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Abstract

In this paper, a new self–training method

for domain adaptation is illustrated, where

the selection of reliable parses is car-

ried out by an unsupervised linguistically–

driven algorithm, ULISSE. The method

has been tested on biomedical texts with

results showing a significant improve-

ment with respect to considered baselines,

which demonstrates its ability to capture

both reliability of parses and domain–

specificity of linguistic constructions.

1 Introduction

As firstly demonstrated by (Gildea, 2001), pars-

ing systems have a drop of accuracy when tested

against domain corpora outside of the data from

which they were trained. This is a real prob-

lem in the biomedical domain where, due to the

rapidly expanding body of biomedical literature,

the need for increasingly sophisticated and effi-

cient biomedical text mining systems is becom-

ing more and more pressing. In particular, the ex-

istence of natural language parsers reliably deal-

ing with biomedical texts represents the prerequi-

ste for identifying and extracting knowledge em-

bedded in them. Over the last years, this prob-

lem has been tackled within the biomedical NLP

community from different perspectives. The de-

velopment of a domain–specific annotated corpus,

i.e. the Genia Treebank (Tateisi, Yakushiji, Ohta,

& Tsujii, 2005), played a key role by providing a

sound basis for empirical performance evaluation

as well as training of parsers. On the other hand,

several attempts have been made to adapt general

parsers to the biomedical domain. First experi-

ments in this direction are reported in (Clegg &

Shepherd, 2005) who first compared the perfor-

mance of three different parsers against the Ge-

nia treebank and a sample of the Penn Treebank

(PTB) (Mitchell P. Marcus & Santorini, 1993) in

order to carry out an inter–domain analysis of

the typology of errors made by each parser and

demonstrated that by integrating the output of the

three parsers they achieved statistically significant

performance gains. Three different methods of

parser adaptation for the biomedical domain have

been proposed by (Lease & Charniak, 2005) who,

starting from the results of unknown word rate

experiments carried out on the Genia treebank,

adapted a PTB–trained parser by improving the

Part–Of–Speech tagging accuracy and by relying

on an external domain–specific lexicon. More re-

cently, (McClosky, Charniak, & Johnson, 2010)

and (Plank & van Noord, 2011) devised adaptation

methods based on domain similarity measures. In

particular, both of them adopted lexical similar-

ity measures to automatically select from an anno-

tated collection of texts those training data which

is more relevant, i.e. lexically closer, to adapt the

parser to the target domain.

A variety of semi–supervised approaches,

where unlabeled data is used in addition to labeled

training data, have been recently proposed in the

literature in order to adapt parsing systems to new

domains. Among these approaches, the last few

years have seen a growing interest in self–training

for domain adaptation, i.e. a method for using au-

tomatically annotated data from a target domain

when training supervised models. Self–training

methods proposed so far mainly differ at the level

of the selection of parse trees to be added to the

in–domain gold trees as further training data. De-

pending on whether or not external supervised

classifiers are used to select the parses to be added

to the gold–training set, two types of methods are

envisaged in the literature. The first is the case,

among others, of: (Kawahara & Uchimoto, 2008),

using a machine learning classifier to predict the

reliability of parses on the basis of different fea-

ture types; or (Sagae & Tsujii, 2007), selecting
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identical analyses for the same sentence within the

output of different parsing models trained on the

same dataset; or (McClosky, Charniak, & John-

son, 2006), using a discriminative reranker against

the output of a n–best generative parser for select-

ing the best parse for each sentence to be used

as further training data. Yet, due to the fact that

several supervised classifiers are resorted to for

improving the base supervised parser, this class

of methods cannot be seen as a genuine istance

of self–training. The second type of methods is

exemplified, among others, by (Reichart & Rap-

poport, 2007) who use the whole set of automat-

ically analyzed sentences, and by (McClosky &

Charniak, 2008) and (Sagae, 2010) who add dif-

ferent amounts of automatically parsed data with-

out any selection strategy. Note that (McClosky

& Charniak, 2008) tested their self–training ap-

proach on the Genia Treebank: they self–trained

a PTB–trained costituency parser using a random

selection of Medline abstracts.

