Computing the Most Probable String with a Probabilistic Finite State

Machine
Colin de la Higuera Jose Oncina
Université de Nantes, Dep. de Lenguajes y Sistemas Informaticos,
CNRS, LINA, UMR6241, Universidad de Alicante,
F-44000, France Alicante, Spain
cdl h@ini v-nantes. fr onci na@a. es
Abstract of the most probable string, also called the consen-

sus string, is untractable and that the Viterbi score
The problem of finding the consensus / most IS an acceptable approximation. But the probability
probable string for a distribution generated by of the string is obtained by summing over the dif-
a probabilistic finite automaton or a hidden ferent parses, so there is no strong reason that the
Markov model arises in a number of natural gyring with the most probable parse is also the most
language processing tasks: it has to be solved probable one.

in several transducer related tasks like opti- -
mal decoding in speech, or finding the most The problem of finding the most probable
probable translation of an input sentence. We ~ String was addressed by a number of authors, in
provide an algorithm which solves these prob- computational linguistics, pattern recognition and
lems in time polynomial in the inverse of the bio-informatics [Sima’an, 2002, Goodman, 1998,
probability of the most probable string, which Casacuberta and de la Higuera, 1999, 2000, Lyngse
in practise makes the computatiorj tractable in and Pedersen, 2002]: the problem was proved to be
many cases. We also show that this exactcom- \rp_parg: the associated decision problenh\ig>-
putation compares favourably with the tradi- S
tional Viterbi computation. complete in _I|m|ted cases only, b_ecause tht_e most
probable string can be exponentially long in the
number of states of the finite state machine (a con-
1 Introduction struction can be found in [de la Higuera and Oncina,
2013]). As a corollary, finding the most probable
Probabilistic finite state machines are used to deranslation (or decoding) of some input string, when
fine distributions over sets of strings, to model langiven a finite state transducer, is intractable: the
guages, help with decoding or for translation tasksset of possible transductions, with their conditional
These machines come under various names, wigitobabilities can be represented asra P
different characteristics: probabilistic (generating) Manning and Schitze [1999] argue that the
finite state automata, weighted machines, hiddeviterbi algorithm does not allow to solve the de-
Markov models (H1m s) or finite state tl‘anSduceI‘S...coding problem in cases where there is not a one-
An important and common problem in all the setto-one relationship between derivations and parses.
tings is that of computing the most probable evenih automatic translation Koehn [2010] proposes to
generated by the machine, possibly under a cogompute the top: translations from word graphs,
straint over the input string or the length. The typwhich is possible when these are deterministic. But
ical way of handling this question is by using thewhen they are not, an alternative in statistical ma-
Viterbi algorithm, which extracts the most probablechine translation is to approximate these thanks to
path/parse given the requirements. the Viterbi algorithm [Casacuberta and Vidal, 2004].
If in certain cases finding the most probable parsk speech recognition, the optimal decoding problem
is what is seeked, in others this is computed undeonsists in finding the most probable sequence of ut-
the generally accepted belief that the computatioterances. Again, if the model is non-deterministic,

1

Proceedings of the 11th International Conference on Finite State Methods and Natural Language Processing, pages 1-8,
St Andrews—Sctotland, July 15-17, 2013. (©2013 Association for Computational Linguistics

this will usually be achieved by computing the most<" the set of those of length at mast When de-
probable path instead. composing a string into sub-strings, we will write
In the before mentioned results the weight of eachv = w ... w, wherevi € [n] w; € ¥*.
individual transition is between 0 and 1 and the score A probabilistic languageD is a probability distri-
can be interpreted as a probability. An interestingpution over>*. The probability of a string: € >*
variant, in the framework of multiplicity automata under the distributiorD is denoted as’rp(z) and
or of acceptingprobabilistic finite automata (also must verify)" .. Prp(z) = 1. If L is a language
called Rabin automata), is the question, known ashus a set of strings, included kr), andD a dis-
the cut-point emptinesproblem, of the existence of tribution overs*, Prp(L) = > . Prp(x).
a string whose weight is above a specific threshold; If the distribution is modelled by some syntactic
this problem is known to be undecidable [Blondeimachine M, the probability ofz according to the
and Canterini, 2003]. probability distribution defined byM is denoted by
In a recent analysis, de la Higuera and Oncin®&ry(z). The distribution modelled by a machine
[2013] solved an associated decision problem: 81 will be denoted byD, and simplified toD if
there a string whose probability is above a givetthe context is not ambiguous.
threshold? The condition required is that we ar
given an upper bound to the length of the mos
probable string and a lower bound to its probabilityProbabilistic finite automata (&) are generative
These encouraging results do not provide the meafdgvices for which there are a number of possible def-
to actually compute the consensus string. initions [Paz, 1971, Vidal et al., 2005]. In the sequel
In this paper we provide three main results. Th&e will use-free FFA: these do not have emptx)
first (Section 3) relates the probab"ﬁy of a Stringtl'anSitionS: this restriction is without loss of gen-
with its length; as a corollary, given any fraction€rality, as algorithms [Mohri, 2002, de la Higuera,
p, either all strings have probability less thanor 2010] exist allowing to transform, in polynomial
there is a string whose probability is at leasand time, more general iA into PFA respecting the fol-

