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Abstract 

      Interpreting the rapidly increasing amount of 
experimental data requires the availability 
and representation of biological knowledge in 
a computable form. The Biological expres-
sion language (BEL) encodes the data in form 
of causal relationships, which describe the as-
sociation between biological events. BEL can 
successfully be applied to large data and sup-
port causal reasoning and hypothesis genera-
tion. 
With the rapid growth of biomedical litera-
ture, automated methods are a crucial prereq-
uisite for handling and encoding the available 
knowledge. The BioNLP shared tasks support 
the development of such tools and provide a 
linguistically motivated format for the anno-
tation of relations. On the other hand, BEL 
statements and the corresponding evidence 
sentences might be a valuable resource for fu-
ture BioNLP shared task training data genera-
tion. 
In this paper, we briefly introduce BEL and 
investigate how far BioNLP-shared task an-
notations could be converted to BEL state-
ments and in such a way directly support  
BEL statement generation. We present the 
first results of the automatic BEL statement 
generation and emphasize the need for more 
training data that captures the underlying bio-
logical meaning.  

 

1 Introduction 

Currently a lot of effort is made to extract infor-
mation from scientific articles and encode the 
relevant parts in machine-readable language. In 
order to tackle these tasks, curators must be ex-

perts in both biological domain and computa-
tional representation of knowledge. 
   With the introduction of BEL, a new 
knowledge coding convention was made availa-
ble, thus simplifying the curation process and 
ensuring machine readability1. BEL was initially 
designed and used in 2003 by Selventa (operat-
ing as Genstruct® Inc. at the time) to capture 
relationships between biological entities in scien-
tific literature (Slater and Song 2012). It is flexible 
enough to store content from multiple knowledge 
layers and a broad range of analytical and deci-
sion-supporting applications. Knowledge bases 
encoded in BEL are suitable for querying, inter-
preting, reasoning and visualising of networks. 
   BEL represents scientific findings by capturing 
causal and correlative relationships in a given 
context, including information about the biologi-
cal system and experimental conditions. The 
supporting evidences are captured and linked to 
the publication references. It is specifically de-
signed to adopt external vocabularies and ontol-
ogies, and therefore represents life-science 
knowledge in language and schema known by 
the community. Entities in BEL statements are 
mapped to widely accepted namespaces, which 
specify a set of domain entities (e.g., HGNC2, 
CHEBI 3 ). Continuous development and com-
mercial use in more than 80 life science projects 
in the last ten years qualify BEL as suitable for 
displaying causal networks for both humans and 
computers. Various networks built in BEL were 
mainly focusing on disease mechanisms (Schlage 
                                                
1http://wiki.openbel.org/display/BLD/BEL+Language+Doc
umentation+v1.0+-+Current           
2 http://www.genenames.org/ 
3 http://www.ebi.ac.uk/chebi/ 
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et al., 2011) and are used for causal reasoning 
(Chindelevitch et al., 2012, Huang et al., 2012 
and Selventa 2012). Since 2012, BEL is also 
available in the public domain through the 
OpenBEL consortium. The OpenBel portal4 de-
fines the BEL language standard and provides 
formatted content and compatible tools for re-
search. 
   The necessary information to develop a BEL 
knowledge base is currently harvested mainly by 
manual translation of literature into BEL state-
ments. To support automated extraction of 
statements by text mining techniques, additional 
efforts and adaptations of existing text mining 
platforms are necessary.  
   The BioNLP community has developed various 
approaches, which may already support the au-
tomated extraction of BEL statements. To esti-
mate how far current tools can generate BEL re-
lationships, we focused on the BioNLP shared 
tasks series5. The BioNLP-shared tasks specify 
fine-grained information extraction tasks for bio-
logically relevant targets, mainly centred on pro-
teins and genes. In the two previous events, Bio-
NLP-ST 2009 and 2011, more than 30 teams par-
ticipated with their systems, a number of which 
are available as open source. In BioNLP-ST 
2013 series, additional training data for pathway 
curation including chemical entities is available.  
   The organizers develop a linguistically based 
event representation and provide annotated train-
ing and test data to the participants. The annotat-
ed events in training data can directly be used for 
comparison with BEL definitions and available 
BEL statements. If the conversion of said event 
annotations to BEL statements (and vice versa) is 
successful on the semantic level, we have a 
promising opportunity to support both domains. 
Information encoded in the BEL statements in 
combination with corresponding evidence sen-
tences could be used as training data to support 
further tool development.  
 

