive a network from a set of text-
bound annotations. 
The GRN annotation is stacked in four 
successive levels of annotation: 

1. Text-bound entities represent genes, 
proteins and aggregates (families, 
complexes). Some entities directly relate to a 
gene and are given a unique gene identifier 
corresponding to a node of the network. 
These entities are hereby called genic named 
entities. 

2. Biochemical events and relations are 
molecular-level events (e.g. transcription, 
binding) and detailed knowledge on 
relationships between entities (e.g. promoter 
of gene, regulon membership). 

3. Interactions denote relations between 
entities and events and relations. Interactions 
are the first abstract annotations; they are the 
key to the construction of the network arcs. 

4. Finally, the Genic Regulation Network is 
derived from the Interactions and from the 
identifiers of the named genic entities. 

 
GerE is a DNA-binding protein that adheres  
 
 
to the promoter of cotB and cotC 
 
 

 

Figure 1. Example of annotated sentence.  

Levels 1, 2 and 3 were obtained by a manual 
annotation of the GRN corpus sentences by a 
domain expert. Level 4 was automatically 
computed from the lower level annotations. The 
training corpus was provided to the participants 
with level 1, 2 and 3 annotations. The algorithm 

to compute the next level was described and 
implemented as a script and made available to 
the participants during the training stage of the 
challenge. 
The test corpus was provided with only  level 1 
annotations (entities). The participants submitted 
their prediction either as a set of Interactions 
(level 3) or directly as a network (level 4). This 
setting allows the participants to train systems 
that work at different levels of abstraction. 
Submissions in the form of Interactions are 
translated into a Genic Regulation Network using 
the algorithm provided during the training stage. 
The evaluation of each submission is carried out 
by comparing the predicted network with the 
reference network. The reference network is 
itself computed from the gold level 1, 2 and 3 
annotations of the test sentences. 
The following subsections describe the four 
annotation levels. The full annotation schema 
that specifies the constraints on event and 
relation arguments can be found on the task web 
page1. 

3.1 Text-bound entity types 

Text-bound entities come in three kinds: event 
trigger words, genic entities and entity 
aggregates. Trigger words are of type Action, 
they serve as anchors for events. 
Genic entities represent mentions of biochemical 
objects of the bacteria cell. Genic entity types 
include Gene, mRNA, Promoter, Protein and Site. 
Finally aggregates denote composite objects of 
the bacteria cell. Aggregate types are: 

- GeneFamily: homologous gene families. 
- Operon: operons sensu prokaryotes. 
- PolymeraseComplex: RNA polymerase 

complexes, either the core complex alone, 
or bound to a sigma factor. 

- ProteinComplex: protein complexes formed 
by several proteins that bind together. 

- ProteinFamily: homologous protein families. 
- Regulon: regulons, sensu prokaryotes. 

3.2 Biochemical events and relation types 

Biochemical events and relations represent the 
knowledge of cellular mechanisms at the 
molecular level. There are three types of events: 

- Transcription_by represents the 
transcription event by a specific RNA 

                                                        
1 https://sites.google.com/site/bionlpst2013/tasks/gene

-regulation-network 

Master of  
Promoter 

Interaction 

Promoter of 
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polymerase. Its agent is usually a 
PolymeraseComplex. 

- Transcription_from represents the 
transcription from a specific site or 
promoter. 

- Action_Target is a generic bio-molecular 
event. 

The relation types represent three major genetic 
regulation patterns in bacteria: promoter 
activation, regulons and binding to specific DNA 
sites. Two types of relations specifically denote 
mechanisms that involve promoters: 

- Promoter_of is a relation between a gene (or 
operon) and its promoter. 

- Master_of_Promoter relation represents the 
control of the transcription from a specific 
promoter by a proteic entity (Protein, 
ProteinComplex or ProteinFamily). 

Two other relation types represent the function 
of regulons: 

- Member_of_Regulon relation denotes the 
membership of a genic entity to a regulon. 

- Master_of_Regulon relation represents the 
control of the activity of an entire regulon 
by a protein. 

Finally two types are used to represent relations 
that are common to different regulation 
mechanisms: 

- Bind_to relation represents the binding of a 
proteic entity to a site on the chromosome. 

- Site_of relation denotes the belonging of a 
chromosomal site to a genic entity such as a 
gene or a promoter. 

3.3 Interaction types 

Interaction relations are labeled with one of six 
types grouped into a small hierarchy following 
two axes: mechanism and effect. The hierarchical 
levels are figured here by the text indentations. 

Regulation 

Binding 

Transcription 

Activation 

Requirement 

Inhibition 

Figure 2. Types of Interaction relations 

The Binding and Transcription types specify the 
mechanism through which the agent regulates the 
target. In a Binding Interaction, the agent binds 
to the target; this includes Protein-DNA binding 
and excludes Protein-Protein binding 
mechanisms. In a Transcription Interaction, the 
agent affects the transcription of the target. 
The Activation, Requirement and Inhibition types 
specify the effect of the agent on the target. In an 
Activation Interaction, the agent increases the 
expression of the target. In a Requirement 
Interaction, the agent is necessary for the 
expression of the target. In an Inhibition 
Interaction, the agent reduces the expression of 
the target. 
The Regulation type is the default type: in such 
interactions, neither the mechanism nor the effect 
is specified. 

3.4 Genic Regulation Network inference 
algorithm 

The genic regulation network corresponding to a 
corpus is inferred from the set of Interaction 
relations. The network presents itself as a 
directed labeled graph where nodes represent 
gene identifiers and edges represent gene 
interactions. The inference is done in two steps: 
the resolution of Interaction relations and the 
removal of redundant arcs. 

Step 1: Resolution of Interaction relations 
The agent and the target of an Interaction 
relation are not necessarily genic named entities. 
They can be secondary events or relations, 
another Interaction, or auxiliary entities (e.g. 
Promoter). The resolution of an Interaction aims 
to look for the genic named entity in order to 
infer the node concerned by the network edge. 
The resolution of Interaction arguments is 
performed using the rules specified below. These 
rules express well-known molecular mechanisms 
in a logical manner: 

1. If the agent (or target) is a genic named entity, 
then the agent (or target) node is the gene 
identifier of the entity. If the entity does not 
have a gene identifier, then it is not a genic 
named entity and there is no node (and thus 
no edge). 

2. If the agent (or target) is an event, then the 
agent (or target) node is the entity referenced 
by the event. 

3. If the agent (or target) is a relation, then the 
agent (or target) of both arguments of the 
relation are nodes. 

Mechanism 

Effect 
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4. If the target is a Promoter and this promoter 
is the argument of a Promoter_of relation, 
then the target node is the other argument of 
the Promoter_of relation. i.e. if A interacts 
with P, and P is a promoter of B, then A 
interacts with B. 

5. If the agent is a Promoter and this promoter is 
the argument of a Master_of_Promoter 
relation, the agent is the other argument of the 
Master_of_Promoter relation. i.e. if A is the 
master of promoter P, and P interacts with B, 
then A interacts with B. 

The resolution of Interaction arguments consists 
of a traversal of the graph of annotations where 
these rules are applied iteratively. Event and 
relation arguments are walked through. Promoter 
entities are handled according to rules 4 and 5. 
If the resolution of the agent or the target yields 
more than one node, then the Interaction resolves 
to as many edges as the Cartesian product of the 
resolved nodes. For instance, if both the agent 
and the target resolve to two nodes, the 
Interaction relation resolves into four edges. 
Edges are labeled with the same set of types as 
the Interactions. Each edge inherits the type of 
the Interaction relation from which it has been 
inferred. 

Step 2: Removal of redundant arcs 
In this step, edges with the same agent, target 
and type are simplified into a single edge. This 
means that if the same Interaction is annotated 
several times in the corpus, then it will resolve 
into a single edge. This means that the prediction 
of only one of the interactions in the corpus is 
enough to reconstruct the edge. 
Moreover, Interaction types are ordered 
according to the hierarchy defined in the 
preceding section. Since the sentences are 
extracted from PubMed abstracts published 
during different periods, they may mention the 
same Interaction with different levels of detail, 
depending on the current state of knowledge. For 
a given edge, if there is another edge for the 
same node pair with a more specialized type, 
then it is removed. For instance, the edges (A, 
Regulation, B) and (A, Transcription, B) are 
simplified into (A, Transcription, B). Indeed the 
former edge conveys no additional information 
in comparison with the latter.  

4 Corpus description 

The GRN corpus is a set of 201 sentences 
selected from PubMed abstracts, which are 

mainly about the sporulation phenomenon in 
Bacillus subtilis. This corpus is an extended 
version of the LLL and BI (BioNLP-ST’11) 
corpora. The additional sentences ensure a better 
coverage of the description of the sporulation. 
An expert of this phenomenon examined the 
regulation network derived from the annotation 
of the original sentences, and then manually 
listed the important interactions that were 
missing. We selected sentences from PubMed 
abstracts that contain occurrences of the missing 
pairs of genes. In this way, the genic interaction 
network is more complete with respect to the 
sporulation. Moreover, the publications from 
which the sentences are extracted cover a wider 
period, from 1996 to 2012. They represent a 
diverse range of writing styles and experimental 
methods. 42 sentences have been added, but 4 
sentences were removed from the BI sentences 
because they described genic interactions in 
bacteria other than Bacillus subtilis. The 
distribution of the sentences among the training, 
development and test sets has been done in the 
following way: 

- Legacy sentences belong to the same set as 
in previous evaluation campaigns (LLL and 
BI). 

- Additional sentences have been randomly 
distributed to training, development and test 
sets. The random sampling has been 
constrained so that the proportion of 
different types of interactions is as much as 
possible the same as in the three sets. 

The GRN task does not include the automatic 
selection by the participant methods of the 
relevant sentences, which are provided. With 
regards to a real-world application, this selection 
step can be achieved with good performance by 
sentence filtering, as demonstrated by Nédellec 
et al. (2001), by using a Naive Bayesian 
classifier. Moreover, the corpus contains 
sentences with no interaction. 
Tables 1 to 3 detail the distribution of the entities, 
relations and events in the corpus. They are 
balanced between the training and test sets: the 
test represents between a quarter and a third of 
the annotations. Table 1 details the entity 
frequency and their distributions by type. 
Column 5 contains the contribution of each 
entity type to the total. Genes and proteins 
represent two thirds of the entities, since they are 
the main actors in genic interactions. It is worth 
noting that the high number of promoters and 
polymerase complexes is specific to bacteria 
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where the biological mechanisms are detailed at 
a molecular level. 
 

Entity # Train+Dev Test 

Gene 199 70% 30% 

GeneFamily 2 50% 50% 

mRNA 1 100%  0% 

Operon 33 67% 33% 

PolymeraseComplex 62 71% 29% 

Promoter 63 73% 27% 

Protein 486 65% 35% 

ProteinComplex 7 100%  0% 

ProteinFamily 18 78% 22% 

Regulon 14 79% 21% 

Site 32 78% 22% 

Total 917 68% 32% 

Table 1. Entity distribution in the GRN corpus. 

Table 2 details the distribution of the 
biochemical events and relations (level 2). The 
most frequent event is Action Target. Action 
Target links, for instance, Transcription by and 
Transcription from events to the target gene. 
 

Event/Relation # Train+dev Test 

Action target 226 68% 32% 

Bind to 9 78% 22% 

Master of Promoter 60 80% 20% 

Master of Regulon 13 85% 15% 

Member of Regulon 12 92% 8% 

Promoter of 47 72% 28% 

Site of 24 75% 25% 

Transcription by 86 71% 29% 

Transcription from 18 78% 22% 

Total 495 72% 28% 

Table 2. Distribution of the biochemical events 
and relations in the GRN corpus. 

Finally, Table 3 details the distribution of the 
Interaction relations (level 3). The distribution 

among Interaction relations is more uniform than 
among entities and molecular events. The 
frequency of the Transcription relation is much 
higher than Binding, which is not surprising 
since transcription is the major mechanism of 
regulation in bacteria, while binding is rare. 
Conversely, the relative frequency of relations 
among Effect types of relations is balanced. 
 
Interaction  # Train+dev Test 

Regulation 80 65% 35% 

Inhibition 50 66% 34% 

Activation 49 67% 33% 

Requirement 35 66% 34% 

Binding 12 75% 25% 

Transcription 108 74% 26% 

Total 334 69% 31% 

Table 3. Distribution of the Interaction relations 
in the GRN corpus. 

5 Annotation methodology 

A senior biologist, who is a specialist of Bacillus 
subtilis and a bioinformatician, a specialist of 
semantic annotation, defined the annotation 
schema. The biologist annotated the whole 
corpus, using the BI annotations as a starting 
point. The bioinformatician carefully checked 
each annotation. They both used the AlvisAE 
Annotation Editor (Papazian et al., 2012) that 
supported their productivity due to its intuitive 
visualization of dense semantic annotations. 
Subtiwiki provided the identifiers of genes and 
proteins (Flórez et al., 2009). Subtiwiki is a 
community effort that has become the reference 
resource for the gene nomenclature 
normalization of Bacillus subtilis. Other genic 
named entities, like operons, families or protein 
complexes, were given an identifier similar to 
their surface form. Several annotation iterations 
and regular cross-validations allowed the 
annotators to refine and normalize these 
identifiers. 
The consistency of the annotations was checked 
by applying the rules of the network inference 
procedure that revealed contradictions or 
dangling events. The biologist double-checked 
the inferred network against his deep expertise of 
sporulation in Bacillus subtilis. 
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6 Evaluation procedure 

6.1 Campaign organization 

The same rules and schedule were applied to 
GRN as the other BioNLP-ST tasks. The training 
and development data were provided eleven 
weeks before the test set. The submissions were 
gathered through an on-line service, which was 
active for ten days. We took into account the 
final run of each participant to compute the 
official scores. They were published on the 
BioNLP-ST web site together with the detailed 
scores. 

6.2 Evaluation metrics 

The predictions of the participating teams were 
evaluated by comparing the reference network to 
the predicted network that was either submitted 
directly, or derived from the predicted 
Interactions. Since the genic named entity 
annotations are provided with their identifier, the 
network nodes are fixed. Therefore, the 
evaluation consists of comparing the edges of the 
two networks. Their discrepancy is measured 
using the Slot Error Rate (SER) defined by 
(Makhoul et al., 1999) as: 

SER = (S + D + I) / N 

where: 
- S is the number of substitutions (i.e. edges 

predicted with the wrong type) 
- D is the number of deletions (false negatives) 
- I is the number of insertions (false positives) 
- N is the number of arcs in the reference 

network. 

The SER has the advantage over F1, namely it 
uses an explicit characterization of the 
substitutions. (Makhoul et al., 1999) 
demonstrates that the implicit comprehension of 
substitutions in both recall and precision scores 
leads to the underestimation of deletions and 
insertions in the F score. However, we compute 
the Recall, Precision and F1 in order to make the 
interpretation of results easier: 

Recall = M / N 
Precision = M / P 

where: 

- M is the number of matches (true positives). 
- P is the number of edges in the predicted 

network. 