is of length at most@ wheren is the number 10Wing definition:
of states of the correspondings2 The second re- Definition 1. A A-free Probabilistic Finite Automa-
sult (Section 4) is an algorithm that can effectivelyton (PFA) is a tupleA = (X, Q, S, F, ¢), where:
compute the consensus string in time polynomial in
the inverse of the probability of this string. Our third
result (Section 5) is experimental: we show thatour - Q ={q,... .q|q|} is afinite set ofstates
algorithm works well, and also that in highly am- o o
biguous settings, the traditional approach, in which - ° * @ = RN [0,1] (initial probabilities);
the Viterbi score is used to return the string with the . p . § _, R 1[0, 1] (final probabilities);
most probable parse, will return sub-optimal results.

-0:Qx3YxQ — RNJ0,1] is the complete
2 Definitions and notations transition function;d(q,a,q’) = 0 can be in-
terpreted as “no transition fromy to ¢’ labelled
with a”.

.2 Probabilistic finite automata

- Y is the alphabet;

2.1 Languages and distributions

Let [n] denote the sefl,...,n} for eachn € IN.
An alphabet X is a finite non-empty set of sym-
bols calledletters A string w over X is a finite

S, § and F' are functions such that:

sequencev = aj ...a, Of letters. Letters will be Z S(g) =1, @)

indicated bya, b, c, ..., and strings byu, v, ...,z 9€Q

Let |w| denote the length ab. In this case we have andvq € Q,

|lw| = |ay ...a,| = n. Theempty strings denoted

by). Fo+ Y, dgad)=1 @
We denote byX* the set of all strings and by a€l, ¢'€Q

tegerd
Question: Is there inX= a string z such that
Pry(z) > p?

Bmpsis known to beNP-hard [Casacuberta and
de la Higuera, 2000]. De la Higuera and Oncina
[2013] present a construction proving that the most
probable string can be of exponential length: this
Figure 1: Graphical representation of AP makes the bound issue crucial in order to hope to
solve Cs. The proposed algorithm takesand b
as arguments and solvesvBs in time complexity
O(bm'};ﬂ). It is assumed that all arithmetic opera-
tions are in constant time.

The construction relies on the following sim-
ple properties, which ensure that only a reasonable
amount of incomparable prefixes have to be scruti-

An example of a PA is shown in Fig. 1.

Given x € ¥*, I14(z) is the set of all paths ac-
ceptingz: anacceptingz-path is a sequence =
Qip@1¢i, G2 - . . anq;, Wherex = ay---an, a; € 3,
andvj € [n] such thav(q;,_,,a;,q;;) # 0.

The probability of the pathmr is defined as .
Praa(r) = 8(qio) - Tljepu (i, ajs i) - Flas,) M28%
and the probability of the string is obtained by Property 1. Vu € X*, Pra(u¥*) > Pra(u).
summing over the probabilities of all the paths inproperty 2. If X is a set of strings such that (1)
ILa(z). An effective computation can be done byyy, € X, Pr4(u¥*) > pand (2) no string inX is a

means of the Forward (or Backward) algorithm [Vi-prefix of another different string i, then| X | < 1.
dal et al., 2005].