2 Related Network Representations 

For pathway representations there exist two 
widely adopted machine readable representa-
tions: Systems Biology Markup Language 
(SBML)6 (Hucka et al., 2003) and Biological 
Pathway Exchange (BioPAX) (Demir et al., 
2010). SBML is an XML-based data exchange 
                                                
4 http://www.openbel.org/ 
5 http://2013.bionlp-st.org/ 
6 http://sbml.org 

format that supports a formal mathematical rep-
resentation of chemical reactions including kinet-
ic parameters. BioPAX is an RDF/OWL-based 
standard language enabling integration, ex-
change, visualization, and analysis of biological 
pathway data. Pathway representations in BioPax 
were already compared to the BioNLP-ST repre-
sentations (Ohta et al., (1) 2011) and let to the 
introduction of the Pathway curation task in 
20137. For this task additional entity types and 
event types were proposed and resulted in a set 
of new annotations (Ohta et al., (2) 2011). A 
comparison between BEL and BioPax can be 
found at the OpenBEL Portal8. BioPAX focuses 
on pathway construction and partly may require 
more information than available in most publica-
tions. BEL’s design enables the representation of 
causal relationships across a wide range of 
mechanistic detail and between the levels of mo-
lecular event, cellular process, and organism-
scale phenotype. BEL is designed to represent 
discrete scientific findings and their relevant con-
textual information as qualitative causal relation-
ships that can drive knowledge-based analytics. 
BEL enables biological interference by applica-
tions but furthermore is intended as an intuitive 
language of discourse for biologists. In such a 
way BEL is well aligned to the communications 
done in publications. The condensed representa-
tion of BEL statements and human as well as 
machine readability are great advantages of the 
BEL language. 
	
   
 

3 Overview of basic concepts in BEL 

BEL defines semantic triples that are stored in 
structured human readable BEL document files. 
A semantic triple is defined as a subject – predi-
cate – object triple, where subject is always a 
BEL term, object either a BEL term or a BEL 
statement (recursive nature of BEL) and the 
predicate one of the BEL relationship types. A 
BEL term is composed of a BEL function, a cor-
responding entity and a referencing namespace. 
The two main classes of BEL terms define abun-
dance of an entity (e.g., gene) or a biological 
process (e.g., disease).  
Optionally, statements can be enriched by con-

                                                
7 https://sites.google.com/site/bionlpst2013/tasks/pathway-
curation 
8 Comparison of BEL V1.0 and BioPAX Level3.pdf 
  http://www.openbel.org/content/bel-lang-resource-
documents 
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text information annotations like the evidence 
sentences, tissue type, species or cell line. Two 
annotation types are reserved, i.e., ‘Citation’ and 
‘Evidence’. ‘Evidence’ should state the exact 
sentence that holds the statement’s information, 
where ‘Citation’ is the source of this knowledge.  
   Predefined namespaces cover a variety of bio-
logical entities: genes, proteins, chemicals, dis-
eases and biological processes. For a complete 
definition of BEL we refer to the BEL Language 
documentation.   

 
BEL Expression Explanation 
p(HGNC:AKT1) 
 

Term: Protein Abundance 
function p(Ns:entity) 

r(HGNC:AKT1) Term: RNA Abundance 
function r(Ns:entity) 

a(CHEBI:phosphoenolp
yruvate) 

Term: Chemical Abundance 
function a(Ns:entity) 

 
p(HGNC:AKT1, 
sub(V,243,P)) 

Term: Protein Abundance 
function with substitution 
modification p(Ns:entity, 
sub(Aai,Pos,Aaj)) 

p(HGNC:AKT1, 
pmod(P,S,21)) 

Term: Protein Abundance 
function with phosphoryla-
tion modification 
p(Ns:entity,pmod(P,Aa,Pos)) 

kin (p(HGNC:AKT1)) Term: Protein Abundance 
function with kinase modifi-
cation kin(p(Ns:entity)) 

complex 
(p(HGNC:CHUK), 
p(HGNC:IKBKB), 
p(HGNC:IKBKG)) 