In this paper, we address the second scenario

with a main novelty: we use an unsupervised ap-

proach to select reliable parses from automatically

parsed target domain texts to be combined with the

gold–training set. Two unsupervised algorithms

have been proposed so far in the literature for

selecting reliable parses, namely: PUPA (POS–

based Unsupervised Parse Assessment Algorithm)

(Reichart & Rappoport, 2009) and ULISSE (Un-

supervised LInguiStically–driven Selection of dE-

pendency parses) (Dell’Orletta, Venturi, & Mon-

temagni, 2011). Both algorithms assign a qual-

ity score to each parse tree based on statistics

collected from a large automatically parsed cor-

pus, with a main difference: whereas PUPA oper-

ates on costituency trees and uses statistics about

sequences of part–of–speech tags, ULISSE uses

statistics about linguistic features checked against

dependency–based representations. The self–

training strategy presented in this paper is based

on an augmented version of ULISSE. The reasons

for this choice are twofold: if on the one hand

ULISSE appears to outperform PUPA (namely, a

dependency–based version of PUPA implemented

in (Dell’Orletta et al., 2011)), on the other hand the

linguistically–driven nature of ULISSE makes our

self–training strategy for domain adaptation able

to capture reliable parses which are also represen-

tative of the syntactic peculiarities of the target do-

main.

After introducing the in– and out–domain cor-

pora used in this study (Section 2), we discuss

the results of the multi–level linguistic analysis of

these corpora carried out (Section 3) with a view

to identifying the main features differentiating the

biomedical language from ordinary language. In

Section 4, the algorithm used to select reliable

parses from automatically parsed domain–specific

texts is described. In Section 5 the proposed self–

training method is illustrated, followed by a dis-

cussion of achieved results (Section 6).

2 Corpora

Used domain corpora include i) the two out–

domain datasets used for the “Domain Adaptation

Track” of the CoNLL 2007 Shared Task (Nivre

et al., 2007) and ii) the dependency–based version

of the Genia Treebank (Tateisi et al., 2005). The

CoNLL 2007 datasets are represented by chemical

(CHEM) and biomedical abstracts (BIO), made of

5,001 tokens (195 sentences) and of 5,017 tokens

(200 sentences) respectively. The dependency–

based version of Genia includes∼493k tokens and

∼18k sentences which was generated by convert-

ing the PTB version of Genia created by Illes Solt1

using the (Johansson & Nugues, 2007) tool with

the -conll2007 option to produce annotations in

line with the CoNLL 2007 data set2. As unla-

belled data, we used the datasets distributed in the

framework of the CoNLL 2007 Domain Adapta-

tion Track. For CHEM the set of unlabelled data

consists of 10,482,247 tokens (396,128 sentences)

and for BIO of 9,776,890 tokens (375,421 sen-

tences). For the experiments using Genia as test

set, we used the BIO unlabelled data. This was

possible due to the fact that both the Genia Tree-

bank and the BIO dataset consist of biomedical

abstracts extracted (though using different query

terms) from PubMed.com.

As in–domain training data we have used the

CoNLL 2007 dependency–based version of Sec-

tions 2–11 of the Wall Street Journal (WSJ) par-

tition of the Penn Treebank (PTB), for a total of

447,000 tokens and about 18,600 sentences. For

testing, we used the subset of Section 23 of WSJ

consisting of 5,003 tokens (214 sentences).

All corpora have been morpho–syntactically

tagged and lemmatized by a customized version

1http://categorizer.tmit.bme.hu/∼illes/genia ptb/
2In order to be fully compliant with the PTB PoS tagset,

we changed the PoS label of all punctuation marks.
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of the pos–tagger described in (Dell’Orletta, n.d.)

and dependency parsed by the DeSR parser us-

ing Multi–Layer Perceptron (MLP) as learning al-

gorithm (Attardi, Dell’Orletta, Simi, & Turian,

n.d.), a state–of–the–art linear–time Shift–Reduce

dependency parser following a “stepwise” ap-

proach (Buchholz & Marsi, 2006).