We denote by.A| the size ofA as one more than 3 Probable strings are short
the number of its states. Therefore, fdras repre-

L Is there a relation between the lengths of the strings
sented in Figure 1, we havel| = 5. g g

. o
We do not recall here the definitions for hidde and their probabilities? In other words, can we show

. hat a string of probability at leagtmust be reason-
Markov models. It is known that one can transform gorp y p

H int o d vi . | il ably short? If so, thé parameter is not required: one
an FMM 1nto a FrA and vice-versa in polynomial ., , compute the consensus string without having to
time [Vidal et al., 2005].

guess the bountl Let us prove the following:

2.3 The problem Proposition 1. Let A be a\-free PFA with n states
The goal is to find thenost probable stringn a prob- andw a string.

abilistic language. This string is also nameddba- Then|w| < ,(;ﬁﬁi)

sensustring. As a corollary,

Name: Consensus string & Corollary 1. Let. A be aX-free PFA with n states. If
Instance: A probabilistic machineM there is a string with probability at least, its length

Question: Find z € ¥* such thatYy € ~* isatmost = "+t

Prpy(z) > Pr . ’
m(x) = Pra(y) Proof. Let w be a string of lengthl en and

For example, for the P from Figure 1, the con- Pra(w) = p. A path is a sequencer =
sensus string iaaaaa. Note thaF the string having Qi @1 i 2 - - - A1 endiy on» With @; € 3.
the most probable single parseois LetIl; (w) be the subset dil 4 (w) of all pathsr

for which statey; is the most used state in

]]) If, for some pathr, there are several valugsuch

In [de la Higuera and Oncina, 2013] the followingnat, - is the most used state in we arbitrarily add
decision problem is studied: 7 to theIl’, (w) which has the smallest index

Name: Bounded most probable string ¥ s) Then, because of a typical combinatorial ar-
Instance: A \-free FFA A, an integep > 0, anin- gument, there exists at least orje such that

2.4 Associated decision problem

Pr (I (w)) >

. Note that in any path il T (w)

Proof of the lemmax” = 7; and7” = n’,. Neces-

stateq; appears at Ieaél‘ﬁ times. Con3|der any sarily we havej = 7'.

of these pathsr in It/ (w). Let k£ be the small-

Now gpwrg;l Weir-- Wil and

est integer such thaj;k = ¢ (ie the first time we 42 WKGR | Wkt Whted2 are the two frag-
visit stateg; in pathr is after having read the first ments of the paths that have been removed from
k characters ofv). Then for each valug’ such that ; and »/. These are necessarily different, but
¢, = g¢;, we can shorten the pathby removing the might coincide in part. Let be the first index for

cycle betweerny;, andg;,, and obtain in each case awhich they are different, i&z < h,q; = ¢;2 and
path for a new string, and the probability of this path] #q, 2.

is at least that ofr.

We have therefore at Ieaéf‘lp“ — 1 such alter-

native paths forr.

We call Alt(r, j) the set of alternative paths far

andg;. HencelAlt (w, j)| > el — 1,
And therefore

len+1

Pra(Alt(r, /) > (7*

n

- 1) Pra(r).

We have:
P(qz‘}lL71 y Wh, qull) +P(qi271’
result follows.

wh,qii) < 1landthe

O

We use Proposition 1 to associate with a given
stringw an upper bound over the probability of any
string havingw as a prefix:

We now want to sum this quantity over the dif-Definition 2. ThePotential Probability°P of a pre-
ferentr in I, (w). Note that there could be a diffi- fix stringw is
culty with the fact that two different paths may share

an identical alternative that would be counted twice. |AJ?
The following lemma (proved later) tells us that this

is not a problem.

PP (w) = min(Pra(w ¥X*),)

Jwl
PP(w) is also an upper bound on the probability

Lemma 1. Let 7 and 7’ be two different paths s any string havings as a prefix:

in I Z\(w), and 7" be a path belonging both to
AIt(w j) and to Alt(«’,j). Then Pr4(="

Pry(m) +P7“A(7T/).
Therefore, we can sum and

S Pra(Alt(r,) > <'G”T+1 _ 1) 4

ﬂEHQ(w)

Property 3. Vu € ¥* Pr4(wu) < PP(w)

Indeed,Pr4(wu) < Pr A(u) ¥*) and, because of
Proposition 1,Pr 4(wu) < A2 < A2

= Jwul = wl”
This means that we can decide, for a given prefix
w, and a probability to be improved, if is viable,
ie if the best string having as a prefix can be better

than the proposed probability. Furtermore, given a

The left hand side represents a mass of probabf—':A A and a prefixw, computingPP(w) is simple.

ities distributed byA to other strings thaw. Sum-
ming with the probability ofw, we obtain:

len+1

(=

(len+1—n)-p+pn?

n?(1 - p)
p

VAN

IN

(len4+1—-—n)<
n?(1 —p)

p

len < +n—-1

It follows thatl en < @.