Matches, substitutions, deletions and insertions 
are counted for each pair of nodes. The genic 
regulation network is an oriented graph, thus the 

node pairs (A,B) and (B,A) are handled 
independently. For a given node pair (A,B), the 
number of exact matches (M) is the number of 
edges with the same type in the prediction as in 
the reference. The number of substitutions, 
deletions and insertions depends on the number 
of remaining edges. We name q and r, the 
number of remaining edges between two nodes A 
and B in the prediction and the reference 
respectively: 

- S = min(q, r) 
- if q > r, then I = q – r, D = 0 
- if q < r, then I = 0, D = r – q 

In other words, edges from the prediction and the 
reference are paired, first by counting matches, 
then by maximizing substitutions. The remaining 
edges are counted either as insertions or deletions 
depending if the extra edges are in the prediction 
or reference, respectively. 
The values of S, D, I and M for the whole 
network are the sum of S, D, I and M on all the 
node pairs. 

7 Results 

7.1 Participating systems 

Five systems participated in GRN: 
- University of Ljubljana (Slovenia) (Žitnik et 

al., 2013),  
- K.U.Leuven (Belgium) (Provoost and 

Moens, 2013),  
- IRISA-TexMex (INRIA, France) (Claveau, 

2013), 
- EVEX (U. of Turku / TUCS, Finland and 

VIB / U. of Ghent, Belgium) (Hakala et al., 
2013),  

- TEES-2.1 (TUCS, Finland) (Björne and 
Salakoski, 2013). 

 

Participant SER Recall Precision 

U. of Ljubljana  0.73 34% 68% 

K.U.Leuven  0.83 23% 50% 

TEES-2.1  0.86 23% 54% 

IRISA-TexMex  0.91 41% 40% 

EVEX  0.92 13% 44% 

Table 4. Final evaluation of the GRN task. 
Teams are ranked by SER. S: Substitutions, D: 

Deletions, I: Insertions, M: Matches. 
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Table 4 summarizes the scores by decreasing 
order. The scores are distributed between the best 
SER, 0.73 achieved by the University of 
Ljubljana, 20 points more than the lowest at 0.92. 
For all systems, the number of insertions is much 
lower than the number of deletions, except for 
IRISA-TexMex. 
The substitutions correspond to the edges that 
were predicted with the wrong type. In order to 
reveal the quality of the predictions with regards 
to the edge types, we calculated two alternate 
SERs. The results are displayed in Table 5.The 
SER Network Shape is obtained by erasing the 
type of all of the edges in the reference and 
predicted networks, as if all edges were of the 
Regulation type. The SER Network Shape 
measures the capacity of the systems to 
reconstruct the unlabeled shape of the regulation 
network. The SER Effect is obtained by erasing 
the mechanism types of all edges only, as if 
Binding and Transcription edges were of type 
Regulation. The Effect edges are kept unchanged. 
The SER Effect measures the quality of the 
predictions for valued networks that only contain 
Effect edges. 
 

Participant SER SER Shape SER Effect 

U. of Ljubljana 0.73 0.60 0.74 

K.U. Leuven 0.83 0.64 0.83 

TEES-2.1 0.86 0.74 0.84 

IRISA-TexMex 0.91 0.51 0.87 

EVEX 0.92 0.79 0.91 

Table 5. Scores obtained by erasing edge types 
(Network Shape) or mechanism types (Effect). 

The SER Network Shape is significantly better 
for all systems, but the impact is dramatic for 
IRISA-TexMex and K.U. Leuven, showing that 
the typing of relations may be the major source 
of error. The SER Effect does not differ 
significantly from the original score. We deduce 
from the comparison of the three scores that the 
types that are the hardest to discriminate are 
effect types. This result is interesting because 
Effect labels are in fact the most valuable for 
systems biology and network inference studies. 
U. of Ljubljana and TEES-2.1 submissions 
contained level 2 and 3 predictions (interactions 
and biochemical events). IRISA provided only 

predictions at level 3 (interactions only). K.U. 
Leuven and EVEX directly submitted a network. 
The performance of the systems that use 
annotations of level 2 confirms our hypothesis 
that a significant part of the interactions can be 
deduced from low-level events. 

7.2     Systems description and result analysis 

All systems applied machine-learning algorithms 
with linguistic features that were stems or 
lemmas, POS-tags and parses, most of them 
being provided by the BioNLP supporting 
resources. With the exception of K.U. Leuven, 
all systems used dependency paths between 
candidate arguments. However different ML 
algorithms were used, as shown in Table 6. 
 

Participant ML algorithm 

U. Ljubljana Linear-chain CRF 

K.U.Leuven SVM (Gaussian RBF) 

TEES-2.1 SVMmulticlass (linear) 

IRISA-TexMex kNN (language model) 

EVEX SVM (TEES-2.1) 

Table 6. ML algorithms used by the participants. 

Beyond syntactic parses and ML algorithms, the 
participant systems combined many different 
sources of information and processing, so that no 
definitive conclusion on the respective potential 
of the methods can be drawn here. 

8 Conclusion 

The GRN task has a strong legacy since the 
corpus is derived from LLL. Moreover, the GRN 
task has advanced a novel IE setting. We 
proposed to extract a formal data structure from 
successive abstract layers. Five different teams 
participated in the task with distinct strategies. In 
particular, we received submissions that work on 
all proposed abstraction levels. 
This shows that Information Extraction 
implementations have reached a state of maturity, 
which allow for new problems to be addressed 
quickly. The performances are promising, yet 
some specific problems have to be addressed, 
like the labeling of edges. 
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Abstract 

This paper presents the Bacteria Biotope 
task of the BioNLP Shared Task 2013, 
which follows BioNLP-ST-11. The 
Bacteria Biotope task aims to extract the 
location of bacteria from scientific web 
pages and to characterize these locations 
with respect to the OntoBiotope 
ontology. Bacteria locations are crucial 
knowledge in biology for phenotype 
studies. The paper details the corpus 
specifications, the evaluation metrics, 
and it summarizes and discusses the 
participant results.  

1 Introduction 

The Bacteria Biotope (BB) task extends the 
BioNLP 2013 Shared Task molecular biology 
scope. It consists of extracting bacteria and their 
locations from web pages, and categorizing the 
locations with respect to the OntoBiotope1 
ontology of microbe habitats. The locations 
denote the places where given species live. The 
bacteria habitat information is critical for the 
study of the interaction between the species and 
their environment, and for a better understanding 
of the underlying biological mechanisms at a 
molecular level. The information on bacteria 
biotopes and their properties is very abundant in 
scientific literature and in genomic databases and 
BRC (Biology Resource Center) catalogues. 
However, the information is highly diverse and 
expressed in natural language (Bossy et al., 
2012). The two critical missing steps for 
population of biology databases and biotope 
knowledge modeling are (1) the automatic 
extraction of organism/location pairs and (2) the 
normalization of the habitat names with respect 
to biotope ontologies.  

                                                        
1http://bibliome.jouy.inra.fr/MEM-
OntoBiotope/OntoBiotope_BioNLP-ST13.obo 

The aim of the previous edition of the BB task 
(BioNLP-ST’11) was to solve the first 
information extraction step. The results obtained 
by the participant systems reached 45 percent F-
measure. These results showed both the 
feasibility of the task, as well as a large room for 
improvement (Bossy et al., 2012).  
The 2013 edition of the BB task maintains the 
primary objective of event extraction, and 
introduces the second issue of biotope 
normalization. It is handled through the 
categorization of the locations into a large set of 
types defined in the OntoBiotope ontology. 
Bacteria locations range from hosts, plant and 
animals, to natural environments (e.g. water, 
soil), including industrial environments.  BB’11 
set of categories contained 7 types. This year, 
entity categorization has been enriched to better 
answer the biological needs, as well as to 
contribute to the general problem of automatic 
semantic annotation by ontologies. 
BB task is divided into three sub-tasks. Entity 
detection and event extraction are tackled by two 
distinct sub-tasks, so that the contribution of 
each method could be assessed. A third sub-task 
conjugates the two in order to measure the 
impact of the method interactions. 

2 Context 

Biological motivation. 
Today, new sequencing methods allow biologists 
to study complex environments such as 
microbial ecosystems. Therefore, the sequence 
annotation process is facing radical changes with 
respect to the volume of data and the nature of 
the annotations to be considered. Not only do 
biochemical functions still need to be assigned to 
newly identified genes, but biologists have to 
take into account the conditions and the 
properties of the ecosystems in which 
microorganisms are living and are identified, as 
well as the interactions and relationships 
developed with their environment and other 
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living organisms (Korbel et al., 2005). 
Metagenomic studies of ecosystems yield 
important information on the phylogenetic 
composition of the microbiota. The availability 
of bacteria biotope information represented in a 
formal language would then pave the way for 
many new environment-aware bioinformatic 
services. The development of methods that are 
able to extract and normalize natural language 
information at a large scale would allow us to 
rapidly obtain and summarize information that 
the bacterial species or genera are associated 
with in the literature. In turn, this will allow for 
the formulation of hypotheses regarding 
properties of the bacteria, the ecosystem, and the 
links between them.  
The pioneering work on EnvDB (Pignatelli et al., 
2009) aimed to link GenBank sequences of 
microbes to biotope mentions in scientific 
papers. However, EnvDB was affected by the 
incompleteness of the GenBank isolation source 
field, the low number of related bibliographic 
references, the bag-of-words extraction method 
and the small size of its habitat classification. 

Habitat categories. 
The most developed classifications of habitats 
are EnvO, the Metagenome classification 
supported by the Genomics Standards 
Consortium (GSC), and the OntoBiotope 
ontology developed by our group. EnvO 
(Environment Ontology project) targets a 
Minimum Information about a Genome 
Sequence (MIGS) specification (Field et al., 
2008) of mainly Eukaryotes. This ambitious 
detailed environment ontology aims to support 
standard manual annotations  of all types of 
organism environments and biological samples. 
However, it suffers from some limitations for 
bacterial biotope descriptions. A large part of 
EnvO is devoted to environmental biotopes and 
extreme habitats, whilst it fails to finely account 
for the main trends in bacteria studies, such as 
their technological use for food transformation 
and bioremediation, and their pathogenic or 
symbiotic properties. Moreover, EnvO terms are 
often poorly suited for bacteria literature analysis 
(Ratkovic et al., 2012). 
The Metagenome Classification  from JGI of 
DOE (Joint Genome Institute, US Department Of 
Energy) is intended to classify metagenome 
projects and samples according to a mixed 
typology of habitats (e.g. environmental, host) 
and their physico-chemical properties (e.g. pH, 
salinity) (Ivanova et al., 2010). It is a valuable 

source of vocabulary for the analysis of bacteria 
literature, but its structure and scope are strongly 
biased by the indexing of metagenome projects. 
The OntoBiotope ontology is appropriate for the 
categorization of bacteria biotopes in the BB task 
because its scope and its organization reflect the 
scientific subject division and the microbial 
diversity. Its size (1,756 concepts) and its deep 
hierarchical structure are suitable for a fine-
grained normalization of the habitats. Its 
vocabulary has been selected after a thorough 
terminological analysis of relevant scientific 
documents, papers, GOLD (Chen et al., 2010) 
and GenBank, which was partly automated by 
term extraction. Related terms are attached to the 
OntoBiotope concept labels (i.e. 383 synonyms), 
improving OntoBiotope coverage of natural 
language documents.  
Its structure and a part of its vocabulary have 
been inspired by EnvO, the Metagenome 
classification and the small ATCC (American 
Type Collection Culture) classification for 
microbial collections (Floyd et al., 2005). 
Explicit references to 34 EnvO terms are given in 
the OntoBiotope file. Its main topics are: 
- « Artificial » environments (industrial and 

domestic), Agricultural habitats, Aquaculture 
habitats, Processed food; 

- Medical environments, Living organisms, 
Parts of living organisms, Bacteria-
associated habitats; 

- « Natural » environment habitats, Habitats 
wrt physico-chemical property (including 
extreme ones); 

- Experimental medium (i.e. experimental 
biotopes designed for studying bacteria). 

The structure, the comprehensiveness and the 
detail of the habitat classification are critical 
factors for research in biology. Biological 
investigations involving the habitats of bacteria 
are very diverse and still unanticipated. Thus, 
shallow and light classifications are insufficient 
to tackle the full extent of the biological 
questions. Indexing genomic data with a 
hierarchical fine-grained ontology such as 
OntoBiotope allows us to obtain aggregated and 
adjusted information by selecting the right level 
or axis of abstraction. 

Bacteria Biotope Task.  
The corpus is the same as BB’11. The documents 
are scientific web pages intended for a general 
audience in the form of encyclopedia notices. 
They focus on a single organism or a family. The 
habitat mentions are dense and more diverse than 
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in PubMed abstracts. These features make the 
task both useful and feasible with a reduced 
investment in biology. Its linguistic 
characteristics, high frequency of anaphora, 
entities denoted by complex nominal expressions 
raised interesting question for BioNLP that have 
been treated for a long time in the general and 
the biomedical domains. 

3 Task description 

The BB Task is split into two secondary goals: 
1. The detection of entities and their 

categorization(s) (Sub-task 1). 
2. The extraction of Localization relations 

given the entities (sub-task 2) 

Sub-task 1 involves the prediction of habitat 
entities and their position in the text. The 
participant also has to assign each entity to one 
or more concepts of the OntoBiotope ontology: 
the categorization task. For instance, in the 
excerpt Isolated from the water of abalone farm, 
the entity abalone farm should be assigned the 
OntoBiotope category fish farm. 

Sub-task 2 is a relation extraction task. The 
schema of this task contains three types of 
entities: 
- The Habitat type is the same as in sub-

task 1. 
- Geographical entities represent location and 

organization named entities. 
- Bacteria entities are bacterial taxa. 

Additionally, there are two types of relations 
illustrated by Figure 1. 
- Localization relations link Bacteria to the 

place where they live (either a Habitat or a 
Geographical). 

- PartOf relations relate couples of Habitat 
entities, a living organism, which is a host 
(e.g. adult human), and a part of this living 
organism (e.g. gut). 

 
Bifidobacterium longum. This organism is 

found in adult humans and formula fed infants 

as a normal component of gut flora. 

Figure 1. Example of a localization event in the 
BB Task. 

Sub-task 2 participants are provided with 
document texts and entities, and should predict 
the relations between the candidate entities. 

Sub-task 3 is the combination of these two sub-
tasks. It consists of predicting both the entity 
positions and the relations between entities. 
Compared to sub-task 1, the systems have to 
predict Habitat entities, but also Geographical 
and Bacteria entities. It is similar to the BB task 
of BioNLP-ST’11, except that no categorization 
of the entities is required. 

4 Corpus description 

The BB corpus document sources are web pages 
from bacteria sequencing projects, (EBI, NCBI, 
JGI, Genoscope) and encyclopedia pages from 
MicrobeWiki. The documents are publicly 
available. Table 1 gives the distribution of the 
entities and relations in the corpora per sub-task. 
 

 Training 
+ Dev 

Test 
1 & 3 Test 2 

Document 78 27 26 
Word 25,828 7,670 10,353 
    

Bacteria 1,347 332 541 
Geographical 168 38 82 
Habitat 1,545 507 623 
OntoBiotope cat. 1,575 522 NA 
Total entities 3,060 877 1,246 
    
Localization 1,030 269 538 
Part of Host 235 111 129 
Total relations 1,265 328 667 

Table 1. BB’13 corpus figures. 