Term: Complex Abundance 
function complex 
(p(Ns:entity)i,…, 
p(Ns:entity)n) 

tloc(p(HGNC:EGFR), 
MESHCL: “Cell Mem-
brane”, 
MESCL:Endosomes) 

Term: Translocation function 
for Protein Abundance speci-
fying the original and target 
location Tloc(p(Ns:entity), 
Ns:entity, Ns:entity) 

deg(p(HGNC:AKT1)) Term: Degradation function 
for protein abundance  
deg(p(nNs:protein)) 

Reaction: 
rxn(reactants(a(CHEBI: 
phosphoenolpyruvate), 
a(CHEBI:ADP)), 
products 
(a(CHEBI:pyruvate), 
a(CHEBI:ATP))) 

Statement: reaction express-
ing the transformation of 
products into reactants, each 
defined by a list of abun-
dances 
rxn(reactants(a(Ns:entity)...),  
products(a(Ns:entity)...) 

p(HGNC:IL6) -> 
r(HGNC:ENO1) 

Statement: increase  
Term ->Term or 
Term -> Statement 

p(HGNC:TNF) -| 
r(HGNC:NOS3) 

Statement: decrease  
Term -|Term or 
Term -| Statement  

p(HGNC:TNF) --
r(HGNC:NOS3) 

Statement: association 
Term --Term or 
Term --Statement  

 
Table 1: Example BEL terms and statements.  
Abbreviations: Ns=namespace, Aa=amino acid, 
Pos=position 

 
In this work we focus mainly on protein-protein 
relationships (for simplification ‘protein’ refers 
to the corresponding gene, the RNA intermediate 
and the gene product itself9). Protein-protein re-
lationships are a main focus of the BioNLP 
shared tasks and cover core relationships of BEL. 
An overview of possible statements is given in 
Table 1 and shortly described below. Protein en-
tities are represented by BEL terms, consisting of 
the abundance function, the normalized entity 
and optionally modifications expressed as addi-
tional arguments within the abundance function: 
 
BEL statement: p(HGNC:AKT1, pmod(P, S, 21)) 
Entity: AKT1 
Namespace: HGNC 
Optional modification: pmod(P,S,21)  

 
   The used namespace denotes the approved 
symbol of HUGO Gene Nomenclature Commit-
tee10. An overview of currently used namespaces 
is given at the OpenBEL portal. The pmod() 
function explicitly denotes the modification type 
(here P=phosphorylation), the 1-letter code for 
the corresponding amino acid (S=Serin) and the 
position in the protein sequence. Other modifica-
tions are represented with different codes, e.g., 
M=methylation or U=ubiquitination. 
   BEL terms may contain protein activity infor-
mation such as kinase or transcription factor ac-
tivity or certain functions like complex, degrada-
tion, translocation or reaction in addition.  
 

  
 
Figure 1: Example of enriched BEL Statement 
 
   By default (but not mandatory) ‘Evidence’ and 
‘Citation’ annotations are provided for each 

                                                
9 according to BioNLP shared tasks annotations 
10http://www.genenames.org/data/hgnc_data.php?hgnc_id=
391 

SET Citation = {"PubMed","Cell","16962653","2006-
10-07","Jacinto E|Facchinetti V|Liu D|Soto N|Wei 
S|Jung SY|Huang Q|Qin J|Su B",""} 
SET Cell = "Fibroblasts” 
SET Species = "10090" 
SET Evidence = "We next examined the Akt T-loop 
Thr308 phosphorylation in wild-type and SIN1−/− 
cells. We found that although Ser473 phosphorylation 
was completely abolished in the SIN1−/− cells, Thr308 
phosphorylation of Akt was not blocked (Figure 3A)." 
 
p(MGI:Mapkap1) -> p(MGI:Akt1,pmod(P,S,473)) 
p(MGI:Mapkap1) causesNoChange 
p(MGI:Akt1,pmod(P,T,308)) 
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statement. In case of extraction from literature 
the reference source and the evidence sentences 
are given. Alternative evidences may be derived 
from tables, figures, supplementary material or 
other knowledge sources. Optionally, the BEL 
statements can be annotated with specified in-
formation about experimental methods, the bio-
logical system in which the facts are represented, 
or even information in which part of the full text 
the evidence has been found. An example of 
such a BEL statement from a small sample set at 
the OpenBEL portal11 is shown in Figure 1. Such 
detailed information from literature, in combina-
tion with the BEL statements, could serve as ide-
al source for the generation of training data for 
text mining purposes to facilitate the develop-
ment of future automated extraction algorithms. 
 