4 Solving the consensus string problem

Algorithm 1 is given a IPA A and returns the most
probable string. The bounds obtained in the previ-
ous section allow us to explore the viable prefixes,
check if the corresponding string improves our cur-
rent candidate, add an extra letter to the viable prefix
and add this new prefix to a priority queue.

The priority queue@) is a structure in which the
time complexity for insertion i£)(log |Q|) and the
extraction Pop) of the first element can take place
in constant time. In this case the order for the queue
will depend on the valu®P(w) of the prefixw.

© 0 N o o b~ WwN

[any
o

11
12
13

14
15

16

Data: a PrA A most|X| new elements are added to the priority

Result w, the most probable string queue.
1 Current_Prob = 0; _ _
Q=[\; e Fact 6. Therefore, since only the first elements
Continue — true: of the priority queue will cause (at mo&t|)
while not(Empty(Q))and Continue do insertions, and these (fact 1) are necesarily vi-
w = Pop(Q); able, the total number of insertions is bounded
. ! A 2
if PP(w) > Current_Probthen by |3} - % : ,%pt-
=P ; : : : :
il; P> Tg‘ix)en ¢ Prob then The time complexity of the algorithm is propor-
Current P;Ob — tional to the number of insertions in the queue and is
Curren t_ Best — w’_ computed as follows:
foreach a € ¥ do o |Q|isat mOSt‘EL#;
if PP(wa) > Current_Probthen o
L Insert(wa, PP (wa), Q) e Insertion of an element intoQ is in
L 0 (1og (1=42)).
else Popt
return C'urrent_Best From the theoretical analysis it appears that the new

Analysis: Let popt be the probability of the con-
sensus string. Leé¥iable be the set of all strings
such thatPP(w) > popt.

Algorithm 1: Finding the Consensus String gigorithm will be able to compute the consensus
string. The goal of the experiments is therefore to
show how the algorithm scales up: there are domains
in natural language processing where the probabili-
ties are very small, and the alphabets very large. In
others this is not the case. How well does the algo-

e Fact 1. Let w be the first element a at some ithm adapt to small probabilities? A second line of

iteration. If PP(w) < pops €very other ele- experiments consists in measuring the quality of the

ment of Q will also have smalle®P and the Most probable parse for the consensus string. This
algorithm will halt. It follows that until the con- could obviously not be measured up to now (because

sensus string is found, the first elements in Of the lack of an algorithm for the most probable
Viable. string). Finding out how far (both in value and in
rank) the string returned by the Viterbi algorithm is

e Fact2.If w €Viable, PP(w) > popt, therefore from the consensus string is of interest.

2
IAIZ > popt SO |w| <

|w]

AP
Ppopt * 5.1 Further experiments

e Fact 3. There are at mostpi pairwise A more extensive experimentation may consist in
opt

incomparable prefixes irnviable. |ndeed’ bUIldIng a collection of random R, in the line of

all elements of Viable have PP(w) = Whathas been done innta/PFA learning compe-
min(Pr.a(w), %) > popt SO also have titions, for mst_ancg [Verwer et al., 2012]. A con-
v nected graph is built, the arcs are transformed into

Pra(wX*) > popt and by Property 2 we are

done transitions by adding labels and weights. A normal-

isation phase takes place so as to end up with a dis-

o Fact 4. There are at mosL - AP different tribution of probabilities.

prefixes inViable, as a consequjgﬁce of facts 2 The main drawback of this procedure is that, most

and 3. often, the consensus string will end up by being the
empty string (or a very short string) and any algo-

e Fact 5. At every iteration of the main loop at rithm will find it easily.

Actually, the same will happen when testing on
more realistic data: a language model built fram
grams will often have as most probable string the
empty string.

