
Proceedings of the 11th International Conference on Finite State Methods and Natural Language Processing, pages 49–53,
St Andrews–Sctotland, July 15–17, 2013. c©2013 Association for Computational Linguistics

Finite State Morphology Tool for Latvian

Daiga Deksne

Tilde
Vienības gatve 75a, Riga, Latvia
daiga.deksne@tilde.lv

Abstract

The existing Latvian morphological
analyzer was developed more than ten
years ago. Its main weaknesses are: low
processing speed when processing a large
text corpus, complexity of adding new
entries to the lexical data base, and
limitations for usage on different
operational platforms. This paper describes
the creation of a new Latvian morphology
tool. The tool has the capability to return
lemma and morphological analysis for a
given word form; it can generate the
required word form if lemma and form
description is given; it can also generate all
possible word forms for a given lemma. As
Finite state transducer (FST) technology is
used for the morphology tool, it is easy to
extend the lexicon, the tool can be reused
on different platforms and it has good
performance indicators.

Introduction
An efficient way to generate forms and obtain
morphological information about a word in a text
is to apply morphological analysis tools. Such tools
and their efficient implementation are especially
important for languages that have a rich
morphology. In this paper, we describe a new
morphological processing tool for the Latvian
language.

The Latvian language is an inflectional
language. As described in (Skadiņa et al., 2012),
words change form according to grammatical
function. Most word forms are built by adding an
affix to the stem of the word. The endings are
ambiguous. The same lexical ending can

symbolize several grammatical word forms. There
can also be changes in a stem – regular consonant
changes at the end of a stem, or a stem can be
completely different for a word form. For example,
for the verbs of the first conjugation, the full set of
inflectional word forms is generated using three
different stems - infinitive, present tense, and past
tense stems. To describe the morphological
lexicon, the relationships between stems and
different affixes must be defined.

The existing Latvian morphological analyzer
was developed more than ten years ago. It is based
on a relational lexical data base of contemporary
Latvian language. Prefixes, stems, and endings are
stored in separate tables and are marked by
different predefined declension groups. The
relationship tables define eligible combinations of
affixes. To be used by the morphological analyzer,
this data base is compiled into a proprietary
format. The same data base is used for building a
spelling checker data file for Latvian. The main
weaknesses of the existing Latvian morphological
analyzer are: low processing speed when
processing a large text corpus, complexity of
adding new entries to the lexical data base, and
limitations on platforms (it works only on the
Windows platform). These factors promoted the
search for a new solution.

In next chapters, we describe in detail the
proposed solution.

1 Substantiation for chosen architecture
Existing morphological analysis tools for different
languages and ways to describe the morphological
lexicon were analyzed. There are many
morphology tools for different languages that use
FST technology. A good example from which to
borrow ideas about morphologically tagged
lexicon representation in finite state format is

49

SMOR (Schmid et al., 2004) – a morphological
analyzer for German. Concatenation is used to
concatenate previously defined prefixes, stems,
suffixes, and inflectional endings. As these parts
are marked with agreement features, filters are
applied to eliminate invalid sequences.

There are several toolkits available which help
in developing FST based solutions: Stuttgart
Finite-State Transducer Tools1, OpenFst library2,
Foma finite state library 3 , Helsinki Finite-State
Transducer Technology toolkit4, Lttoolbox5.

To describe the lexicon, we use the Stuttgart
Finite-State Transducer Toolkit (SFST) as its
extended regular expressions based transducer
specification language allows to clearly describe
the lexicon, to define variables, to apply
concatenation, composition, insertion, and other
operators needed for transducer implementation
(Schmid, 2005). For transducer compilation, we
use OpenFst as it supports weighted finite state
transducers, and its source code can be compiled
on Linux and Windows platforms. Examples in
text are presented in SFST syntax.

2 Designing finite state morphology tool
There are three different transducers in the
morphology tool: morphological analysis, form
synthesis, and all word form generation for a given
lemma. Table 1 shows the input and the output
strings produced by every transducer. The files for
the synthesis transducer are generated from the all
form generation transducer. Only the last symbol
differs in the transducer. For synthesis, the empty
symbol on the input level changes to form ID on
the output level (1), but for all word form
generation, the form ID on the input level changes
to the part-of-speech tag on the output level (2).
The transducer for analysis is the inverted version
of the transducer for synthesis.

(1) <>:<1397>
(2) <1397>:<m>

1 http://www.ims.uni-
stuttgart.de/projekte/gramotron/SOFTWARE/SFST.htm
2 http://www.openfst.org
3 http://foma.sourceforge.net/dokuwiki/doku.php
4 http://www.ling.helsinki.fi/kieliteknologia/tutkimus/hfst
5 http://wiki.apertium.org/wiki/Lttoolbox

Table 1: Different transducer input and output for the
numeral ‘five’

For form description, the original form

identifiers are used as they are in the lexical data
base of contemporary Latvian language. When
further compiling transducers with OpenFst, they
are remapped to form descriptions which are based
on a tagset developed in MUTEXT-East
(Erjavec, 2011). Both (3) and (4) describe the same
form – numeral, feminine, plural, genitive case,
cardinal numeral.