4 Analysis of basic concepts in the Bio-
NLP shared task annotations 

In the main BioNLP shared task (GE12) nine 
event types are defined (cf Table 2). ‘Gene ex-
pression’, ‘Transcription’, ‘Protein catabolism’, 
‘Phosphorylation’ and ‘Localization’ are simple 
events, having one protein as Theme argument.  
 

Event Primary Arg. Second-
ary Arg. 

Gene Expression Theme(Protein)  
Transcription Theme(Protein)  
Protein Catabolism Theme(Protein)  
Phosphorylation Theme(Protein) Site  

Localization Theme(Protein) AtLoc, 
ToLoc 

Binding Theme(Protein)+ Site+ 
Regulation, Positive 
Regulation, Nega-
tive Regulation 

Theme(Protein/Event)
,Cause(Protein/Event) 

Cause, 
Site, 
CSite 

 
Table 2: Event types defined in the BioNLP 
competitions (adapted from (Kim et al., 2012). A 
‘+‘ sign indicates multiple occurrences allowed.  
 
   Events ‘Phosphorylation’ and ‘Localization’ 
may have additional secondary arguments, like 
the phosphorylation site or the localization ar-
guments ToLoc and AtLoc. ‘Binding’ events can 
have an arbitrary number of proteins as Themes. 
Events ‘Positive regulation’, ‘Negative regula-

                                                
11 https://github.com/OpenBEL/openbel-framework-
resources/blob/master/knowledge/small_corpus.bel 
12 https://sites.google.com/site/bionlpst/home/genia-event-
extraction-genia 

tion’ and ‘Regulation’ are Regulation Events and 
have a primary Theme argument and an optional 
Cause argument, both being either a protein or 
an event. The trigger is always the textual repre-
sentation of the entities. Table 3 depicts an ex-
ample annotation for the following sentences13: 
  
S1) E1-4: “RFLAT-1: a new zinc finger transcription factor 
that activates RANTES gene expression in T lymphocytes.” 
 
S2) E5-9: “In this study we hypothesized that the phosphor-
ylation of TRAF2 inhibits binding to the CD40 cytoplasmic 
domain.” 
 
 

ID Theme Type Trigger Theme Cause 

T1 Protein RFLAT-1   

T2 Protein RANTES   

E3 Gene  

Expression 

gene ex-
pression 

T2   

E4 Positive  

Regulation 

activates E3 T1 

T5 Protein TRAF-2   

T6 Protein CD40   

E7 Phosphorylation phosphor-
ylation 

T5   

E8 Binding binding T6 T5 

E9 Negative  

Regulation 

inhibits E8 E7 

 
Table 3: Example BioNLP 09 shared task anno-
tation. The gene/protein entities with the Ids T1, 
T2, T5, and T6 were already provided. The task 
was to detect the events E3, E4, E7, E8 and E9. 
 

5 Syntactic mapping from BioNLP an-
notation to BEL statements 

For mapping of the BEL statements and the out-
put of the BioNLP shared tasks systems we com-
pared the training data for the GENIA BioNLP 
task with the BEL statements found in the small 
corpus at the OpenBEL website. The BioNLP 
shared task provides no normalization of the en-
tities to namespaces. Since we are mainly inter-
ested in the transformation of the event, we ig-
nore the normalization aspect in the conversion 
process. For most Shared Task events we could 

                                                
13 Examples taken from http://www.nactem.ac.uk/tsujii/ 
GENIA/SharedTask/detail.shtml 
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generate BEL Terms which are summarized with 
the rule set in Table 4 and Table 5. 
Standard translation for all protein Themes is 
protein abundance p(namespace:entity). In a later 
network generation step within the BEL frame-
work RNA abundance and gene abundance are 
added automatically to the network of statements 
for all protein abundances. Due to this reason, we 
only consider RNA or gene abundance if we de-
tect strong evidences for those states. For 
Gene_expression, the protein abundance is only 
converted to RNA abundance (r(name-
space:entity)) if the trigger word is ‘gene expres-
sion’. 
 