The categorization of entities by a large ontology 
(sub-task 1) offers a novel task to the BioNLP-
ST community; a close examination of the 
annotated corpus allowed us to anticipate the 
challenges for participating teams. A total of 
2,052 entities have been manually annotated for 
sub-task 1 (training, development and test sets 
together). These entities have 1,036 distinct 
surface forms, which means that an entity surface 
form is repeated a little less than twice, on 
average. However, only a quarter of the surface 
forms are actually repeated; three quarters are 
unique in the corpus. Moreover, 60% of habitat 
entities have a surface form that does not match 
one of the synonyms of their ontology concept. 
This configuration suggests that methods that 
simply propagate surface forms and concept 
attributions from ontology synonyms and from 
training entities would be inefficient. We have 
developed a baseline prediction that projects the 
ontology synonyms and the training corpus 

Localization Localization 

Part of Part of 
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habitat surface forms onto the test. This 
prediction scores a high Slot Error Rate of 0.74. 
We also note there are a few ambiguous forms 
(i.e. 112 forms) that are synonyms in several 
different concepts or that do not always denote a 
habitat, and a few entities are assigned more than 
one concept (i.e. 42 of them). These are difficult 
cases that require prediction methods capable of 
word sense disambiguation. The low number of 
ambiguous occurrences has a low impact on the 
participant scores, although their presence may 
motivate more sophisticated methods. 

5 Annotation methodology 

The methodology of entity position and relations 
annotation is similar to BB Task’11. It involved 
seven scientists who participated in a double-
blind annotation (each document was annotated 
twice), followed by a conflict resolution phase. 
They used the AlvisAE annotation editor 
(Papazian et al., 2012). The guidelines included 
some improvements that are detailed below. 

Boundaries. 
Habitat entities may be either names or adjective. 
In the case of adjectives, the head is included in 
the entity span if it denotes a location (e.g. 
intestinal sample) and is excluded otherwise (e.g. 
hospital epidemic). The entity spans may be 
discontinuous, which is relevant for overlapping 
entities like ground water and surface water in 
ground and surface water. The major change is 
the inclusion of all modifiers that describe the 
location in the habitat entity span. This makes 
the entity more informative and the entity 
boundaries easier to predict, and less subject to 
debate. For instance, in the example,  

isolated from the water of an abalone farm,  
the water entity extends from water to farm. 
Note that in sub-task 1, all entities have to be 
predicted, even when not involved in a relation. 
This led to the annotation of embedded entities 
as potential habitats for bacteria, such as abalone 
farm and abalone in the above example. 
 
Equivalent sets of entities.  
As in BB’11, there are many equivalent 
mentions of the same bacteria in the documents 
that play a similar role with respect to the 
Localization relation. Selecting only one of them 
as the gold reference would have been arbitrary. 
When this is the case, the reference annotation 
includes equivalent sets of entities that convey 
the same information (e.g. Borrelia garinii vs. B. 
garinii, but not Borrelia).  

Category assignment. 
The assignment of categories to habitat entities 
has been done in two steps: (i) an automatic pre-
annotation by the method of Ratkovic et al., 
(2012) and (ii) a manual double-blind revision 
followed by a conflict resolution phase. 

In the manual annotation phase, the most 
frequent conflicts between annotators were the 
same as in the previous edition. They involved 
the assignment of entities to either the living 
organism category, organic matter or food. An 
example is the cane entity in cane cuttings. To 
handle these cases, the guidelines assert that a 
dead organism cannot be assigned to a living 
organism category. 

The high quality of the pre-annotation and its 
visualization and revision using the AlvisAE 
annotation editor notably sped-up the annotation 
process. Table 2 summarizes the figures of the 
pre-annotation. For sub-task 1, the pre-
annotation consisted of assigning OntoBiotope 
categories to entities for the whole corpus 
(train+dev+test). The pre-annotation yielded very 
high results with an F-measure of almost 90%. 
The pre-annotation was also useful to assess the 
relevance of the OntoBiotope ontology for the 
BB task. For sub-task 2, the pre-annotation 
consisted of the detection of entities in the test 
set, where no categorization is needed. The 
second line in Table 2 shows that the recall of 
entity detection affects the F-score, but that it 
still made the prediction helpful for the 
annotators. Further data analysis revealed that 
the terminology-based approach of the pre-
annotation poorly detected the correct boundaries 
of embedded entities, thereby decreasing the 
recall of the entity recognition. 
 

 Recall Precision F1 
Corpus sub-task1 89.7% 90.1% 89.9% 
Test sub-task 2 47.3% 95.7% 63.3% 

Table 2. Pre-annotation scores. 

6 Evaluation procedure 

The evaluation procedure was similar to the 
previous edition in terms of resources, schedule 
and metrics except that an original relevant 
metric was developed for the new problem of 
entity categorization in a hierarchy.  

6.1 Campaign organization 

The training and development corpora with the 
reference annotations were made available to the 
participants eleven weeks before the release of 
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the test sets. Participating teams then had ten 
days to submit their predictions. As with all 
BioNLP-ST tasks, each participant submitted a 
single final prediction for each BB sub-task. The 
detailed evaluation results were computed, 
provided to the participants and published on the 
BioNLP website two days after the submission 
deadline.  

6.2 Evaluation metrics 

Sub-task 1. 
In this sub-task participants were given only the 
document texts. They had to predict habitat 
entities along with their categorization with the 
OntoBiotope ontology. The evaluation of sub-
task 1 takes into account the accuracy of the 
boundaries of the predicted entities as well as of 
the ontology category. 

Entity pairing. 
The evaluation algorithm performs an optimal 
pairwise matching between the habitat entities in 
the reference and the predicted entities. We 
defined a similarity between two entities that 
takes into account the boundaries and the 
categorization. Each reference entity is paired 
with the predicted entity for which the similarity 
is the highest among non-zero similarities.  
If the boundaries of a reference entity do not 
overlap with any predicted entity, then it is a 
false negative, or a deletion. Conversely, if the 
boundaries of a predicted entity do not overlap 
with any reference entity, then it is a false 
positive, or an insertion. 
If the similarity between the entities is 1, then it 
is a perfect match. But if the similarity is lower 
than 1, then it is a substitution.  

Entity similarity. 
The similarity M between two entities is defined 
as: 

M = J . W 

J measures the accuracy of the boundaries 
between the reference and the predicted entities. 
It is defined as a Jaccard Index adapted to 
segments (Bossy et al., 2012). For a pair of 
entities with the exact same boundaries, J equals 
to 1. 
W measures the accuracy between the ontology 
concept assignment of the reference entity and 
the predicted concept assignment of the predicted 
entity. We used the semantic similarity proposed 
by Wang, et al. (2007). This similarity compares 
the set of all ancestors of the concept assigned to 
the reference entity and the set of all ancestors of 

the concept assigned to the predicted entity. The 
similarity is the Jaccard Index between the two 
sets of ancestors; however, each ancestor is 
weighted with a factor equal to: 

dw 

where d is the number of steps between the 
attributed concept and the ancestor. w is a 
constant greater than zero and lower than or 
equal to 1. If both the reference and predicted 
entities are assigned the same concept, then the 
sets of ancestors are equal and W is equal to 1. If 
the pair of entities has different concept 
attributions, W is lower than 1 and depends on 
the relative depth of the lowest common 
ancestor. The lower the common ancestor is, the 
higher the value of W. The exponentiation by the 
w constant ensures that the weight of the 
ancestors decreases non-linearly. This similarity 
thus favors predictions in the vicinity of the 
reference concept. Note that since the ontology 
root is the ancestor of all concepts, W is always 
strictly greater than zero. 
(Wang et al., 2007) showed experimentally that a 
value of 0.8 for the w constant is optimal for 
clustering purposes. However we noticed that w 
high values tend to favor sibling predictions over 
ancestor/descendant predictions that are 
preferable here, whilst low w values do not 
penalize enough ontology root predictions. We 
settled w with a value of 0.65, which ensures that 
ancestor/descendant predictions always have a 
greater value than sibling predictions, while root 
predictions never yield a similarity greater than 
0.5. 
As specified above, if the similarity M < 1, then 
the entity pair is a substitution. We define the 
importance of the substitution S as: 

S = 1 - M 

Prediction score. 
Most IE tasks measure the quality of a prediction 
with Precision and Recall, eventually merged 
into an F1. However the pairing detects false 
positives and false negatives, but also 
substitutions. In such cases, the Recall and 
Precision factor the substitutions twice, and thus 
underestimate false negatives and false positives. 
We therefore used the Slot Error Rate (SER) that 
has been devised to undertake this shortcoming 
(Makhoul et al., 1999): 

SER = (S + I + D) / N 
where: 
- S represents the number of substitutions. 
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- I represents the total number of insertions. 
- D represents the total number of deletions. 
- N is the number of entities in the reference. 

The SER is a measure of errors, so the lower it is 
the better. A SER equal to zero means that the 
prediction is perfect. The SER is unbound, 
though a value greater than one means that there 
are more mistakes in the prediction than entities 
in the reference. 
We also computed the Recall, the Precision and 
F1 measures in order to facilitate the 
interpretation of results: 

Recall =M / N 
Precision = M / P 

where M is the sum of the similarity M for all 
pairs in the optimal pairing, N is the number of 
entities in the reference, and P the number of 
entities in the prediction. 

Sub-task 2. 
In sub-task 2, the participants had to predict 
relations between candidate arguments, which 
are Bacteria, Habitat and Geographical entities. 
This task can be viewed as a categorization task 
of all pairs of entities. Thus, we evaluate 
submissions with Recall, Precision and F1. 

Sub-task 3. 
Sub-task 3 is similar to sub-task 2, but it includes 
entity prediction. This is the same setting as the 
BB task in BioNLP-ST 2011, except for entity 
categorization. We used the same evaluation 
metrics based on Recall, Precision and F1 (Bossy 
et al., 2012). 
The highlights of this measure are: 
− it is based on the pairing between reference 

and predicted relations that maximizes a 
similarity; 

− the similarity of the boundaries of Habitat 
and Geographical entities is relaxed and 
defined as the Jaccard Index (in the same 
way as in sub-task 1); 

− the boundaries of Bacteria is strict: the 
evaluation rejects all relations where the 
Bacteria has incorrect boundaries. 

7 Results  

7.1 Participating systems 

Five teams submitted ten predictions to the three 
BB sub-tasks. LIMSI (CNRS, France), see 
(Grouin, 2013) is the only team that submitted to 
the three sub-tasks. LIPN (U. Paris-Nord, 
France), (Bannour et al., 2013) only submitted to 

sub-task 1. TEES (TUCS, Finland), (Björne and 
Salakoski, 2013) only submitted to sub-task 2. 
Finally, IRISA (INRIA, France), (Claveau, 
2013))) and Boun (U. Boğaziçi, Turkey), 
(Karadeniz and Özgür), submitted to sub-tasks 1 
and 2. The scores of the submissions according 
to the official metrics are shown in decreasing 
rank order in Tables 3 to 6. 
 

Participant Rank  SER  F1 
 IRISA 1  0.46 0.57 
 Boun 2  0.48 0.59 
 LIPN 3  0.49 0.61 
 LIMSI 4  0.66 0.44 

Table 3. Scores for Sub-task 1 of the BB Task. 
 

 Participant Entity  
detection 

Category  
assignment 

 SER F1 SER  F1 

 IRISA  0.43 0.60  0.35 0.67 
 Boun  0.42 0.65  0.36 0.71 
 LIPN  0.46 0.64  0.38 0.72 
 LIMSI  0.45 0.71  0.66 0.50 

Table 4. Detailed scores for Sub-task 1 of the 
BB Task. 

Participant systems to sub-task 1 obtained high 
scores despite the novelty of the task (0.46 SER 
for the 1st, IRISA). The results of the first three 
systems are very close despite the diversity of 
the methods. The decomposition of the scores of 
the predictions of entities with correct 
boundaries and their assignment to the right 
category are shown in Table 4. They are quite 
balanced with a slightly better rate for category 
assignment, with the exception of the LIMSI 
system, which is notably better in entity 
detection. This table also shows the dependency 
of the two entity detection and categorization 
steps. Errors in the entity boundaries affect the 
quality of categorization. 
Table 5 details the scores for sub-task 2. The 
prediction of location relations remains a 
difficult problem even with the entities being 
given. There are two reasons for this. First, there 
is high diversity of bacteria and locations. The 
many mentions of different bacteria and 
locations in the same paragraph make it a 
challenge to select the right pairing among 
candidate arguments. This is particularly true for 
the PartOf relation compared to the Localization 
relation (columns 5 and 6). All systems obtained 
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a recall much lower than the precision, which 
may be interpreted training data overfitting. 
 

Participant Rec. Prec.  F1  
F1 

PartOf 
F1 

Loc. 
 TEES 2.1  0.28 0.82  0.42  0.22 0.49 
 IRISA  0.36 0.46  0.40  0.2 0.45 
 Boun  0.21 0.38  0.27  0.2 0.29 
 LIMSI  0.4 0.19  0.6  0.0 0.7 

Table 5. Scores of Sub-task 2 for the BB Task. 

The second challenge is the high frequency of 
anaphora, especially with a bacteria antecedent. 
For BioNLP-ST 2011, we already pointed out 
that coreference resolution is critical in order to 
capture all relations that are not expressed inside 
a sentence. 

Participant Rec.  Prec.  F1  

 TEES 2.1 0.12 
(0.41) 

0.18 
(0.61) 

0.14  
(0.49) 

 LIMSI 0.4 
(0.9) 

0.12 
(0.82) 

  0.6  
(0.15) 

Table 6. Scores of Sub-task 3 for the BB Task. 
(the relaxed scores are given in parentheses.) 

The results of sub-task 3 (Table 6) may appear 
disappointing compared to the first two sub-tasks 
and BB’11. Further analysis shows that the 
system scores were affected by their poor entity 
boundary detection and the PartOf relation 
predictions. In order to demonstrate this we 
computed a relaxed score that differs from the 
primary score by: 
- removing PartOf relations from the reference 

and the prediction; 
- accepting Localization relations even if the 

Bacteria entity boundaries  do not match; 
- removing the penalty for the incorrect 

boundaries of Habitat entities. 
This relaxed score is equivalent to ignoring 
PartOf relations and considering the boundaries 
of predicted entities as perfect. The result is 
exhibited in Table 6 between parentheses. 
The most determinant factor is the relaxation of 
Bacteria entity boundaries because errors are 
severely penalized. An error analysis of the 
submitted predictions revealed that more than 
half of the rejected Localization predictions had 
a Bacteria argument with incorrect boundaries.  

7.2 Systems description and result analysis 

The participants deployed various assortments of 
methods ranging from linguistics and machine 
learning to hand-coded pattern-matching. Sub-

task 1 was handled in two successive steps, 
candidate entity detection and category 
assignment. 

Entity detection. 
The approaches combine  
(1) the use of lexicons (IRISA and LIMSI), 
(2) then text analysis by chunking (IRISA), 

noun phrase analysis (Boun), term analysis 
by BioYaTeA (LIPN) and Cocoa entity 
detection (LIMSI),  

(3) with additional rules (TextMarker by LIPN) 
or machine learning (CRF by LIMSI) for the 
adaptation to the corpus.  