(3) <1397>
(4) < m0fpg000c0000000>

The input for analysis is a word form, the output

– one or more lemmas and form description tags.
The input for synthesis is a lemma and a form
description tag, and the output is one or several
word forms. The input for full paradigm generation
is a lemma with a part-of-speech tag, and the
output is all word forms and their form
descriptions.

The transducers are created incrementally. The
final transducer is represented as a union of
separate part-of-speech transducers.

(5) $morph$ = $Pronouns$ | $Numerals$ |
$Others$ | $Adjectives$ | $Nouns$ |
$Verbs$

Analysis
Input piecu
Output pieci<m0fpg000c0000000>

pieci<m0mpg000c0000000>
Synthesis

Input pieci<m0fpd000c0000000>
Output piecām

All forms
Input pieci<m>
Output pieci<m0mpn000c0000000>

piecu<m0mpg000c0000000>
pieciem<m0mpd000c0000000>
piecus<m0mpa000c0000000>
piecos<m0mpl000c0000000>
piecas<m0fpn000c0000000>
piecu<m0fpg000c0000000>
piecām<m0fpd000c0000000>
piecas<m0fpa000c0000000>
piecās<m0fpl000c0000000>

50

Words belonging to a different part-of-speech
are represented in a slightly different way. Words
from non-inflected part-of-speech, such as
conjunction, exclamation, particle, abbreviation,
preposition, are represented as a lexical entry
followed by one or several form IDs on the input
level which changes to a part-of-speech value on
the output level. All such entries are joined by
union operators (6).

(6) $Others$ = bravo<1574>:<i> | …

Every numeral and pronoun is represented as an
inflected form on the input level and a lemma on
the output level followed by one or several form
IDs on the input level which changes to a part-of-
speech value on the output level. All such entries
are joined by union operators. If the inflected form
and the lemma start with the same characters, they
are represented as a character sequence. In
example (7), the word “man” (to me) has the
lemma “es” (I), and the word “citam” (to other) has
the lemma “cits” (other).

(7) $Pronouns$ = {man}:{es}<1474>:<p> |
cit{am}:{s}<1634>:<p> | …

The ending classes, the lists of inflections, and
stems are defined separately for nouns, adjectives,
and verbs. In the future, the morphological lexicon
will be extended mostly by adding adjective, verb,
or noun stems of new words. The ending classes
contain a full set of possible noun, adjective, and
verb endings and will not require further changes.
Before every adjective and verb ending is a prefix
tag which marks with which prefix a particular
ending can be used. As the nouns and verbs can
have several inflected stems for a lemma, the
special ending tag marks with which stem a
particular ending can be used. In example (8), the
ending tags are “<altEnd1>” and “<normEnd>”.
The ending on the output level changes to the
corresponding lemma’s ending. All ending groups
are joined by union operator (9), and before every
ending group is an ending group tag which will be
used in a filter for filtering out the combinations of
stems and endings marked with the different
ending group tags. There are 15 ending groups for
adjectives, 26 ending groups for verbs and 69
ending groups for nouns.

(8) $Verb2$ = \
<normEnd><PrefOther>{sim}:{t}<643>:<v> |
<altEnd1><PrefOther>{a}:{t}<624>:<v> | …

(9) $VInfl$ = \
<>:<Verbmodal>$Verbmodal$ |
<>:<Verb2>$Verb2$ |
<>:<Verb3_aam_refl>$Verb3_aam_refl$ …

As nouns and verbs can have several stems to

form a full paradigm, it is hard to write FST
transformations by hand. There is a special file
format for editing – the stems of the same
paradigm are on the same line. This file contains
two information blocks – one about predefined
ending groups (10) and the other about the actual
lexical entries, stems (11). The predefined ending
group block is fixed; to improve the verb’s
morphological analysis, the editors will make
changes in the lexical entries block. In the
predefined ending group block, every line contains
a predefined ending group tag, the maximal
number of stems for a word marked with this
ending group tag, and ending tags for every stem.
All verb groups have infinitive and present stems,
some might also have past stem, second present
stem, participle stems. In example (10) ending
group ‘<Verb2>’ requires two stems but
‘<Verbmodal>’ – four stems. In (11) verb ‘barot’
of ending group ‘<Verb2>’ has two stems but
word ‘iet’ of ending group ‘<Verbmodal>’ - four.

(10)

<Verb2> 2 |t<normEnd> |u<altEnd1>
<Verbmodal> 4 |t<normEnd>

|u<normEnd1><altEnd1>
|u<normEnd2><altEnd2> |<altEnd3>

(11)
<Verb2> baro|t baroj|u
<Verbmodal> ie|t ej|u gāj|u iet|

The script changes lines to SFST representation

and adds required tags for every stem (12).
(12)
ie<normEnd><Verbmodal>
ej<normEnd1><Verbmodal>
e:ij:e<altEnd1><Verbmodal>
gāj<normEnd2><Verbmodal>
g:iā:ej:<><altEnd2><Verbmodal>
iet:<><altEnd3><Verbmodal>

51

Verbs and adjectives are represented as a
concatenation of prefixes, stems, and endings, and
nouns are represented as a concatenation of stems
and endings.