1.1 GeneExpression(Theme(protein)) à p(Ns:protein) 
 
If the GeneExpression trigger word is stemmed to 
‘express’ 

1.2 GeneExpression(Theme(protein)) à r(Ns:protein) 
 
For all other GeneExpression trigger words. 

2 Transcription(Theme(protein) ) à r(Ns:entity) 
3 Phosphorylation(Theme(protein), <Site>) à 

p(Ns:protein, <pmod(P,Aa, Pos)>) 
4 ProteinCatabolism(Theme(protein))à 

deg(p(Ns:protein)) 
5.1 Localization(Theme(protein)) à sec (p(Ns:protein))  

 
If the Localization trigger is stemmed to ‘secrete’ 

5.2 Localization(Theme(protein),AtLoc) à 
surf(p(Ns:protein)) 
 
If the Localization trigger is stemmed to ‘express’ 
and If AtLoc is ‘cell surface’ or ‘surface’ 

5.3 Localization(Theme(protein),AtLoc, ToLoc) à tloc 
(p(Ns:protein),Ns:AtLoc,Ns:ToLoc) 
 
In BEL statements it is necessary to have AtLoc and 
ToLoc; for some cases the missing information can 
be inferred otherwise artificial location information 
is given. 

6 Binding(Theme(protein)+,Site+) à com-
plex(p(ns:protein),+) 
 
The site information will be ignored. 

 
Table 4: Rule set 1 to map BioNLP annotations 
to BEL statements. 
 
 If the trigger word ‘expression’ is used, both 
RNA and protein expression might be meant by 
the authors, hence we keep the protein abun-
dance in those cases. Similarly for Transcription, 
the abundance is changed to RNA abundance. 
All complexes are translated to protein abun-
dance and chemical names are directly translated 
into abundance (a(ns:chemical names)). Protein 
modification events such as Phosphorylation can 
be directly converted to BEL terms. The different 

modification events are translated to a single let-
ter code in BEL. If the position information is 
given in the site expression it can directly be 
converted to the amino acid single letter code 
(Aa) and the position information (Pos). For the 
simple events Protein degradation and Binding, 
the translation is straightforward given their 
similar representation. The site information of 
the Binding event is omitted in the BEL state-
ment conversion. It would only be included if 
there is an experiment showing that a mutation of 
the site would lead to a suppression of the com-
plex building. 
 
   In the case of ‘Localization’, depending on the 
localisation trigger different BEL functions are 
possible. Given the localization trigger ‘secrete’ 
the BEL annotation is converted to the secretion 
(sec) function. If trigger words ‘surface’ or ‘cell 
surface’ are identified, the cellSurface (surf) 
function is assigned. For other Atloc and ToLoc 
triggers the function translocation (tloc) is used. 
This function always needs two arguments of 
location. If one of the arguments (AtLoc or 
ToLoc) is missing, a general annotation of 
MESHCL:“Intracellular Space” is proposed as 
unknown intracellular location. 

Activity status like gtp(p(protein)), kin 
(p(protein)), tscript(p(protein)),  cat(p(protein)), 
phos(p(protein)) are often found in the BEL ex-
ample corpus. This information might be partly 
inferred through the evidence information. In the 
first example sentence from Table 2, RFLAT-1 
might be directly translated into tscript 
(p(RFLAT-1)).  In other cases if a protein phos-
phorylates another protein directly, the 
kin(p(protein)) annotation can be added as well. 
However, in most cases the information cannot 
directly be inferred from the sentences (cf. Fig-
ure 1). The annotators obviously use their back-
ground knowledge to include this information. In 
the actual status of the Shared Task to BEL con-
version we omitted those functions. 
 
   Looking at the rule-set for transferring Shared-
Task events to BEL statements, it is observed 
that for most events (six out of nine) only BEL 
terms are generated, i.e., only the left or right 
hand side of a complete statement. Three rules 
generate complete BEL statements out of the 
following events: Regulation, Positive Regula-
tion and Negative Regulation. Analysis of the 
distribution of Events in Shared-Tasked training 
set (BioNLP ST 2011) reveals that approximate-
ly half of the events are Regulation events and 
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thus, could lead to a set of complete statements. 
In Table 5, we describe the rules which generate 
complete BEL statements. 
 