The LIMSI system combining Cocoa entity 
detection (BioNLP supporting resource) with 
CRF obtained the best result, 11 points over the 
less linguistics-based approach of IRISA as 
shown in Table 4.  

Assignment of categories to entities. 
It was mainly realized using hand-coded rules 
(LIMSI, Boun), machine learning with Whisk 
(LIPN) or a similarity between ontology labels 
and the text entities (IRISA). It is interesting to 
note that although the approaches are very 
different, the three types of methods obtained 
close results ranging from 0.35 to 0.38 SER, 
apart one outlier. 

Prediction of relations. 
Sub-task 2 was completed by applying hand-
coded rules (LIMSI, Boun), that were much less 
successful than the two machine-learning-based 
approaches, i.e. kNN by IRISA and multi-step 
SVM by TEES-2.1. In the case of TEES-2.1 
attributes were generated by McCCJ parses, 
which may explain its success in the prediction 
of PartOf relations that is 20 point over the 
second method that did not use any parsing. 

Prediction of entities and relations. 
Sub-task 3 was completed by LIMSI using the 
successive application of its methods from sub-
tasks 1 and 2. TEES-2.1 applied its multi-step 
SVM classification of sub-task 2 for relation 
prediction completed by additional SVM steps 
for candidate entity detection. 
These experiments allow for the comparison of 
very different state-of-the-art methods, resources 
and integration strategies. However the tight gap 
between the scores of the different systems 
prevents us from drawing a definitive 
conclusion. Additional criteria other than scores 
may also be taken into account: the simplicity of 
deployment, the ease of adaptation to new 
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domains, the availability of relevant resources 
and the potential for improvement. 

8 Conclusion 

After BioNLP-ST’11, the second edition of the 
Bacteria Biotope Task provides a wealth of new 
information on the generalization of the entity 
categorization methods to a large set of 
categories. The final submissions of the 5 teams 
show very promising results with a broad variety 
of methods. The introduction of new metrics 
appeared appropriate to reveal the quality of the 
results and to highlight relevant contrasts. The 
prediction of events still remains challenging in 
documents where the candidate arguments are 
very dense, and where most relations involve 
several sentences. A thorough analysis of the 
results indicates clear directions for 
improvement.  

Acknowledgments 
This work has been partially supported by the 
Quaero program, funded by OSEO, the French 
state agency for innovation and the INRA 
OntoBiotope Network. 

References 
Sondes Bannour, Laurent Audibert, Henry Soldano. 

2013. Ontology-based semantic annotation: an 
automatic hybrid rule-based method. Present 
volume. 

Jari Björne, Tapio Salakoski. 2013. TEES 2.1: 
Automated Annotation Scheme Learning in the 
BioNLP 2013 Shared Task. Present volume. 

Robert Bossy, Julien Jourde, Alain-Pierre Manine A., 
Philippe Veber, Erick Alphonse, Maarten van de 
Guchte, Philippe Bessières, Claire Nédellec. 2012. 
BioNLP Shared Task - The Bacteria Track. BMC 
Bioinformatics 13(Suppl 11):S3, June .  

Vincent Claveau. 2013. IRISA participation to 
BioNLP-ST 2013: lazy-learning and information 
retrieval for information extraction tasks. Present 
volume. 

Liolios K., Chen I.M., Mavromatis K., Tavernarakis 
N., Hugenholtz P., Markowitz V.M., Kyrpides 
N.C. (2010). The Genomes On Line Database 
(GOLD) in 2009: status of genomic and 
metagenomic projects and their associated 
metadata. Nucleic Acids Res., 38(Database 
issue):D346-54. 

EnvDB database. http://metagenomics.uv.es/envDB/ 

EnvO Project. http://environmentontology.org 

Dawn Field et al. 2008. Towards a richer description 
of our complete collection of genomes and 
metagenomes: the “Minimum Information about a 
Genome Sequence” (MIGS) specification. Nature 
Biotechnology. 26: 541-547. 

Cyril Grouin. 2013. Building A Contrasting Taxa 
Extractor for Relation Identification from 
Assertions: BIOlogical Taxonomy & Ontology 
Phrase Extraction System. Present volume. 

İlknur Karadeniz, Arzucan Özgür. 2013. Bacteria 
Biotope Detection, Ontology-based Normalization, 
and Relation Extraction using Syntactic Rules. 
Present volume. 

Korbel J.O., Doerks T., Jensen L.J., Perez-Iratxeta C., 
Kaczanowski S., Hooper S.D., Andrade M.A., 
Bork P. (2005). Systematic association of genes to 
phenotypes by genome and literature mining. PLoS 
Biol., 3(5):e134. 

Melissa M. Floyd, Jane Tang, Matthew Kane and 
David Emerson. 2005. Captured Diversity in a 
Culture Collection: Case Study of the Geographic 
and Habitat Distributions of Environmental 
Isolates Held at the American Type Culture 
Collection. Applied and Environmental 
Microbiology. 71(6):2813-23. 

GenBank. http://www.ncbi.nlm.nih.gov/  

GOLD. http://www.genomesonline.org/cgi-
bin/GOLD/bin/gold.cgi 

Ivanova N., Tringe S.G., Liolios K., Liu W.T., 
Morrison N., Hugenholtz P., Kyrpides N.C. (2010). 
A call for standardized classification of 
metagenome projects. Environ. Microbiol., 
12(7):1803-5. 

John Makhoul, Francis Kubala, Richard Schwartz, 
and Ralph Weischedel. 1999. Performance 
measures for information extraction, in 
Proceedings of DARPA Broadcast News 
Workshop, Herndon, VA, February.  

von Mering C., Hugenholtz P., Raes J., Tringe S.G., 
Doerks T., Jensen L.J., Ward N., Bork P. (2007). 
Quantitative phylogenetic assessment of microbial 
communities in diverse environments. Science, 
315(5815):1126-30. 

Metagenome Classification. 
/metagenomic_classification_tree.cgi 

MicrobeWiki. 
http://microbewiki.kenyon.edu/index.php/Microbe
Wiki  

Microbial Genomics Program at JGI. 
http://genome.jgi-psf.org/programs/bacteria-
archaea/index.jsf 

Microorganisms sequenced at Genoscope. 
http://www.genoscope.cns.fr/spip/Microorganisms-
sequenced-at.html 

168



Miguel Pignatelli, Andrés Moya, Javier Tamames.  
(2009). EnvDB, a database for describing the 
environmental distribution of prokaryotic taxa. 
Environmental Microbiology Reports. 1:198-207. 

Frédéric Papazian, Robert Bossy and Claire Nédellec. 
2012. AlvisAE: a collaborative Web text 
annotation editor for knowledge acquisition. The 
6th Linguistic Annotation Workshop (The LAW 
VI), Jeju, Korea. 

Prokaryote Genome Projects at NCBI. 
http://www.ncbi.nlm.nih.gov/genomes/lproks.cgi  

Zorana Ratkovic, Wiktoria Golik, Pierre Warnier. 
2012. Event extraction of bacteria biotopes: a 
knowledge-intensive NLP-based approach. BMC 
Bioinformatics 2012, 13(Suppl 11):S8, 26June. .  

Javier Tamames and Victor de Lorenzo. 2010. 
EnvMine: A text-mining system for the automatic 
extraction of contextual information. BMC 
Bioinformatics. 11:294. 

James Z. Wang, Zhidian Du, Rapeeporn Payattakool, 
Philip S. Yu, and Chin-Fu Chen. 2007. A New 
Method to Measure the Semantic Similarity of GO 
Terms. Bioinformatics. 23: 1274-1281. 

169



Proceedings of the BioNLP Shared Task 2013 Workshop, pages 170–177,
Sofia, Bulgaria, August 9 2013. c©2013 Association for Computational Linguistics

Bacteria Biotope Detection, Ontology-based Normalization, and Relation
Extraction using Syntactic Rules
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Abstract

The absence of a comprehensive database
of locations where bacteria live is an im-
portant obstacle for biologists to under-
stand and study the interactions between
bacteria and their habitats. This paper re-
ports the results to a challenge, set forth by
the Bacteria Biotopes Task of the BioNLP
Shared Task 2013. Two systems are ex-
plained: Sub-task 1 system for identifying
habitat mentions in unstructured biomedi-
cal text and normalizing them through the
OntoBiotope ontology and Sub-task 2 sys-
tem for extracting localization and part-
of relations between bacteria and habitats.
Both approaches rely on syntactic rules
designed by considering the shallow lin-
guistic analysis of the text. Sub-task 2
system also makes use of discourse-based
rules. The two systems achieve promising
results on the shared task test data set.

1 Introduction

As the number of publications in the biomedical
domain continues to increase rapidly, information
retrieval systems which extract valuable informa-
tion from these publications have become more
important for scientists to access and utilize the
knowledge contained in them.

Most previous tasks on biomedical informa-
tion extraction focus on identifying interactions
and events among bio-molecules (Krallinger et al.,
2008; Kim et al., 2009). The Bacteria Biotope
Task (Bossy et al., 2011; Bossy et al., 2012) is one
of the new challenges in this domain, which was
firstly presented in the BioNLP 2011 Shared Task.
The main goals of the Bacteria Biotope Task were
to extract bacteria locations, categorize them into
one of the eight types (Environment, Host, Host-
Part, Geographical, Water, Food, Medical, Soil),

and detect Localization and PartOf events between
bacteria and habitats. Automatically extracting
this information from textual sources is crucial for
creating a comprehensive database of bacteria and
habitat relations. Such a resource would be of
great value for research studies and applications
in several fields such as microbiology, health sci-
ences, and food processing.

Three teams participated in the Bacteria
Biotope Task using different methodologies
(Bossy et al., 2011; Bossy et al., 2012). Bibliome
INRA (Ratkovic et al., 2012), which achieved the
best F-score (45%) among these teams, imple-
mented a system which used both linguistic fea-
tures and reasoning over an ontology to predict lo-
cation boundaries and types. Bibliome also uti-
lized some resources such as NCBI Taxonomy1,
list of Agrovoc geographical names2, and an in-
house developed ontology for specific location
types. UTurku (Björne et al., 2012), presented a
machine-learning based system which can be used
to find solutions for all main tasks with a few al-
teration in the system. UTurku used this generic
system with additional named entity recognition
patterns and external resources, whereas JAIST
(Nguyen and Tsuruoka, 2011) used CRFs in order
to recognize entities and their types.

UTurku and JAIST treated event extraction as a
classification problem by using machine learning
approaches, while Bibliome created and utilized
a trigger-word list. Bibliome tried to find events
by checking if a trigger-word and entities co-occur
in the scope of the same sentence. Bibliome was
the only team that considered coreference resolu-
tion. Not considering coreference resolution de-
teriorated the performance of JAIST’s system less
than that of UTurku’s system, since JAIST’s sys-
tem operated in the scope of a paragraph, while
UTurku’s system operated in the scope of a sen-

1http://www.ncbi.nlm.nih.gov/Taxonomy/
2http://aims.fao.org/standards/agrovoc/about
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tence.
The Bacteria Biotope Task (BB) in the BioNLP

2013 Shared Task (Bossy et al., 2013) gives an-
other opportunity to scientists to develop and com-
pare their systems on a reliable platform. This task
contains three subtasks. For Sub-task 1, partici-
pants are expected to detect the names and posi-
tions of habitat entities, as well as to normalize
these habitats through the OntoBiotope (MBTO)
Ontology concepts. For Sub-task 2, when the
names, types, and positions of the entities (bacte-
ria, habitat, geographical) are given, participants
are expected to extract relations which can be ei-
ther between bacteria and habitat pairs (Localiza-
tion event) or between host and host part pairs
(PartOf event). Sub-task 3 is the same as Sub-
task 2, except that the gold standard entities are
not provided to the participants.

In this paper, we present two systems, one
for Sub-task 1 (Entity Detection and Categoriza-
tion) and one for Sub-task 2 (Localization Rela-
tion Extraction) of the Bacteria Biotope Task in
the BioNLP 2013 Shared Task. Both systems are
rule-based and utilize the shallow syntactic analy-
sis of the documents. The Sub-task 2 system also
makes use of the discourse of the documents. The
technical details of our systems are explained in
the following sections.

2 Data Set

The corpus provided by the organizers was cre-
ated by collecting documents from many differ-
ent web sites, which contain general information
about bacteria and habitats. The data set, consist-
ing of 52 training, 26 development, and 26 test
documents, was annotated by the bioinformati-
cians of the Bibliome team of MIG Laboratory at
the Institut National de Recherche Agronomique
(INRA).

For the training and development phases of Sub-
task 1, document texts with manually annotated
habitat entities and the concepts assigned to them
through the OntoBiotope ontology were provided,
while in the test phase, only the unannotated docu-
ment texts were given by the task organizers. The
OntoBiotope ontology which contains 1,700 con-
cepts organized in a hierarchy of is-a relations was
also provided by the organizers for this task.

For the training and development phases of Sub-
task 2, document texts with manually annotated
bacteria, habitat and geographical entities, as well

as the localization and part-of relations were pro-
vided, while in the test phase, document texts an-
notated only for bacteria, habitat and geographical
entities were given.

3 Bacteria Biotope Detection and
Ontology-based Normalizaton

For Sub-task 1 (Entity Detection and Categoriza-
tion), we implemented a system which applies
syntactic rules to biomedical text after a pre-
processing phase, where a given text is split into
sentences and parsed using a shallow parser. The
workflow of our Sub-task 1 system is shown in
Figure 1. Firstly, each input file is split into sen-
tences using the Genia Sentence Splitter (Geni-
aSS) (Saetre et al., 2007). The outputs of the
splitter are given to the Genia Tagger (Tsuruoka
et al., 2005; Tsuruoka and Tsujii, 2005) as input
files with the aim of obtaining the lemmas, the
part-of-speech (POS) tags, and the constituent cat-
egories of the words in the given biomedical text
(e.g., surface form: ticks; lemma: tick; POS tag:
NNS; phrase structure: I-NP). We utilized these
syntactic information at the following steps of our
system.

In the following subsections, a detailed expla-
nation for the detection of habitat boundaries and
their normalization through the OntoBiotope On-
tology concepts is provided.

3.1 Entity Boundary Detection

Entity boundary detection, which is the first step of
Sub-task 1, includes automatic extraction of habi-
tat entities from a given natural language text, and
detection of the entity boundaries precisely. In
other words, the habitat boundaries that are re-
trieved from the texts should not include any un-
necessary and non-informative words. In order to
achieve this goal, we assume that bacteria habitats
are embedded in text as noun phrases, and all noun
phrases are possible candidates for habitat entities.
Based on this assumption, our system follows the
steps that are explained below by using the mod-
ules that are shown in Figure 1.

As explained before, the Sentence Splitter,
POS Tagger, and Shallow Parser are the mod-
ules that are utilized in the pre-processing phase.