3 Linguistic analysis of biomedical

abstrats vs newspaper articles

For the specific concerns of this study, we carried

out a comparative linguistic analysis of four dif-

ferent corpora, taken as representative of ordinary

language and biomedical language. In each case,

we took into account a gold (i.e. manually an-

notated) corpus, and an unlabelled corpus, which

was automatically annotated. By comparing the

results obtained with respect to gold and automat-

ically annotated texts, we intend to demonstrate

the reliability of features extracted from automat-

ically annotated texts. As data representative of

ordinary language we took i) the whole WSJ sec-

tion of the Penn Treebank3 including 39,285,425

tokens (1,625,606 sentences) and ii) the sections

2–11 of the WSJ. For what concerns the biomed-

ical domain, we relied on the Genia Treebank in

order to guarantee comparability of the results of

our linguistic analysis with previous studies car-

ried out on this reference corpus. As automatically

annotated data we used the corpus of biomedical

abstract (BIO) distributed as out–domain dataset

used for the “Domain Adaptation Track” of the

CoNLL 2007 Shared Task.

In order to get evidence of the differences hold-

ing between the WSJ newspaper articles and the

selected biomedical abstracts, the four corpora

have been compared with respect to a wide typol-

ogy of features (i.e. raw text, lexical, morpho–

syntactic and syntactic). Let us start from raw

text features, in particular from average sen-

tence length (calculated as the average number

of words per sentence): as Figure 1 shows, both

the corpus of automatically parsed newspaper ar-

ticles (WSJ unlab) and the manually annotated

one (WSJ gold) contain shorter sentences with re-

spect to both the automatically parsed biomedi-

cal abstrats (BIO unlab) and the manually anno-

tated ones (Genia gold), a result which is in line

3This corpus represents to the unlabelled data set dis-
tributed for the CoNLL 2007 Shared Task on Dependency
Parsing, domain adaptation track.

Figure 1: Average sentence length in biomedical

and newspaper corpora.

with (Clegg & Shepherd, 2005) findings. When

we focus on the lexical level, BIO unlab and

Genia gold appear to have quite a similar per-

centage of lexical items which is not contained

in WSJ gold (23.13% and 26.14% respectively)

while the out–of–vocabulary rate of WSJ unlab

is much lower, i.e. 8.69%. Similar results were

recorded by (Lease & Charniak, 2005) who report

the unknown word rate for various genres of tec-

nical literature.

Let us focus now on the morpho–syntactic level.

If we consider the distribution of nouns, verbs

and adjectives, three features typically represent-

ing stylistic markers associated with different lin-

guistic varieties (Biber & Conrad, 2009), it can

be noticed (see Figures 2(a) and 2(c)) that the

biomedical abstracts contain a higher percentage

of nouns and adjectives while showing a signif-

icantly lower percentage of verbs (Figure 2(b)).

The syntactic counterpart of the different distri-

bution of morpho–syntactic categories can be ob-

served in Table 1, reporting the percentage distri-

bution of the first ten Parts–of–Speech dependency

triplets occurring in the biomedical and newspaper

corpora: each triplet is described as the sequence

of the PoS of a dependent and a head linked by a

depedency arc, by also considering the PoS of the

head father. It turned out that biomedical abstracts

are characterized by nominal dependency triplets,

e.g. two nouns and a preposition (NN–NN–IN)

or noun, preposition, noun (NN–IN–NN) or ad-

jective, noun and preposition (JJ–NN–IN), which

occur more frequently than verbal triplets, such

as determiner, noun and verb (DT–NN–VBZ) or a

verbal root (.–VBD–ROOT)4. Interestingly, in Ge-

nia gold no verbal triplet occurs within the top ten

triplets, which cover the 21% of the total amount

4We named ‘ROOT’ the artificial root node.
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(a) Distribution of Nouns (b) Distribution of Verbs (c) Distribution of Adjectives

Figure 2: Distribution of some Parts–of–Speech in biomedical and newspaper corpora.

of triplets occurring in the corpus. By contrast,

the same top ten triplets represent only ∼11% in

WSJ gold, testifying the wider variety of syntac-

tic constructions occurring in newspaper articles

with respect to texts of the biomedical domain.

This is also proved by the total amount of differ-

ent PoS dependency triplets occurring in the two

gold datasets, i.e. 7,827 in WSJ gold and 5,064

in Genia gold even though the Genia Treebank is

∼50,000–tokens bigger.