7 PositiveRegulation(Theme(Protein/Event),  
Cause(Protein/Event)) à  
p(ns:protein)/B(Event) -> p(ns:protein)/B(Event) 

8 NegativeRegulation(Theme(Protein/Event), 
Cause(Protein/Event)) à  
p(ns:protein)/B(Event) -| p(ns:protein)/B(Event) 

9 Regulation(Theme(Protein/Event), 
Cause(Protein/Event)) à  
p(ns:protein)/B(Event) -- p(ns:protein)/B(Event) 

 
Table 5: Rule set 2 to map BioNLP annotations 
to BEL statements. 
 
   For all ‘Regulation’ events the Theme is trans-
lated to the object of the BEL statement and 
might be a protein or another BEL statement       
(B(Event)). The Cause is integrated as subject 
within the statement and can be a protein or a 
statement. All ‘Positive Regulation’ events in the 
Shared Task annotations are converted to ‘in-
crease’ statements of BEL. We do not differenti-
ate between ‘increase’ and ‘directly increase’ in 
the conversion process. Similarly, all ‘Negative 
Regulation’ events are converted to a ‘decrease’ 
statement ignoring ‘directly decrease’. In the 
BEL annotations those two statement groups are 
the most frequent statements in both corpora. In 
the Shared Tasks relations we have the additional 
relation Regulation. There is no directly corre-
sponding BEL relation for a general regulation 
event, since it restricts the impact for causal rea-
soning. The event which has the most similar 
meaning is the statement ‘association’. It is used 
for associations of proteins but also for associa-
tions of proteins and diseases when no further 
information is available in the text. The addition-
al annotations Site and CSite are currently ig-
nored since there is no structure in BEL to in-
clude this information directly. 

In all three regulation events the Cause is an 
optional argument and might be missing. Out of 
the 7574 regulation events 2152 events contain a 
cause and thus can be converted to a complete 
BEL statements. For all other events the left 
hand side of the statement is missing.  

For obtaining an overview of the conversion 
process we converted the event annotations from 
the GENIA training corpus to BEL statements 
(all relations containing a speculation or a nega-
tion were omitted). The automatically generated 
BEL documents were checked for syntactical 
errors with the OpenBEL framework parser and 

validator.  Several adaptations were necessary in 
the automatic conversion process to generate 
syntactically correct BEL statements. 

Since we have no namespaces available we 
designed an artificial namespace to generate cor-
rect statements. Furthermore incomplete state-
ments with missing subjects (Causes) were not 
accepted by the BEL framework. An example of 
such an incomplete BEL statement is the follow-
ing (converted form the shared task annotation 
depicted in Figure 2): 

 
-| p(BioNLP:STAT4) -| p(BioNLP:IL10) 
 
For all missing Causes we included an artifi-

cial Cause resulting in the following statement 
for the given example: 

 
p(BioNLP:FIXME)-| p(BioNLP:STAT4) -| p(BioNLP:IL10) 
 

 
 
Figure 2: An example sentence from BioNLP-ST 
2011 GE train corpus, visualized using brat. 14 

 
Overall 5333 BEL statements were generated 

resulting in 588 full statements, 3057 incomplete 
statements (where the CAUSE is missing and 
FIXME was introduced) and 1688 BEL terms 
without any relation. Remaining syntactic errors 
were caused through BEL statements containing 
more than two relations (118 statements), which 
could not be handled by the BEL framework. A 
first version of the converted corpus is available 
under: http://www.scai.fraunhofer.de/ge2011-to-
bel.html. 

 

6 Preliminary comparison of converted 
statements with BEL knowledge re-
sources 

In the BioNLP shared tasks all possible events 
that fulfill the guidelines are annotated. In real 
life use-cases irrelevant or unproven interactions 
are omitted and biological experts extract BEL 
statements when they are in focus of their inter-
est. Furthermore experimental evidence for the 
relation should be should be given in the text. 
                                                
14 http://brat.nlplab.org 
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 In addition biologists are able to do a semantic 
interpretation of the experimental results and 
generate inferred statements. To find solutions 
for semantic interpretation for a number of in-
complete statements in the direct conversion for 
the BioNLP-ST annotations we compared sen-
tences such as annotated in figure 2 with evi-
dence sentences in the BEL sample set. In the 
following examples we show how an expert cu-
rator conversely infers BEL statements by inter-
preting experiment readouts.  
 