The Noun Phrase Extractor & Simplifier
module firstly detects the noun phrases in the
text by using the Genia Tagger and then post-
processes these noun phrases by using some syn-
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Figure 1: Workflow of the Sub-task 1 System

tactic rules. The functions of this module include
the removal of some unnecessary words from the
noun phrases, which are not informative for envi-
ronmental locations of bacteria. To distinguish in-
formative words from non-informative ones, our
system utilizes the POS Tags of each word that
compose the noun phrases in question. For ex-
ample, words that have determiners or possessive
pronouns as their POS Tags should not be included
to the boundaries of the candidate habitat enti-
ties. For example, the in the noun phrase “the
soybean plant Glycine max” and its in the noun
phrase “its infectious saliva” are eliminated from
the candidate noun phrases, restricting the habi-
tat boundary, and creating new candidate noun
phrases.

The Noun Phrase Extractor & Simplifier mod-
ule also includes a mechanism to handle noun
phrases that contain the conjunction “and”. First,
such noun phrases are separated from the conjunc-
tion “and” into two sub-phrases. Next, each sub-
phrase is searched in the OntoBiotope ontology.
If the ontology entries matched for the two sub-

phrases have the same direct ancestor (i.e., the
two ontology entries have a common is-a relation),
then the noun phrase consisting of the two sub-
phrases connected with the conjunction “and” is
identified as a single habitat entity. On the other
hand, if the ontology entries matched for the two
sub-phrases don’t have a common direct ances-
tor, then each sub-phrase is identified as a sepa-
rate habitat entity. For example, each of the entity
boundaries of the phrases “nasal and oral cav-
ity” , “fresh and salt water”, and “human and
sheep” are handled differently from each other as
described below.

• For the first phrase, “nasal” is the first sub-
phrase and “oral cavity” is the second sub-
phrase. The direct ancestor (i.e., the first level
is-a concept) of the first sub-phrase “nasal”
is “respiratory tract part” and that of the
second sub-phrase “oral cavity” is “buccal”.
Since “respiratory tract part” and “buccal”
is-a concepts are not the same, “nasal cav-
ity” and “oral cavity” are generated as two
separate habitats. In other words, if there is
not a direct common is-a concept between
the matching terms for the sub-phrases in
the OntoBiotope ontology, then one habitat
entity “nasal cavity” is generated from the
noun phrase by adding the second part of the
second sub-phrase “cavity” to the first sub-
phrase “nasal” and another entity is gener-
ated by taking the second sub-phrase as a
whole “oral cavity”.

• For the second sample phrase, “fresh” is the
first sub-phrase and “salt water” is the sec-
ond sub-phrase. The first sub-phrase “fresh”
matches with an ontology entry whose direct
ancestor is “environmental water with chem-
ical property” and the second sub-phrase
“salt water” matches with an ontology entry
that has two different direct ancestors “en-
vironmental water with chemical property”
and “saline water”. Since “environmental
water with chemical property” is a common
ancestor for both sub-phrases in the ontology,
a single habitat entity “fresh and salt water”
is generated. In other words, if there is a di-
rect common ancestor between the matching
terms for the sub-phrases in the OntoBiotope
ontology, then only one habitat entity that is
composed of the whole noun phrase is gener-
ated.
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• For the third phrase, “human” is the first
sub-phrase and “sheep” is the second sub-
phrase. In this case, two separate habitat en-
tities ‘human” and “sheep” are generated di-
rectly from the two sub-phrases since they
don’t have a common ancestor in the ontol-
ogy.

At the end of these phases, purified sub-noun
phrases, which are habitat entity candidates whose
boundaries are roughly determined by the deletion
of non-informative modifiers from noun phrases,
are obtained.

To determine whether a candidate noun phrase
is a habitat entity or not, the Habitat Name Rec-
ognizer & Normalizer module searches all on-
tology entries, which compose the OntoBiotope
Ontology, to find an exact match with the candi-
date noun phrase or with parts of it. In this step,
the names, exact synonyms, and related synonyms
of ontology entries (ontology entry features) are
compared with the candidate noun phrase.

[Term]
id: MBTO:00001828
name: digestive tract
related synonym: “gastrointestinal tract” [TyDI:23802]
exact synonym: “GI tract” [TyDI:23803]
related synonym: “intestinal region” [TyDI:23805]
related synonym: “gastrointestinal” [TyDI:23806]
exact synonym: “GIT” [TyDI:23807]
related synonym: “alimentary canal” [TyDI:24621]
is a: MBTO:00000797 ! organ

Table 1: First ontology entity match for human
gastrointestinal tract.

For example, if our candidate noun phrase is
“the human gastrointestinal tract”, after the post-
processing phase, the purified candidate phrase
will be “human gastrointestinal tract”. When
the search step for this simplified candidate entity
is handled, two different ontology entries are re-
turned by our system as matches (see Table 1 for
the first ontology entry match and Table 2 for the
second one). These two ontology entries are re-
turned as results by our system because the first
one contains the related synonym: “gastrointesti-
nal tract” and the second one contains the name:
human. Since the system returns matches for
the candidate noun phrase “human gastrointesti-
nal tract”, it is verified that one or more habitat
entities can be extracted from this phrase.

To detect the exact habitat boundaries, manually
developed syntactic rules are utilized in addition to

[Term]
id: MBTO:00001402
name: human
related synonym: “person” [TyDI:25453]
related synonym: “individual” [TyDI:25454]
exact synonym: “subject” [TyDI:25374]
exact synonym: “homo sapiens” [TyDI:26681]
related synonym: “people” [TyDI:25455]
is a: MBTO:00001514 ! mammalian

Table 2: Second ontology entity match for human
gastrointestinal tract.

the ontology entry matching algorithm, which is
used for entity verification of a candidate phrase.
Our system determines the boundaries according
to the following syntactic rules:

• If an ontology entry matches exactly with the
noun phrase, take the boundaries of the noun
phrase as the boundaries of the habitat, and
use the whole phrase to create a new habitat
entity.

• If an ontology entry matches beginning from
the first word of the noun phrase, but does
not match totally, take the boundaries of the
matched parts of the phrase, and create a new
habitat entity using the partial phrase.

• If an ontology entry matches beginning from
an internal word of the noun phrase, take the
boundaries of the noun phrase as the bound-
aries of the habitat, and use the whole phrase
to create a new habitat entity. For exam-
ple, in Table 1, the match of the noun phrase
“human gastrointestinal tract” with the re-
lated synonym: “gastrointestinal tract” gen-
erates “human gastrointestinal tract” as a
habitat entity.

In many cases habitat entity names occur in dif-
ferent inflected forms in text. For example, the
habitat name “human”, can occur in text in its plu-
ral form as “humans”. We used the Lemmatizer
module in order to be able to match the differ-
ent inflected forms of habitat names occurring in
text against the corresponding entires in the Onto-
Biotope ontology. This module applies the rules
described above to the lemmatized forms of the
candidate noun phrases, which are obtained using
the Genia Tagger.

After running the same algorithm also for lem-
matized forms of the noun phrase, a merging algo-
rithm is used for the matching results of the sur-
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face and lemmatized forms of the noun phrases in
order to create an output file, which contains the
predicted habitat entities and their positions in the
input text.

3.2 Ontology Categorization

For Sub-task 1, detection of the entities and their
boundaries is not sufficient. In order to obtain
normalized entity names, participants are also ex-
pected to assign at least one ontology concept
from the OntoBiotope Ontology to all habitat en-
tities, which are automatically extracted by their
systems from the input text.

While our system detects entities and their
boundaries (as explained in detail in Section 3.1),
it also assigns ontology concepts to the re-
trieved entities. All assigned concepts are ref-
erenced by the MBTO-IDs of the matched on-
tology entries (e.g, MBTO:00001402 for human
and MBTO:00001828 for human gastrointestinal
tract) (see Table 3).

4 Event Extraction

For Sub-task 2 (Localization Event Extraction
Task), we used different methods according to the
relation type that we are trying to extract. The
workflow of our system is shown in Figure 2. The
details of our approach are explained in the fol-
lowing sub-sections.

4.1 Localization Event Extraction

In order to extract localization relations, we as-
sume that discourse changes with the beginning of
a new paragraph. Our system firstly splits the in-
put text into paragraphs. Next, the entities (bacte-
ria and habitats) that occur in the given paragraph
are identified. We assume that the paragraph is
about the bacterium whose name occurs first in the
paragraph. Therefore, we assign all the habitat en-
tities to that bacterium. If the name of this bac-
terium occurs in previous paragraphs as well, then
the boundary of the bacterium entity is set to its
first occurrence in the document.

We also have a special case for boundary de-
termination of bacteria in the localization rela-
tion. If a bacterium name contains the word
“strain” , we assign the first occurrence of its
name without the word “strain” (e.g, Bifidobac-
terium longum NCC2705 instead of Bifidobac-
terium longum strain NCC2705).

Figure 2: Workflow of the Sub-task 2 System

4.2 PartOf Event Extraction

In order to detect partOf relations between hosts
and host parts in a given biomedical text, we as-
sumed that such relations can only exist if the
host and the host part entities occur in the same
paragraph. Based on this assumption, we pro-
pose that if a habitat name is a subunit of the term
which identifies another habitat that passes in the
same discourse, then they are likely to be related
through a partOf relation. In other words, if one
habitat contains the other one, and obeys some
syntactic rules, then there is a relation. For exam-
ple, “respiratory track of animals” is a habitat and
“animals” is another habitat, both of which are in
the same paragraph. Since the “respiratory track
of animals” phrase contains the “animals” phrase
and the word “of”, and the “animals” phrase is on
the right hand side of the “respiratory track of ani-
mals” phrase, our system detects a partOf relation
between them.

5 Evaluation

The official evaluation results on the test set are
provided using different criteria for the two sub-
tasks by the task organizers3.

3http://2013.bionlp-st.org/tasks/bacteria-biotopes/test-
results
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EntityID Boundary Entity
T1 Habitat 113 118 human
T2 Habitat 113 141 human gastrointestinal tract
ID EntityID Reference
N1 OntoBiotope Annotation:T1 Referent:MBTO:00001402
N2 OntoBiotope Annotation:T2 Referent:MBTO:00001828

Table 3: Detected entities and boundaries from the human gastrointestinal tract noun phrase

For Sub-task 1, submissions are evaluated con-
sidering the Slot Error Rate (SER), which depends
on the number of substitutions S, deletions D, in-
sertions I, and N. N is the number of habitats in
the reference, while D and I are the number of
reference and predicted entities that could not be
paired, respectively.

SER =
S + D + I

N
(1)

The number of substitutions S is calculated by
using Equation 2. Here J is the Jaccard index be-
tween the reference and the predicted entity, which
measures the accuracy of the boundaries of the
predicted entity (Bossy et al., 2012). W is a param-
eter that defines the semantic similarity between
the ontology concepts related to the reference en-
tity and to the predicted entity (Wang et al., 2007).
This similarity is based on the is-a relationships
between concepts, and used for penalizing ances-
tor/descendent predictions more compared to sib-
ling predictions as it approaches to 1.

S = J ·W (2)

For Sub-task 2, precision, recall, and f-score
metrics are used for evaluation. In the following
subsections, our official evaluation results for Sub-
task 1 and Sub-task 2 are given.

5.1 Results of Sub-task 1

Our official evaluation results on test set are shown
in Table 4. Our system ranked second according to
the SER value among four participating systems in
the shared task.

The official results of our system on the test set
for entity boundary detection are shown in Table 5.
Our system obtained the smallest SER value for
detecting the entity boundaries (i.e., the best per-
formance) among the other participating systems.

Our ontology categorization evaluation results
on the test set, which do not take into account the

Main Results
S 112.70
I 43
D 89
M 305.30
P 520
SER 0.48
Recall 0.60
Precision 0.59
F1 0.59

Table 4: Main results on test set for Sub-task 1(En-
tity Boundary Detection & Ontology Categoriza-
tion)

Entity Boundary Evaluation
S 82.71
M 335.29
SER 0.42
Recall 0.66
Precision 0.64
F1 0.65

Table 5: Entity boundary detection results on the
test set for Sub-task 1

entities’ boundaries are shown in Table 6. Our sys-
tem ranked second on the main evaluation where
the parameter w (described in Section 5) was set
to 0.65. As shown in the table, as the w value in-
creases, our results get better. According to the of-
ficial results, our system ranked first for w = 1 with
the highest f-score, and our SER result is same as
the best system for w = 0.8.

The parameter w can can be seen as a penal-
ization value for the false concept references. As
w increases, the false references to distant ances-
tors and descendants of the true reference concepts
are penalized more, whereas as w decreases the
false references to the siblings are penalized more
severely.

The results also show that our system is able to
achieve balanced precision and recall values. In
other words, the recall and precision values are
close to each other.
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w S M SER Recall Precision F
1 38.64 379.36 0.34 0.75 0.73 0.74
0.8 44.90 373.10 0.35 0.74 0.72 0.73
0.65 50.95 367.05 0.36 0.72 0.71 0.71
0.1 70.78 347.22 0.40 0.68 0.67 0.68

Table 6: Ontology Categorization results for Sub-
task 1 on the test set

5.2 Results of Sub-task 2

The precision, recall, and f-measure metrics are
used to evaluate the Sub-task 2 results on the test
set. Our main evaluation results, which consider
detection of both Localization and PartOf event re-
lations for Sub-task 2 are shown in the first row of
Table 7, whereas our results that are calculated for
the two event types separately are shown in the Lo-
calization and PartOf rows of the table. Accord-
ing to the official results, our system ranked third
for detecting all event types. On the other hand, it
achieved the best results for detecting the PartOf
events.

Recall Precision F
All 0.21 0.38 0.27
Localization 0.23 0.38 0.29
PartOf 0.15 0.40 0.22

Table 7: Main results on test set for Sub-task 2

6 Conclusion

In this study, we presented two systems that are
implemented in the scope of the BioNLP Shared
Task 2013 - Bacteria Biotope Task. The aim of
the Sub-task 1 system is the identification of habi-
tat mentions in unstructured biomedical text and
their normalization through the OntoBiotope on-
tology, whereas the goal of the Sub-task 2 system
is the extraction of localization and part-of rela-
tions between bacteria and habitats when the enti-
ties are given. Both systems are based on syntactic
rules designed by considering the shallow syntac-
tic analysis of the text, while the Sub-task 2 system
also makes use of discourse-based rules.

According to the official evaluation, both of our
systems achieved promising results on the shared
task test data set. Based on the main evaluation
where the parameter w is set to 0.65, our Sub-task
1 system ranked second among four participating
systems and it ranked first for predicting the entity
boundaries when ontology categorization outputs
are not considered. The results show that our sys-
tem performs better as w increases and achieves

the best performance when w = 1 and w = 0.8. Our
Sub-task 2 system achieved encouraging results by
ranking first in predicting the PartOf events, and
ranking third when all event types are considered.

The proposed systems can be enhanced by in-
corporating a stemming module and including
more syntax and discourse based rules.
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Abstract

Published literature in molecular genetics
may collectively provide much informa-
tion on gene regulation networks. Ded-
icated computational approaches are re-
quired to sip through large volumes of text
and infer gene interactions. We propose a
novel sieve-based relation extraction sys-
tem that uses linear-chain conditional ran-
dom fields and rules. Also, we intro-
duce a new skip-mention data represen-
tation to enable distant relation extraction
using first-order models. To account for a
variety of relation types, multiple models
are inferred. The system was applied to the
BioNLP 2013 Gene Regulation Network
Shared Task. Our approach was ranked
first of five, with a slot error rate of 0.73.