(13)
$Verbs$ = $VPrefix$ $VStems$ $VInfl$
$Adjectives$ = $APrefix$ $AStems$ $AInfl$
$Nouns$ = $NStems$ $NInfl$

At this stage, every verb consists of three parts –

prefix part, stem part, and ending part (14).

(14)
<PrefJa>jā
lob<>:ī<altEnd1><Verb3>
<Verb3><altEnd1><PrefJa>{a}:{t}<649>:<v>

The wrong forms are filtered out by composing
transducers with filters which accept the same
prefix, ending, and ending group tags between
word constituents.

3 Evaluation

We evaluated 37 964 words from the Latvian part
of the Latvian-English dictionary (Veisbergs,
2005). These words were morphologically
analyzed on a computer with Windows 7 operating
system (Intel® Core™ i7-2600 3.40 GHz
processor, 8 GB RAM). The existing morphology
tool spent 2 minutes on this task, e.g., 316 words
per second, while the FST based morphology tool
completed it in 4 seconds, e.g., 9491 words per
second. The similar performance speed for this
task also on a computer with Ubuntu GNU/Linux
operating system (Intel® Core™ 2 CPU 6300 1.86
GHz processor, 7.74 GB RAM). The outputs of the
two systems slightly differ as some errors in
lexicon where fixed. The functionality of all form
generation for a given lemma and part of speech
was tested on the same data. First the word was
analyzed, then the lemma and part of speech were
extracted from the analysis output and passed on to
the form generation transducer. The existing
morphology tool spent 7 minutes and 25 seconds
on this task, while the FST based morphology tool
– 27 seconds. The speed of the all form generation
functionality should be viewed only as a
comparison between the previous and the new FST

morphology tools as extra tasks are performed by
the script while processing analysis results.

4 Conclusion and future work

In comparison with the existing morphology tool,
FST technology is the better choice for
morphology tool development. The new solution is
faster; it works not only on Windows, but also on
the Linux platform; it makes it easy to add new
stems to predefined declension groups.

For now, all stems are listed in the transducer,
except for nouns with suffixes ‘–tāj’, ‘–um‘, ‘–ēj‘,
‘–šan‘, which are derived from verb stems. Future
work will be to reduce the size of the lexicon by
generating stems that have regular consonant
changes. This task is not simple. Phonological
changes occur only for words of certain
inflectional classes and only in certain grammatical
forms. For example, for nouns of the fifth and the
sixth declension in plural genitive and for nouns of
the second declension in singular genitive and all
plural cases stem’s last or two last consonants
change to one or two different consonants (15).
However, some stems do not follow this pattern.

(15)
$nounAlt$ = ({b}:{bj} | {c}:{č} | {d}:{ž} |
{dz}:{dž} | {l}:{ļ} | {ln}:{ļņ} | {m}:{mj} |
{n}:{ņ} | {p}:{pj} | {s}:{š} | {sl}:{šļ} |
{sn}:{šņ} | {t}:{š} | {v}:{vj} | {z}:{ž} |
{zl}:{žļ} | {zn}:{žņ} | {ll}:{ļļ} | {nn}:{ņņ})

Not all words are listed in the lexicon. Time by

time new words are introduced into a language.
Mostly these are foreign words and domain-
specific terms, and many are formed as
compounds. Compounding rules should be added
to the transducer, which will increase its coverage.

Acknowledgments
The research leading to these results has

received funding from the research project
“Information and Communication Technology
Competence Center” of EU Structural funds,
contract nr. L-KC-11-0003 signed between ICT
Competence Centre and Investment and
Development Agency of Latvia, Research No. 2.8
“Research of automatic methods for text structural
analysis”.

52

References
Erjavec T. 2012. MULTEXT-East: Morphosyntactic

Resources for Central and Eastern European
Languages. Language Resources and Evaluation,
46/1, pp. 131-142.

Skadiņa I., Veisbergs A., Vasiļjevs A., Gornostaja T.,
Keiša I., Rudzīte A. 2012. http://www.meta-
net.eu/whitepapers/e-book/latvian.pdf. Springer.

Schmid. H. 2005. A Programming Language for Finite
State Transducers. Proceedings of the 5th
International Workshop on Finite State Methods in
Natural Language Processing (FSMNLP 2005),
Helsinki, Finland.

Schmid H., Fitschen A. and Heid U. 2004. SMOR: A
German Computational Morphology Covering
Derivation, Composition, and Inflection. Proceedings
of the IVth International Conference on Language
Resources and Evaluation (LREC 2004), p. 1263-
1266, Lisbon, Portugal.

Veisbergs A. 2005. Jaunā latviešu-angļu vārdnīca = the
new Latvian-English dictionary. Rīga : Zvaigzne
ABC, c2005

53