Example 1: 
Evidence = "PI 3- kinase/PKCξ, but not PI 3-kinase/Akt 
signaling pathway, is inhibited in IRS-2-deficient brown 
adipocytes upon insulin stimulation" 
 
p(HGNC:IRS2)-> kinase(p(HGNC:PRKCZ)) 
p(HGNC:IRS2) causesNoChange kin(p(HGNC:AKT1)) 
 
Example  2:  
Evidence = "transient transfection of primary brown adipo-
cytes with a dominant negative form of p21 Ras completely 
abolished insulin-induced UCP-1-CAT transactivation." 
 
p(PFH:"RAS Family") -> (p(HGNC:INS) -> 
r(HGNC:UCP1)) 
 
Example  3:  
Evidence = "We next examined the Akt T-loop Thr308 
phosphorylation in wild-type and SIN1−/− cells. We found 
that Thr308 phosphorylation was completely abolished in 
the SIN1−/− cells.” 
 
p(MGI:Mapkap1) -> p(MGI:Akt1,pmod(P,T,308)) 
 
 
   The examples given above demonstrate a 
standard experimental setting. In most cases the 
functionality of a gene is abolished and the effect 
(e.g. increase, decrease or no effect) on the cor-
responding interaction targets is observed. Some-
times, observed effects are compared to cell sys-
tems where the normal form (wild type or con-
trol) is transfected as well (cf. Example 3).  
   All examples share the readout: The BEL 
statement is not describing the experiment (given 
in the sentence), but the observed implication 
inferred from the experiment (cf. Example 2). 
Instead of encoding that a dysfunctional p21 
RAS leads to an abolishment of insulin induced 
UCP1 transactivation, the final BEL statement 
represents the resulting implication, i.e. wild-
type p21 RAS increases INS, which subsequent-
ly increases UCP1:  
 
p(PFH:"RAS Family") -> (p(HGNC:INS) -> 
r(HGNC:UCP1)) 

 
Similarly, in Example 3 from the abolishment of 
a function, the converse argument is derived, i.e. 
Mapkap 1 increases the phosphorylation of Akt1 
at T308. This example shows another main issue 
in deriving BEL statements: two or more sen-
tences are needed to get all information neces-
sary to create a valid BEL statement. Human cu-
rators use multiple sentences as evidence and do 
additional interpretation of the provided infor-
mation. In Example 3, the AKT phosphorylation 
is given in the first sentence and the phosphory-
lation event is given in the following sentence 
only in referring to the site and not to the protein.  
BioNLP-ST already includes annotation span-
ning several sentences but interpretation and 
merging of those annotations is not trivial. To 
complete such statements two different relations 
have to be combined and that is true for many 
modification relations. Especially in the case of 
phosphorylation, which is a regular activating 
signal in kinase pathways, we need solutions in-
cluding information from different sentences. 
The BEL corpus has a high number of phosphor-
ylation events and can serve as a base for the 
generation of further training data.  
   Another commonly observed experiment uses 
luciferase and CAT vectors. Those systems are 
used to analyze transcriptional activity of pro-
moters in dependence of stimuli. The result of 
such an experiment is oftentimes given only as a 
relation to CAT or luciferase like in the follow-
ing example: 
 
Example  4:  
Evidence = "introduction of miR-145, but not miR-143, 
with the luciferase vector in Cos cells resulted in relief of 
the repression and an ~150-fold increase in luciferase activi-
ty compared to the CMV-luciferase- Myocd 3' UTR-
luciferase vector alone.” 
 
miR(HGNC:MIR145) -> p(HGNC:MYOCD) 
miR(HGNC:MIR143) causesNoChange 
p(HGNC:MYOCD) 
 
   BioNLP shared task annotation would capture 
positive regulation of luciferase activity with the 
cause miR-145. The derived statement however 
does not state an abundance function for lucifer-
ase but the originally tested protein (indirectly 
via its promotor) i.e., Myocd.  Here, the inserted 
promoter information is given at the end of the 
sentence, although it is often provided in a sepa-
rate sentence.  
   The second BEL statement in Example 4 pro-
vides another relation type, which is not directly 
captured by the shared task annotations. Nega-
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tive results are annotated in BEL statements with 
the relation causesNoChange and are valuable 
relations in causal reasoning. They might be in-
terpreted using the negation annotation in shared 
task to capture this type of event.   
 