1 Introduction

In recent years we have witnessed an increas-
ing number of studies that use comprehensive
PubMed literature as an additional source of in-
formation. Millions of biomedical abstracts and
thousands of phenotype and gene descriptions re-
side in online article databases. These represent
an enormous amount of knowledge that can be
mined with dedicated natural language process-
ing techniques. However, extensive biological
insight is often required to develop text mining
techniques that can be readily used by biomedi-
cal experts. Profiling biomedical research litera-
ture was among the first approaches in disease-
gene prediction and is now becoming invaluable
to researchers (Piro and Di Cunto, 2012; Moreau
and Tranchevent, 2012). Information from pub-
lication repositories was often merged with other
databases. Successful examples of such integra-
tion include an OMIM database on human genes
and genetic phenotypes (Amberger et al., 2011),

GeneRIF function annotation database (Osborne
et al., 2006), Gene Ontology (Ashburner et al.,
2000) and clinical information about drugs in the
DailyMed database (Polen et al., 2008). Biomed-
ical literature mining is a powerful way to iden-
tify promising candidate genes for which abundant
knowledge might already be available.

Relation extraction (Sarawagi, 2008) can iden-
tify semantic relationships between entities from
text and is one of the key information extrac-
tion tasks. Because of the abundance of publica-
tions in molecular biology computational methods
are required to convert text into structured data.
Early relation extraction systems typically used
hand-crafted rules to extract a small set of rela-
tion types (Brin, 1999). Later, machine learning
methods were adapted to support the task and were
trained over a set of predefined relation types. In
cases where no tagged data is available, some un-
supervised techniques offer the extraction of rela-
tion descriptors based on syntactic text properties
(Bach and Badaskar, 2007). Current state-of-the-
art systems achieve best results by combining both
machine learning and rule-based approaches (Xu
et al., 2012).

Information on gene interactions are scattered
in data resources such as PubMed. The reconstruc-
tion of gene regulatory networks is a longstanding
but fundamental challenge that can improve our
understanding of cellular processes and molecular
interactions (Sauka-Spengler and Bronner-Fraser,
2008). In this study we aimed at extracting a gene
regulatory network of the popular model organism
the Bacillus subtilis. Specifically, we focused on
the sporulation function, a type of cellular differ-
entiation and a well-studied cellular function in B.
subtilis.

We describe the method that we used for our
participation in the BioNLP 2013 Gene Regula-
tion Network (GRN) Shared Task (Bossy et al.,
2013). The goal of the task was to retrieve the
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genic interactions. The participants were provided
with manually annotated sentences from research
literature that contain entities, events and genic
interactions. Entities are sequences of text that
identify objects, such as genes, proteins and reg-
ulons. Events and relations are described by type,
two associated entities and direction between the
two entities. The participants were asked to pre-
dict relations of interaction type in the test data
set. The submitted network of interactions was
compared to the reference network and evaluated
with Slot Error Rate (SER) (Makhoul et al., 1999)
SER = (S + I + D)/N that measures the frac-
tion of incorrect predictions as the sum of relation
substitutions (S), insertions (I) and deletions (D)
relative to the number of reference relations (N).

We begin with a description of related work and
the background of relation extraction. We then
present our extension of linear-chain conditional
random fields (CRF) with skip-mentions (Sec. 3).
Then we explain our sieve-based system archi-
tecture (Sec. 4), which is the complete pipeline
of data processing that includes data preparation,
linear-chain CRF and rule based relation detection
and data cleaning. Finally, we describe the results
at BioNLP 2013 GRN Shared Task (Sec. 6).

2 Related Work

The majority of work on relation extraction fo-
cuses on binary relations between two entities.
Most often, the proposed systems are evaluated
against social relations in ACE benchmark data
sets (Bunescu and Mooney, 2005; Wang et al.,
2006). There the task is to identify pairs of enti-
ties and assign them a relation type. A number of
machine learning techniques have been used for
relation extraction, such as sequence classifiers,
including HMM (Freitag and McCallum, 2000),
CRF (Lafferty et al., 2001) and MEMM (Kamb-
hatla, 2004), and binary classifiers. The latter most
oftem employ SVM (Van Landeghem et al., 2012).

The ACE 2004 data set (Mitchell et al., 2005)
contains two-tier hierarchical relation types. Thus,
a relation can have another relation as an attribute
and second level relation must have only atomic
attributes. Therefore, two-tier relation hierarchies
have the maximum height of two. Wang et al.
(2006) employed a one-against-one SVM classi-
fier to predict relations in ACE 2004 data set using
semantic features from WordNet (Miller, 1995).
The BioNLP 2013 GRN Shared Task aims to de-

tect three-tier hierarchical relations. These rela-
tions describe interactions that can have events or
other interactions as attributes. In contrast to pair-
wise approach of Wang et al. (2006), we extract
relations with sequence classifiers and rules.

The same relation in text can be expressed
in many forms. Machine-learning approaches
can resolve this heterogeneity by training mod-
els on large data sets using a large number of
feature functions. Text-based features can be
constructed through application of feature func-
tions. An approach to overcome low cover-
age of different relation forms was proposed by
Garcia and Gamallo (2011). They introduced
a lexico-syntactic pattern-based feature functions
that identify dependency heads and extracts rela-
tions. Their approach was evaluated over two re-
lation types in two languages and achieved good
results. In our study we use rules to account for
the heterogeneity of relation representation.

Generally, when trying to solve a rela-
tion extraction task, data sets are tagged us-
ing the IOB (inside-outside-beginning) nota-
tion (Ramshaw and Marcus, 1995), such that the
first word of the relation is tagged as B-REL, other
consecutive words within it as I-REL and all others
as O. The segment of text that best describes a pre-
defined relation between two entities is called a re-
lation descriptor. Li et al. (2011) trained a linear-
chain CRF to uncover these descriptors. They also
transformed subject and object mentions of the re-
lations into dedicated values that enabled them to
correctly predict relation direction. Additionally,
they represented the whole relation descriptor as
a single word to use long-range features with a
first-order model. We use a similar model but pro-
pose a new way of token sequence transformation
which discovers the exact relation and not only the
descriptor. Banko and Etzioni (2008) used linear
models for the extraction of open relations (i.e.
extraction of general relation descriptors without
any knowledge about specific target relation type).
They first characterized the type of relation ap-
pearance in the text according to lexical and syn-
tactic patterns and then trained a CRF using these
data along with synonym detection (Yates and Et-
zioni, 2007). Their method is useful when a few
relations in a massive corpus are unknown. How-
ever, if higher levels of recall are desired, tradi-
tional relation extraction is a better fit. In this
study we therefore propose a completely super-
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vised relation extraction method.
Methods for biomedical relation extraction have

been tested within several large evaluation initia-
tives. The Learning language in logic (LLL) chal-
lenge on genic interaction extraction (Nédellec,
2005) is similar to the BioNLP 2013 GRN Shared
Task, which contains a subset of the LLL data
set enriched with additional annotations. Giu-
liano et al. (2006) solved the task using an SVM
classifier with a specialized local and global con-
text kernel. The local kernel uses only mention-
related features such as word, lemma and part-of-
speech tag, while the global context kernel com-
pares words that appear on the left, between and
on the right of two candidate mentions. To de-
tect relations, they select only documents contain-
ing at least two mentions and generate

(n
k

)
train-

ing examples, where n is the number of all men-
tions in a document and k is number of mentions
that form a relation (i.e. two). They then predict
three class values according to direction (subject-
object, object-subject, no relation). Our approach
also uses context features and syntactic features
of neighbouring tokens. The direction of relations
predicted in our model is arbitrary and it is further
determined using rules.

The BioNLP 2011 REL Supporting Shared Task
addressed the extraction of entity relations. The
winning TESS system (Van Landeghem et al.,
2012) used SVMs in a pipeline to detect entity
nodes, predict relations and perform some post-
processing steps. They predict relations among ev-
ery two mention pairs in a sentence. Their study
concluded that the term detection module has a
strong impact on the relation extraction module.
In our case, protein and entity mentions (i.e. men-
tions representing genes) had already been identi-
fied, and we therefore focused mainly on extrac-
tion of events, relations and event modification
mentions.

3 Conditional Random Fields with
Skip-Mentions

Conditional random fields (CRF) (Lafferty et al.,
2001) is a discriminative model that estimates
joint distribution p(y|x) over the target sequence
y, conditioned on the observed sequence x. The
following example shows an observed sequence x
where mentions are printed in bold:

“Transcription of cheV initiates from a
sigma D-dependent promoter element

both in vivo and in vitro, and expression
of a cheV-lacZ fusion is completely de-
pendent on sigD.” 1

Corresponding sequences xPOS , xPARSE ,
xLEMMA contain part-of-speech tags, parse tree
tokens and lemmas for each word, respectively.
Different feature functions fj (Fig. 2), employed
by CRF, use these sequences in order to model
the target sequence y, which also corresponds
to tokens in x. Feature function modelling is an
essential part when training CRF. Selection of
feature functions contributes the most to an in-
crease of precision and recall when training CRF
classifiers. Usually these are given as templates
and the final features are generated by scanning
the entire training data set. The feature functions
used in our model are described in Sec. 3.1.

CRF training finds a weight vector w that pre-
dicts the best possible (i.e. the most probable) se-
quence ŷ given x. Hence,

ŷ = arg max
y

p(y|x, w), (1)

where the conditional distribution equals

p(y|x, w) =
exp(

∑m
j=1 wj

∑n
i=1 fj(y, x, i))

C(x, w)
.

(2)
Here, n is the length of the observed sequence x,
m is the number of feature functions and C(x, w)
is a normalization constant computed over all pos-
sible y. We do not consider the normalization con-
stant because we are not interested in exact target
sequence probabilities. We select only the target
sequence that is ranked first.

y1

x1

yn

xn

y2

x2

y3

x3

Figure 1: The structure of a linear-chain CRF
model. It shows an observable sequence x and tar-
get sequence y containing n tokens.

The structure of a linear-chain CRF (LCRF)
model or any other more general graphical model
is defined by references to the target sequence la-
bels within the feature functions. Fig. 1 shows the

1The sentence is taken from BioNLP 2013 GRN training
data set, article PMID-8169223-S5.
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function f(y, x, i):
if (yi−1 == O and

yi == GENE and
xi−1 == transcribes) then

return 1
else

return 0

Figure 2: An example of a feature function. It
checks if the previous label was Other, the current
is Gene and the previous word was “transcribes”,
returns 1, otherwise 0.

structure of the LCRF. Note that the i-th factor
can depend only on the current and the previous
sequence labels yi and yi−1. LCRF can be effi-
ciently trained, whereas exact inference of weights
in CRF with arbitrary structure is intractable due
to an exponential number of partial sequences.
Thus, approximate approaches must be adopted.

3.1 Data Representation
The goal of our task is to identify relations be-
tween two selected mentions. If we process the
input sequences as is, we cannot model the de-
pendencies between two consecutive mentions be-
cause there can be many other tokens in between.
From an excerpt of the example in the previous
section, “cheV initiates from a sigmaD”, we can
observe the limitation of modelling just two con-
secutive tokens. With this type of labelling it is
hard to extract the relationships using a first-order
model. Also, we are not interested in identify-
ing relation descriptors (i.e. segments of text that
best describe a pre-defined relation); therefore, we
generate new sequences containing only mentions.
Mentions are also the only tokens that can be an
attribute of a relation. In Fig. 3 we show the trans-
formation of our example into a mention sequence.
The observable sequence x contains sorted en-
tity mentions that are annotated. These annota-
tions were part of the training corpus. The target
sequence y is tagged with the none symbol (i.e.
O) or the name of the relationship (e.g. Interac-
tion.Requirement). Each relationship target token
represents a relationship between the current and
the previous observable mention.

The mention sequence as demonstrated in Fig. 3
does not model the relationships that exist be-
tween distant mentions. For example, the men-
tions cheV and promoter are related by a Promoter

O

cheV

Interaction.
Transcription

sigma D

Master of
 promoter

promoter

O

cheV

Interaction.
Requirement

sigD

Promoter of 

Figure 3: A mention sequence with zero skip-
mentions. This continues our example from
Sec. 3.

of relation, which cannot be identified using only
LCRF. Linear model can only detect dependen-
cies between two consecutive mentions. To model
such relationships on different distances we gen-
erate appropriate skip-mention sequences. The
notion of skip-mention stands for the number of
other mentions between two consecutive mentions
which are not included in a specific skip-mention
sequence. Thus, to model relationships between
every second mention, we generate two one skip-
mention sequences for each sentence. A one skip-
mention sequence identifies the Promoter of rela-
tion, shown in Fig. 4.

O

cheV

Promoter of

promoter

O

sigD

Figure 4: A mention sequence with one skip-
mention. This is one out of two generated men-
tion sequences with one skip-mention. The other
consists of tokens sigmaD and cheV.

For every s skip-mention number, we gen-
erate s + 1 mention sequences of length dns e.
After these sequences are generated, we train
one LCRF model per each skip-mention number.
Model training and inference of predictions can
be done in parallel due to the sequence indepen-
dence. Analogously, we generate model-specific
skip-mention sequences for inference and get tar-
get labellings as a result. We extract the identified
relations between the two mentions and represent
them as an undirected graph.

Fig. 5 shows the distribution of distances be-
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Figure 5: Distribution of distances between two
mentions connected with a relation.

tween the relation mention attributes (i.e. agents
and targets) in the BioNLP 2013 GRN training and
development data set. The attribute mention data
consists of all entity mentions and events. We ob-
serve that most of relations connect attributes on
distances of two and three mentions.

To get our final predictions we train CRF mod-
els on zero to ten skip-mention sequences. We use
the same unigram and bigram feature function set
for all models. These include the following:

• target label distribution,

• mention type (e.g. Gene, Protein) and ob-
servable values (e.g., sigma D) of mention
distance 4 around current mention,

• context features using bag-of-words match-
ing on the left, between and on the right side
of mentions,

• hearst concurrence features (Bansal and
Klein, 2012),

• token distance between mentions,

• parse tree depth and path between mentions,

• previous and next lemmas and part-of-speech
tags.

4 Data Analysis Pipeline

We propose a pipeline system combining multi-
ple processing sieves. Each sieve is an indepen-
dent data processing component. The system con-
sists of eight sieves, where the first two sieves

prepare data for relation extraction, main sieves
consist of linear-chain CRF and rule-based rela-
tion detection, and the last sieve cleans the out-
put data. Full implementation is publicly available
(https://bitbucket.org/szitnik/iobie). We use CRF-
Suite (http://www.chokkan.org/software/crfsuite)
for faster CRF training and inference.

First, we transform the input data into a format
appropriate for our processing and enrich the data
with lemmas, parse trees and part-of-speech tags.
We then identify additional action mentions which
act as event attributes (see Sec. 4.3). Next, we em-
ploy the CRF models to detect events. We treat
events as a relation type. The main relation pro-
cessing sieves detect relations. We designed sev-
eral processing sieves, which support different re-
lation attribute types and hierarchies. We also em-
ploy rules at each step to properly set the agent
and target attributes. In the last relation processing
sieve, we perform rule-based relation extraction to
detect high precision relations and boost the recall.
In the last step we clean the extracted results and
export the data.