Further differences can be observed at a deeper

syntactic level of analysis. This is the case of the

average depth of embedded complement ‘chains’

governed by a nominal head. Figure 3(a) shows

that biomedical abstracts are characterized by an

average depth which is higher than the one ob-

served in newspaper articles. A similar trend

can be observed for what concerns the distribu-

tion of ‘chains’ by depth. In Figure 3(b) shows

that WSJ unlab and WSJ gold ‘chains’, on the one

hand, and BIO unlab and Genia gold ‘chains’,

on the other hand, overlap. The corpora have

also been compared with respect to i) the av-

erage length of dependency links, measured in

terms of the words occurring between the syntac-

tic head and the dependent (excluding punctua-

tion marks), and ii) the average depth of the whole

parse tree, calculated in terms of the longest path

from the root of the dependency tree to a leaf. In

both cases it can be noted that i) the biomedical

abstracts contain much longer dependency links

than newswire texts (Figure 3(c)) and ii) the av-

erage depth of BIO unlab and Genia gold parse

trees is higher than in the case of the WSJ unlab

and WSJ gold (Figure 3(d)). A further distin-

guishing feature of the biomedical abstracts con-

cerns the average depth of ‘chains’ of embed-

ded subordinate clauses, calculated here by taking

into account both clausal arguments and comple-

ments linked to a verbal sentence root. As Figure

3(e) shows, both BIO unlab and Genia gold have

shorter ‘chains’ with respect to the ones contained

in the newspaper articles. Interestingly, a careful

analysis of the distributions by depth of ‘chains’

of embedded subordinate clauses shows that the

biomedical abstracts appear to have i) a higher oc-

currence of ‘chains’ including just one subordinate

clause and ii) a lower percentage of deep ‘chains’

with respect to newswire texts. Finally, we com-

pared the two types of corpora with respect to the

distribution of verbal roots. The biomedical ab-

stracts resulted to be characterised by a lower per-

centage of verbal roots with respect to newspaper

articles (see Figure 3(f)). This is in line with the

distribution of verbs as well as of the nominal de-

pendency triplets observed in the biomedical ab-

stracts at the morpho–syntactic level of analysis.

Interestingly, the results obtained with respect

to automatically parsed and manually annotated

data show similar trends for both considered in–

and out–domain corpora, thus demonstrating the

reliability of features monitored against automat-

ically annotated data. In what follows, we will

show how detected linguistic peculiarities can be

exploited in a domain adaptation scenario.

4 Linguistically–driven Unsupervised

Ranking of Parses for Self–training

In the self–training approach illustrated in this pa-

per, the selection of parses from the automatically

annotated target domain dataset is guided by an

augmented version of ULISSE, an unsupervised

linguistically–driven algorithm to select reliable

parses from the output of dependency annotated

texts (Dell’Orletta et al., 2011) which has shown

a good performance for two different languages
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WSJ gold WSJ unlab Genia gold BIO unlab

Triplet % Freq Triplet % Freq Triplet % Freq Triplet % Freq

DT-NN-IN 2.03 DT-NN-IN 1.72 NN-NN-IN 3.66 DT-NN-IN 2.87

.-VBD-ROOT 1.61 .-VBD-ROOT 1.30 NN-IN-NN 2.93 NN-IN-NN 2.39

NN-IN-NN 1.11 JJ-NN-IN 0.99 DT-NN-IN 2.48 JJ-NN-IN 2.08

JJ-NN-IN 1.10 NN-IN-NN 0.97 JJ-NN-IN 1.96 NN-NN-IN 1.73

.-VBZ-ROOT 1.09 NNP-NNP-IN 0.87 NN-NNS-IN 1.88 IN-NN-IN 1.72

NNP-NNP-IN 0.95 DT-NN-VBD 0.85 JJ-NNS-IN 1.77 JJ-NNS-IN 1.36

DT-NN-VBZ 0.89 NN-VBD-ROOT 0.80 IN-NN-IN 1.65 .-VBD-ROOT 1.33

DT-NN-VBD 0.87 JJ-NNS-IN 0.79 NN-CC-IN 1.64 NNS-IN-NN 1.13

JJ-NNS-IN 0.87 NNP-NNP-VBD 0.78 NNS-IN-NN 1.56 NNP-NN-IN 1.03

IN-NN-IN 0.87 .-VBZ-ROOT 0.75 NN-NN-CC 1.47 NN-IN-VBN 0.93

Table 1: Frequency distribution of the first ten Parts–of–Speech dependency triplets in biomedical and

newspaper corpora.