   Those examples are only a few out of numer-
ous others. For the development of suitable sys-
tems, annotated training corpora are crucial. The 
BEL documents might be a good starting point to 
generate further training corpora containing a 
high number of such evidence examples. How-
ever, the conversion of the BEL statements to 
BioNLP shared task annotation is not trivial, 
since position information is completely missing. 
Nevertheless, it might reduce the annotation ef-
fort, give good examples and serve as a basis for 
biological interpretation of the relations. For ini-
tial automatic systems it might be even sufficient 
to offer such experimental evidence sentences in 
addition to the extracted relations to users. 

 

7 Discussion and Conclusions  

Generally, a syntactic conversion of BioNLP 
shared task annotations to BEL terms and state-
ments is possible and in most cases without in-
formation loss. Tools developed or adapted for 
the BioNLP shared task are principally suited for 
the generation of causal BEL networks. Howev-
er, the analysis of the automatically converted 
BEL statements from the BioNLP shared tasks 
shows that in a number of cases incomplete BEL 
statements were generated. Part of the reason is 
the need for an additional interpretation layer 
that would help in generating biologically mean-
ingful statements. Another reason for the failure 
to extract full statements is the distribution of the 
relation over more than one sentence.  
   The properties of BEL statements and the addi-
tional information coded in the BEL documents 
represent a valuable resource for generating fur-
ther training data for the development of more 
real-world oriented systems. Unfortunately, the 
information of the BEL documents cannot direct-
ly be converted back to textual annotation. The 
main reason is that the position information of 
entities within the relation is missing. Reverse 
engineering is also challenging because the trig-
ger words are not given. Furthermore, normaliza-
tion to namespaces used in BEL statements 
makes the direct mapping difficult.  
   Nevertheless, the text mining community can 
learn from the BEL documents what are relevant 

statements for causal reasoning and from which 
evidence sentences humans extract the infor-
mation. The example BEL statements given 
show that humans use a number of experimental 
systems such as inactive versions of proteins or 
reporter genes to prove existing relationships. It 
might be a realistic task to use BEL documents 
as a starting point to generate training corpora for 
the automatic classification of such sentences 
and for information extraction systems to extract 
relations from those sentences. For some rela-
tions like the phosphorylation or the reporter 
genes, we might be even able to extract relations 
over sentences when enough training data is 
available.  
   Another problem not tackled by the BioNLP 
shared tasks is the mapping to the name spaces. 
There are already systems available combining 
BioNLP based relation extraction systems and 
named entity recognition (NER) systems allow-
ing for normalization and (eg. Björne et al., 2012 
and Van Landeghem et al., 2013).  Future sys-
tems have to combine relation extraction and 
NER systems allowing for normalization. Gene 
and protein names have already been in the focus 
of the BioCreative assessments during the last 
years (cf. Morgan et al., 2008 and Lu et al.,  
2011). In addition, chemical entities are coming 
more and more into the focus of the community 
(e.g., in the BioCreative 2013 task15). In the ex-
amples from the BEL corpus we see additional 
problems coming from the area of engineered 
genes. Name variants are often used (e.g., Sin-/- 
or CMV-luciferase- Myocd 3' UTR-luciferase), 
which causes further problems in the normaliza-
tion task. 
   Bridging the BEL and the BioNLP-ST com-
munity offers benefits for both sides. The Bio-
NLP shared tasks are a considerable start for the 
automatic generation of causal networks. Moreo-
ver, already available BEL documents can sup-
port the generation of the huge amount of addi-
tional training data, which is necessary for fur-
ther relation extraction development. 
 
 
 
 
 
 
 
 

                                                
15 http://www.biocreative.org/events/biocreative-iv/CFP/ 
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