The proposed system sieves are executed in the
following order:

i Preprocessing Sieve

ii Mention Processing Sieve

iii Event Processing Sieve

iv Mention Relations Processing Sieve

v Event Relations Processing Sieve

vi Gene Relations Processing Sieve

vii Rule-Based Relations Processing Sieve

viii Data Cleaning Sieve

In the description of the sieves in the follow-
ing sections, we use general relation terms, nam-
ing the relation attributes as subject and object, as
shown in Fig. 6.

subject object

relation

Figure 6: General relation representation.
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4.1 Preprocessing Sieve
The preprocessing sieve includes data import, sen-
tence detection and text tokenization. Addition-
ally, we enrich the data using part-of-speech tags,
parse trees (http://opennlp.apache.org) and lem-
mas (Juršic et al., 2010).

4.2 Mention Processing Sieve
The entity mentions consist of Protein, Gene-
Family, ProteinFamily, ProteinComplex, Poly-
meraseComplex, Gene, Operon, mRNA, Site, Reg-
ulon and Promoter types. Action mentions (e.g.
inhibits, co-transcribes) are automatically de-
tected as they are needed as event attributes for
the event extraction. We therefore select all lem-
mas of the action mentions from the training data
and detect new mentions from the test data set by
comparing lemma values.

4.3 Event Processing Sieve
The general definition of an event is described as
a change on the state of a bio-molecule or bio-
molecules (e.g. “expression of a cheV-lacZ fusion
is completely dependent on sigD”). We represent
events as a special case of relationship and name
them “EVENT”. In the training data, the event sub-
ject types are Protein, GeneFamily, PolymeraseC-
omplex, Gene, Operon, mRNA, Site, Regulon and
Promoter types, while the objects are always of
the action type (e.g. “expression”), which we dis-
cover in the previous sieve. After identifying event
relations using the linear-chain CRF approach, we
apply a rule that sets the action mention as an ob-
ject and the gene as a subject attribute for every
extracted event.

4.4 Relations Processing Sieves
According to the task relation properties (i.e. dif-
ferent subject and object types), we extract rela-
tions in three phases (iv, v, vi). This enables us to
extract hierarchical relations (i.e. relation contains
another relation as subject or object) and achieve
higher precision. All sieves use the proposed
linear-chain CRF-based extraction. The process-
ing sieves use specific relation properties and are
executed as follows:

(iv) First, we extract relations that contain only
entity mentions as attributes (e.g. “Transcrip-
tion of cheV initiates from a sigmaD” re-
solves into the relation sigmaD → Interac-
tion.Transcription→ cheV).

(v) In the second stage, we extract relations that
contain at least one event as their attribute.
Prior to execution we transform events into
their mention form. Mentions generated from
events consist of two tokens. They are taken
from the event attributes and the new event
mention is included into the list of existing
mentions. Its order within the list is deter-
mined by the index of the lowest mention to-
ken. Next, relations are identified following
the same principle as in the first step.

(vi) According to an evaluation peculiarity of the
challenge, the goal is to extract possible inter-
actions between genes. Thus, when a relation
between a gene G1 and an event E should
be extracted, the GRN network is the same
as if the method identifies a relation between
a gene G1 and gene G2, if G2 is the object
of event E. We exploit this notion by gen-
erating training data to learn relation extrac-
tion only between B. subtilis genes. During
this step we use an external resource of all
known genes of the bacteria retrieved from
the NCBI2.

The training and development data sets include
seven relation instances that have a relation as an
attribute. We omitted this type of hierarchy extrac-
tion due to the small number of data instances and
execution of relation extraction between genes.

There are also four negative relation instances.
The BioNLP task focuses on positive relations, so
there would be no increase in performance if neg-
ative relations were extracted. Therefore, we ex-
tract only positive relations. According to the data
set, we could simply add a separate sieve which
would extract negations by using manually defined
rules. Words that explicitly define these negations
are not, whereas, neither and nor.

4.5 Rule-Based Relations Processing Sieve
The last step of relation processing uses rules that
extract relations with high precision. General rules
consist of the following four methods:

• The method that checks all consequent men-
tion triplets that contain exactly one action
mention. As input we set the index of the ac-
tion mention within the triplet, its matching
regular expression and target relation.

2http://www.ncbi.nlm.nih.gov/nuccore/
AL009126
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• The method that processes every two con-
sequent B. subtilis entity mentions. It takes
a regular expression, which must match the
text between the mentions, and a target rela-
tion.

• The third method is a modification of the pre-
vious method that supports having a list of
entity mentions on the left or the right side.
For example, this method extracts two rela-
tions in the following example: “rsfA is under
the control of both sigma(F) and sigma(G)”.

• The last method is a variation of the sec-
ond method, which removes subsentences
between the two mentions prior to relation
extraction. For example, the method is able
to extract distant relation from the following
example: “sigma(F) factor turns on about 48
genes, including the gene for RsfA, and the
gene for sigma(G)”. This is sigma(F) → In-
teraction.Activation→ sigma(G).

We extract the Interaction relations using regu-
lar expression and specific keywords for the tran-
scription types (e.g. keywords transcrib, directs
transcription, under control of), inhibition (key-
words repress, inactivate, inhibits, negatively reg-
ulated by), activation (e.g. keywords governed
by, activated by, essential to activation, turns on),
requirement (e.g. keyword require) and binding
(e.g. keywords binds to, -binding). Notice that in
biomedical literature, a multitude of expressions
are often used to describe the same type of genetic
interaction. For instance, researchers might prefer
using the expression to repress over to inactivate
or to inhibit. Thus, we exploit these synsets to im-
prove the predictive accuracy of the model.

4.6 Data Cleaning Sieve

The last sieve involves data cleaning. This consists
of removing relation loops and eliminating redun-
dancy.

A relation is considered a loop if its attribute
mentions represent the same entity (i.e. men-
tions corefer). For instance, sentence “... sigma
D element, while cheV-lacZ depends on sigD ...”
contains mentions sigma D and sigD, which can-
not form a relationship because they represent the
same gene. By removing loops we reduce the
number of insertions. Removal of redundant re-
lations does not affect the final score.

5 Data in BioNLP 2013 GRN Challenge

Table 1 shows statistics of data sets used in our
study. For the test data set we do not have tagged
data and therefore cannot show the detailed eval-
uation analysis for each sieve. Each data set
consists of sentences extracted from PubMed ab-
stracts on the topic of the gene regulation network
of the sporulation of B. subtilis. The sentences in
both the training and the development data sets are
manually annotated with entity mentions, events
and relations. Real mentions in Table 1 are the
mentions that refer to genes or other structures,
while action mentions refer to event attributes (e.g.
transcription). Our task is to extract Interaction
relations of the types regulation, inhibition, acti-
vation, requirement, binding and transcription for
which the extraction algorithm is also evaluated.

The extraction task in GRN Challenge is two-
fold: given annotated mentions, a participant
needs to identify a relation and then determine the
role of relation attributes (i.e. subject or object)
within the previously identified relation. Only pre-
dictions that match the reference relations by both
relation type and its attributes are considered as a
match.

6 Results and Discussion

We tested our system on the data from BioNLP
2013 GRN Shared Task using the leave one out
cross validation on the training data and achieved
a SER of 0.756, with 4 substitutions, 81 dele-
tions, 14 insertions and 46 matches, given 131 ref-
erence relations. The relatively high number of
deletions in these results might be due to ambigu-
ities in the data. We identified the following num-
ber of extracted relations in the relation extraction
sieves (Sec. 4): (iii) 91 events, (iv) 130 relations
between mentions only, (v) 27 relations between
an event and a mention, (vi) 39 relations between
entity mentions, and (vii) 44 relations using only
rules. Our approach consists of multiple submod-
ules, each designed for a specific relation attribute
type (e.g. either both attributes are mentions, or an
event and a mention, or both are genes). Also, the
total sum of extracted relations exceeds the num-
ber of final predicted relations, which is a conse-
quence of their extraction in multiple sieves. Du-
plicates and loops were removed in the data clean-
ing sieve.

The challenge test data set contains 290 men-
tions across 67 sentences. To detect relations
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Data set Documents Tokens Real
mentions

Action
mentions

Events Relations Interaction
relations

dev 48 1321 205 55 72 105 71
train 86 2380 422 102 157 254 159
test 67 1874 290 86 / / /

Table 1: BioNLP 2013 GRN Shared Task development (dev), training (train) and test data set properties.

in the test data, we trained our models on the
joint development and training data. At the time
of submission we did not use the gene relations
processing sieve (see Sec. 4) because it had not
yet been implemented. The results of the par-
ticipants in the challenge are shown in Table 2.
According to the official SER measure, our sys-
tem (U. of Ljubljana) was ranked first. The
other four competing systems were K. U. Leuven
(Provoost and Moens, 2013), TEES-2.1 (Björne
and Salakoski, 2013), IRISA-TexMex (Claveau,
2013) and EVEX (Hakala et al., 2013). Partici-

Participant S D I M SER
U. of Ljubljana 8 50 6 30 0.73
K. U. Leuven 15 53 5 20 0.83
TEES-2.1 9 59 8 20 0.86
IRISA-TexMex 27 25 28 36 0.91
EVEX 10 67 4 11 0.92

Table 2: BioNLP 2013 GRN Shared Task results.
The table shows the number of substitutions (S),
deletions (D), insertions (I), matches (M) and slot
error rate (SER) metric.

pants aimed at a low number of substitutions, dele-
tions and insertions, while increasing the number
of matches. We got the least number of substi-
tutions and fairly good results in the other three
indicators, which gave the best final score. Fig. 7
shows the predicted gene regulation network with
the relations that our system extracted from test
data. This network does not exactly match our
submission due to minor algorithm modifications
after the submission deadline.

7 Conclusion

We have proposed a sieve-based system for re-
lation extraction from text. The system is based
on linear-chain conditional random fields (LCRF)
and domain-specific rules. In order to support the
extraction of relations between distant mentions,
we propose an approach called skip-mention lin-
ear chain CRF, which extends LCRF by varying

Interaction.Activation

Interaction.Binding

Interaction.Inhibition

Interaction.Regulation

Interaction.Requirement

Interaction.Transcription

Figure 7: The predicted gene regulation network
by our system at the BioNLP 2013 GRN Shared
Task.
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the number of skipped mentions to form mention
sequences. In contrast to common relation extrac-
tion approaches, we inferred a separate model for
each relation type.

We applied the proposed system to the BioNLP
2013 Gene Regulation Network Shared Task. The
task was to reconstruct the gene regulation net-
work of sporulation in the model organism B. sub-
tilis. Our approach scored best among this year’s
submissions.
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Abstract

This paper describes the information
extraction techniques developed in the
framework of the participation of IRISA-
TexMex to the following BioNLP-ST13
tasks: Bacterial Biotope subtasks 1 and
2, and Graph Regulation Network. The
approaches developed are general-purpose
ones and do not rely on specialized pre-
processing, nor specialized external data,
and they are expected to work indepen-
dently of the domain of the texts pro-
cessed. They are classically based on ma-
chine learning techniques, but we put the
emphasis on the use of similarity mea-
sures inherited from the information re-
trieval domain (Okapi-BM25 (Robertson
et al., 1998), language modeling (Hiem-
stra, 1998)). Through the good results ob-
tained for these tasks, we show that these
simple settings are competitive provided
that the representation and similarity cho-
sen are well suited for the task.

1 Introduction

This paper describes the information extraction
techniques developed in the framework of the
participation of IRISA-TexMex to BioNLP-ST13.
For this first participation, we submitted runs for
three tasks, concerning entity detection and cat-
egorization (Bacterial Biotope subtask 1, BB1),
and relation detection and categorization (Bacte-
rial Biotope subtask 2, BB2, and Graph Regula-
tion Network, GRN).

Our participation to the BioNLP shared tasks
takes place in the broader context of our work
in the Quaero research program1 in which we
aim at developing fine grained indexing tools for

1See www.quaero.org for a complete overview of this
large research project.

multimedia content. Text-mining and information
extraction problems are thus important issues to
reach this goal. In this context, the approaches that
we develop are general-purpose ones, that is, they
are not designed for a specific domain such as Bi-
ology, Medecine, Genetics or Proteomics. There-
fore, the approaches presented in this paper do not
rely on specialized pre-processing, nor specialized
external data, and they are expected to work inde-
pendently of the domain of the texts processed.

The remaining of this paper is structured as fol-
lows: the next section presents general insights
on the methodology used throughout our partici-
pation, whatever the task. Sections 3, 4 and 5 re-
spectively describe the techniques developed and
their results for BB1, BB2 and GRN. Last, some
conclusive remarks and perspectives are given in
Section 6.

2 Methodological corpus

From a methodological point of view, our ap-
proaches used for these tasks are machine learn-
ing ones. Indeed, since the first approaches of in-
formation extraction based on the definition of ex-
traction patterns (Riloff, 1996; Soderland, 1999),
using surface clues or syntactic and semantic in-
formation (Miller et al., 2000), machine learning
techniques have shown high performance and ver-
satility. Generally, the task is seen as a super-
vised classification one: the training data are used
to infer a classifier able to handle new, unlabeled
data. Most of the state-of-the-art techniques adopt
this framework, but differ in the kind of infor-
mation used and on the way to use it. For in-
stance, concerning the syntactic information, dif-
ferent representations were studied: sequences or
sub-sequences (Culotta et al., 2006; Bunescu and
Mooney, 2006), shallow parsing (Pustejovsky et
al., 2002; Zelenko et al., 2003), dependencies
(Manine et al., 2009), trees (Zhang et al., 2006;
Liu et al., 2007), graphs (Culotta and Sorensen,
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2004; Fundel et al., 2007), etc. Also, exploiting
semantic information, for instance through dis-
tributional analysis seems promising (Sun et al.,
2011).

The approaches also differ in the inference tech-
niques used. Many were explored, like neural net-
works (Barnickel et al., 2009) or logistic regres-
sion (Mintz et al., 2009), but those relying on a
metric space search, such as Support Vector Ma-
chines (SVM) or k-Nearest Neighbours (kNN) are
known to achieve state-of-the-art results (Zelenko
et al., 2003; Culotta and Sorensen, 2004). The
crux of the matter for these methods is to devise
a good metric between the objects, that is, a good
kernel. For instance, string kernels (Lodhi et al.,
2002) or graph kernels (Tikk et al., 2012) have
shown interesting performance.

Our approaches in these shared tasks also adopt
this general framework. In particular, they are
chiefly based on simple machine learning tech-
niques, such as kNN. In this classification tech-
nique, new instances whose classes are unknown
are compared with training ones (instances with
known classes). Among the latter, the closest ones
in the feature space are used to decide the class of
the new instance, usually by a majority vote. Be-
yond the apparent simplicity of this machine learn-
ing technique, the heart of the problem relies in the
two following points:

• using a relevant distance or similarity mea-
sure in the feature space to compare the in-
stances;

• finding the best voting process (number of
nearest neighbors, voting modalities...)