An extensive experimentation should also com-
pare this algorithm with alternative techniques
which have been introduced:

A first extension of the Viterbi approximation is
called crunching[May and Knight, 2006]: instead
of just computing for a string the probability of the
best path, with a bit more effort, the value associated
to a string is the sum of the probabilities of théest Figure 2: The topology of an automaton with 3 levels and
paths. multiplicity 2

Another approach isvariational decoding|Li
et al., 2009]: in this method and alternatives like
Minimum Risk Decoding, a best approximation bystate of leveh to all states of leveh + 1 but also to
n-grams of the distribution is used, and the mogt!l the states of levet < n. _
probable string is taken as the one which maximizes A1 €xample of this structure, with 3 levels and
the probability with respect to this approximation.Multiplicity 2 is represented in Fig. 2. The shortest
These techniques are shown to give better resuffding with non-null probability will be of length —

than the Viterbi decoding, but are not able to copé Wheren is the number of levels.
with long distance dependencies. A collection of random PA was built with vocab-

Coarse-to-fine parsingCharniak et al., 2006] is ulary size varying from 2 to 6, number of levels from

a strategy that reduces the complexity of the searghto 5, and the multiplicity from 2 to 3. 16 different

involved in finding the best parse. It defines a seE)FA were generated for each vocabulary size, num-

quence of increasingly more complex Probabilistiger of levels and multiplicity. Therefore, a total of

Context-Free grammars ¢RG), and uses the parse480 automata were built. From _those 16 were dis-
forest produced by oned®G to prune the search of carded because the low probability of the consensus

the next more complexd¥c string made it impossible to deal with the size of the
' priority queue. 464 automata were therefore consid-
ered for the experiments.

In the first set of experiments the goal was to test

The complexity of the algorithm can be measuregoy strong is the theoretical bound on the number
by counting the number of insertions into the priorf insertions in the priority queue.

ity queue. This number has been upper-bounded by Fig. 3 piots the inverse of the probability of the
X - %:Irt- But it is of interest to get a better andconsensus string versus the number of insertions in
tighter bound. In order to have a difficult set of testhe priority queue. The bound from Section 4 is

PrAs we built a family of models for which the con-

5.2 Atighter bound on the complexity

sensus string has a parametrized length and where an Q| < M
exponentially large set of strings has the same length Popt
anpl slightly lower probabilities than the consensus Our data indicates that
string.

In order to achieve that, the states are organised Q| < 1 - 1] - A2
in levels, and at each level there is a fixed number T Pit T Papt

of states (multiplicity). One of the states of the first

level is chosen as initial state. All the states have Furthermore?%pt seems empirically to be a better
an ending probability of zero except for one uniquédound: a more detailed mathematical analysis could
state of the last level; there is a transition from eaclead to prove this.

Checking priority queue bound Figure 4 shows the relative error when using the
R B probability of the most probable path instead of the

1e+16 ————
tautomata . Pad

le+ld - ffpgm — "1 probability of the consensus string. In other words
Y P] -

lesiz 7 - we measure and plcﬁ";’jo—ptp”. It can be observed

1e+10 - | thatthe relative error can be very large and increases

lons

as the probability of the consensus string decreases.
Furthermore, we ran an experiment to compute the
rank of the string with most probable path, when or-
dered by the actual probability. Over the proposed
7 benchmark, the average rankd2 and the maxi-

1e+00 Bl ol e el mum is277.
le+00 le+01 1e+02 1e+03 1le+04 le+05 le+06 1le+07 1e+08
1

1le+08 -

inserti

" 1le+06
le+04 -

le+02 -

” 6 Conclusion
Figure 3: Number of insertions made in the priority queud he algorithm provided in this work allows to com-
pute the most probable string with its exact probabil-
Consensus string vs. most probable path discrepancy |ty Experimentally it works well in settings where
100% 'Most probable path’ - the number of paths involved in the sums leading to
Ll the computation of the probability is large: in arti-
ficial experiments, it allowed to show that the best
string for the Viterbi score could be outranked by
more that 10 alternative strings.
Further experiments in natural language process-
. ..] ing tasks are still required in order to understand in
209% L T | which particular settings the algorithm can be of use.
: | In preliminary language modelling tasks two diffi-
0% ol il el el e, Culties arose: the most probable string is going to
Consensus string probability be extremely short and of little interest. Further-
more, language models use very large alphabets, so
the most probable string of length 10 will typically
have a probability of the order ah—3°. In our ex-
periments the algorithm was capable of dealing with
5.3 How good is the Viterbi approximation? figures of the order o10~%. But the difference is

In the literature the string with the most probableF€arly impossible to deal with. _

path is often used as an approximation to the consen- 1 "€ Proposed algorithm can be used in cases
sus string. Using the same automata, we attemptéi€re the number of possible translations and
to measure the distance between the probability #2ths may be very large, but where at least one
the string returned by the Viterbi algorithm, whichstring (or translation) has a reasonable probability.

computes the most probable parse, and the probab@-ther future research_ direction:_:, concern in lifting
ity of the consensus string. the \-freeness condition by taking into acoukt

For each automaton, we have measured the prot}égnsmons on the fly: in many cases, the transforma-

bility of the most probable stringg,r) and the prob- Eﬁ.n s cumbers]:ome. Extending thlis work to proba-
ability of the most probable paty,). ilistic context-free grammars is also an issue.