(a) Depth of embedded complement
‘chains’

(b) Distribution of embedded com-
plement ‘chains’ by depth

(c) Length of dependency links

(d) Parse tree depth (e) Depth of embedded subordinate
clauses ‘chains’

(f) Distribution of verbal roots

Figure 3: Syntactic features in biomedical and newspaper corpora.

(English and Italian) against the output of two su-

pervised parsers (MST, (McDonald, Lerman, &

Pereira, 2006) and DeSR, (Attardi, 2006)) se-

lected for their behavioral differences (McDonald

& Nivre, 2007). ULISSE assigns to each depen-

dency tree a score quantifying its reliability based

on a wide range of linguistic features. After col-

lecting statistics about selected features from a

corpus of automatically parsed sentences, for each

newly parsed sentence ULISSE computes a relia-

bility score using the previously extracted feature

statistics. In its reliability assessment, ULISSE ex-

ploits both global and local features, where global

features (listed in Table 2 and discussed in Sec-

tion 3) are computed with respect to each sen-

tence and averaged over all sentences in the cor-

pus, and the local features with respect to indi-

vidual dependency links and averaged over all of

them. Local features include the plausibility of

a dependency link calculated by considering se-

lected features of the dependent and its govern-

ing head as well as of the head father: whereas

in ULISSE the selected features were circum-

scribed to part–of–speech information (so–called

“ArcPOSFeat” feature), in this version of the al-

gorithm a new local feature has been introduced,

named “ArcLemmaFeat”, which exploits lemma

information. “ArcPOSFeat” is able to capture the

different distribution of PoS dependency triplets

(see Table 1), along with the type of dependency

link, while the newly introduced “ArcLemmaFeat”

is meant to capture the lexical peculiarities of the

target domain (see Section 3). As demonstrated

in (Dell’Orletta et al., 2011), both global and lo-
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cal linguistic features contribute to the selection

of reliable parses. Due to the typology of linguis-

tic features underlying ULISSE, selected reliable

parses typically include domain–specific construc-

tions. This peculiarity of the ULISSE algorithm

turned out to be particularly useful to maximize

the self–training effect in improving the parsing

performance in a domain adaptation scenario.

The reliability score assigned by this augmented

version of ULISSE to newly parsed sentences re-

sults from a combination of the weights associ-

ated with individual features, both global and local

ones. In this study, the reliability score was com-

puted as a simple product of the individual feature

weights: in this way, one low weight feature is suf-

ficient to qualify a parse as low quality and thus to

exclude it from the self–training dataset5.

Feature

Parse tree depth

Embedded complement ‘chains’ headed by a noun

- Average depth

- Distribution by depth

Verbal roots

Arity of verbal predicates

- Distribution by arity

Subordinate vs main clauses

- Relative ordering of subordinate clauses with respect to the main clause

- Average depth of ‘chains’ of embedded subordinate clauses

- Distribution of embedded subordinate clauses ‘chains’ by depth

Length of dependency links

Table 2: Global features underlying ULISSE.

5 Experimental set–up

In the reported experiments, we used the DeSR

parser. Its performance using the proposed domain

adaptation strategy was tested against i) the two

out–domain datasets distributed for the “Domain

Adaptation Track” of the CoNLL 2007 Shared

Task and ii) the dependency–based version of the

Genia Treebank, described in Section 2. For test-

ing purposes, we selected from the dependency–

based version of the Genia Treebank sentences

with a maximum length of 39 tokens (for a total

of 375,912 tokens and 15,623 sentences).

Results achieved with respect to the CHEM and

BIO test sets were evaluated in terms of “Labelled

Attachment Score” (LAS), whereas for Genia the

only possible evaluation was in terms of “Un-

labelled Attachment Score” (UAS). This follows

from the fact that, as reported by Illes, this ver-

sion of Genia is annotated with a Penn Treebank–

style phrase–structure, where a number of func-

tional tags are missing: this influences the type

5See (Dell’Orletta et al., 2011) for a detailed description
of the quality score computation.