There is no real training step per se, but kNN is
truly a machine learning approach since the in-
ductive step is made when computing the simi-
larity and the vote for the classification of a new
instance, hence the qualification of ’lazy-learning’
method.

In our work, we explore the use of similarity
measures inherited from the information retrieval
(IR) domain. Indeed, IR has a long history when
it comes to comparing textual elements (Rao et
al., 2011) which may offer new similarity mea-
sures for information extraction either for kernel-
based methods or, in our case, for kNN. There-
fore, in the remaining of the article, we mainly de-
scribe the choice of this similarity measure, and
adopt the standard notation used in IR to denote a

similarity function: RSV (Retrieval Status Value,
higher score denotes higher similarity). In prac-
tice, all the algorithms and tools were developed
in Python, using NLTK (Loper and Bird, 2002) for
basic pre-processing.

3 Term extraction and categorization:
Bacteria Biotope sub-task 1

This section describes our participation to sub-
task 1 of the Bacteria Biotope track. The first
sub-section presents the task as we interpreted
it, which explains some conceptual choices of
our approach. The latter is then detailed (sub-
section 3.2) and its results are reported (sub-
section 3.3).

3.1 Task interpretation

This tasks aims at detecting and categorizing en-
tities based on an ontology. This task has some
important characteristics:

• it has an important number of categories;

• categories are hierarchically organized;

• few examples for each categories are given
through the ontology and the examples.

Moreover, some facts are observed in the training
data:

• entities are mostly noun phrase;

• most of the entities appear in a form very
close to their corresponding ontology entry.

Based on all these considerations and to our
point of view explained in the previous section,
this task is interpreted as an automatic categoriza-
tion one: a candidate (portion of the analyzed text)
is assigned an ontological category or a negative
class (stating) that the candidate does not belong
to any spotted category.

In the state-of-the-art, such problems are often
considered as labeling ones for which stochastic
techniques like HMM, MaxEnt models, or more
recently CRF (Lafferty et al., 2001), have shown
very good results in a large variety of tasks (Wang
et al., 2006; Pranjal et al., 2006, inter alia). Yet,
for this specific case, these techniques do not seem
to be fully suited for different reasons:

• a very high number of possible classes is
to be handled, which may cause complexity
problems;

• the size of the training set is relatively small
compared to the size of the label set;
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• embedding external knowledge (i.e. the on-
tology), for instance as features, cannot be
done easily.

On the contrary of these stochastic methods, our
approach does not rely on the sequential aspect of
the problem. It is based on lazy machine learn-
ing (kNN), detailed hereafter, with a description
allowing us to make the most of the ontology and
the annotated texts as training data.

3.2 Approach
In the approach developed for this task, the context
of a candidate is not taken into account. We only
rely on the internal components (word-forms) of
the candidate to decide whether it is an entity and
what is its category. That is why both the ontology
and the given annotated texts are equally consid-
ered as training data.

More precisely, this approach is implemented in
two steps. In the first step, the texts are searched
for almost exact occurrences of an ontology entry.
Slight variations are allowed, such as case, word
insertion and singular/plural forms. In practice,
this approach is implemented with simple regu-
lar expressions automatically constructed from the
ontology and the annotated texts.

In the second step, a more complex processing
is undergone in order to retrieve more entities (to
improve the recall rate). It relies on a 1-nearest
neighbor classification of the noun phrase (NP) ex-
tracted from the text. A NP chunker is built by
training a MaxEnt model from the CONLL 2000
shared task dataset (articles from the Wall Street
Journal corpus). This NP chunker is first applied
on the training data. All NP collected that do
not belong to any wanted ontological categories
are kept as examples of a negative class. The NP
chunker is then applied to the test data. Each ex-
tracted NP is considered as a candidate which is
compared with the ontological entries and the col-
lected negative noun phrases. This candidate fi-
nally receives the same class than the closest NP
(i.e. the ontological category identifier or the neg-
ative class).

As explained in the previous section, the key-
stone of such an approach is to devise an effi-
cient similarity measure. In order to retrieve the
closest known NP, we examine the word-forms
composing the candidate, considered as a bag-of-
words. An analogy is thus made with information
retrieval: ontological categories are considered as
documents, and the candidate is considered as a

query. A similarity measure inherited from infor-
mation retrieval, called Okapi-BM25 (Robertson
et al., 1998), is used. It can be seen as a modern
variant of TF-IDF/cosine similarity, as detailed in
Eqn. 1 where t is a term occurring qtf times in the
candidate q, c a category (in which the term t oc-
curs tf times), k1 = 2, k3 = 1000 and b = 0.75
are constants, df is the document frquency (num-
ber of categories in which t appears), dl is the doc-
ument length, that is, in our case the number of
words of the terms in that category, dlavg is the av-
erage length (number of words) of a category.

RSV (q, c) =
∑
t∈q

qTF (t) ∗ TF (t, c) ∗ IDF (t)

(1)
with:

qTF (t) =
(k3 + 1) ∗ qtf

k3 + qtf

TF (t, c) =
tf ∗ (k1 + 1)

tf + k1 ∗ (1− b + b ∗ dl(c)/dlavg)

IDF (t) = log
N − df(t) + 0.5

df(t) + 0.5

Finally, the category c∗ for the candidate q is
chosen among the set C of all the possible ones
(including the negative category), such that:

c∗ = arg max
c∈C

RSV (q, c)

The whole approach is illustrated in Fig. 1.
Still in order to improve recall, unknown words

(words that do not appear in any category) undergo
an additional process. The definition of the word
in WordNet, if present, is used to extend the candi-
date, in a very similar way to what would be query
expansion (Voorhees, 1998). In case of polyse-
mous words, the first definition is used.

3.3 Results
Figure 2 presents the official results of the partic-
ipating teams on the test dataset. Our approach
obtains good overall performance compared with
other team’s results and ranks first in terms of Slot
Error Rate (SER, combining the number of substi-
tution S, insertion I, deletion D and Matches M).
As it appears, this is mainly due to a better recall
rate. Of course, this improved recall has its draw-
back: the precision of our approach is a bit lower
than some of the other teams. This is confirmed
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Figure 1: k-NN based approach based on IR similarity measures

Figure 2: BB1 official results: global performance rates (left); error analysis (right)

by the general shape of our technique compared
with others’ (Figure 2, right) with more matches,
but also more insertions.

In order to analyze the performance of each
component, we also report results of step 1 (quasi-
exact matches with regular expression) alone, step
2 alone, and a study of the influence of using
WordNet to extend the candidate. The results
of these different settings, on the development
dataset, are given in Figure 3 From these results,
the first point worth noting is the difference of
overall performance between the development set
and the test set (SER on the latter is almost two
times higher than on the former). Yet, without ac-
cess to the test set, a thorough analysis of this phe-
nomenon cannot be undergone. Another striking
point is the very good performance of step 1, that

Figure 3: Influence of each extraction component
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is, the simple search for quasi identical ontology
phrases in the text. Compared to this, step 2 per-
forms worse, with many false negatives (deletions)
and misclassifications (substitutions). A close ex-
amination of the causes of these errors reveals that
the IR-based classification process is not at fault,
but it is misled by wrong candidates proposed by
the NP chunker. Besides the problem of perfor-
mance of our chunker, it also underlines the limit
of our hypothesis of using only noun phrases as
possible candidates. In spite of these problems,
step 2 provides complementary predictions to step
1, as their combination obtains better results than
each one. This is also the case with the WordNet-
based expansion, which brings slightly better re-
sults.

4 Extracting relation: Bacteria Biotope
sub-task 2

This section is dedicated to the presentation of our
participation to Bacteria Biotope sub-task 2. As
for the sub-task 1, we first present the task as we
interpreted it, then the approach, and last some re-
sults.

4.1 Task interpretation

This task aims at extracting and categorizing local-
ization and part-of relations that may be reported
in scientific abstracts between Bacteria, Habitat
and Geographical spots. For this particular sub-
task, the entities (boundaries in the text and type)
were provided.

As explained in Section 2, expert approaches
based on hand-coded patterns are outperformed by
state-of-the-art studies which consider this kind of
tasks as a classification one. Training data help
to infer a classifier able to decide, based on fea-
tures extracted from the text, whether two entities
share a relation, and able to label this relation if
needed. We also adopt this framework and ex-
ploit a system developed in-house (Ebadat, 2011)
which has shown very good performance on the
protein-protein-interaction task of the LLL dataset
(Nédellec, 2005). From a computational point of
view, two directed relations are to be considered
for this task, plus the ’negative’ relation stating
that no localization or part-of relation exists be-
tween the entities. Therefore, the classifier has to
handle five labels.

4.2 Approach
The extraction method used for this task only
exploits shallow linguistic information, which is
easy to obtain and ensures the necessary robust-
ness, while providing good results on previous
tasks (Ebadat, 2011). One of its main interests is to
take into account the sequential aspect of the task
with the help of n-gram language models. Thus, a
relation is represented by the sequence of lemmas
occurring between the agent and the target, if the
agent occurs before the target, or between the tar-
get and the agent otherwise. A language model is
built for each example Ex, that is, the probabili-
ties based on the occurrences of n-grams in Ex are
computed; this language model is written MEx.
The class (including the ’negative’ class) and di-
rection (left-to-right, LTR or right-to-left, RTL) of
each example is also memorized.

Given a relation candidate (that is, two proteins
or genes in a sentence), it is possible to evaluate
its proximity with any example, or more precisely
the probability that this example has generated the
candidate. Let us note C =< w1, w2, ..., wm >
the sequence of lemmas between the proteins. For
n-grams of n lemmas, this probability is classi-
cally computed as:

P (C|MEx) =

m∏
i=1

P (wi|wi−n..wi−1,MEx)

As for any language model in practice, probabil-
ities are smoothed in order to prevent unseen n-
grams to yield 0 for the whole sequence. In the
experiments reported below, we consider bigrams
of lemmas. Different strategies for smoothing are
used: as it is done in language modeling for IR
(Hiemstra, 1998), probabilities estimated from the
example are linearly combined with those com-
puted on the whole set of example for this class.
In case of unknown n-grams, an interpolation with
lower order n-grams (unigram in this case) com-
bined with an absolute discounting (Ney et al.,
1994) is performed.

In order to prevent examples with long se-
quences to be favored, the probability of generat-
ing the example from the candidate (P (Ex|MC))
is also taken into account. Finally, the similarity
between an example and a candidate is:

RSV (Ex,C) = min (P (Ex|MC), P (C|MEx))

The class is finally attributed to the candidate by
a k-nearest neighbor algorithm: the k most sim-
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Figure 4: BB2 official results in terms of recall,
precision and F-score

ilar examples (highest RSV ) are calculated and
a majority vote is performed. For this task, k
was set to 10 according to cross-validation experi-
ments. This lazy-learning technique is expected to
be more suited to this kind of tasks than the model-
based ones (such as SVM) proposed in the litera-
ture since it better takes into account the variety of
ways to express a relation.

4.3 Results

The official results are presented in Figure 4. In
terms of F-score, our team ranks close second, but
with a different recall/precision compromise than
TEES-2.1. The detailed results provided by the
organizers show that no Part-of relations are re-
trieved. From the analysis of errors on the devel-
opment set, it appears that the simplicity of our
representation is at fault in most cases of misclas-
sifications. Indeed, important keywords frequently
occur outside of the sub-sequence delimited by the
two entities. The use of syntactic information, as
proposed for the GRN task in the next section, is
expected to help overcome this problem.

5 Extracting relation: regulation
network

5.1 Task interpretation and approach

Despite the different application context and the
different evaluation framework, we consider this
relation extraction task in a similar way than in the
previous section. Therefore, we use the same ap-
proach already described in Section 4.2. Yet, in-
stead of using the sequence of lemmas between
the entities, we rely on the sequence built from the

Figure 5: Example of syntactic representation
used for the GRN task

Figure 6: GRN official results in terms of strict
Slot Error Rate (SER), recall, precision and F-
score

shortest syntactic path between the entities as it is
done in many studies (Manine et al., 2009, inter
alia). The text is thus parsed with MALT parser
(Nivre, 2008) and its pre-trained Penn Treebank
model (Marcus et al., 1993). The lemmas occur-
ring along the syntactic path between the entities,
from the source to the target, are collected as illus-
trated in Figure 5.

5.2 Results

The official results reported in Fig. 6 shows that al-
though our approach only ranks fourth in terms of
Slot Error Rate (SER), its general performance is
competitive in terms of Recall and F-score, but its
relatively lower precision impacts the global SER
score. It is also interesting to consider a relaxed
version of these evaluation measures in which sub-
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Figure 7: GRN official results in terms of re-
laxed Slot Error Rate (SER), recall, precision and
F-score

Figure 8: Analysis of errors of the GRN task

stitutions are not penalized. It therefore evalu-
ates the ability of the methods to build the regu-
lation network whatever the real relation between
entities. As it appears in Figure 7, in that case,
our approach brings the best results in terms of F-
score and SER. As for the BB2 task, it means that
the pro-eminent errors are between labels of valid
relations, but not on the validity of the relation.
This is also noticeable in Figure 8 in which the
global profile of our approach underlines its ca-
pacity to retrieve more relations, but also to gener-
ate more substitution and insertion errors than the
other approaches. The complete causes of these
misclassifications are still to be investigated, but a
close examination of the results shows two possi-
ble causes:
• the parser makes many mistakes on con-

junction and prepositional attachment, which
is especially harmful for the long sentences
used in the dataset;
• our representation omits to include negation

or important adverbs, which by definition are

not part of the shortest path, but are essential
to correctly characterize the relation.

The first cause is not specific to these data and is a
well-known problem of parsing, but hard to over-
come at our level. The second cause is specific to
our approach, and militate, to some extents, to de-
vise a more complex representation than the short-
est path one.

6 Conclusion and future work

For this first participation of IRISA to BioNLP
shared tasks, simple models were implemented,
using no domain-specific knowledge. According
to the task, these models obtained more or less
good rankings, but all have been shown to be com-
petitive with other teams’ results. Our approaches
put the emphasis on the similarity computing be-
tween known instances instead of complex ma-
chine learning techniques. By making analogies
with information retrieval, this similarity aims at
being the most relevant for the considered task and
at finding the closest known examples of any new
instance to be classified.

For instance, we made the most of the vector-
space measure Okapi-BM25 combined with a bag-
of-word representation for the first sub-task of
Bacterial Biotope, and of the language modeling
adapted from (Hiemstra, 1998) for the sequential
representation used in the second sub-task of Bac-
terial Biotope and for Gene Regulation Network.

Many parameters as well as other similarity
choices have not been explored due to the short de-
lay imposed by the challenge schedule. As a future
work, it would be interesting to automatically set
these parameters according to the data. In partic-
ular, a complex version of the BM-25 RSV func-
tion permits to include relevance feedback, which,
in our machine learning framework, corresponds
to using training data to adapt the BM-25 for-
mula. Another research avenue concerns the syn-
onymy/paraphrasing problem, which is not cor-
rectly handled by our word-based methods. Thus,
semantic analysis techniques used in IR (and other
NLP domains) such as Latent Semantic Indexing
(Deerwester et al., 1990) or Latent Dirichlet Allo-
cation (Blei et al., 2003) may also lead to interest-
ing results.
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