In 6?_>% of.the 464 PFA the consensus string fr’mdACknowledgement
the string with the most probable path were differ-
ent, and in no case does the probability of the corBiscussions with Khalil Sima’an proved important
sensus string coincide with the probability of then a previous part of this work, as well as later help
most probable path. from Thomas Hanneforth. We also wish to thank the

80% | . ¢
60% |

40%

Relative error

Figure 4: Most probable path accuracy

anonymous reviewer who pointed out a certain nun®. Li, J. Eisner, and S. Khudanpur. Variational de-

ber of alternative heuristics that should be compared coding for statistical machine translation. Rino-

more extensively. ceedings ofAcL/lacNLP 2009 pages 593-601.
The first author acknowledges partial support by The Association for Computer Linguistics, 2009.

the Région des Pays de la Loire. The second ag B. Lyngsg and C. N. S. Pedersen. The consen-
thor thanks the Spanish CICyT for partial support gys string problem and the complexity of compar-

C1, and the program @\SOLIDER INGENIO 2010 and System Sciencg5(3):545-569, 2002.

(Csp2007-00018). C. Manning and H. Schitzeroundations of Statis-

tical Natural Language ProcessingMIT Press,
1999.

V. D. Blondel and V. Canterini. Undecidable prob-j. mMay and K. Knight. A better n-best list: Practical
lems for probabilistic automata of fixed dimen- geterminization of weighted finite tree automata.

References

sion. Theory of Computer System36(3):231- |n Proceedings oHLT-NAACL 2006 The Asso-
245, 2003. ciation for Computer Linguistics, 2006.
F. Casacuberta and C. de la Higuera. Optimal linrM. Mobhri. Generic e-removal and input e-

guistic decoding is a difficult computational prob- normalization algorithms for weighted transduc-
lem. Pattern Recognition Letter20(8):813-821, ers. International Journal on Foundations of
1999. Computer Scien¢e 3(1):129-143, 2002.

F. Casacuberta and C. de la Higuera. Computational Paz.Introduction to probabilistic automataAca-
complexity of problems on probabilistic gram- demic Press, New York, 1971.
mars and transducers. In A. L. de Oliveira, editork sima’an. Computational complexity of proba-
Grammatical Inference: Algorithms and Applica- pjjistic disambiguation: NP-completeness results
tions, Proceedings ofcai '00, volume 1891 of for language and speech processi@ammars
LNAI, pages 15-24. Springer-Verlag, 2000. 5(2):125-151, 2002.

F. Casacuberta and E. Vidal. Machine translatiog, Verwer, R. Eyraud, and C. de la Higuera. Results
with inferred stochastic finite-state transducers. of the pautomac probabilistic automaton learn-

Computational Linguistics30(2):205-225, 2004. ing competition. InJournal of Machine Learning
E. Charniak, M. Johnson, M. Elsner, J. L. Auster- Research - Proceedings Traakolume 21, pages

weil, D. Ellis, I. Haxton, C. Hill, R. Shrivaths, 243-248, 2012.

J. Moore, M. Pozar, and T. Vu. Multilevel coarse-E. Vidal, F. Thollard, C. de la Higuera, F. Casacu-

to-fine PCFG parsing. IfProceedings ofHLT- berta, and R. C. Carrasco. Probabilistic finite state
NAACL 2006 The Association for Computer Lin- automata — part | and IPattern Analysis and Ma-
guistics, 2006. chine Intelligence27(7):1013-1039, 2005.

C. de la Higuera.Grammatical inference: learning
automata and grammarsCambridge University
Press, 2010.

C. de la Higuera and J. Oncina. The most probable
string: an algorithmic studylournal of Logic and
Computation, doi: 10.1093/logcom/exs02913.

J. T. Goodman. Parsing Inside—Out PhD thesis,
Harvard University, 1998.

P. Koehn. Statistical Machine Translation Cam-
bridge University Press, 2010.