Test corpus LAS UAS

PTB 86.09% 87.29%

CHEM 78.50% 81.10%

BIO 78.65% 79.97%

GENIA n/a 80.25%

Table 3: The BASE model tested on PTB, CHEM,

BIO and GENIA.

of evaluation which can be carried out against the

Genia test set.

Achieved results were compared with two base-

lines, represented by: i) the Baseline model

(BASE), i.e. the parsing model trained on the PTB

training set only; ii) the Random Selection (RS) of

parses from automatically parsed out–domain cor-

pora, calculated as the mean of a 10–fold cross–

validation process. As proved by (Sagae, 2010)

and by (McClosky & Charniak, 2008) for the

biomedical domain, the latter represents a strong

unsupervised baseline showing a significant accu-

racy improvement which was obtained by adding

incremental amounts of automatically parsed out–

domain data to the training dataset without any se-

lection strategy.

The experiments we carried out to test the ef-

fectiveness of our self–training strategy were or-

ganised as follows. ULISSE and the baseline al-

gorithms were used to produce different rankings

of parses of the unlabelled target domain corpora.

From the top of these rankings different pools of

parses were selected to be used for training. In

particular, two different sets of experiments were

carried out, namely: i) using only automatically

parsed data as training corpus and ii) combining

automatically parsed data with the PTB training

set. For each set of experiments, different amounts

of unlabelled data were used to create the self–

training models.

6 Results

Table 3 reports the results of the BASE model

tested on PTB, CHEM, BIO and GENIA. When

applied without adaptation to the out–domain

CHEM, BIO and GENIA test sets, the BASE pars-

ing model has a drop of about 7.5% of LAS in both

CHEM and BIO cases. For what concerns UAS,

the drop is about 6% for CHEM and about 7% for

BIO and GENIA.

The results of the performed experiments are

shown in Figures 4 and 5, where each plot re-

ports the accuracy scores (LAS and UAS respec-

tively) of the self–trained parser using the ULISSE
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(a) LAS for CHEM without PTB training set. (b) LAS for BIO without the PTB training set.

(c) LAS for CHEM with the PTB training set. (d) LAS for BIO with the PTB training set.

Figure 4: LAS of the different self–training models in the two sets of performed experiments.

(a) UAS for GENIA without the PTB training set. (b) UAS for GENIA with the PTB training set.

Figure 5: UAS of the different self–training models for GENIA.

algorithm (henceforth, ULISSE–Stp) and of the

baseline models (RS and BASE). The parser ac-

curacy was computed with respect to different

amounts of automatically parsed data which were

used to create the self–trained parsing model. For

this purpose, we considered six different pools of

250k, 450k, 900k, 1000k, 1350k and 1500k to-

kens. Plots are organized by experiment type: i.e.

the results in subfigures 4(a), 4(b) and 5(a) are

achieved by using only automatically parsed data

as training corpus, whereas those reported in the

other subfigures refer to models trained on auto-

matically parsed data combined with PTB. Note

that in all figures the line named best–RS repre-

sents the best RS score for each pool of k tokens in

the 10–fold cross–validation process.

For what concerns BIO and CHEM, in the first

set of experiments ULISSE–Stp turned out to be

the best self–training algorithm: this is always the

case for CHEM (see subfigure 4(a)), whereas for

BIO (see subfigure 4(b)) it outperforms all base-

lines only when pools of tokens >= 900k are

added. When 900k tokens are used, ULISSE–Stp

allows a LAS improvement of 0.81% on CHEM

and of 0.61% on BIO with respect to RS, and

of 0.62% on CHEM and of 0.48% on BIO with

respect to BASE. It is interesting to note that

ULISSE–Stp using only automatically parsed data

for training achieves better results than BASE (us-

ing the PTB gold training set): to our knowledge,

a similar result has never been reported in the lit-

erature. The behaviour is similar also when the
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experiments are evaluated in terms of UAS6.

The results achieved in the first set of experi-

ments carried out on the GENIA test set (see 5(a))

differ significantly from what we observed for

CHEM and BIO: in this case, the BASE model ap-

pears to outperform all the other algorithms, with

the ULISSE–Stp algorithm being however more

effective than the RS baselines.

Figures 4(c), 4(d) and 5(b) report the results of

the second set of experiments, i.e. those carried

out by also including PTB in the training set. Note

that in these plots the RS+PTB lines represent the

score of the parser models trained on the pools

of tokens used to obtain the best–RS line com-

bined with the PTB gold training set. It can be

observed that the ULISSE–Stp+PTB self–training

model outperforms all baselines for CHEM, BIO

and GENIA for all the different sizes of pools of

selected tokens. For each pool of parsed data, Ta-

ble 4 records the improvement and the error reduc-

tion observed with respect to the BASE model.

Pool of tokens CHEM Err. red. BIO Err. red. GENIA Err. red.

250k 0.8 3.72 0.76 3.55 0.97 4.91

450k 1.1 5.12 0.54 2.53 1.52 7.7

900k 1.14 5.3 1.02 4.77 1.31 6.63

1000k 0.8 3.72 1.56 7.29 1.2 6.08

1350k 0.4 1.49 1.46 6.82 0.94 4.76

1500k 0.78 3.62 0.75 3.37 0.66 3.34

Table 4: % improvement of ULISSE–Stp+PTB vs

BASE reported in terms of LAS for CHEM and

BIO and of UAS for GENIA.

Differently from (Sagae, 2010) (with a

constituency–based parser), in this set of experi-

ments the self–training approach based on random

selection of sentences (i.e. the best–RS+PTB

baseline) doesn’t achieve any improvement with

respect to the BASE model with only minor

exceptions (observed e.g. with 250k and 450k

pools of added tokens for CHEM and with 250k

for GENIA). Moreover, even when the best–RS

LAS is higher than the ULISSE–Stp score (e.g.

in the first pools of k of Figure 4(b)), ULISSE–

Stp+PTB turns out to be more effective than

the best–RS+PTB baseline (Figure 4(d)). These

results may follow from the fact that ULISSE–Stp

is able to capture not only reliable parses but also,

and more significantly here, parses which reflect

the syntactic peculiarities of the target domain.

Table 5 shows the results of the different

ULISSE–Stp+PTB models tested on the PTB test

6In this paper, for CHEM and BIO experiments we report
only the LAS scores since this is the standard evaluation met-
ric for dependency parsing.

set: no LAS improvement is observed with respect

to the results obtained with the BASE model, i.e.

86.09% (see Table 3). This result is in line with

(McClosky et al., 2010) and (Plank & van No-

ord, 2011) who proved that parsers trained on the

union of gold corpora belonging to different do-

mains achieve a lower accuracy with respect to the

same parsers trained on data belonging to a sin-

gle target domain. Last but not least, it should be

noted that the performance of ULISSE–Stp across

the experiments carried out with pools of automat-

ically parsed tokens of different sizes is in line

with the behaviour of the ULISSE ranking algo-

rithm (Dell’Orletta et al., 2011), where increas-

ingly wider top lists of parsed tokens show de-

creasing LAS scores. This helps explaining why

the performance of ULISSE–Stp starts decreasing

after a certain threshold when wider top–lists of

tokens are added to the parser training data.

Pool of tokens CHEM BIO

250k 83.53 85.55

450k 85.53 86.01

900k 85.95 84.79

1000k 86.03 85.45

1350k 85.49 85.71

1500k 85.67 86.39

Table 5: ULISSE–Stp+PTB on PTB test set with

automatically parsed data.

Conclusion

In this paper we explored a new self–training

method for domain adaptation where the selec-

tion of reliable parses within automatically an-

notated texts is carried out by an unsupervised

linguistically–driven algorithm, ULISSE. Results

achieved for the CoNLL 2007 datasets as well

as for the larger test set represented by GENIA

show a significant improvement with respect to

considered baselines. This demonstrates a two–

fold property of ULISSE, namely its reliablity

and effectiveness both in capturing peculiarities

of biomedical texts, and in selecting high quality

parses. Thanks to these properties the proposed

self–training method is able to improve the parser

performances when tested in an out–domain sce-

nario. The same approach could in principle be

applied to deal with biomedical sub–domain varia-

tion: as reported by (Lippincott, Séaghdha, & Ko-

rhonen, 2011), biomedical texts belonging to dif-

ferent sub–domains do vary along many linguistic

dimensions, with a potential negative impact on

biomedical NLP tools.
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